

1        **The *Vibrio* H-ring facilitates the outer membrane penetration of polar-sheathed flagellum**

2

3            Shiwei Zhu<sup>1</sup>, Tatsuro Nishikino<sup>2</sup>, Seiji Kojima<sup>2</sup>, Michio Homma<sup>2, #</sup>, Jun Liu<sup>1,3, #</sup>

4

5           <sup>1</sup> Department of Microbial Pathogenesis & Microbial Sciences Institute, Yale University, USA

6           <sup>2</sup> Division of Biological Science, Graduate School of Science, Nagoya University, Japan

7           <sup>3</sup> Department of Pathology and Laboratory Medicine, McGovern Medical School, The

8           University of Texas Health Science Center at Houston, USA

9

10          <sup>#</sup> To whom correspondence may be addressed.

11

12

13        **KEYWORDS**

14        Flagellar assembly

15        Membrane penetration

16        Flagellar evolution

17        Periplasmic flagella

18

19 **ABSTRACT**

20 The bacterial flagellum has evolved as one of the most remarkable nanomachines in nature. It  
21 provides swimming and swarming motilities that are often essential for the bacterial life cycle and  
22 for pathogenesis. Many bacteria such as *Salmonella* and *Vibrio* species use flagella as an external  
23 propeller to move to favorable environments, while spirochetes utilize internal periplasmic  
24 flagella to drive a serpentine movement of the cell bodies through tissues. Here we use cryo-  
25 electron tomography to visualize the polar-sheathed flagellum of *Vibrio alginolyticus* with  
26 particular focus on a *Vibrio* specific feature, the H-ring. We characterized the H-ring by identifying  
27 its two components FlgT and FlgO. Surprisingly, we discovered that the majority of flagella are  
28 located within the periplasmic space in the absence of the H-ring, which are dramatically different  
29 from external flagella in wild-type cells. Our results indicate the H-ring has a novel function in  
30 facilitating the penetration of the outer membrane and the assembly of the external sheathed  
31 flagella. This unexpected finding is however consistent with the notion that the flagella have  
32 evolved to adapt highly diverse needs by receiving or removing accessory genes.

33 **SIGNIFICANCE STATEMENT**

34 Flagellum is the major organelle for motility in many bacterial species. While most bacteria

35 possess external flagella such as the multiple peritrichous flagella found in *Escherichia coli*

36 and *Salmonella enterica* or the single polar-sheathed flagellum in *Vibrio* spp., spirochetes uniquely

37 assemble periplasmic flagella, which are embedded between their inner and outer membranes.

38 Here, we show for the first time that the external flagella in *Vibrio alginolyticus* can be changed as

39 periplasmic flagella by deleting two flagellar genes. The discovery here may provide a new

40 paradigm to understand the molecular basis underlying flagella assembly, diversity, and

41 evolution.

## 42 INTRODUCTION

43 Flagellum is the major organelle for motility in many bacterial species. It is arguably one of  
44 the most complex nanomachines in the bacterial kingdom. Flagella from different species share a  
45 conserved core, but also adapt profound variation to accommodate different needs or functions (1,  
46 2). While most bacteria possess external flagella such as the multiple peritrichous flagella found in  
47 *Escherichia coli* and *Salmonella enterica* or the single polar-sheathed flagellum in *Vibrio* spp.,  
48 spirochetes uniquely assemble periplasmic flagella, which are embedded between their inner and  
49 outer membranes (3). The flagella have been therefore a paradigm for understanding of evolution  
50 and adaptation of bacterial nanomachines (4).

51 Peritrichous flagella have been extensively studied in *E. coli* and *Salmonella* (5-9). The  
52 flagellum is composed of a long helical filament, a hook, and a motor. The motor is a complex  
53 macromolecular assembly composed of several ring structures around a rod, which functions as a  
54 drive shaft. The MS-ring consists of multiple copies of a single protein FliF and is embedded in the  
55 inner membrane. The C-ring is assembled in the cytoplasm and is essential for torque generation  
56 and the clockwise/counterclockwise switching of the direction of rotation. A flagellar type-III  
57 export apparatus is located underneath the MS- and C-rings. The L-ring is located in the outer  
58 membrane. The P-ring is located in the periplasmic space and interacts with the peptidoglycan  
59 layer. The P- and L-rings form a bushing at the distal end of the rod. The rotation of the flagella is

60 driven through an interaction between the rotor and the surrounding stator subunits. Two  
61 membrane proteins (MotA and MotB) form the stator complex. Powered by the proton motive  
62 force, the stator generates the torque required to rotate the motor, the hook, and the filament.  
63 The polar-sheathed flagellum from *Vibrio* species is quite different from the peritrichous flagella in  
64 *E. coli* and *Salmonella* (9-11). The polar-sheathed flagellum utilizes a sodium ion gradient as the  
65 energy resource for rotation and exhibits a remarkably fast speeds of up to 1700 Hz (12).  
66 Compared to the flagella in *E. coli* and *Salmonella*, the polar-sheathed flagellum in *Vibrio* spp.  
67 possesses extra ring-like structures known as the T-ring and the H-ring (13, 14). They are essential  
68 for high speed rotation of the *Vibrio* flagella (15). The T-ring is located right next to the P-ring and  
69 is important for incorporating the sodium-driven stator units into the basal body (13). The H-ring  
70 is known to be adjacent to the L-ring. FlgT was the first protein identified to be involved in the  
71 formation of the H-ring (15). However, the exact structure and function of the H-ring remained to  
72 be defined in detail.

73 Spirochetes are a group of bacteria with distinctive morphology and motility (3). The motility  
74 of the spirochetes is driven by periplasmic flagella, which are enclosed between the inner and  
75 outer membranes. The unique location clearly distinguishes the periplasmic flagella from the  
76 external flagella in *E. coli* and *Vibrio*. Interestingly, the highly conserved flagellar type III secretion  
77 system has been utilized to assemble the rod, the hook, and the filament in both periplasmic

78 flagella and external flagella (3, 16, 17). Therefore, one of the main differences between two  
79 flagellar systems is whether or not the flagella penetrate the outer membrane. It is of great interest  
80 to identify genes involved in outer membrane penetration.

81 *Vibrio alginolyticus* is a great model system to study polar-sheathed flagella (10, 18). In  
82 particular, cryo-electron tomography (cryo-ET) was recently utilized to visualize the *in situ*  
83 structure of sheathed flagella in *V. alginolyticus* that revealed distinct *Vibrio* specific features: the  
84 membrane sheath, the O-ring, the T-ring and the H-ring (11). Our previous studies provided  
85 structural evidence that MotX and MotY form the T-ring adjacent to the P-ring (11, 13). Here we  
86 attempt to understand structure and function of the H-ring by systematically characterizing two  
87 mutants lacking *flgT* or *flgO*, respectively. To our surprise, we found that periplasmic flagella  
88 assemble in both mutants. The unexpected observation suggests that the H-ring is essential for  
89 outer membrane penetration and assembly of the polar flagellum in *Vibrio*. More importantly, the  
90 new findings provide a basis for the further understanding of flagellar assembly and evolution.

91

## 92 RESULTS

### 93 FlgO and FlgT are involved in the H-ring formation

94 The H-ring is a *Vibrio*-specific flagellar feature that is important for motility. Our recent studies  
95 of the *V. alginolyticus* flagellar motor showed that the H-ring is a large disk underneath the outer

96 membrane (11). FlgT is the first protein known to be involved in H-ring formation (14, 15). FlgT is a  
97 small protein that might be limited to the proximal part of the H-ring. FlgO and FlgP are two outer  
98 membrane lipoproteins required for flagellum stability and motility of *V. cholerae*, as the *flgO* and  
99 *flgP* mutants have reduced motility and fewer external flagella (19). The averaged motor structure  
100 of *Vibrio fischeri*  $\Delta$ *flgP* mutant showed that the PL-ring, together with the T-ring, were visible  
101 (Morgan et al., 2016). We therefore hypothesize that both FlgO and FlgP might be involved in the  
102 formation of the H-ring complex in *Vibrio*. We constructed  $\Delta$ *flgO* and  $\Delta$ *flgT* mutant in the  
103 background of the multi-polar flagellated strain, respectively (Table 1). The  $\Delta$ *flgO* mutant cells are  
104 less motile in a soft agar plate while expression of a His-tagged *flgO*<sup>+</sup> allele complemented the  $\Delta$ *flgO*  
105 allele for motility and expression (Fig. 1A) as detected by western blot using anti-his tag antibody  
106 (Fig. 1B).

