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Abstract. The resting activity of the brain can be described by so-called intrinsic connectivity networks 

(ICNs), which consist of spatially and temporally distributed, but functionally connected, nodes.  The 

coordinated activity of the resting state can be explored via magnetoencephalography (MEG) by studying 

frequency-dependent functional brain networks at the source level. Although many algorithms for the 

analysis of brain connectivity have been proposed, the reliability of network metrics derived from both 

static and dynamic functional connectivity is still unknown.  This is a particular problem for studies of 

associations between ICN metrics and personality variables or other traits, and for studies of differences 

between patient and control groups, which both depend critically on the reliability of the metrics used.  A 

detailed investigation of  the reliability of metrics derived from resting-state MEG repeat scans is 

therefore a prerequisite for the development of connectomic biomarkers.  

 Here, we first estimated both static (SFC) and dynamic functional connectivity (DFC) after 

beamforming source reconstruction using the imaginary part of the phase locking index (iPLV) and the 

correlation of the amplitude envelope (CorEnv).  Using our approach, functional network microstates 

(FCμstates) were derived from the DFC and chronnectomics were computed from the evolution of 

FCμstates across experimental time. In both temporal scales, the reliability of network metrics (SFC), the 

FCμstates and the related chronnectomics were evaluated for every frequency band. 

 Chronnectomic parameters and FCμstates were generally more reliable than node-wise static 

network metrics. CorEnv-based network metrics were more reproducible at the static approach. This 

analysis encourages the analysis of MEG resting-state via DFC. 

 

Keywords:  MEG,resting-state,time-varying network analysis, chronnectomics, functional connectivity 

microstates,symbolic analysis, reproducibility 
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1. Introduction 

 

The coordination of spontaneous activity can be characterized with functional connectivity (FC), which 

refers to statistical dependencies between the activity of distinct brain areas (Pereda et al., 2005) and has 

been linked to the efficiency of an individual’s brain functioning (Baldassarre et al., 2012 ; Yamashita et 

al., 2015).  

A functional connectivity graph (FCG) can be constructed by estimating the statistical dependencies 

between the brain activity of all the areas in a pair-wise fashion. An FCG represents statistical or causal 

relationships measured as cross-correlations, coherence, or information flow.  

Neuroscientists first examined resting-state FC with functional magnetic resonance imaging (fMRI) by 

correlating blood oxygenation level-dependent (BOLD) signals (Biswal et al., 1995,2011,2012 ; van den 

Heuvel et al., 2009). After twenty years of using fMRI as a dominant neuroimaging tool, the community 

has succeeded in mapping brain areas to specific brain functions, creating an anatomical-functional atlas 

(Bandettini, 2012). Although fMRI is of high interest and a key modality to explore human brain function, 

ultra-slow activity described via BOLD signals is only an indirect measure of brain activity (Logothetis, 

2008). 

In the last few years, greater attention has been given to explore FC via electro-magneto-

encephalography. Even though the spatial resolution of magnetoencephalography (MEG)  is lower when 

compared to fMRI, MEG can capture the multiplexity of human brain activity by providing insight into the 

spectro-temporo-spatial dynamics of human brain activity. MEG-based FC provides us with a direct 

measure of neuromagnetic activity with a high temporal resolution.  

Resting-state networks (RSNs) have been successfully extracted with MEG over the past few years using 

source-space FC (Brookes et al., 2011a,b; de Pasquale et al., 2010; Hall et al., 2013; Hipp et al., 2012; 

Luckhoo et al., 2012; Wens et al., 2014). Moreover, resting-state MEG FC has been proven to detect 

abnormal brain functioning in a variety of diseases, including Alzheimer’s disease (Engels et al., 2015; 

