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Abstract  47 

Type 2 diabetes (T2D) is a global health burden that will benefit from personalised risk prediction and 48 

targeted prevention programmes. Omics data have enabled more detailed risk prediction; however, 49 

most studies have focussed on directly on the ability of DNA variants predicting T2D onset with less 50 

attention given to epigenetic regulation and glycaemic trait variability. By applying machine learning 51 

to the longitudinal Northern Finland Birth Cohort 1966 (NFBC 1966) at 31 (T1) and 46 (T2) years old, 52 

we predicted fasting glucose (FG) and insulin (FI), glycated haemoglobin (HbA1c) and 2-hour glucose 53 

and insulin from oral glucose tolerance test (2hGlu, 2hIns) at T2 in 513 individuals from 1,001 variables 54 

at T1 and T2, including anthropometric, metabolic, metabolomic and epigenetic variables. We further 55 

tested whether the information obtained by the machine learning models in NFBC could be used to 56 

predict glycaemic traits in the independent French study with 48 matching predictors (DESIR, N=769, 57 

age range 30-65 years at recruitment, interval between data collections: 9 years). In this study, FG and 58 

FI were best predicted, with average R2 values of 0.38 and 0.53. Sex, branched-chain and aromatic 59 

amino acids, HDL-cholesterol, glycerol, ketone bodies, blood pressure at T2 and measurements of 60 

adiposity at T1, as well as multiple methylation marks at both time points were amongst the top 61 

predictors. In the validation analysis, we reached R2 values of 0.41/0.55 for FG/FI when trained and 62 

tested in NFBC1966 and 0.17/0.30 when trained in NFBC1966 and tested in DESIR. We identified 63 

clinically relevant sets of predictors from a large multi-omics dataset and highlighted the potential of 64 

methylation markers and longitudinal changes in prediction. 65 

Key Words  66 

Glycaemic traits, longitudinal, machine learning, metabolomics, methylation, prediction, type 2 67 
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Background 70 

Diabetes accounts for the yearly deaths of about four million people between 20 and 79 years old 71 

(2017) world-wide and the prevalence of diabetes is expected to increase from 8.8% to 9.9% by 2045.1 72 

Moreover, glucose tolerance impairment is progressing in young individuals, leading to high risk of 73 

developing type 2 diabetes (T2D) later in life.1  74 

 75 

To date, T2D risk prediction in the clinical practice has focussed on the classical risk factors of sex, age, 76 

obesity, family history, hypertension, cholesterol levels and lifestyle factors 2–5. Recent advances in 77 

omics technologies have allowed exploring the risk factors of T2D in more detail, opening possibilities 78 

for more precise biomarkers and thus, better identification of people at risk for T2D in the future. A 79 

large number of metabolites, including amino acids, especially branched-chain amino acids (BRACA)  80 

and aromatic amino acids, fatty acids, glycerophospholipids, ketone bodies and mannose have been 81 

associated with T2D incidence6–8. However, whether metabolites can be effective and reliable T2D 82 

predictors, remains unclear.  83 

 84 

During the past decade, genome-wide association studies (GWAS) have enlightened the genetic risk of 85 

developing T2D. Currently, 403 independent DNA variants are established for T2D risk by GWAS meta-86 

analyses9,10 as well as dozens of loci have been associated with quantitative glycaemic traits in 87 

individuals without T2D, including fasting glucose (FG)11,  fasting insulin (FI)11, FG adjusted for body-88 

mass-index (BMI)11,  FI adjusted for BMI11, 2 hour post-prandial or post oral glucose-tolerance test 89 

glucose (2hGluc) 12 and glycaeted haemoglobin (HbA1c)13. Besides genetics, environment and lifestyle 90 

are likely to have a large contribution to T2D risk14. Environmental factors can affect gene expression 91 

by an addition of a methyl group on a CpG-dinucleotide site of DNA. This is called DNA methylation 92 

and is the most widely studied type of epigenetic modification15,16. Studies in peripheral blood have 93 

found a mean absolute difference of 0.5-1.1% in methylation levels between individuals with and 94 

without T2D17. Epigenome-wide association studies have reported associations at 65 methylation 95 
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markers for T2D17,18 and provided support for overlap in epigenetic effects between T2D and glycaemic 96 

traits18,19. The epigenetic effect on variability of glycaemic traits is magnified in the presence of 97 

obesity19. The investigation of the link between BMI and methylation levels demonstrates that 98 

methylation at the majority of CpG sites in blood is consequential to higher BMI20.  Interestingly, a 99 

weighted methylation risk score calculated from 187 markers was shown to have an even stronger 100 

effect on incident T2D20 than the traditional risk factors of overweight, central obesity, phenylalanine, 101 

tyrosine, isoleucine, FG, FI and C-reactive protein. The methylation risk score remained associated with 102 

incident T2D even after adjustment for age, sex, BMI, FI, FG and central obesity20.  103 

 104 

In the era of multi-omics data and millions of measurable variables, it is challenging to identify the best 105 

biomarkers for clinical use. Machine learning approaches are ideal for such high-dimensional data due 106 

to their ability to learn from the data and identify patterns without knowledge of the joint distribution 107 

of the variables21. Recently, the studies of T2D risk have leveraged association analyses as well as 108 

machine learning algorithms for the prediction of binary T2D phenotypes. Thus far, machine learning 109 

used for T2D classification include logistic regression with and without Lasso regularization17,20,22–26, 110 

Regularized least-squares (RLS)27, Cox regression23, naïve Bayes25 and J48-decision tree25. In predictive 111 

studies using machine learning models, classical risk factors, genetic risk scores (GRS)22, methylation 112 

risk scores (MRS)17,20 and metabolomic data24–27 have been used as predictors of T2D incidence after a 113 

follow-up window of two to fourteen years. A few studies have suggested that metabolites improve 114 

prediction performance23,25–27, while others have reported negligible to no improvement in 115 

prediction24. GRS have been shown to bring no incremental value over classical non-invasive factors 116 

and metabolic markers22. MRS combining CpG loci have been found to be associated with future T2D 117 

incidence17,20. All the previous studies have focused on the binary disease status as the outcome which 118 

may greatly reduce the power of the analyses. To our knowledge, there are no machine learning 119 

studies on predictors of continuous glycaemic traits relevant for T2D pathophysiology. In addition, 120 

most of the studies on T2D have used a single pre-selected machine learning approach and have not 121 
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compared their performance in terms of predictive capacities. With the present study, we aimed to 122 

address these shortcomings, as well as to shed light on the contribution of longitudinal predictors, 123 

especially metabolomic and methylation markers by using data from two well-characterised 124 

population-based studies and by applying and comparing six different machine learning approaches.  125 