107 To decipher whether deletion of *flgO* affects the assembly of the polar-sheathed flagellum and  
108 the formation of the H-ring, we examined  $\Delta$ *flgO* mutant cells by cryo-ET. Polar-sheathed flagella  
109 are clearly visible in the  $\Delta$ *flgO* mutant (Fig. 2, Table 1). We identified flagellar motor structures  
110 from tomograms and determined the *in situ* motor structure from the  $\Delta$ *flgO* strain using sub-  
111 tomogram averaging (Fig. 2). Compared to the motor structure from wild type, the distal part of  
112 the H-ring density is absent in the  $\Delta$ *flgO* motor (Fig. 2G, H, J, K and L). Thus, our data suggest that  
113 FlgO is the protein component that is primarily responsible for the distal part of the H-ring.

114 Furthermore, the distal part of the H-ring seems to anchor the whole disk onto the inner leaflet of  
115 the outer membrane, because the smaller H-ring in the  $\Delta flgO$  motor appears to less tightly  
116 associate with the outer membrane (Fig. 2G, H).

117 To further understand the role of the H-ring on flagellar formation, we visualized a  $\Delta flgT$   
118 mutant using cryo-ET, as FlgT is involved in the formation of the H-ring (14). Indeed, the entire H-  
119 ring density is absent in the tomograms of the  $flgT$  mutant cells, while T-ring density remains  
120 visible (Fig. 3). This is consistent with the previous observation that the H-ring is not visible in a  
121 purified basal body of the  $\Delta flgT$  mutant by negative stain electron microscopy (14). Together with  
122 the results from  $\Delta flgO$  cells, we determined that FlgO is responsible for the distal part of the H-  
123 ring and FlgT is essential for the proximal part of the H-ring. Thus, FlgT and FlgO together with  
124 FlgP contribute to the formation of the H-ring.

125  
126 **The H-ring plays an essential role in flagella assembly and bacterial motility**

127 The H-ring is tightly associated with the outer membrane (Fig. 2G and 2H). It has been  
128 suggested that the H-ring is important for torque generation and bacterial motility (20), although  
129 the exact role of the H-ring remains to be determined. To understand the function of the H-ring in  
130 more detail, we thoroughly screened tomograms from the  $\Delta flgO$  mutant cells. Surprisingly, most  
131  $\Delta flgO$  mutant cells possess polar-sheathed flagella as those from wild type. However, about 10% of

132 the  $\Delta flgO$  mutant cells displayed both polar-sheathed flagella and periplasmic flagella (Fig. S1).

133 This observation suggested that the H-ring was likely involved in flagellar assembly, especially in

134 penetration of the outer membrane to enable the formation of the external-sheathed flagella.

135 To further understand the relationship of the H-ring and flagellar assembly, we carefully

136 examined over several hundred reconstructions from  $\Delta flgT$  mutant cells. We found that many

137 hooks are severely bent beneath the PG layer and many filaments are located in the periplasmic

138 space (Fig. S2 and Fig. 3). Since some of the filaments are much longer than the cell body, they

139 often protrude through the PG layer and the outer membrane at the region far from the basal body

140 (Fig. 3). Less external flagella were found on the  $\Delta flgT$  cells than on wild type cells. In total, ~80%

141 of 354 flagella found in the  $\Delta flgT$  cells were located in periplasmic space. Compared to ~10%

142 periplasmic flagella in the  $\Delta flgO$  cells and none in wild type, lack of the H-ring had a profound

143 impact on flagellar assembly and location. Although this result was not previously visualized, it is

144 consistent with the early observation that flagellated cells were rare in the  $flgT$  mutant cells (21,

145 22).

146

147 **Whole-cell reconstructions show different flagellar assembly and location in wild type and**

148  **$\Delta flgT$  mutant cells**

149 For a comprehensive understanding of the impact of the H-ring, we generated the whole-cell  
150 reconstructions from the  $\Delta flgT$  mutant and wild type cells. Two flagella are found in the  
151 periplasmic region of the  $\Delta flgT$  cells (Fig. 4A-D). One flagellar filament extended into the cell wall  
152 and extruded through the outer membrane and was covered by the sheath at the cell pole (Fig.  
153 4A-D). Another flagellar filament folded back towards the cell body and stayed in the periplasmic  
154 space. In contrast, no periplasmic flagella were visible in wild type (Fig. 4E, F). Three flagella  
155 directly assembled at the pole and penetrated across the outer membrane to form the long external  
156 filaments covered with the outer membrane sheath (Fig. 4E, F). Together, we conclude that the  
157 loss of the H-ring has a substantial impact on the assembly of the polar-sheathed flagella.

158

## 159 **DISCUSSION**

160 The flagella have evolved as the main organelles for motility in many bacteria. Recent studies  
161 based on genome sequences and *in situ* structural studies by cryo-ET have demonstrated that  
162 while the flagella possess a conserved core, the overall flagellar structures appear to be strikingly  
163 diverse in different bacterial species (1). For example, a large cage-like structure surrounds the P-  
164 /L- rings in the *H. pylori* flagella (23). *Vibrio* flagella possess the unique H-/T-rings essential for its  
165 motility (11, 20). In spirochetes, a large collar-like periplasmic structure is necessary for the  
166 assembly of the periplasmic flagella and the unique spirochete motility (24-26). The distinction

167 between periplasmic flagella in spirochetes and external flagella in other species is among the  
168 most noticeable differences among different bacterial flagella. To better understand the structure,  
169 function and evolution of the flagellum, it is of particular interest to uncover unique aspects of  
170 flagella in different bacterial species. Using *V. alginolyticus* as a model system, we previously  
171 analyzed the *Vibrio* specific T-ring, which is vital for higher torque generation and faster motility  
172 in *Vibrio*. Here we revealed that the *Vibrio* specific H-ring is required for flagellar morphogenesis  
173 and assembly.

174

### 175 **Novel structure and function of the H-ring in *Vibrio***

176 Our studies clearly indicated that FlgO forms the distal part of the H-ring and FlgT is  
177 responsible for the proximal part. Another protein component of the H-ring might be FlgP, as it is  
178 a lipoprotein localized to the outer membrane in *V. cholera* (19, 27). Recent cryo-ET studies of a  
179  $\Delta$ flgP mutant from *Vibrio fischeri* provided evidence that most of the H-ring is absent (20), while  
180 the small density adjacent to the L-ring remains. Together with our results from  $\Delta$ flgO and  $\Delta$ flgT, it  
181 is very likely that FlgT, FlgP, and FlgO are directly involved in the proximal, middle, and distal  
182 parts of the H-ring, respectively.

183 The H-ring has been suggested to be important for high torque generation (20). The H-ring is  
184 not only visible in *Vibrio* species, but also present in *Aeromonas hydrophila* species (28). Since

185 flagella in both species are sodium driven, which are known to generate greater torque than  
186 flagellar motors driven by proton flow (29). The sodium-driven flagella also evolved additional  
187 accessory structures such as the T-ring and the H-ring to support higher torque generation (30).  
188 However, we found that reduced motility due to *FlgT* or *FlgO* dysfunction is attributed to a  
189 significant change on flagellar morphogenesis from polar flagella to periplasmic flagella in  
190 addition to an effect on torque generation. Thus, the H-ring plays important roles not only in  
191 stabilizing flagellar motors on the outer membrane but also in facilitating outer membrane  
192 penetration by extracellular flagella.