Lo´pez et al., 2014,2017), multiple sclerosis (Tewarie et al., 2015), in schizophrenia (Bowyer et al., 2015), 

in dyslexia (Dimitriadis et al., 2013b,2015c), in mild cognitive impairment (Dimitriadis et al., 2015b) and in 

mild traumatic brain injury ( Dunkley et al., 2015 ; Dimitriadis et al., 2015c, Antonanakis et al., 2016,2017). 
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 Several studies have thus captured alterations of MEG parameters in the resting state in order to 

estimate FC in disease groups compared to controls. However, FC estimates at resting-state could be 

affected by subject’s cognitive, emotional state and other scanning-related systematic differences. For 

that reason, it is unclear up to which level FC estimates are repeatable for an individual. Moreover, in 

large studies of hundreds of participants, there is a significant cost, both in financial resources and time, 

to scan all the subjects two or more times. To establish MEG as a clinically reliable neuroimaging tool that 

can distinguish disease from healthy populations, the reliability of FC patterns should be explored from 

repeat scans. Up to date, only a few studies accessed the test-retest reliability of 

MEG/electroencephalography (EEG) FC (Hardmeier et al., 2014; Jin et al., 2011 ; Garces et al., 2016 ) while 

only one study has quantified the test-retest reliability of FC estimates in the source-space MEG (Garces 

et al., 2016). Colclough et al., (2016) attempted to report the reliability of every edge-weighted 

connections with a high number of connectivity estimators but using a split-half strategy from a large pool 

of subjects. Practically, the results cannot be adopted as reliability of static network metrics since the 

analysis involved single MEG scan recordings.  However, no study has ever explored the reliability of both 

static and dynamic networks at the source space in MEG. 

In the present study, we investigated the test-retest reliability of both static and dynamic FC 

measures derived from MEG resting-state data. For that purpose, we computed whole-brain  FC for 40 

subjects who were scanned twice with a 1-week test-retest interval.  For each subject and session, MEG-

beamformed source activity was estimated and FC was computed between 90 brain areas. FC was 

estimated with the imaginary part of the phase locking index (iPLV) and the correlation of the amplitude 

envelope (CorEnv) in both static (SFC) and dynamic models (DFC) by adopting a sliding window approach 

(De Pasquale et al., 2010 ; Dimitriadis et al., 2010a,2012a,2013a,2015a,2016a,2017). Afterwards, 

statistical and topological filtering schemes were applied to both SFC and DFC to reveal the true topology 

(Dimitriadis et al., 2017). For the SFC approach, we estimated well-known network metrics in a node-wise 

fashion and the reliability was accessed via correlation values between the two measurements and across 

the cohort. Graph-based reliability was assessed with a novel graph diffusion distance metric.  

For the DFC approach, node-wise network metrics were estimated across experimental time. To 

explore spatio-temporally the derived network activity, we first designed a codebook of prototypical 

network microstates and then assigned each of the instantaneous connectivity patterns to the most 
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similar code symbol (e.g. functional connectivity graph – FCG) (Dimitriadis et al., 

2010a,2012a,2013a,b,2015a,2016a,b,2017). A codebook is a set of prototypical functional connectivity 

graphs (FCGs). In this way, we derive a unique symbolic time series from each individual where each 

symbol corresponds to one of the predefined prototypical functional connectivity microstates (FCμstates). 

The evolution of these symbol-patterns encapsulates significant state transitions. Furthermore, the 

evolution of these FCμstates can be seen as a first order Markovian Chain (MC) that can be modelled 

representing an individualized state transition model of resting-state FCμstates. Fractional occupancy of 

each FCμstate, transition rates of FCμstates and MC models are the key features to explore the reliability 

of chronnectome in MEG source space. The group-consistency of subject-specific FCμstates was further 

explored. The whole analysis of dynamic functional connectivity graphs and the definition of FCμstates 

have been described in previous paper (Dimitriadis et al., 2013a). 