 126 

Results  127 

We focused on epigenetic and metabolic markers (Supplementary Table 1, Supplementary Table 2) 128 

from the Northern Finland Birth Cohort 1966 (NFBC1966) measured at 31 (T1) and 46 (T2) years for 129 

prediction of HbA1c, FG, 2hGluc, FI and two-hours post-oral glucose tolerance test insulin (2hIns) at T2 130 

in individuals free from T2D diagnosis or medication at T1. We implemented and compared the results 131 

obtained from six machine learning approaches: Boosted trees (BT), Random forest (RF) and support 132 

vector regression (SVR) with Linear Kernel with L2 regularization and with L1 and L1/L2 loss functions 133 

(SVR-L2Linear-L1, SVR-L2Linear-L1L2, respectively), with Polynomial Kernel (SVR-Polynomial) and with 134 

Radial Basis function Kernel (SVR-RBF). The algorithms were chosen for their ability to handle a large 135 

number of predictors, to account for multi-collinearity, non-linear relationships, the absence of the 136 

assumption regarding data distribution, and for their computational times. We also tested different 137 

input data combinations (Figure 1). We further validated our approach in an independent French 138 

cohort (Data from an Epidemiological Study on the Insulin Resistance syndrome, DESIR) that shared 139 

48 variables with the NFBC1966 cohort (Supplementary Table 3).  140 

 141 

Best predicted outcome variables 142 

We compared the performance of the six models for each of the outcomes (HbA1c, FG, 2hGluc, FI and 143 

2hIns) with varying input data combinations, including omics data in their raw or scored forms 144 

(Methods, Supplementary Table 4). With the usage of metabolic data as the minimal input, we 145 

observed that performance was the best for FI prediction (Figure 2A). In the context of the model with 146 
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metabolic raw data (Mb-R), models with different outcomes were ranked as follows: FI > FG > 2hIns > 147 

2hGlc > HbA1c (PTukeyHSD<5.0x10-5 for all other comparisons except for 2hIns>2hGluc for which 148 

PTukeyHSD=0.19, Supplementary Table 5). The average coefficients of determination R2 over all machine 149 

learning algorithms were 0.53, 0.38, 0.29, 0.25 and 0.14 (Mb-R) for FI, FG, 2hIns, 2hGlc, HBA1c 150 

respectively (Supplementary Table 6). 151 

 152 

Best predictor data combinations  153 

Regarding the predictors, we found that models that included at least some metabolic data, either in 154 

their raw format (Mb-R) or transformed into scores (Mb-S) (Methods) had the best performance 155 

reaching a maximum R2=0.56 (Figure 2A, Supplementary Table 7). In contrast, models with 156 

methylation data only as predictors (Mh-R and Mh-S), reached R2 values of up to 0.20. Thus, metabolic 157 

models performed significantly better than pure epigenomic models (PTukeyHSD<1.7×10-9) (Table 1, 158 

Comparison 1-4; all comparisons are provided in Supplementary Table 8). When metabolic and 159 

methylation data were combined, Mb-R performed better for FI and FG than Mb-R + Mh-R (PTukeyHSD 160 

<0.04). Adding Mh-S to the model did not alter the model performance for any of the outcomes 161 

(PTukeyHSD>0.99) (Table 1, Comparison 5-6). These results suggest that addition of methylation 162 

information does not increase the predictive ability of the tested models. When exploring the effect 163 

of transforming the original variables into scores (Table 1, comparison 7-8), we observed no significant 164 

differences for any of the outcomes when comparing Mb-R vs. Mb-S (PTukeyHSD>0.29). This was true also 165 

for Mh-R vs. Mh-S, except for the prediction of FI, where Mh-R performed better than Mh-S 166 

(PTukeyHSD=1.6×10-4). Therefore, based on these results we are unable to generalise better performance 167 

of the scored data as compared to raw data.  Finally, we found that Mb-S + Mh-S model performed 168 

significantly better than the model with Mb-S + Mh-R (PTukeyHSD<0.02) for all outcomes except for 169 

2hGluc. This observation reflects the decrease in performance of the models upon inclusion of a large 170 

number of weak predictors.  171 

 172 
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Adjustment for Measures of Adiposity 173 

To understand the influence of the measures of adiposity in the models, we adjusted all the outcomes 174 

for T1-BMI, T2-BMI, T1-WHR and T2-WHR and performed the machine learning models on these 175 

adjusted outcomes. All adjusted models exhibited an R2<0.13 (Figure 2B, Supplementary Figure 1 with 176 

a zoomed-in scale for R2, Supplementary Table 9), including models predicting FI and FG. Therefore, 177 

the measures of adiposity at T1 and T2 are the main drivers of prediction for FI and FG.  178 

 179 

Variable Importance 180 

We investigated the contribution of metabolic and epigenomic variables to the prediction of glycaemic 181 

traits. We discuss predictors importance only in the context of FG and FI outcomes, for which 182 

prediction algorithms reached the best R2 (Figure 2A). FG prediction was mostly explained by metabolic 183 

variables: valine, leucine, isoleucine, tyrosine, BMI and WHR, HDLs and VLDL, glycerol, alanine, SBP and 184 

DBP at T2, WHR and FG at T1 and sex (Figure 3 bottom right). FI prediction was explained by BMI, WHR, 185 

HDL, VLDL, BRACA, phenylalanine, leucine, glycerol, lactate, tyrosine, valine at T2, and FI at T1 (Figure 186 

3 top left). Once we adjusted the outcomes for the measures of adiposity, the top predictor for FI was 187 

measurement of FI at T1, followed by alanine and other variables at T2 already observed as important 188 

before adjustment for measurements of adiposity (Supplementary Figure 2). The top variables driving 189 

the prediction of FG were, similarly to FI, valine at T2 and FG at T1 (Supplementary Figure 2). The 190 

metabolic models with scored variables were driven by variables that mirrored the top raw predictors. 191 

Overall, the model with scored variables for FI supported the importance of the former variables, as 192 

well as ketone bodies (acetoacetate and 3-hydroxybutyrate) at T2 (Figure 3, top right and bottom left). 193 

Importantly, even though we previously observed that adding methylation data does not improve 194 

model prediction, a number of methylation probes were among the top predictors for both FG and FI 195 

when combined with scored metabolic variables (Figure 3).  196 

 197 

Association Analysis for Effect Sizes, Direction and Variance Explained 198 
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Linear regression analyses between ln(FI)/FG and each of the top 25 predictors identified by machine 199 

learning indicated that increases in HDL cholesterol were predictive of decreased values of FI and FG 200 