193

194

## 195 **Outer membrane penetration and implication on flagella evolution**

196 The observation that both  $\Delta$ *flgT* and  $\Delta$ *flgO* mutant cells grew periplasmic flagella was  
197 surprising. Although it has been reported previously that conversion from external to periplasmic  
198 flagella could result from single amino acid substitutions in the flagellar rod protein *FlgG* (31), our  
199 observation is quite different. *FlgG* is a conserved core protein and the length of flagellar rod  
200 composed of multiple *FlgG* is relatively constant in both spirochete periplasmic flagella and  
201 external flagella (32). On the contrary, both *FlgT* and *FlgO* are not conserved core proteins (33). In  
202 the  $\Delta$ *flgO* mutant cells, only the distal portion of the H-ring structure is absent. The overall

203 structure of the flagellar motor is similar to that in wild type and most flagella are able to  
204 penetrate the outer membrane and form the external flagella covered by the sheath. However, 10%  
205 of flagella fail to penetrate the outer membrane resulting in the formation of periplasmic flagella.  
206 In the absence of the entire H-ring, as was observed in a  $\Delta flgT$  mutant strain, the majority of  
207 flagella fail to penetrate the outer membrane and form the normal, sheathed flagella. Instead, they  
208 form periplasmic flagella. Some of them are much longer than the cell body and appear to  
209 violently protrude from the cell wall without any bushing such as the PL-rings. Thus, the H-ring  
210 plays important roles not only in stabilizing flagellar motors on the outer membrane but also in  
211 facilitating outer membrane penetration by extracellular flagella.

212 The H-ring is only a part of the large outer membrane complex, which is often structurally  
213 variable in different Gram-negative bacterial species and is also absent in both Gram-positive  
214 bacteria and spirochetes. The fact that it is possible to generate periplasmic flagella from external  
215 flagella by altering the outer membrane complex is particularly interesting. This allows us to  
216 speculate that periplasmic flagella might be evolved from extracellular flagella by losing genes  
217 involving in the formation of the outer membrane complex. On the other hand, it also raises the  
218 possibility that extracellular flagella could evolve from periplasmic flagella by receiving genes  
219 critical for the outer membrane complex formation. Thus, the function of outer membrane  
220 complex determines the bacterial flagellar morphogenesis: external or periplasmic. During

221 flagellar assembly, the flagellar rod is also playing an important role in penetrating the outer  
222 membrane (31, 34). Thus, the change of flagellar morphogenesis would be attributed to the cross-  
223 talk between the flagellar rod and the outer membrane complex. How the flagellar rod senses and  
224 coordinates with outer membrane complex is await to be revealed.

225 In summary, we characterized the *Vibrio*-specific H-ring by using cryo-ET and genetic  
226 mutations and provided evidence that at least two proteins (FlgO and FlgT) are directly involved  
227 in the formation of the H-ring (Fig. 5). Furthermore, we discovered that the H-ring plays a novel  
228 function in facilitating the penetration of the outer membrane in *Vibrio* species. Thus, we  
229 concluded that the outer membrane complex is not only working as the bushing, but also  
230 functioning to an adaptor to flagellar rod to determine the flagellar morphogenesis (Fig. 5).  
231 Periplasmic flagella assembled are observed for the first time *in situ*. The discovery here may  
232 provide a new paradigm to understand the molecular basis underlying flagella assembly,  
233 diversity, and evolution.

234

235

236 **MATERIALS AND METHODS**

237 **Bacterial Strains, plasmids and growth condition.** Bacterial strains used in this study are listed in

238 Table 1. *V. alginolyticus* strains were cultured at 30°C on VC medium [0.5 % (wt/vol) polypeptone,

239 0.5% (wt/vol) yeast extract, 3% (wt/vol) NaCl, 0.4% (wt/vol) K<sub>2</sub>HPO<sub>4</sub>, 0.2% (wt/vol) glucose] or

240 VPG medium [1% (wt/vol) polypeptone, 3% (wt/vol) NaCl, 0.4% (wt/vol) K<sub>2</sub>HPO<sub>4</sub>, 0.5% (wt/vol)

241 glycerol]. If needed, chloramphenicol and L-arabinose were added at final concentrations of 2.5

242 µg/mL and 0.02% (wt/vol), respectively. *E. coli* was cultured at 37°C in LB medium [1% (wt/vol)

243 bactotryptone, 0.5% (wt/vol) yeast extract, 0.5% (wt/vol) NaCl]. If needed, chloramphenicol and

244 ampicillin were added at final concentrations of 25 µg/ml and 100 µg/ml, respectively.

245 Introduction of plasmids into *Vibrio* strains were conducted by electroporation as described

246 previously (Kawagishi et al, 1994).

247

248 **Construction of the *flgO* deletion strain.** The *flgO* deletion strain NMB337 was generated from

249 multi-polar flagellated strain KK148 by homologous recombination with the  $\Delta$ *flgO* sequence (1,000

250 bp), which is composed of 500 bp upstream sequence of *flgO* fused with 500 bp downstream

251 sequence of *flgO*, by using the method described previously (35). The  $\Delta$ *flgO* DNA fragment was

252 amplified by two-step PCR: for upstream sequence using a sense primer 1 (5'-

253 GGGAGCTCATGGATAATATCGACGCGAA-3') containing a *Sac*I site and an antisense primer

254 2 (5'-CATGCTTCTATCGGTTGATTCTCCAGATAATC-3'), and for downstream sequence using  
255 a sense primer 3 (5'-GAGAACAAACCGATAGAACATGAAGAAGTT-3') and an antisense  
256 primer 4 (5'-AAGAGCTCTGTTCCAATCAGCCG-3') containing a *SacI* site. Amplified PCR  
257 fragments for upstream and downstream sequence were gel-purified and mixed, then  $\Delta flgO$  DNA  
258 fragment was PCR amplified by using a sense primer 1 and an antisense primer 4. The  $\Delta flgO$   
259 fragment was cloned into pGEM-T Easy vector using *SacI* site to generate pTSK127, and then it  
260 was transferred to pSW7848 to generate pTSK127\_2. By using the conjugational transfer,  
261 pTSK127\_2 was introduced into KK148, and  $\Delta flgO$  strains were obtained as described previously  
262 (35). The deletion was confirmed by colony PCR and DNA sequencing.

263

264 **Motility assay.** Two  $\mu$ L of overnight cultures of *V. alginolyticus* cells containing plasmids at 30°C  
265 in VC medium with chloramphenicol were spotted on the VPG soft agar plate (VPG medium  
266 containing 0.25% [vt/vol] Bact agar with 0.02% (vt/vol) L-arabinose and 2.5 $\mu$ g/ml  
267 chloramphenicol). The plate was incubated at 30 °C for 7 hours.

268

269 **Detection of proteins by immunoblotting.** *Vibrio* cells grown overnight at 30°C in VC medium  
270 were re-inoculated at a 100-fold dilution into fresh VPG medium containing 0.02% [vt/vol] L-  
271 arabinose and 2.5  $\mu$ g/ml chloramphenicol. Cells were cultured at 30°C for about 3.5 hours,

272 harvested, suspended to an optical density at 660 nm equivalent to 10 in SDS loading buffer and  
273 boiled at 95°C for 5 min. These whole cell lysate samples were separated by SDS-PAGE and  
274 transferred to polyvinylidene difluoride (PVDF) membrane, and immunoblotting was performed  
275 using polyclonal anti-His tag antibody (Medical and Biological Laboratories Co., Ltd., Nagoya  
276 Japan).

277

278 **Sample preparation for cryo-ET observation.** *V. alginolyticus* strains were cultured overnight at  
279 30°C on VC medium and diluted 100× with fresh VC medium and cultured at 30°C at 220 rpm  
280 (Taitec, BioShaker BR-23FH). After 5 h, cells were collected and washed 2× and finally diluted  
281 with TMN500 medium (50 mM Tris-HCl at pH 7.5, 5 mM glucose, 5 mM MgCl<sub>2</sub>, and 500 mM  
282 NaCl). Colloidal gold solution (10 nm diameter) was added to the diluted Vibrio samples to yield  
283 a 10× dilution and then deposited on a freshly glow-discharged, holey carbon grid for 1 min. The  
284 grid was blotted with filter paper and rapidly plunge-frozen in liquid ethane in a homemade  
285 plunger apparatus, as described previously (11).