Many techniques have already been proposed to summarize brain activity into short-lived 

transient brain states using the spectrum of neuromagnetic recordings (Vidaurre et al., 2016) and also the 

band-limited amplitude envelopes of source reconstructed MEG data (Baker et al., 2014 ; O’Neill et al., 

2015).   In detail, Vidaurre et al.,(2016) proposed a combination of multivariate autoregressive model with 

hidden markovian modelling (MAR-HMM) in order to model the temporal, spectral and spatial properties 

of MEG reconstructed activity into very short-lived brain states. Similarly, Baker et al., (2014) modelled 

resting-state source-reconstructed MEG activity with HMM into distinct spatio-temporal activation 

profiles called brain states. These brain states were linked to well-known anatomical brain areas. O’Neill 

et al.,(2015) mined MEG source activity from two tasks, a self-paced motor and a Sternberg working 

memory task. He used a sliding window canonical correlation analysis (CCA) to estimate the functional 

connectivity at each time-window and a k-means clustering to detect repeatable spatial patterns of 

connectivity that form transiently synchronising sub-networks (TSNs) or functional connectivity 

microstates. Here, we must underline the distinction of summarizing brain activity using the raw time 

series (ROIs x sliding windows ; Vidaurre et al., 2016 ; Baker et al., 2014) which is a 2D matrix and the 

dynamic functional brain networks (ROIs x ROIs x sliding windows) which is a 3D matrix (O’Neill et 

al.,2015). Currently the mapping and the relationship between raw activity and brain connectivity and 

also the relationship of microstates (raw activity) with functional connectivity microstates (dynamic 

graphs ; Allen et al., 2012 ; Dimitriadis et al., 2013a,b,2015a,2016a,b,2017) is still unknown. Further 

research is need to explore their mapping at resting-state and during tasks. 
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The proposed methodological scheme entails two distinct ways of analyzing dynamic functional 

connectivity patterns. These patterns are representative brain network topologies across subjects and 

brain rhythms and are directly linked to a brain state. The very first approaches in fMRI constitutes novel 

contributions to an emerging neuroimaging field called chronnectomics (Allen et al., 2012 ; Calhoun et al., 

2014). Previously, we reported the notion of FCμstates  (Dimitriadis et al., 2013a) and the developmental 

trends in cognition (Dimitriadis et al., 2015a) using electroencephalographic recordings. The concept of 

chronnectome is the incorporation of a dynamic view of functional brain connectivity networks and the 

evolution of revisiting distinct spatio-temporal brain states (functional connectivity microstates - 

FCμstates). To the best of our knowledge, this study constitutes the first attempt to assess the test-retest 

reliability of Dynamic Functional Connectivity  at the MEG source level. 

Despite growing enthusiasm in the neuroscience community about the potential contribution of 

neuroimaging and especially brain networks in the designing of connectomic biomarkers for various brain 

diseases/disorders, many challenges remain open (Stam et al.,2014). At first level, it is more than  

significant to explore how reliable are network metrics at both temporal scales (static and dynamic) by 

analysing a group of control subjects with repeat scans (e.g. diffusion MRI : Dimitriadis et al., 2017d). 

Here, we assess evidence of the reliability of neuromagnetic (MEG) based functional connectomics to lead 

to potential clinically meaningful biomarker identification in target populations through the lens of the 

criteria used to evaluate clinical tests.  

 

2. Materials and Methods  

2.1 Subjects 

40 healthy subjects (age 74.385..22 ± years, 15 women and 25 men) underwent two resting-state 

MEG sessions (eyes open) with a 1-week test-retest interval. For each participant, scans were scheduled 

at the same day of the week and same time of the day. The duration of MEG resting-state was 5 mins for 

every participant. The study was approved by the Ethics Committee of the School of Psychology at  Cardiff 

University, and participants provided informed and written consent. 
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2.2 MEG-MRI Recordings 

     Whole-head MEG recordings were made using a 275-channel CTF radial gradiometer system. An 

additional 29 reference channels were recorded for noise cancellation purposes and the primary sensors 

were analysed as synthetic third-order gradiometers (Vrba and Robinson, 2001). Two or three of the 275 

channels were turned off due to excessive sensor noise (depending on time of acquisition). Subjects were 

seated upright in the magnetically shielded room. To achieve MRI/MEG co-registration, fiduciary markers 

were placed at fixed distances from three anatomical landmarks identifiable in the subject’s anatomical 

MRI, and their locations were verified afterwards using high-resolution digital photographs. Head 

localisation was performed before and after each recording, and a trigger was sent to the acquisition 

computer at relevant stimulus events. 