(Table 2). The same was true for free cholesterol to total lipids ratio in IDL and cholesterol esters to 201 

total lipids ratio in medium VLDL. Similarly, female gender and higher sum score of ketone bodies, i.e. 202 

acetoacetate and 3-hydroxybutyrate, predicted lower FI and FG levels, as did higher methylation levels 203 

of the probes T2_cg00574958, T2_cg17058475, and T2_cg08309687. In the models with scored 204 

variables, the adjusted R2 for ln(FI) when including all 25 top predictors was 0.58. After exclusion of 205 

methylation markers, it decreased to 0.54 and finally, after excluding all other variables than measures 206 

of adiposity, the variance explained was 0.40. The same figures for FG were 0.45, 0.42 and 0.31, 207 

respectively. 208 

 209 

Prediction from Variables at T1 210 

To test whether variables already 15 years beforehand, i.e. at T1 only, can provide information about 211 

glycaemic traits at T2, we restricted the prediction variables to those measured at T1 only. For 212 

example, under the well-performing Mb-R in the full model with predictors both from T1 and T2 and 213 

unadjusted for measures of adiposity, FI, FG, 2hIns, 2hGlc, HBA1c were predicted with R2 values of 214 

0.53, 0.38, 0.29, 0.25 and 0.14, respectively. The restriction to T1 variables caused a drop in R2 to 0.25, 215 

0.22, 0.15, 0.06, 0.06, respectively, when averaging over all machine learning methods. This suggests 216 

that prediction from T1 variables only is not achievable in our dataset.  217 

 218 

Performance of the machine learning algorithms 219 

When at least metabolic data in either form (Mb-R or -S + any other data) were included as input, we 220 

found no statistically significant differences between the performances of RF and BT for all phenotypes 221 

(PTukeyHSD>0.91, Supplementary Table 10). In addition, no significant difference was found between 222 

SVR-L2Linear-L1L2 and RF or BT models (PTukeyHSD>0.29, Supplementary Table 10). Among SVR models, 223 

we found that SVR-L2Linear-L1L2 either performed equally or outperformed the other SVRs, 224 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/358390doi: bioRxiv preprint 

https://doi.org/10.1101/358390
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

depending on the input dataset. In particular, for datasets with a large number of predictors SVR-225 

L2Linear-L1L2 was the best performing SVR (PTukeyHSD<0.05, Supplementary Table 10). SVR-L2Linear-L1 226 

in turn showed lower performance (PTukeyHSD<0.05, Supplementary Table 10) at several occasions when 227 

compared to that of the other algorithms. Even though both SVR-L2Linear-L1 and SVR-L2Linear-L1L2 228 

both use the L2 regularization, the first uses only the L1 loss function whereas the latter optimizes over 229 

both L1 and L2 loss functions (Supplementary Material). We observed that in 78.5% of the time the 230 

L2 loss function was chosen over L1 in the SVR-L2Linear-L1L2 analyses (data not shown). We 231 

investigated whether the better performance of the SVR-L2Linear-L1L2 algorithm over the SVR-232 

L2Linear-L1 was due to the evaluation criterion used, namely R2 which computes a scaled measure 233 

based on the quadratic loss function. For this purpose, we assessed the model performance in terms 234 

of Mean Absolute Error (MAE), i.e. based on L1 loss. By definition we aim to maximize R2 while we aim 235 

to minimize MAE. Evaluations based on MAE did not show improved performance of the predictions 236 

based on SVR-L2Linear-L1 (Supplementary Figure 3, Supplementary Table 11).  237 

 238 

Validation of the Machine Learning models in the French DESIR cohort 239 

For the replication analysis, we first trained and tested the data in the NFBC1966 using the set of 48 240 

variables common to both NFBC1966 and DESIR. Next, we trained the data in the NFBC1966 and tested 241 

in DESIR. We predicted only FI and FG levels using the top three performing algorithms: RF, BT and 242 

SVR-L2Linear-L1L2 (Methods). We were able to predict FI and FG levels in the DESIR data with the 243 

average R2 values of 0.30 and 0.17, respectively (Figure 4, Supplementary Table 12). The values were 244 

decreased as compared to those when trained and tested in the same data, i.e. NFBC1966 (R2 for 245 

FI=0.55, FG=0.41, Supplementary Table 12). RF and SVR-L2Linear-L1L2 produced a smaller change in 246 

the predictions (FI: RF=0.18, SVR-L2Linear-L1L2=0.22; FG: RF=0.21, SVR-L2Linear-L1L2=0.19), while BT 247 

was less stable in its performance (change in R2 0.35 for FI, 0.32 for FG). Having a larger sample size in 248 

the training data (Methods) produced less variable R2 values than those resulting from the use of a 249 

smaller training dataset in all models (Figure 4A vs. 4B). While we still observed a drop in the R2 values 250 
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for both FG and FI when tested in the external data, RF and SVR-L2Linear-L1L2 produced smaller 251 

decreases than BT, as before (Supplementary Table 12).  252 

 253 

Discussion  254 

 255 

To our knowledge, this is the first multi-omics study implementing machine learning to predict 256 

continuous glycaemic traits over time.  We dissected the predictive value of methylation and 257 

metabolic, including metabolomic, data from two time points for individual’s glycaemic health. We 258 

compared six machine learning approaches, while most previous studies have usually focussed on only 259 

one selected approach. We detected the best predictive ability of our models for FI and FG levels out 260 

of the five glycaemic traits tested, with raw or scored metabolic data as predictors and, BT, RF, or SVR-261 

L2Linear-L1L2 as the algorithms. We identified metabolic variables that drove the prediction of the 262 

models. We showed that measures of adiposity are the most important contributors to glycaemic 263 

health. We also found that methylation probes accounted for 4 and 3 percentage points of the variance 264 

explained for FI (58%) and FG (45%), respectively. Finally, replication of the approach in an external 265 

European descent dataset (DESIR) using a subset of variables common to both cohorts, suggested that 266 

RF and SVR-L2Linear-L1L2 are more stable than BT in their performance.    267 

 268 

Most of the published studies have targeted T2D onset prediction as a discrete value and rely on the 269 

categorization of individuals based on diagnosis thresholds for HbA1c, FG, 2hGluc and random glucose. 270 

The cut-off points for prediction analyses may vary across studies, and more generally, information 271 

loss is rather large when data is categorised28,29.  Continuous phenotypes, on the contrary, have the 272 

potential to reflect the progressive onset of a disease without assuming a discontinuity in the 273 

underlying phenomenon. In addition, focussing on the prediction of continuous glycaemic phenotypes 274 

themselves allows removing them from the set of predictors for T2D and may reveal more modest 275 

effects of other variables24. Indeed, FG23–27 and 2hGluc24,25 have been shown to be good predictors of 276 
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T2D. Our study indicated that out of the five glycaemic traits we used, FG and FI were best predictable. 277 