286

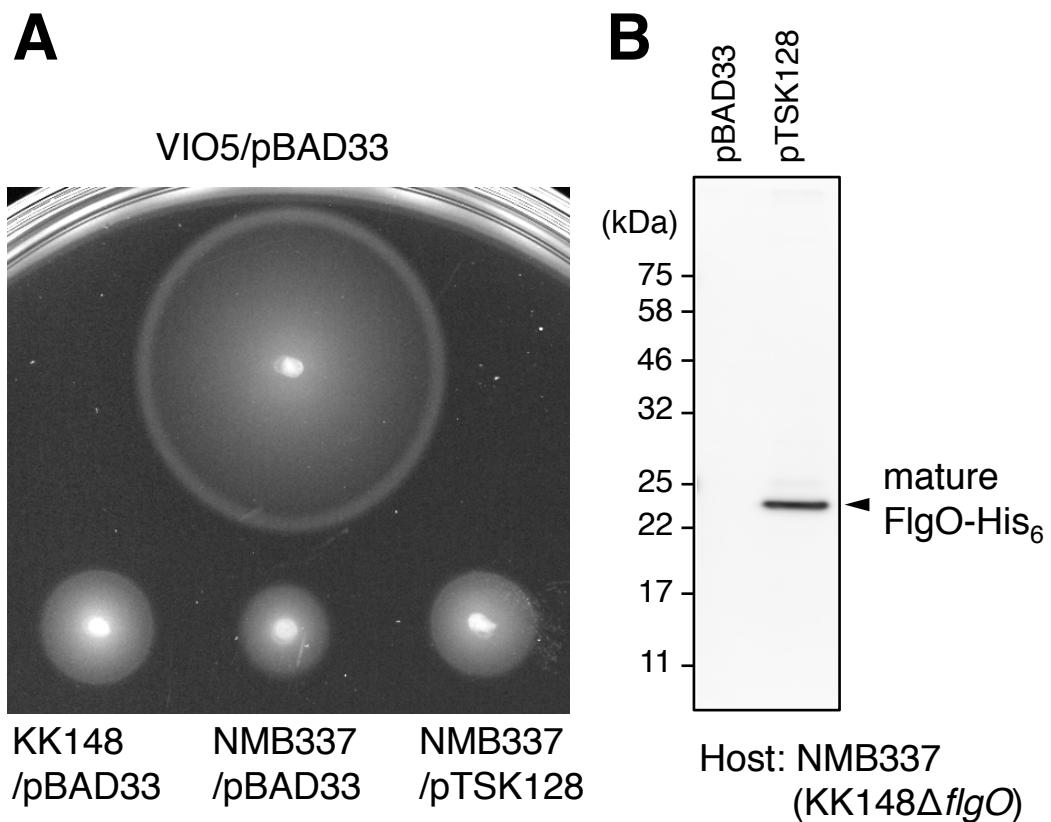
287 **Cryo-ET data collection and image processing.** The frozen-hydrated specimens of KK148 and  
288 TH7 were transferred to a Polara G2 electron microscope and the samples of NMB337 was transfer  
289 to Titan Krios electron microscope (FEI). Both microscopes are equipped with a 300-kV field

290 emission gun and a Direct Electron Detector (Gatan K2 Summit). Images collected by Polara G2  
291 electron microscope were observed at 9,000 $\times$  magnification and at  $\sim$ 8  $\mu$ m defocus, resulting in 0.42  
292 nm/pixel. The images taken by Titan Krios electron microscope were collected at a defocus near to  
293 0  $\mu$ m using Volta Phase Plate and the energy filter with 20 eV slit. The data was acquired  
294 automatically with SerialEM software (36). During the data collected, when phase shift is out of  
295 the range of  $\pi/3$ ~ $\pi/2/3$ , next spot of phase plate will be switched to be charged for use. A total  
296 dose of 50 e $^-$  /  $\text{\AA}^2$  is distributed among 35 tilt images covering angles from  $-51^\circ$  to  $+51^\circ$  at tilt steps  
297 of  $3^\circ$ . For every single tilt series collection, the dose-fractionated mode was used to generate 8–10  
298 frames per projection image. Collected dose-fractionated data were first subjected to the motion  
299 correction program to generate drift-corrected stack files (Li *et al.*, 2013; Morado *et al.*, 2016; Zheng  
300 *et al.*, 2017). The stack files were aligned using gold fiducial markers and volumes reconstructed by  
301 the weighted back-projection method, using IMOD and Tomo3d software to generate tomograms  
302 (Kremer *et al.*, 1996; Agulleiro and Fernandez, 2015). In total, 137 tomograms of TH7 and 114  
303 tomograms of NMB337 were generated.  
304  
305 **Sub-tomogram analysis with i3 package.** Bacterial flagellar motors were detected manually,  
306 using the i3 program (Winkler, 2007; Winkler *et al.*, 2009). We selected two points on each motor:  
307 one point at the C-ring region and another near the flagellar hook. The orientation and geographic

308 coordinates of selected particles were then estimated. In total, 668 sub tomograms of *Vibrio* motors  
309 from NMB337 were used to sub-tomogram analysis. The i3 tomographic package was used on the  
310 basis of the “alignment by classification” method with missing wedge compensation for  
311 generating the averaged structure of the motor, as described previously (11).

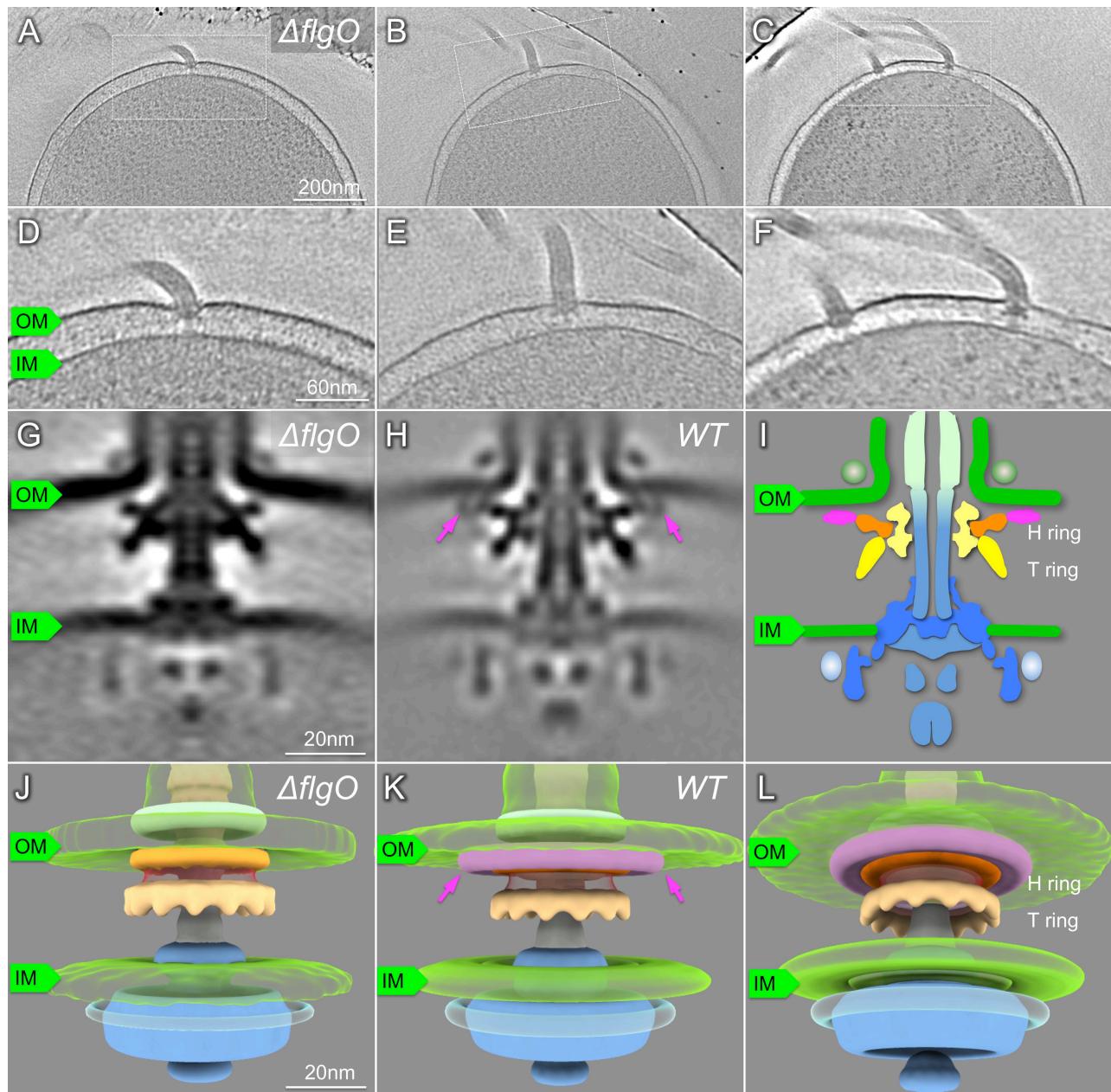
312

313 **3D visualization.** Tomographic reconstructions were visualized using IMOD (Kremer *et al.*, 1996).  
314 UCSF Chimera software was used for 3D surface rendering of subtomogram averages and  
315 molecular modeling (Pettersen *et al.*, 2004).