All datasets were either acquired at or down-sampled to 600 Hz, and filtered with a 1-Hz high-pass 

and a 200-Hz lowpass filter. The data were first whitened and reduced in dimensionality using principal 

component analysis with a threshold set to 95% of the total variance (Delorme and Makeig, 2004). The 

statistical values of kurtosis, Rényi entropy and skewness of each independent component were used to 

eliminate ocular and cardiac artifacts. Specifically, a component was deemed artifactual if more than 20% 

of its values after normalization to zero-mean and unit-variance were outside the range of [-2, +2] 

(Delorme and Makeig, 2004; Escudero et al., 2011; Antonakakis et al., 2016). The artifact-free 

multichannel MEG resting-state recordings were then entered in the beamforming analysis (see next 

section). 

Subjects further underwent an MRI session in which a 3T GE scanner with an 8-channel receive-

only head RF coil T1- weighted 1-mm anatomical scan was acquired, using an inversion recovery spoiled 

gradient echo acquisition. 

 

2.3 Beamforming 

An atlas-based beamformer approach was adopted to project MEG data from the sensor level to 

source space independently for each brain rhythm. The frequency bands studied were: δ (0.5-4 Hz), θ (4-8 

Hz), α1 (8-10 Hz), α2 (10-13 Hz), β1 (13-20 Hz), β2 (20-30 Hz), γ1 (30-45 Hz), γ2 (55-90 Hz). First, the 

coregistered MRI was spatially normalized to a template MRI using SPM8 (Weiskopf et al., 2011). The AAL 
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atlas was used to anatomically label the voxels, for each participant and session, in this template space 

(Tzourio-Mazoyer N, et al., 2002). The 90 cortical regions of interest (ROIs) were used for further analysis, 

as is common in recent studies (Hillebrand et al., 2016, Hunt et al., 2016). Next, neuronal activity in the 

atlas-labelled voxels was reconstructed using the LCMV source localization algorithm as implemented in 

Fieldtrip (Oostenveld et al., 2012). 

The beamformer sequentially reconstructs the activity for each voxel in a predefined grid covering 

the entire brain (spacing 6 mm) by weighting the contribution of each MEG sensor to a voxel’s time series 

- a procedure that creates the spatial filters that can then project sensor activity to the cortical activity. 

Each ROI in the atlas contains many voxels, and the number of voxels per ROI differs. To obtain a single 

representative time series for every ROI, we defined a functional-centroid ROI representative by 

functionally interpolating activity from the voxel time series, within each ROI, in a weighted fashion. 

Specifically, we estimated a functional connectivity map between every pair of source time series within 

each of the AALs ROIs (eq.1) using correlation (eq.2). We then estimated the connectivity strength of each 

voxel within the ROI by summing its connectivity values to other voxels within the same ROI (eq.3) and 

finally we normalized each strength by the sum of strengths (eq.4) to estimate a set of weights within the 

ROI that sum to a value of 1. Finally, we multiplied each voxel time series with their respective weights 

and we summed across them in order to get a representative time series for each ROI (eq.5). The whole 

procedure was applied independently to every quasi-stable temporal segment derived by the settings of 

temporal window and stepping criterion. 

The following equations 1-5 demonstrated the steps for this functional interpolation.  

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/358192doi: bioRxiv preprint 

https://doi.org/10.1101/358192
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 

 

∑

∑

∑

∑ ∑

=

=

=

= +=

=

=

∈=

∈=

∈ℜ∈

Voxels

k
k

seriestimeactivity

Voxels

k

k

voxelsVoxels

k

VoxelsVoxels

k

map
l

map
k

Voxels

kl

Voxels

elsvoxelsxvoxmap

WROIROI

SS

SS
W

xROISkcorrSS

ROIxROIStROItROIcorrS

ROIeachwithinseriestimevoxelofnoVoxelsROI

1

1

1

1 1

)5(*

)4(

1,)3(:),(

)2(,))(),((

)1(,

 

   

The outline of the methodology is described in Fig.1. An exemplar of the representative ban

filtered ROI based time series is given in Fig.1.  Fig.2 illustrates the preprocessing steps describ

equations 1 -5. 