This is expected as fasting values are tightly regulated. However, from the clinical practice point of 278 

view regarding the prediction of developing T2D, especially FI measurements have less relevance as 279 

compared to HbA1c measurements, for example. This suggests that future efforts should be directed 280 

towards improving the prediction of the other glycaemic indices than FG and FI.   281 

 282 

Our study leverages machine learning ability to perform variable selection independently of a pre-283 

filtering. To date, RLS (a variant of  SVR-L2Linear algorithms)27, J48-decision tree25, and logistic 284 

regression with regularization23,26 have highlighted the importance of specific metabolites consistent 285 

with our findings. Indeed, branched-chain amino acids (Leucine, Valine, Isoleucine)25,26, HDL, VLDL, 286 

glycerol, ApoA and Apo B, 3-hydroxybutyrate26, aromatic amino acids (phenylalanine, tyrosine)23,26 are 287 

established as important predictors by machine learning algorithms, as also shown by our study. 288 

Moreover, in this study, we report glycoprotein acetyls and acetoacetate as good predictors of 289 

glycaemic trait levels. These markers have previously been associated with T2D30–32; however, for the 290 

first time here, we show that they are not only associated, but are also predictors of glycaemic health.  291 

 292 

In addition to specific metabolites, the machine learning algorithms assigned a high rank (first 25) to 293 

several established metabolic health-associated methylation probes in the prediction of FI and FG 294 

when collapsing metabolic predictors into scores but keeping methylation probes as such. The probes 295 

included for instance those within the genes CPT1A and SREBF1, where the first, CPT1 (Carnitine 296 

palmitoyltransferase I) is involved in fatty acid metabolism (RefSeq, Jul 2008) , and the latter, SREBF1 297 

(Sterol regulatory element-binding transcription factor 1) regulates genes required for glucose 298 

metabolism as well as fatty acid and lipid production, and its expression is regulated by 299 

insulin33. Previously, methylation at CPT1A and SREBF1 has been associated with 2hIns19, BMI20, FG18 300 

and T2D18. In our study, hypomethylation at CPT1A (cg17058475) at T2 predicted higher FI and FG 301 

levels, whereas hypermethylation at SREBF1 (cg11024682) at T1 predicted higher FI levels. The 302 
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predictive power of the methylation probes was modest, 0.04 out of 0.58 for FI and 0.03 out of 0.45 303 

for FG. However, for both glycaemic traits the ranking of 15 methylation probes among the top 25 304 

predictors when using scored metabolic data, sets the ground for larger studies of this kind, similarly 305 

to the work that has been achieved through large-scale GWAS. A recent study aggregating information 306 

over millions of genetic markers into a score showed that genetic risk scores for common diseases can 307 

identify people at risk equivalent to monogenic mutations34. On that account, the findings from our 308 

study encourage further exploration of methylation scores consisting of thousands or even millions of 309 

probes in glycaemic trait level prediction.  310 

 311 

Measures of body adiposity and those of obesity are established risk factors for T2D35 and have a well-312 

known impact on glycaemic trait variability36. In all six machine learning approaches and within all data 313 

combinations, we confirmed the high predictive value of BMI and WHR already 15 years beforehand. 314 

Indeed, when we calculated the variance explained from linear regression with the top 25 predictors, 315 

BMI and WHR accounted for the most part of it for both FI (0.40 out of 0.58) and FG (0.31 out of 0.45). 316 

When the outcomes were adjusted for the measures of adiposity, FG and FI levels at T1 gained more 317 

weight as predictors. These findings emphasize the importance of classical risk factors in T2D 318 

prediction but also show that the tracking is relevant already 15 years beforehand. Taken together, it 319 

is clear that classical risk factors will remain as valuable tools in the clinical practice for predicting 320 

future glycaemic health. However, more detailed biomarkers, for example certain metabolites as 321 

shown in the present study, genetic risk factors as shown recently34 and possibly methylation markers 322 

will open avenues for more precise prediction.  323 

 324 

From the algorithm point of view, our analyses showed that the highest prediction performance was 325 

achieved with BT, RF and SVR-L2Linear-L1L2 algorithms. This is consistent with the literature as BT and 326 

RF have shown to perform well in the prediction studies of various types of data37,38 . The SVR-L2Linear-327 

L1L2 (LIBLINEAR library in R) algorithm performed significantly better than the SVR-L2LinearL1 328 
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(kernelab library in R). This difference can be explained by the use of the L2-loss over the L1-loss in the 329 

SVR-L2Linear-L1L2 in 78.5% of the cases (i.e. across all external cross-validations, all phenotypes and 330 

all data type combinations). We further investigated whether the better performance was due to the 331 

choice of the evaluation criterion, namely R2 which evaluates the performance in squared terms, 332 

similar to L2 loss, rather than in absolute terms, as do MAE and L1. Our analyses showed that SVR-333 

L2Linear-L1 performed worse, regardless of the evaluation criterion used. These observations highlight 334 

the importance of loss function choice when using the SVR linear with L2-regularisation, independent 335 

of the model performance evaluation criterion. The SVR-Polynomial and SVR-RBF showed slightly 336 

lower predictions of the phenotypes, but there were no statistically significant differences when their 337 

performances were compared to those of the top three algorithms.  338 

 339 

Our analysis has some limitations that warrant discussion. First, the relatively small sample size (513 340 

subjects) is a drawback for taking full advantage of machine learning prediction with high-dimensional 341 

multi-omics data layers. However, our data is the largest to our knowledge featuring both longitudinal 342 

data and a comprehensive set of multi-omics data. UK Biobank has expressed its plans to acquire 343 

methylation data on its participants39. These data will be an important resource for future methylation 344 

studies. Nevertheless, the data will be cross-sectional and will not allow investigation of changes in 345 

methylation as the data used in the current study data does.  Second, parameter tuning and drawing 346 

of a threshold regarding variable importance in our machine learning models are not trivial. Longer 347 

parameter tuning times might have resulted in more precise predictions and better performance of 348 

some or all of the algorithms. Variable importance in turn will depend on the number of variables 349 

resampled by the algorithms or the regularization parameters chosen. Overall, we restricted our 350 

analyses to six machine learning algorithms in total. It was out of the scope of this study to explore 351 

other potentially relevant algorithms, which will remain of future research interest. Third, regarding 352 

the samples and the study design, the use of whole blood only for methylation markers, and the 353 