316

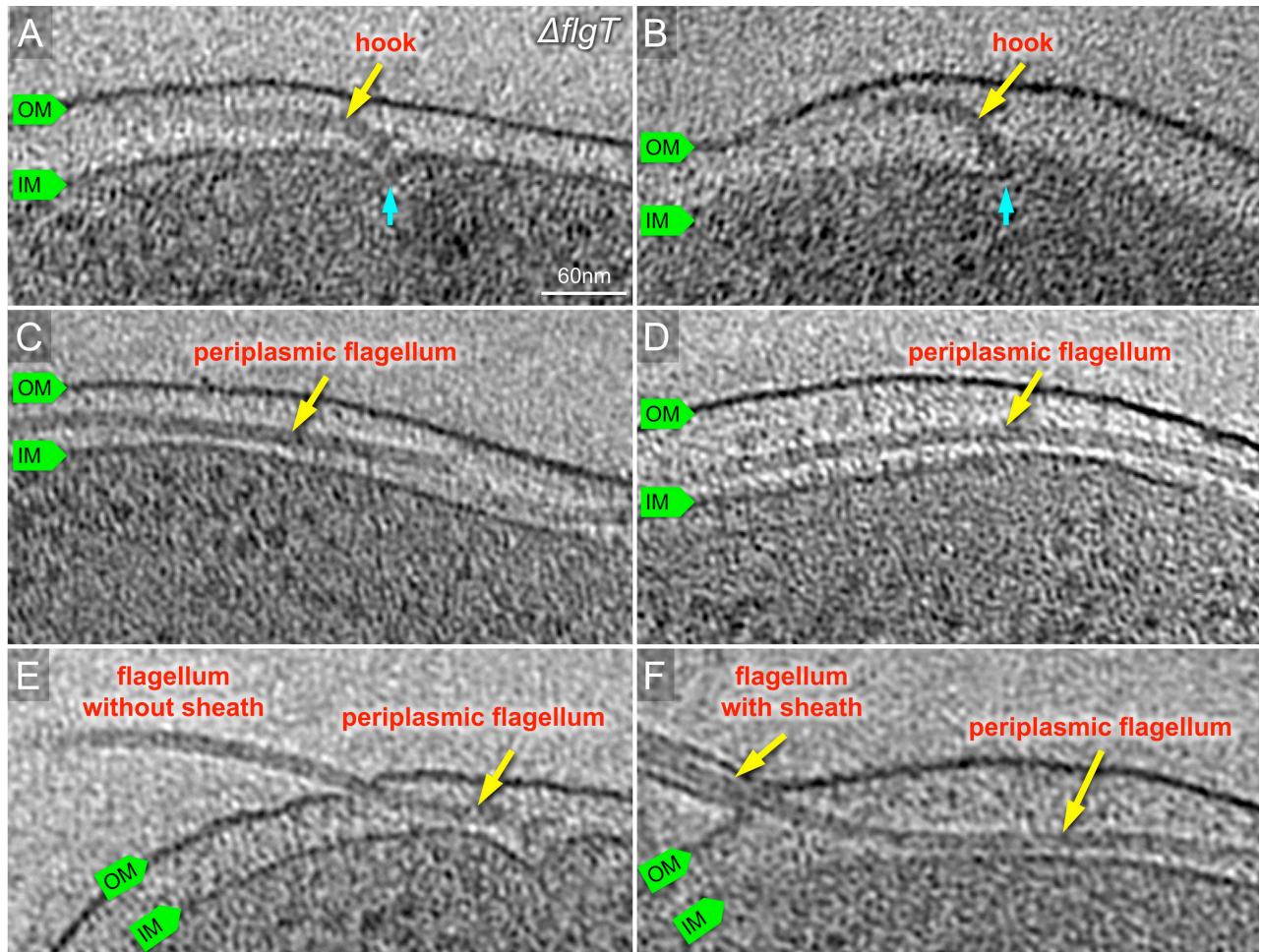
317 **ACKNOWLEDGEMENTS**

318 We thank Kelly Hughes for critically reading the manuscript prior to submission. This work  
319 was supported by GM107629 from the National Institute of General Medicine, and AU-1714 from  
320 the Welch Foundation (to J. L.).