Figure 1. Outline of the methodology for accessing the reliability of network metrics derived from 

functional connectivity graphs (FCGs). (SF-Statistical Filtering, TF-Topological Filtering, FCE-Function

Connectivity Estimator). 
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Statistical and topologically filtering of the FCGs will be described in sections 2.7 and 2.8, 

correspondingly. One can understand how from a full-weighted FCG, a more sparse version is deriv

via the statistical and topological filtering approaches. 

 

Figure 2. Step-by-step construction of the representative virtual sensor time series for each ROI. 

A) Plot of 108 voxel time series from left precentral gyrus. 

B) Distance correlation matrix 
VoxelsS  derived by the pair-wise estimation of the 108 voxel time serie

C) Summation of the columns of 
VoxelsS  produced the vector SS 

D) Normalization of vector SS that further produces Wk 

where its sum equals to 1. 

E) Multiplying every voxel time series with the related weight from the Wk . In this example, w

demonstrated this multiplication for the first and last voxel time series.  

F) The reproduced voxel time series for left precentral gyrus ((ROI 
activity

). 

 after summing the weighted versions of every voxel time series from E. 
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 [Figure 1,2 around here] 

2.3 Functional Connectivity 

Here, functional connectivity was  examined among the following 8 brain rhythms of the typical 

sub-bands of electrophysiological neural signals {δ, θ, α1, α2, β1, β2, γ1, γ2}, defined respectively within the 

ranges {0.5-4 Hz;  4-8 Hz; 8-10Hz; 10-13Hz; 13-20 Hz ;  20-30 Hz; 30- 45Hz ; 55 – 90 Hz }. For both static 

and dynamic approach, we used two estimators: the correlation of the amplitude envelope (CorEnv) and 

the imaginary part of the phase locking value (iPLV). 

  

2.4 Intra-Frequency Connectivity Estimators 

Among the available connectivity estimators, we adopted one based on the imaginary part of 

phase-locking value (iPLV) (Lachaux et al., 1999) and adjusted properly so as to extract time-resolved 

profiles of intra-frequency coupling from MEG multichannel recordings at resting state. The original PLV is 

defined as follows: 
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The imaginary part of PLV (iPLV) investigates intra-frequency interactions without putative contributions 

from volume conductance. In general, the iPLV is mainly sensitive to non-zero-phase lags and for that 

reason is resistant to instantaneous self-interactions from volume conductance (Nolte, 2004). In contrast, 

it could be sensitive to phase changes that not necessarily imply a PLV oriented coupling.  

   Correlation of the Envelope coupling (CorEnv) is based upon correlation between the oscillatory 

envelopes of two frequency band limited sources (Brookes et al., 2012). See Fig.1 for a schematic diagram 
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of phase and envelope based connectivity analyses based upon neural oscillations. Correlation of the 

Envelope coupling (CorEnv) is based upon correlation between the oscillatory envelopes of two band 

limited sources (A) while phase coupling searches for a constant phase lag between signals, in the 

example a difference of π (B). The time series for the estimation of CorEnv were orthogonalized between 

each other using the bivariate version of this correction for signal leakage effects (Colclough et al., 2016).  

 

2.5 Static Functional Connectivity Analysis 

 Using both connectivity estimators, we estimated the fully-weighted (90x90) anatomical oriented 

FCG, one for each subject, recording session and frequency band. To construct the static FCG (SFCG), we 

incorporated in the analysis the whole 5 minutes of the recording session. 