relatively young age of the participants, 46 years old at the measurement time of the outcome 354 
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variables is a limitation. The latter might alternatively represent a positive feature, since blood is the 355 

easiest tissue to obtain for any study, while the trend of deteriorating glycaemic health in younger 356 

adults is growing in all human populations. Finally, our replication effort also has some limitations. We 357 

were able to integrate only a small number of variables shared by both cohorts, and the time between 358 

the measurements differed between the Finnish and French studies, as did the age of the participants 359 

at recruitment. Despite these limitations the tested machine learning models showed promising 360 

consistency between the two cohorts, and we would expect better performance would the 361 

abovementioned limitations be addressed better.    362 

 363 

Conclusions 364 

With the use of six different machine learning algorithms, we have identified clinically relevant sets of 365 

predictors of glycaemic traits from large multi-omics datasets and highlighted the potential of 366 

methylation markers and longitudinal changes in prediction. In the future, we expect that 367 

improvements in study sizes, methylation score computation, finer model tuning and replication in 368 

more similar external datasets will improve predictive ability of our models for glycaemic traits and 369 

will unveil novel prognostic omics biomarkers for T2D endophenotypes.  370 

 371 

Methods  372 

Study Populations 373 

NFBC1966 374 

Northern Finland Birth Cohort 1966 (NFBC1966) comprises participants from the two northernmost 375 

provinces of Finland with expected dates of birth falling in 1966 (N=12,058 births)40. From the medical 376 

examination at 31 (T1, N=6,007) and 46 years (T2, N=5,861) we included participants with 377 

demographic, medication, epidemiological, blood biochemical, metabolomic and epigenetic 378 
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information available at both time points (N=626). Consent was obtained and the study was approved 379 

by the ethical committees of the University of Oulu and Imperial College London (Approval:18IC4421).  380 

 381 

DESIR 382 

The longitudinal DESIR study (Data from an Epidemiological Study on the Insulin Resistance 383 

syndrome) included 5,212 participants from the French general population. Clinical and biological 384 

evaluations were performed at inclusion and after three, six, and nine years, as previously 385 

described41,42. We used the data from 769 individuals aged from 30 to 65 years old at time of inclusion 386 

(T1) and nine years after inclusion (T2). Written informed consent was obtained from all participants. 387 

The study was approved by the Ethics Committee for the Protection of Subjects for Biomedical 388 

Research of Bicêtre Hospital, France.  389 

 390 

Epidemiological, Blood Biochemical and Metabolomic Data in the NFBC1966 391 

Height, weight, waist and hip circumference, and systolic and diastolic blood pressure (SBP, DBP, each 392 

measured in triplicate) were measured according to standard study protocols at the clinical 393 

examinations at T1 and T2. We used the measured height and weight; however, if unavailable, data 394 

from postal questionnaire were used. Body mass index (BMI) was calculated from height and weight 395 

and waist-hip-ratio (WHR) from waist and hip measurements accordingly. The biochemical assays43,44,  396 

oral glucose45, and HbA1c measurements46 are detailed elsewhere. Metabolites were quantified by a 397 

high-throughput serum nuclear magnetic resonance (NMR) platform47–50. Imputation of 398 

epidemiological, biochemical and metabolomic variables was performed jointly with random forest 399 

(MisForest in R51) (Supplementary Methods). Post imputation, for individuals with diagnosed T2D at 400 

T2 (N=18), we corrected their potentially T2D medication-induced and thus artificially normal FG 401 

values to 7 mmol/l, HbA1c values to 48 mmol/l (6.5%) and 2hGluc values to 11.1 mmol/l. Detailed 402 

descriptions of all the exclusions and corrections are given in the Supplementary Methods. Finally, all 403 

the predictor variables were normalised using inverse-normal transformation. The epidemiological, 404 
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blood biochemical and metabolomic variables used in the predictions are listed in Supplementary 405 

Table 1.  406 

 407 

Epigenomic Data in NFBC1966 408 

DNA methylation was measured in whole blood from 807 randomly selected individuals after 409 

overnight fasting. At T2, DNA methylation was measured for 758 selected subjects that attended the 410 

clinical examination, completed the questionnaire and had DNA methylation data from the previous 411 

clinical examination available. IlluminaInfiniumHumanMethylation450 Beadchip and EPIC arrays were 412 

used at T1 and T2, respectively. Methylation data was quality controlled according to study protocol 413 

(Supplementary Material) and pre-processed on genome build CGCh37/hg19. Imputation of 414 

methylation data was performed with random forest (MisForest in R51) using the methylation residuals 415 

corrected for sex, and blood cell type (Supplementary Material). We limited our analysis to the 416 

methylation probes previously associated with seven phenotypes: 187 probes associated with BMI20, 417 

21 with FG18, 11 with HbA1c18 and 68 with T2D18, one with 2hGluc19, eight with FI19, 21 with 2hIns19 418 

(Supplementary Table 2).  419 

 420 

Epidemiological, Blood Biochemical and Metabolomic Data in DESIR 421 

A total of 48 predictor variables overlapped between NFBC1966 and DESIR data. These included sex, 422 

measures of adiposity, biochemical data (triglycerides, total cholesterol, high and low-density 423 

lipoprotein cholesterol (HDL-C and LDL-C) at T1 and T2, insulin and glucose at T1), and metabolomic 424 

data (32 variables, 17 at T1 and 15 at T2). A full list of the included variables is given in Supplementary 425 

Table 3. The data were imputed with the package MisForest in R51 (missingness rate < 1%) 426 

(Supplementary Material). The values of FG were set to 7 mmol/l if the individual had diagnosed T2D. 427 

Finally, all the predictor variables were normalised using inverse-normal transformation. 428 

 429 

 430 
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Individuals and Study Variables in the Machine Learning Models 431 

In total, 513 individuals in the NFBC1966 were included in the machine learning analysis. HbA1c, 432 

2hGluc, 2hIns, FG, FI levels were used as continuous outcomes to predict. A total of 1,001 variables 433 

from T1 and T2 were used as predictors in the NFBC1966. Metabolic predictors included: 434 

epidemiological data - sex, measures of adiposity (BMI and waist-to-hip ratio), SBP and DBP, 435 

biochemical data - ten blood measurements of triglycerides, total cholesterol, high and low-density 436 

lipoprotein cholesterol (HDL-C and LDL-C), metabolomic data - 454 metabolites (228 at T1 and 226 at 437 

T2) (Supplementary Table 1). The methylation dataset included 528 unique probes, including 264 at 438 

T1 and 264 at T2 (Supplementary Table 2).  439 

 440 

For the replication analysis we chose to predict only FG and FI, for which the predictions worked the 441 

best in the NFBC1966 analyses. We included 48 variables common to both cohorts (Supplementary 442 