321

322 **FIGURES AND FIGURE LEGENDS:**



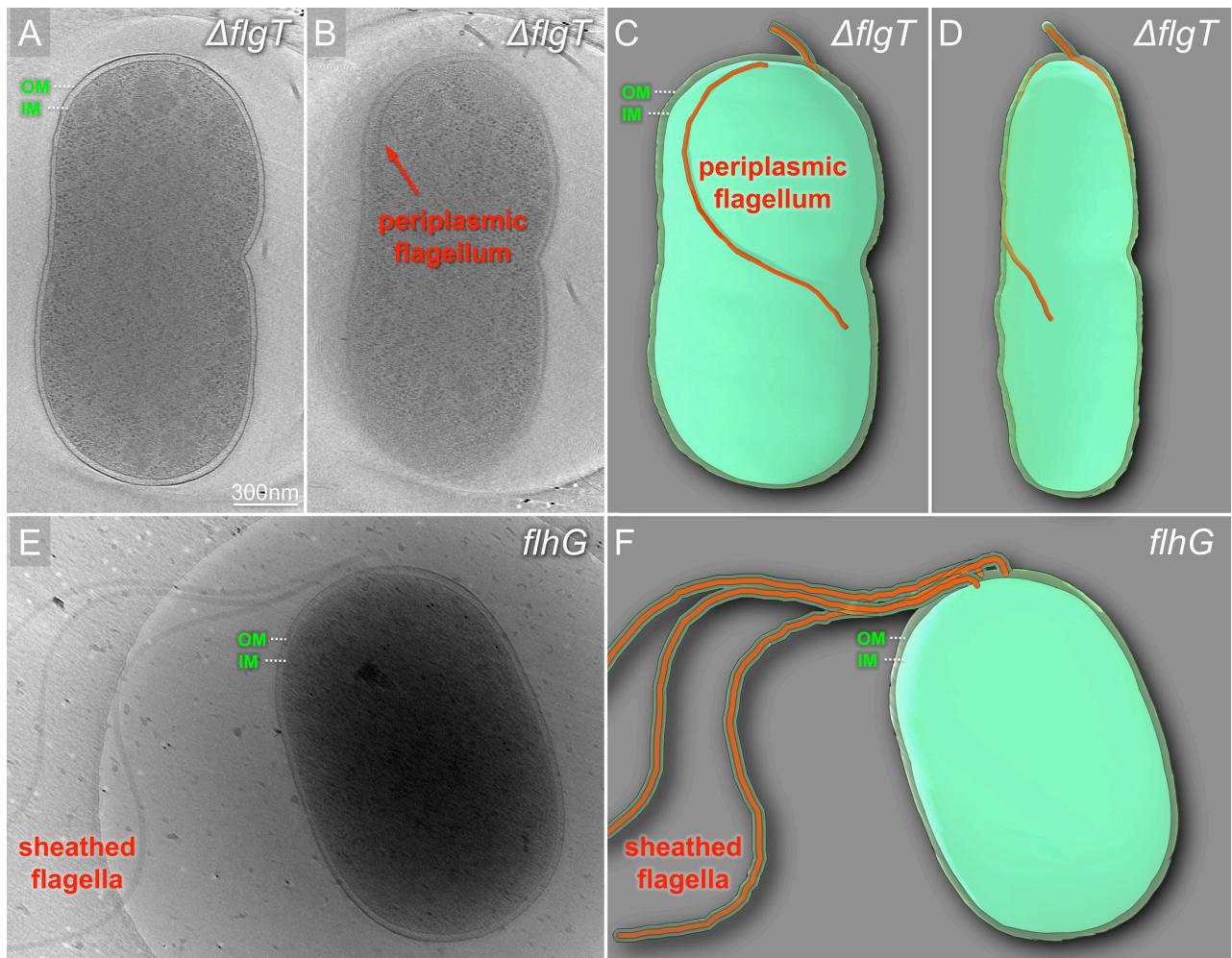

323

324 **Figure 1. Lack of FlgO results in reduced motility. (A)** Motility of cells in soft agar. Two  $\mu$ l  
325 aliquots of overnight cultures of each strain were spotted onto 0.25% soft agar VPG plate  
326 containing 2.5  $\mu$ g/ml chloramphenicol and 0.02% (wt/vol) L-arabinose, and the plate was  
327 incubated at 30°C for 7 hours. Deletion of *flgO* from the strain KK148 resulted in reduced motility,  
328 and ectopic expression of FlgO fused with hexa-histidine tag at the C-terminus (FlgO-His<sub>6</sub>) from  
329 the arabinose-inducible plasmid pTSK128 restored motility (protein expression was confirmed in  
330 (B)). VIO5 is the wild type strain for polar flagellar motility; KK148 is multipolar flagellar strain,  
331 and the parent of NMB337. The plasmid pBAD33 was used as the empty vector control. **(B)**  
332 Immunoblot analysis. Whole cell lysates were separated by SDS-PAGE and transferred onto the  
333 PVDF membrane, and his-tagged proteins were detected by anti-His tag antibody. The FlgO-His<sub>6</sub>  
334 protein was detected at the size equivalent to its mature form (indicated as the filled arrow).  
335 Experiments were conducted 3 times and the typical results are shown here.



336

337 **Figure 2. Characterization of the  $\Delta flgO$  flagellum *in situ* by cryo-ET.** (A-C) A representative slice  
338 of a 3D reconstruction of the *V. alginolyticus*  $\Delta flgO$  strain KK148 with multiple polar flagella. (D-F)  
339 Zoom-in views of the slices are shown in A-C. (G) A slice of a sub-tomogram average of the  
340 flagellar motor. (H) A slice of a sub-tomogram average of the flagellar motor in KK148. The  
341 structural difference between panels G and H is indicated with purple arrows (I) Schematic model  
342 of the *Vibrio* motor. (J) 3D surface renderings of (G). (K, L) 3D surface renderings of (H). The H-  
343 ring is labeled in orange and pink colors, separately; The T-ring is colored yellow; OM, outer  
344 membrane; IM, inner membrane.




345

346 **Figure 3. Characterization of the  $\Delta flgT$  flagellum *in situ* by cryo-ET.** (A, B) Representative slices  
347 of tomograms from KK148  $\Delta flgT$  cells. The motor is visible beneath of outer membrane. The motor  
348 is colored in cyan and the hook in yellow. (C, D) Representative slices of from KK148  $\Delta flgT$  cells.  
349 The flagellar filament is visible in the periplasmic space and labeled in red. (E) The flagellar  
350 filament is extended in the periplasmic space and penetrates the outer membrane without a  
351 sheath. (F) The flagellar filament penetrates from the periplasm and sheathed.

352

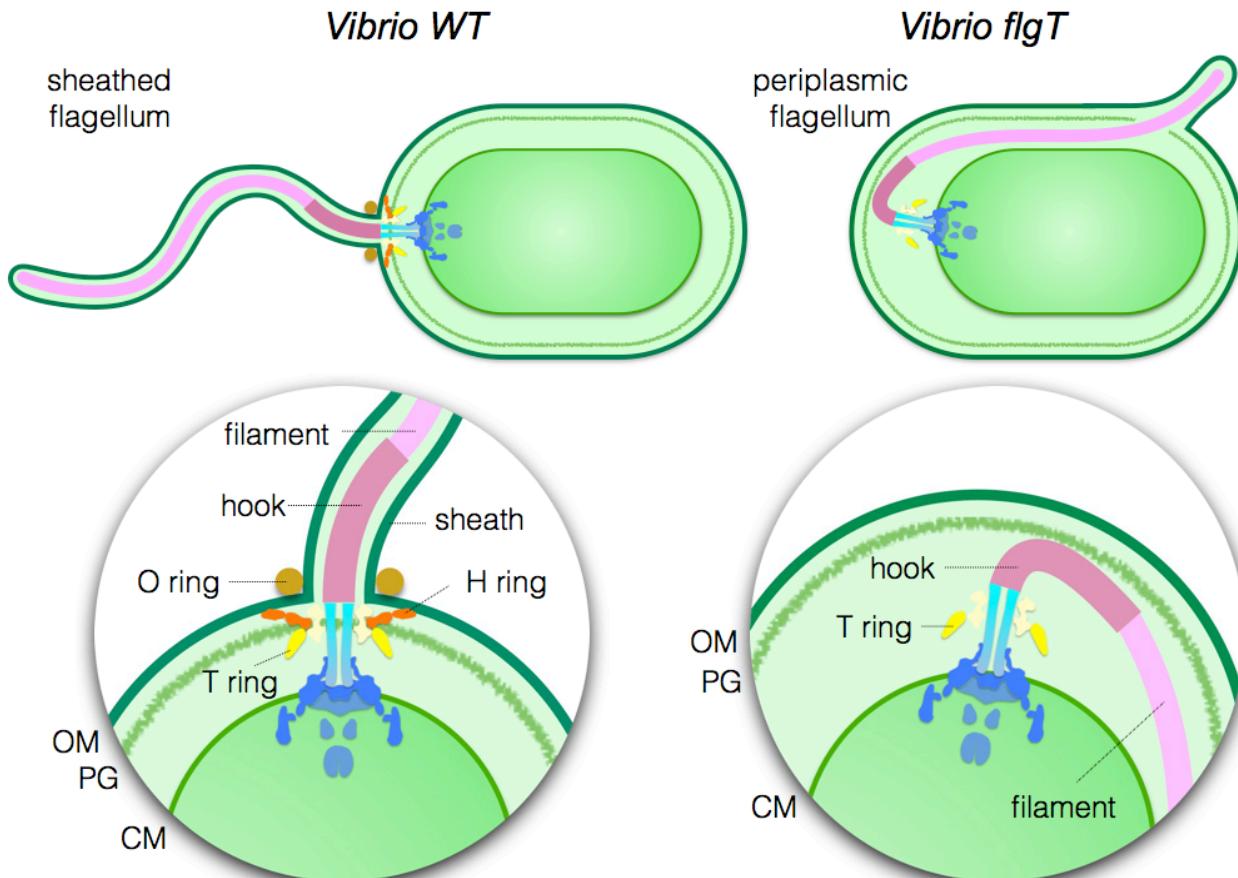
353



354

355 **Figure 4. Cryo-ET reconstructions of the whole cells from KK148 and KK148  $\Delta flgT$  exhibiting**

356 **dramatic differences in flagella structures.** (A, B) Tomographic slice of KK148  $\Delta flgT$  shown in


357 different layers of the tomogram. (C, D) A and B in a 3D segmentation to show the periplasmic

358 flagella. (E) A representative tomogram slice of a KK148 whole cell shows multiple polar-sheathed

359 flagella. (F) A 3D segmentation of the (E). OM, outer membrane; IM, inner membrane.