 

2.6 Dynamic iPLV estimates: the Time-Varying Integrated  iPLV graph (
TVI

iPLV graph) 

The goal of the analytic procedures described in this section was to understand the repertoire of 

phase-to-phase interactions and their temporal evolution, while taking into account the quasi-

instantaneous spatiotemporal distribution of iPLV estimates. This was achieved by computing one set of 

iPLV estimates within each of a series of sliding overlapping windows spanning the entire 5-min 

continuous MEG recording for eyes-open condition. The width of the temporal window and the stepping 

criterion were optimized for each frequency band separately using as objective criterion the reliability of 

transition dynamics between scan session 1 and 2 for each brain rhythm (Dimitriadis et al., 2013a ; see 

section 2.13.1 and 2.15). The centre of the stepping window moved forwards every frequency-dependent 

(see section 2.15 and 3.1) for the optimization of the parameters) for every intra-frequency interactions 

and a new functional brain network is re-estimated between every pair of ‘swifting’ temporal segments of 

MEG activity, from two sources, leading to a “quasi-stable in time” static iPLV graph. In this manner, a 

series of 598 (for δ) to 2140 (for γ2) iPLV graph estimates were computed for each frequency (8 within 

frequency) ,for each participant and for both repeat scans.  
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For each subject, a 4D tensor (frequencies bands (8) x slides (598 to 2140) x sources (90) x sources (90) 

; see section 2.15 and 3.1) was created for each condition integrating subject-specific spatio-temporal 

phase interactions (Fig.3.A).  

 

 

2.7 Surrogate Data Analysis of iPLV/CorEnv Estimates – Statistical Filtering of Brain Networks 

To identify significant iPLV/CorEnv -interactions which were estimated for every pair of 

frequencies within and between all 90 sources, and at each successive sliding window (i.e. temporal 

segment), we employed a surrogate data analysis. Accordingly, we could determine (a) if a given 

iPLV/CorEnv value differed from what would be expected by chance alone, and (b) if a non-zero 

iPLV/CorEnv corresponded to non-spurious coupling.  

For every temporal segment, sensor-pair and frequency, we tested the null hypothesis H0: ''the 

observed iPLV/CorEnv value comes from the same distribution as the distribution of surrogate 

iPLV/CorEnv -values''. One thousand surrogate time-series were generated by cutting at a single point at a 

random location the original time series and exchanging the two resulting time courses (Aru et al., 2015). 

We restricted the range of the selected cutting point in a temporal window of width to 10 sec in the 

middle of the recording session (between 25 – 35 sec). This surrogate scheme was applied to the original 

whole time series and not to the signal-segment at every slide. Repeating this procedure leads to a set of 

surrogates with a minimal distortion of the original phase dynamics, while the non-stationarity of the 

brain activity is less destroyed compared to shuffling the time series or cutting and rebuilding it in more 

than one time points.  

This procedure ensures that the real and surrogate indices both have the same statistical 

properties. For each data set, the surrogate iPLV/CorEnv (
s

iPLV/
s

CorEnv) was then computed. We then 

determined a one-sided p-value for each iPLV/CorEnv value that corresponded to the likelihood that the 

observed value could belong to the surrogate distribution. This was done by directly estimating the 

proportion of ''surrogate'' 
s

iPLV/
s

CorEnv that were higher than the observed iPLV/CorEnv. The p-value 

reflected the statistical significance of the observed iPLV/CorEnv -level (a very low value revealed that it 

could not have appeared from processes with no iPLV coupling).  
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At a second level, we applied the FDR method (Benjamini, Hochberg, 1995) to control for mu

comparisons within each snapshot of the dynamic graph (FCG – a 90 x 90 matrix with tabulated p-va

with the expected fraction of false positives set to .  Finally, for each subject the res

TV
iPLV/

TV
CorEnv profiles constituted of two 3D arrays of size [598 to 2140 for δ to γ2 (time windows

(sources) x 90 (sources)] with a value of 0 indicated a non-significant iPLV/CorEnv value.  

The aforementioned statistical filtering approach was applied independently for each frequ

band, session, subject and connectivity estimator for both static and dynamic functional connec

graphs. 

 

2.8 A data-driven Topological Filtering Scheme based on Orthogonal Minimal Spanning Trees (OMS

As well as the statistical filtering approach, it is important to adopt a data-driven topolo

filtering approach in order to reveal the backbone of the network topology over the increme

information flow.  