Table 3). The DESIR Cohort did not encompass methylation data. Therefore, before testing the 443 

prediction ability of our models in 769 individuals from DESIR, we could train the algorithms in the 444 

NFBC1966 either with the 513 individuals as previously, or with all 3,056 individuals who had 445 

metabolomics data available. This allowed us to test whether prediction in the external cohort was 446 

improved by increasing the sample size of the training data. 447 

 448 

Predictor Combinations and Prediction Frameworks 449 

Metabolic (Mb) and Methylation (Mh) data were combined as their individual (or raw, denoted here 450 

as R) values or transformed into scores (S) (Supplementary Material). Methylation scores were formed 451 

according to the traits the probes have been previously associated with (Supplementary Table 2) and 452 

metabolic scores according to specific categories (Supplementary Table 4). We refer to Mb-R/Mh-R 453 

when the input data are all represented as individual values and to Mb-S/Mh-S when all the input data 454 

are combined in scores. Sex was kept separate and included in the model in addition to the scored 455 

variables. The following combinations were tested: Mb-R/ Mb-S/ Mh-R / Mh-S/ Mb-R + Mh-R/ Mb-R + 456 
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Mh-S/ Mb-S + Mh-R/ Mb-S + Mh-S (Figure 1). Methylation and Metabolic data were either adjusted 457 

for BMI and waist-hip-ratio at T1 and T2, or kept unadjusted. 458 

 459 

Machine Learning Approaches  460 

Three machine learning methods were used for regression analysis: Boosted trees (BT), Random Forest 461 

(RF) and Support Vector Regression (SVR) (Supplementary Material). SVR was implemented with 462 

Linear Kernel with L2 regularization and with L1 and L1/L2 loss functions (SVR-L2Linear-L1, SVR-463 

L2Linear-L1L2, respectively), with Polynomial Kernel (SVR-Polynomial) and with Radial Basis function 464 

Kernel (SVR-RBF) (Figure 1). For all the analyses, the packages kernelab, LIBLINEAR, RandomForest and 465 

xgboost in R51 were used with Caret as a wrapper. 466 

 467 

Optimization of the Machine Learning Algorithms  468 

Nested cross validation was implemented. The data set was split into a training (80%) and testing set 469 

(20%) with a 5-fold cross validation. The performance of the machine learning models was estimated 470 

on the testing set, while parameter tuning was implemented on the training set by splitting it further 471 

into a 5-fold cross validation (nested). Random search method was used to find the model parameter 472 

combination (Supplementary Table 13) which minimized the error of the model. The Root Mean 473 

Square Error (RMSE) was used to assess model performance during training. Both Rsquared (R2) and 474 

RMSE were computed in the testing set to estimate performance. For additional checks we used the 475 

Mean Absolute Error (MAE) to assess model performance.  476 

 477 

Variable Importance in the Machine Learning Models  478 

In BT, the information gain was used as a measure of importance. Gain is based on the decrease in 479 

entropy after a dataset is split on a feature j at a branch of the tree. RF variables were ranked with the 480 

Increase in Mean Square Error (MSE). It estimates the increase of prediction error when the values of 481 
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the feature j are randomly permuted. For SVR, each feature is evaluated based on its independent 482 

association with the outcome. The slope of the regression is used to rank the features.  483 

 484 

Statistical Analysis for Comparing Model Performance 485 

The performance of each model was computed as the average R2 over the 5 testing folds of the cross 486 

validation. In the Results section, we report the R2 pooled for the six machine learning algorithms. 487 

Comparison of the models was performed with a one-way ANOVA and post-hoc Tukey honest 488 

significance test (HSD) test. We use P-value<0.05 to denote statistical significance. 489 

 490 

Association Analysis to Obtain Effect Size, Direction and Variance Explained 491 

We performed linear regression analyses between the best predicted outcomes (FG and FI) and each 492 

of the top 25 predictors suggested by the machine learning models to assess the effect sizes and 493 

directions of the associations. The analyses were conducted in R51. We report betas with their standard 494 

errors and related P-values. Additionally, we performed linear regression analyses for ln(FI)/FG by 495 

including all the top 25 predictors in the same model and then by removing metabolites/ methylation 496 

markers from the set of predictors to evaluate the variance explained and the contribution of 497 

metabolites/methylation markers in it. We report the adjusted R2 from these analyses.   498 

 499 

Replication analysis 500 

For the replication analysis we used the three most consistently performing machine learning 501 

approaches: BT, RF, and SVR-L2Linear-L1L2. First, we estimated the performance of the algorithms in 502 

the NFBC1966 using a restricted set of 48 predictors. We selected the 48 input variables as overlapping 503 

with our validation cohort variables. This performance estimation was done by splitting the NFBC1966 504 

dataset of 513 individuals into 80% for training and 20% for testing (nested cross validation for tuning 505 

as described above).  Second, we “re-trained” the model with the maximum number of individuals in 506 

the NFBC1966, i.e. 513 individuals which represent 100% of the previous dataset with methylation and 507 
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metabolomics data, or all 3,056 individuals with metabolomics data only. Then we tested for the ability 508 

of this model to predict accurately glycaemic traits when given an independent population (DESIR) 509 

with the same input variables. Practically, we used either 513 or 3,056 individuals from the NFBC1966 510 

for training and used the resulting models to predict FI and FG in 769 individuals of the DESIR cohort. 511 

Performance was evaluated with R2 as described above.  512 
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Figure legends 673 

 674 

Figure 1.  Experimental set-up for Machine learning analysis. We applied machine learning to multi-675 

omics data based on blood samples and data collections from the Northern Finland Birth Cohort 1966 676 

at 31 and 46 years. Fasting glucose/insulin (FG/FI), glycated haemoglobin (HbA1c) and 2-hour 677 

glucose/insulin (2hGlu/2hIns) phenotypes at T2 were predicted in 513 individuals using up to 991 678 

variables from T1 and T2: Body-mass-index (BMI), waist-hip-ratio, systolic and diastolic blood pressure 679 

(SBP and DBP), sex; 10 blood plasma measurements; 453 NMR-based metabolites; 528 methylation 680 

probes established for BMI, FG, FI, HbA1c, 2hGlu, 2hIns or Type 2 diabetes. Six machine learning 681 

approaches were used: random forest, boosted trees and support vector regression (SVR) with the 682 

kernels of linear function with L2 regularization and L1 loss function (L2Linear-L1), linear with L2 683 

regularization and L1/L2 loss function (L2Linear-L1L2), polynomial and radial basis function (RBF).  684 