360

361



362

363 **Figure 5. Model of polar-sheathed flagellar assembly.** *Vibrio* species have a single polar-sheathed

364 flagellum. The H-ring labeled in red is required in the assembly of the polar-sheathed flagellum, in

365 addition to flagellar stabilization. The dysfunction of FlgT causes the loss of the H-ring and

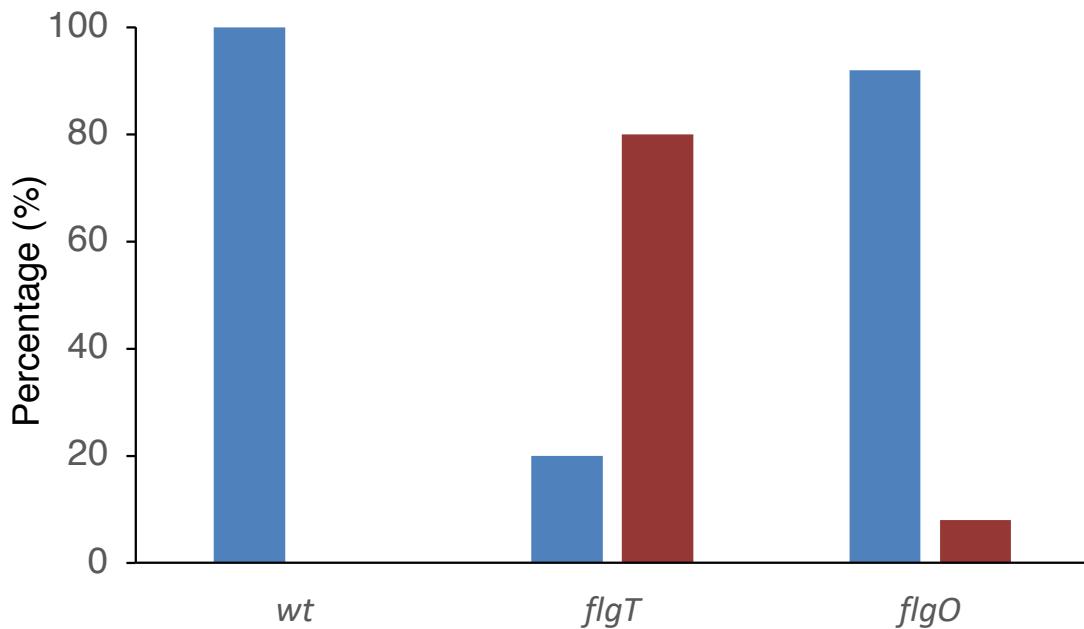
366 consequently, change the polar flagellum to a periplasmic flagellum. OM, outer membrane; PG,

367 peptidoglycan layer; IM, inner membrane.

368

369 **Table 1. Bacterial strains and plasmids used in this study**

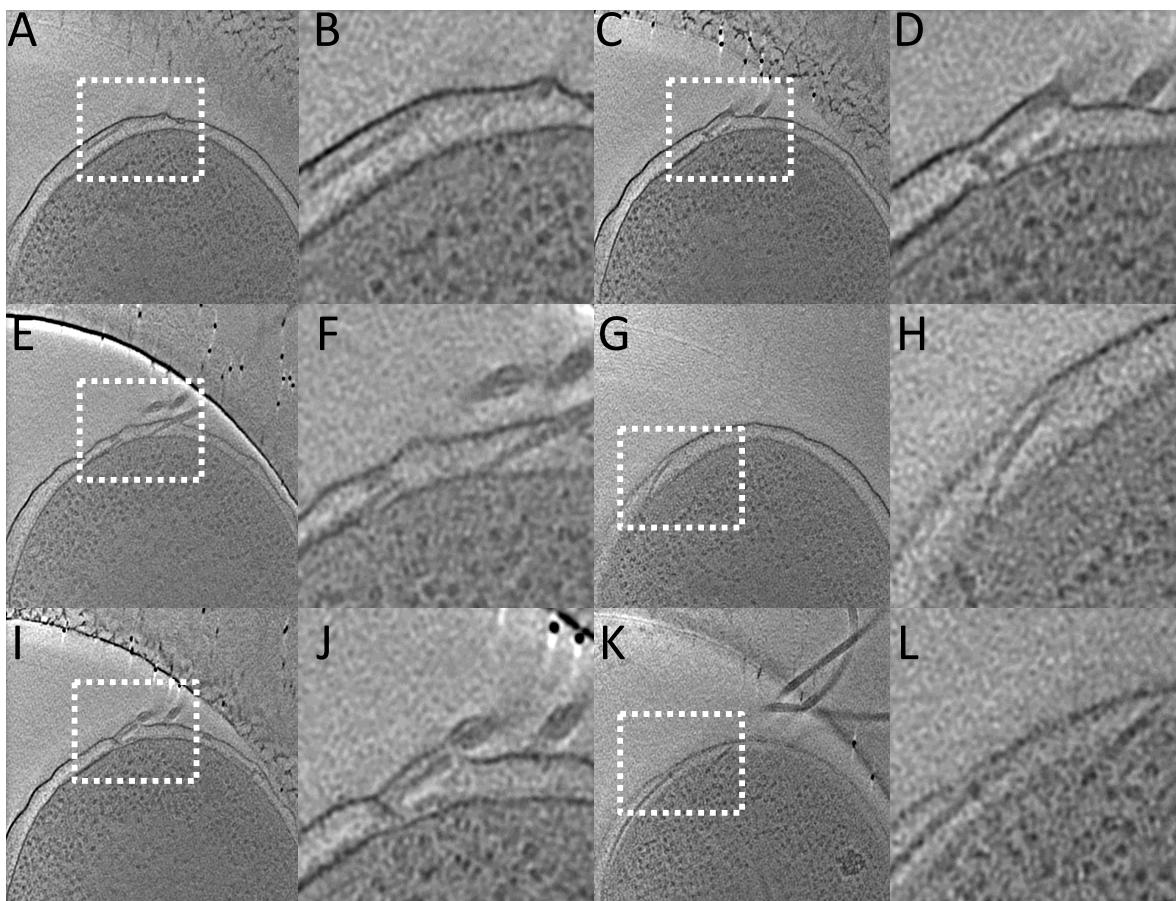
| Strain or plasmid       | Genotype or description                                                                       | Reference or source |
|-------------------------|-----------------------------------------------------------------------------------------------|---------------------|
| <i>V. alginolyticus</i> |                                                                                               |                     |
| VIO5                    | VIK4 (Rif <sup>r</sup> Pof <sup>+</sup> Laf <sup>-</sup> )                                    | (37)                |
| KK148                   | VIO5 <i>flhG</i> (multi-Pof <sup>+</sup> )                                                    | (38)                |
| TH7                     | KK148 $\Delta$ <i>flgT</i>                                                                    | (14)                |
| NMB337                  | KK148 $\Delta$ <i>flgO</i>                                                                    | This study          |
| <i>E. coli</i>          |                                                                                               |                     |
| DH5 $\alpha$            | Recipient for DNA manipulation                                                                |                     |
| $\beta$ 3914            | Recipient for conjugational transfer of pSW7848                                               | (39)                |
| <u>Plasmids</u>         |                                                                                               |                     |
| pGEM-T Easy             | Cloning vector, Amp <sup>r</sup>                                                              | (40)                |
| pSW7848                 | Suicide vector, (oriVR6K $\gamma$ oriTRP4 <i>araC-P<sub>BAD</sub>-ccdB</i> ), Cm <sup>r</sup> | This study          |
| pBAD33                  | Cm <sup>r</sup> , P <sub>BAD</sub>                                                            | This study          |
| pTSK127                 | pGEM-T Easy- $\Delta$ <i>flgO</i>                                                             | (18)                |
| pTSK127_2               | pSW7848- $\Delta$ <i>flgO</i>                                                                 | This study          |
| pTY57                   | Cm <sup>r</sup> , P <sub>BAD</sub> with a multicloning site of pBAD24                         |                     |
| pTSK128                 | pTY57- <i>flgO</i> ::His <sub>6</sub>                                                         |                     |


370 A: Rif<sup>r</sup>, rifampin resistant; Pof<sup>+</sup>, normal polar flagellar formation; Laf, defective in lateral flagellar

371 formation; multi-Pof<sup>+</sup>, multiple polar flagellar formation. Amp<sup>r</sup>, ampicillin resistant; Cm<sup>r</sup>,

372 chloramphenicol resistant; P<sub>BAD</sub>, arabinose promoter.

373


374



375

376 Fig. S1. Percentage of periplasmic flagella (red) and polar flagella (blue) found in wild type,

377  $\Delta flgT$  and  $\Delta flgO$  cells.



378

379 Fig. S2. Gallery of periplasmic flagella found in the  $\Delta flgO$  cells.

380 REFERENCES:

381 1. Chen S, *et al.* (2011) Structural diversity of bacterial flagellar motors. *The EMBO journal*  
382 30(14):2972-2981.

383 2. Zhao X, Norris SJ, & Liu J (2014) Molecular architecture of the bacterial flagellar motor in  
384 cells. *Biochemistry* 53(27):4323-4333.