Recently, it was proved that MST is an unbiased method that yields reliable network metrics (Tewa

al., 2015). In this study, we adopt a variant of this topological filtering scheme called orthogonal mi

spanning trees (OMST), which leads to a better sampling of brain networks, preserving the advanta

MST, that connects the whole network with minimum cost without introducing cycles and wi

differentiated strong from weak connections compared to the absolute threshold or the density thre

(Dimitriadis et al., 2017a,b).  MST is too sparse to capture the ‘true’ network and for that reason le

to the selection of N-1 connections where N denotes the number of nodes. We introduced OMST w

samples the weights of a brain network via the notion of MST and under the optimization of the g

information flow under the constraint of the total Cost of preserving the functional connec

(Dimitriadis et al., 2017).  

Our criterion for topologically filtering a given brain network is based on the maximum value of the 

following quality formula: 

)8(CostGEJ OMSTs
GCE −=  
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We applied the data-driven topological filtering scheme based on OMST at every static and quasi-

instantaneous FCG from the dynamic DFCG. After statistical and topological filtering approaches applied 

to both SFCG and the DFCG, we estimated network metrics at the node/source level.  

Fig.1 demonstrates an example of a full-weighted FCG after applying both statistical and 

topological filtering approach. Our algorithm was validated over all the existing thresholding schemes 

with a large EEG dataset over brain fingerprinting and with a multi-scan fMRI dataset over reliability of 

nodal network metrics (Dimitriadis et al., 2017a). Additionally, we demonstrated the importance of a 

data-driven topological filtering technique in functional neuroimaging by using OMST in a multi-group 

study with MEG resting-state recordings (Dimitriadis et al., 2017b). The MATLAB code of the OMST 

method and also of the majority of existing filtering methods can be downloaded from the 

:https://github.com/stdimitr/topological_filtering_networks & researchgate 

https://www.researchgate.net/profile/Stavros_Dimitriadis 

 

2.9 Graph Diffusion Distance Metric for Brain Networks 

In order to assess group and scan sessions differences in the topologically filtered FCG at the single-

case level, we computed the Graph Diffusion Distance as a distance metric (Fouss et al., 2012; Hammond 

et al., 2013) from the OMST-derived final Functional Connectivity Graphs (FCG). The graph laplacian 

operator of each subject-specific FCG was defined as L = D – FCG, where D is a diagonal degree matrix 

related to FCG. This method entails modeling hypothetical patterns of information flow among sources 

based on each observed (static) SFCG. The diffusion process on the person-specific FCG was allowed for a 

set time t; the quantity that underwent diffusion at each time point is represented by the time-varying 

vector 
N)t(u ℜ∈ . Thus, for a pair of sources i and j, the quantity FCGij (ui(t) – uj(t)) represents the 

hypothetical flow of information from i to j via the edges that connect them (both directly and indirectly). 

Summing all these hypothetical interactions for each sensor leads to ∑ −=
i

jiij
'
j ))t(u)t(u(FCG)t(u , 

which can be written as: 

)t(Lu)t(u i −=  (9) 
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where L is the graph laplacian of FCG. At time t = 0 Equation 9 has the analytic solution: 

.u)tLexp()t(u )0(−=  Here exp(-tL) is a N x N matrix function of t, known as Laplacian exponential 

diffusion kernel (Fouss et al., 2012), and u
(0)

 = ej, where N
je ℜ∈ is the unit vector with all zeros except in 

the j
th

 component. Running the diffusion process through time t produced the diffusion pattern exp(-tL)ej 

which corresponds to the jth column of exp(-tL).  

Next, a metric of dissimilarity between every possible pair of person-specific diffusion-kernelized 

FCGs (FCG1,FCG2) was computed in the form of the graph diffusion distance dgdd(t). The higher the value of 

dgdd(t) between two graphs, the more distinct is their network topology as well as the corresponding, 

hypothetical information flow. The columns of the Laplacian exponential kernels, exp(-tL1) and exp(-tL2), 

describe distinct diffusion patterns, centered at two corresponding sources within each FCG. The dgdd(t) 

function is searching for a diffusion time t that maximizes the Frobenius norm of the sum of squared 

differences between these patterns, summed over all sources, and is computed as: 

)10()tLexp()tLexp()t(d 2
F21gdd −−−=  

where 
F

. is the Frobenius norm.  