 685 

Figure 2. Performance as measured in R2 of the different machine learning models. A. Unadjusted for 686 

measurements of adiposity (Waist-to-hip-ratio and Body mass index) at T1 and T2; B. Adjusted for 687 

measurements of adiposity (Waist-to-hip-ratio and Body mass index) at T1 and T2. Training of the 688 

algorithm was performed with a nested cross validation (5-folds outer, and 5-folds inner cross 689 

validation) and the R2 of 5 outer testing folds is displayed for each machine learning model. Metabolic 690 

predictors include epidemiological, biochemical and metabolomic data. SVR: Support Vector 691 

Regression with the kernels of linear function with L2 regularization and L1 loss function (L2Linear-L1), 692 

linear with L2 regularization and L1/L2 loss function (L2Linear-L1L2), polynomial and radial basis 693 

function (RBF). 694 

 695 

Figure 3. Variable Importance for fasting glucose and fasting insulin prediction from two different 696 

combinations of predictor data. For each Machine learning method, the normalized variable 697 

importance over five outer fold of cross validation was averaged into the "Variable-Model-Importance" 698 
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(var.mod.Imp). Then for each of the six machine learning models, the variables were ranked based on 699 

the var.mod.Imp. The rank was averaged over the six models to obtain the “mean variable rank”. The 700 

latter was used to select top 25 variables for display.  For these variables, we display the variable 701 

importance after (1) weighting the var.mod.Imp by the R2 obtained for each of the individual machine 702 

learning algorithms (2) averaging variable importance across the six machine learning models.  703 

FI: Fasting Insulin; FG: Fasting Glucose; RF: random forest; BT: boosted trees, SVR: support vector 704 

regression models with the kernels of linear function with L2 regularization and L1 loss function 705 

(L2Linear-L1), linear with L2 regularization and L1/L2 loss function (L2Linear-L1L2), polynomial and 706 

radial basis function (RBF). Metabolic predictors include epidemiological data, biochemical data and 707 

metabolomic data. T2: 46 years old, T1: 31 years old. BMI: Body Mass Index according to clinical 708 

examination, postal questionnaire if missing; WHR: Waist-to-hip ratio. Metabolite name descriptions 709 

are provided in Supplementary Table 1.  710 

 711 

Figure 4. Performance as measured in R2 of the different machine learning models with 48 variables 712 

shared between NFBC1966 and DESIR. A. Using NFBC1966 data with individuals having methylation 713 

data (N=513) and all available DESIR individuals (N=769). B. Using NFBC1966 data with all available 714 

individuals (N=3,056) and all available DESIR individuals (N=769). Training of the algorithm was 715 

performed with a nested cross validation (5-folds outer, and 5-folds inner cross validation) and the R2 716 

of 5 outer testing folds is displayed for each machine learning model. Metabolic predictors include 717 

epidemiological, biochemical and metabolomic data. SVR: Support Vector Regression with the kernel 718 

of linear function with L2 regularization and L1/L2 loss function (L2Linear-L1L2). 719 

  720 
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Tables 721 

Table 1. Effect of the input dataset on the prediction performance of the five glycaemic traits.  722 

  Input dataset Number of outcome variables for which the 
model (A or B) performs the best 

Comparison Model Mb-R Mb-S Mh-R Mh-S  
1 A x    5/5, P<2.3×10-10 
 B   x  0/5 
2 A x    5/5, P<1.8×10-11  
 B    x 0/5 
3 A  x   5/5, P<1.7×10-9 
 B   x  0/5 
4 A  x   5/5, P<6.0×10-14 
 B    x 0/5 
5 A x    2/5, P<0.04 (equal performance for 3/5) 
 B x  x  0/5 
6 A x    0/5 (equal performance for all) 
 B x   x 0/5 
7 A  x   0/5 (equal performance for all) 
 B x    0/5 
8 A   x  1/5, P<1.6×10-4 (equal performance for 4/5) 
 B    x 0/5 
9 A  x  x 4/5, P<0.02 (equal performance for 1/5) 
 B  x x  0/5 

 723 

Selected comparisons of models in pairs are displayed to illustrate different scenarios. 1-4) Comparison 724 

between models with metabolic or methylation data only; 5-6) The effect of combining two data 725 

types.; 7-8) The effect of variable transformations into scores; 9) The decrease in performance of the 726 

models upon inclusion of a large number of predictors. Mb-R: Metabolic Raw Variables, Mb-S: 727 

Metabolic Scored Variables, Mh-R: Methylation Raw Variables, Mh-S: Methylation Scored Variables. 728 

Metabolic predictors include epidemiological data, biochemical data and metabolomic data. FG/FI: 729 

Fasting glucose/insulin; HbA1c: glycated haemoglobin; 2hGlu/2hIns: 2-hour glucose/insulin. 730 

The performance of all machine learning algorithms upon inclusion of different datatypes was 731 

evaluated. For a given phenotype (FG, FI, HbA1c, 2hGlu or 2hIns), the effect of an input dataset was 732 

assessed. Column 4 shows which model performed the best, and the number of outcomes for which 733 

this pattern is observed. The P-value is the maximum P-value observed when comparing model A 734 

against model B for each of the five outcomes. Models were compared with Tukey HSD test following 735 
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a one-way ANOVA. To test the effect of a given dataset, we run all six machine learning algorithms in 736 

a nested cross validation framework (5 outer, 5 inner folds), thereby each group compared included 737 

six (machine learning algorithms) x five (testing errors) = 30 R2 measures.  738 

 739 
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Table 2. Linear regression analysis results for ln(FI)/FG and the top 25 predictors.  740 