385 3. Charon NW, *et al.* (2012) The unique paradigm of spirochete motility and chemotaxis.  
386 *Annual review of microbiology* 66:349-370.

387 4. Pallen MJ, Penn CW, & Chaudhuri RR (2005) Bacterial flagellar diversity in the post-  
388 genomic era. *Trends Microbiol* 13(4):143-149.

389 5. Berg HC (2003) The rotary motor of bacterial flagella. *Annu Rev Biochem* 72:19-54.

390 6. Minamino T & Imada K (2015) The bacterial flagellar motor and its structural diversity.  
391 *Trends Microbiol* 23(5):267-274.

392 7. Chevance FF & Hughes KT (2008) Coordinating assembly of a bacterial macromolecular  
393 machine. *Nature reviews. Microbiology* 6(6):455-465.

394 8. Macnab RM (2003) How bacteria assemble flagella. *Annu. Rev. Microbiol.* 57:77-100.

395 9. Terashima H, Kojima S, & Homma M (2008) Flagellar motility in bacteria structure and  
396 function of flagellar motor. *Int Rev Cell Mol Biol* 270:39-85.

397 10. Zhu S, Kojima S, & Homma M (2013) Structure, gene regulation and environmental  
398 response of flagella in *Vibrio*. *Frontiers in microbiology* 4:410.

399 11. Zhu S, *et al.* (2017) Molecular architecture of the sheathed polar flagellum in *Vibrio*  
400 *alginolyticus*. *Proc Natl Acad Sci U S A* 114(41):10966-10971.

401 12. Magariyama Y, *et al.* (1994) Very fast flagellar rotation. *Nature* 371(6500):752.

402 13. Terashima H, Fukuoka H, Yakushi T, Kojima S, & Homma M (2006) The *Vibrio* motor  
403 proteins, MotX and MotY, are associated with the basal body of Na-driven flagella and  
404 required for stator formation. *Molecular microbiology* 62(4):1170-1180.

405 14. Terashima H, Koike M, Kojima S, & Homma M (2010) The flagellar basal body-associated  
406 protein FlgT is essential for a novel ring structure in the sodium-driven *Vibrio* motor.  
407 *Journal of bacteriology* 192(21):5609-5615.

408 15. Terashima H, *et al.* (2013) Insight into the assembly mechanism in the supramolecular rings  
409 of the sodium-driven *Vibrio* flagellar motor from the structure of FlgT. *Proc Natl Acad Sci U*  
410 *S A* 110(15):6133-6138.

411 16. Zhao X, *et al.* (2013) Cryoelectron tomography reveals the sequential assembly of bacterial  
412 flagella in *Borrelia burgdorferi*. *Proc Natl Acad Sci U S A* 110(35):14390-14395.

413 17. Macnab RM (2004) Type III flagellar protein export and flagellar assembly. *Biochimica et*  
414 *biophysica acta* 1694(1-3):207-217.

415 18. Li N, Kojima S, & Homma M (2011) Sodium-driven motor of the polar flagellum in marine  
416 bacteria *Vibrio*. *Genes to cells : devoted to molecular & cellular mechanisms* 16(10):985-999.

417 19. Martinez RM, Dharmasena MN, Kirn TJ, & Taylor RK (2009) Characterization of two outer  
418 membrane proteins, FlgO and FlgP, that influence vibrio cholerae motility. *Journal of*  
419 *bacteriology* 191(18):5669-5679.

420 20. Beeby M, *et al.* (2016) Diverse high-torque bacterial flagellar motors assemble wider stator  
421 rings using a conserved protein scaffold. *Proc Natl Acad Sci U S A* 113(13):E1917-1926.

422 21. Cameron DE, Urbach JM, & Mekalanos JJ (2008) A defined transposon mutant library and  
423 its use in identifying motility genes in *Vibrio cholerae*. *Proc Natl Acad Sci U S A*  
424 105(25):8736-8741.

425 22. Martinez RM, Jude BA, Kirn TJ, Skorupski K, & Taylor RK (2010) Role of FlgT in anchoring  
426 the flagellum of *Vibrio cholerae*. *Journal of bacteriology* 192(8):2085-2092.

427 23. Qin Z, Lin WT, Zhu S, Franco AT, & Liu J (2016) Imaging the motility and chemotaxis  
428 machineries in *Helicobacter pylori* by cryo-electron tomography. *Journal of bacteriology*.

429 24. Murphy GE, Leadbetter JR, & Jensen GJ (2006) In situ structure of the complete *Treponema*  
430 *primitia* flagellar motor. *Nature* 442(7106):1062-1064.

431 25. Liu J, *et al.* (2009) Intact flagellar motor of *Borrelia burgdorferi* revealed by cryo-electron  
432 tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion. *Journal*  
433 *of bacteriology* 191(16):5026-5036.

434 26. Moon KH, *et al.* (2016) Spirochetes flagellar collar protein FlbB has astounding effects in  
435 orientation of periplasmic flagella, bacterial shape, motility, and assembly of motors in  
436 *Borrelia burgdorferi*. *Molecular microbiology* 102(2):336-348.

437 27. Morris DC, Peng F, Barker JR, & Klose KE (2008) Lipidation of an FlrC-dependent protein  
438 is required for enhanced intestinal colonization by *Vibrio cholerae*. *Journal of bacteriology*  
439 190(1):231-239.

440 28. Merino S & Tomas JM (2016) The FlgT Protein Is Involved in *Aeromonas hydrophila* Polar  
441 Flagella Stability and Not Affects Anchorage of Lateral Flagella. *Frontiers in microbiology*  
442 7:1150.

443 29. Lo C-J, Sowa Y, Pilizota T, & Berry RM (2013) Mechanism and kinetics of a sodium-driven  
444 bacterial flagellar motor. in *Proceedings of the National Academy of Sciences*, pp E2544-2551.

445 30. Chaban B, Coleman I, & Beeby M (2018) Evolution of higher torque in *Campylobacter*-type  
446 bacterial flagellar motors. *Sci Rep* 8(1):97.

447 31. Chevance FF, *et al.* (2007) The mechanism of outer membrane penetration by the  
448 eubacterial flagellum and implications for spirochete evolution. *Genes & development*  
449 21(18):2326-2335.

450 32. Fujii T, *et al.* (2017) Identical folds used for distinct mechanical functions of the bacterial  
451 flagellar rod and hook. *Nature communications* 8:14276.

452 33. Liu R & Ochman H (2007) Stepwise formation of the bacterial flagellar system. *Proc Natl  
453 Acad Sci U S A* 104(17):7116-7121.

454 34. Cohen EJ, Ferreira JL, Ladinsky MS, Beeby M, & Hughes KT (2017) Nanoscale-length  
455 control of the flagellar driveshaft requires hitting the tethered outer membrane. *Science*  
456 356(6334):197-200.

457 35. Takekawa N, Kwon S, Nishioka N, Kojima S, & Homma M (2016) HubP, a Polar Landmark  
458 Protein, Regulates Flagellar Number by Assisting in the Proper Polar Localization of FlhG  
459 in *Vibrio alginolyticus*. *Journal of bacteriology* 198(22):3091-3098.

460 36. Mastronarde DN (2005) Automated electron microscope tomography using robust  
461 prediction of specimen movements. *Journal of structural biology* 152(1):36-51.

462 37. Okunishi I, Kawagishi I, & Homma M (1996) Cloning and characterization of motY, a gene  
463 coding for a component of the sodium-driven flagellar motor in *Vibrio alginolyticus*. *Journal  
464 of bacteriology* 178(8):2409-2415.

465 38. Kusumoto A, *et al.* (2008) Collaboration of FlhF and FlhG to regulate polar-flagella number  
466 and localization in *Vibrio alginolyticus*. *Microbiology* 154(Pt 5):1390-1399.

467 39. Le Roux F, Binesse J, Saulnier D, & Mazel D (2007) Construction of a *Vibrio splendidus*  
468 mutant lacking the metalloprotease gene vsm by use of a novel counterselectable suicide  
469 vector. *Applied and environmental microbiology* 73(3):777-784.

470 40. Val ME, Skovgaard O, Ducos-Galand M, Bland MJ, & Mazel D (2012) Genome engineering  
471 in *Vibrio cholerae*: a feasible approach to address biological issues. *PLoS genetics*  
472 8(1):e1002472.

473