Mb-R + Mh-R beta SE P-value Mb-S + Mh-R beta SE P-value 
ln(FI)       ln(FI)       
T2_BMI 0.08 0.00 3.29´10-55 T2_MeasuresOfAdiposity 0.08 0.00 5.75´10-56 
T2_Large_HDL_FreeChol_% -0.11 0.01 1.48´10-40 T2_BRACA 3.76 0.29 1.17´10-32 
T2_GlycoproteinAcetyls 1.32 0.10 5.88´10-37 T1_MeasuresOfAdiposity 0.07 0.01 7.39´10-26 
T2_TrigyceridestoPhosphoglycerides 1.13 0.09 8.73´10-35 T2_BloodProteins 1.32 0.10 3.36´10-37 
T2_WHR 3.79 0.27 3.12´10-38 T2_Carbohydrates 0.73 0.06 1.62´10-26 
T2_Phenylalanine 29.08 2.32 1.62´10-31 T2_cg00574958 -9.28 1.48 8.62´10-10 
T2_Large_HDL_FreeChol -4.91 0.39 1.03´10-31 T2_OtherAminoAcids 0.66 0.18 3.42´10-4 
T2_Large_HDL_TotChol_% -0.04 0.00 2.04´10-34 T2_cg06898549 3.01 0.63 2.54´10-6 
T2_Isoleucine 15.32 1.23 2.52´10-31 T2_cg17058475 -4.67 1.12 3.45´10-5 
T2_Large_HDL_TotChol -1.14 0.09 4.61´10-30 T1_CarbohydratesAndInsulin 0.10 0.02 1.68´10-9 
T2_Leucine 13.13 1.07 1.09´10-30 T2_cg08309687 -3.51 0.68 3.24´10-7 
T1_FI 0.80 0.07 1.19´10-27 T2_KetonBodies -0.70 0.29 1.52´10-2 
T2_Large_HDL_CholEsters -1.47 0.12 1.86´10-29 T2_cg10927968 3.01 0.64 3.23´10-6 
T2_Large_VLDL_PhosphoLipids 4.59 0.41 1.76´10-26 T1_cg08309687 -2.44 0.63 1.10´10-4 
T2_Glycerol 11.03 0.94 3.94´10-28 T2_Lipoparticules 0.00 0.00 4.99´10-9 
T2_VLDL_Trigycerides 0.40 0.03 6.03´10-28 T1_cg26361535 1.76 0.70 1.29´10-2 
T2_Lactate 0.74 0.07 2.34´10-25 T2_cg25217710 4.83 1.27 1.51´10-4 
T2_Tyrosine 20.79 1.87 5.98´10-26 T1_cg11832534 3.30 1.13 3.54´10-3 
T2_XL_HDL_PhosphoLipids -1.30 0.11 1.81´10-28 T1_cg11024682 3.92 1.02 1.33´10-4 
T2_Large_HDL_Trigycerides_% 0.10 0.01 3.53´10-26 T1_cg09469355 -3.98 0.93 2.11´10-5 
T2_XL_VLDL_Trigycerides 4.04 0.38 3.47´10-24 T1_cg07728579 1.87 1.00 6.18´10-2 
T2_Valine 5.83 0.54 1.48´10-24 T2_cg25096107 -3.36 1.40 1.68´10-2 
T2_Large_HDL_Particules -375767.70 31515.32 4.35´10-29 T2_cg26804423 4.02 1.10 2.96´10-4 
T2_XL_HDL_PhosphoLipids_% -0.02 0.00 2.03´10-26 T2_cg04524040 -3.21 0.89 3.59´10-4 
T2_Medium_VLDL_TotChol 2.45 0.22 6.10´10-26 T1_BloodProteins 0.39 0.08 1.52´10-6 
FG       FG       
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T2_Valine 7.43 0.56 7.64´10-35 T2_BRACA 4.52 0.31 2.79´10-41 
T2_Leucine 15.38 1.12 1.26´10-36 T2_MeasuresOfAdiposity 0.06 0.01 2.57´10-28 
T2_WHR 3.73 0.30 4.59´10-31 T1_MeasuresOfAdiposity 0.06 0.01 2.56´10-14 
T2_BMI 0.06 0.01 8.60´10-28 T2_BloodProteins 1.05 0.11 1.42´10-19 
T2_Isoleucine 16.56 1.33 2.53´10-31 Sex -0.41 0.05 1.37´10-14 
T2_Tyrosine 20.74 2.05 5.73´10-22 T2_OtherAminoAcids 0.96 0.19 1.08´10-6 
T2_SystolicBloodPressure 0.01 0.00 2.82´10-20 T1_BRACA 1.88 0.31 4.10´10-9 
T1_WHR 2.80 0.30 7.01´10-19 T1_CarbohydratesAndInsulin 0.13 0.02 4.46´10-13 
T1_FG 0.48 0.05 1.85´10-18 T2_cg11080651 -8.53 1.94 1.39´10-5 
T2_Large_HDL_PhosphoLipids_% 0.05 0.01 1.04´10-19 T2_cg19695507 4.06 1.13 3.57´10-4 
T2_Large_HDL_FreeChol_% -0.09 0.01 2.80´10-20 T2_cg19693031 -2.79 0.73 1.53´10-4 
T2_Small_HDL_Trigycerides 10.63 1.52 7.58´10-12 T2_Lipoparticules 0.00 0.00 9.06´10-8 
T2_DiastolicBloodPressure 0.02 0.00 1.00´10-16 T2_cg26403843 2.07 0.60 6.44´10-4 
T2_Medium_VLDL_Trigycerides_% 0.03 0.00 7.61´10-12 T2_cg25217710 4.17 1.38 2.58´10-3 
T2_TrigyceridestoPhosphoglycerides 0.88 0.10 1.77´10-17 T2_cg09777883 2.20 1.09 4.32´10-2 
T2_Glycerol 8.74 1.08 4.71´10-15 T1_cg04816311 1.75 0.67 8.93´10-3 
T2_Alanine 2.89 0.35 8.41´10-16 T2_Carbohydrates 0.51 0.07 2.37´10-11 
T2_XL_HDL_Particules -768070.10 98342.58 3.27´10-14 T1_cg03497652 1.96 0.70 5.47´10-3 
T2_IDL_FreeChol_% -0.18 0.02 2.22´10-15 T1_cg11183227 3.85 1.10 5.01´10-4 
T2_Large_HDL_CholEsters -1.15 0.14 3.18´10-15 T1_cg23906191 4.99 1.89 8.39´10-3 
T2_XL_HDL_CholEsters_% 0.02 0.00 7.27´10-12 T1_cg00574958 -4.21 1.64 1.06´10-2 
T2_Large_HDL_TotChol -0.89 0.11 9.31´10-16 T1_cg02059849 5.61 1.36 4.20´10-5 
T2_Medium_VLDL_CholEsters_% -0.04 0.01 8.94´10-13 T2_cg00634542 2.90 1.30 2.65´10-2 
Sex -0.41 0.05 1.37´10-14 T2_cg17058475 -3.86 1.22 1.60´10-3 
T2_Small_VLDL_Trigycerides_% 0.03 0.00 1.58´10-12 T2_cg06898549 2.47 0.69 3.89´10-4 

The models were fitted for each predictor separately. Left panel shows the results when the predictors were in their raw format (Metabolic-Raw, Mb-R + 741 

Methylation-Raw, Mh-R) and right panel shows when the metabolic predictors were transformed into scores but methylation data kept in raw format 742 

(Metabolic-Score, Mb-S + Methylation-Raw, Mh-R).    743 
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Figures 744 

Figure 1.   745 

  746 

Figure 2.  747 

 748 
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