Given the spectral decomposition L=VΛV, the laplacian exponential can be estimated via  

(11) )V'Vexp(-t=exp(-tL) Λ  

where for Λ, exp(-tΛ) is diagonal to the ith entry given by i,it
e

Λ−
.We computed dgdd(FCG1,FCG2) by first 

diagonalizing L1 and L2 and then applying equations (9) and (10) to estimate dgdd(t) for each time point t 

of the diffusion process. In this manner, a single dissimilarity value was computed for each pair of 

participants based on their individual characteristic FCGs. For further details see (Hammond et al., 2013). 

The GDD metric can be downloaded from : 

https://github.com/stdimitr/multi-group-analysis-OMST-GDD 

 

2.10 Static Network Metrics  
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After applying the statistical and topological filtering approach, we estimated the global effic

for each node in static approach. The static approach leads to 90 (sources) values for each net

metric, frequency band and session per subject. We adopted complementary features that measur

importance of each node in segregation, integration and the information flow within a weig

functional brain network (Dimitriadis et al., 2010a,b,2013a,b,2015a). In this study, we estimated

basic network metrics, the global and local efficiency, the strength of each node and the mean

passage time based on random walks (Goni et al., 2013). 

Network global efficiency (GE) reflects the overall efficiency of parallel information transfer w

the entire set of 90 sources and was estimated as the average sourcespecific GE value over all so

using the following formula (Latora and Marchiori, 2001):  

 

Where d denotes the shortest path length from i to j. 

Local efficiency (LE) indicates how well the subgraphs exchange information when a part

node is eliminated (Achard and Bullmore, 2007). Specifically, each node is assigned the shortest

length within its subgraph  

 

where  corresponds to the total number of spatial (first level neighbors) neighbors of the -th  

while d denotes shortest path length. 

 The strength is equal to the total sum of the weights of the connections of each node. 

 

As a fourth candidate network metric, we adopted the mean first passage time (MFPT). Star

random walk process on a brain network, an analytic expression can give the probability that a s

particle departing from a node  arrives at node  for the first time within exactly  steps (Wang

Pei,2008). This criterion can be applied for each MEG source pair by setting  to their shortest-
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length. We denote with   the  symmetric matrix containing, for each pair of nodes

probability of a single particle going from node  to node  via the shortest path. Each entry  ca

computed as (14) 

where matrix  is the transition matrix  introduced above, but with all zeros in the -th colum

with  acting as an absorbing state (Wang and Pei, 2008). Evaluating shortest-path-lengths en

that . By considering one particle here, the average shortest-path probability of a gra

defined as 

  (15) 

The derived 2D matrix based on nodal NMTS of GE, LE, MFPT and strength will be modelled

the proposed method that is described in the following section. 

 

2.11 Modelling of Dynamic Functional Connectivity Graphs (DFCG) as a 3D Tensor 

This subsection serves as a brief introduction to our symbolization scheme, presented in gr

details elsewhere (Dimitriadis et al., 2012a,b,2013a,b). The dynamic functional connectivity pattern

be modeled as prototypical functional connectivity microstates (FCμstates). In a recent study

demonstrated a better modeling of dynamic functional connectivity graphs (DFCG) based on a v

quantization approach (Dimitriadis et al., 2013). In our previous work (Dimitriadis et al., 2013a,b,20

we used the neural-gas algorithm (Martinetz et al., 1993) to learn the 2D matrix (vectorized version 

matrix x time) leading to a codebook of k prototypical functional connectivity states (i.e. FCμstates)

algorithm is an artificial neural network model, which converges efficiently to a small number

codebook vectors, using a stochastic gradient descent procedure with a soft-max adaptation rule

minimizes the average distortion error (Martinetz et al., 1993). In a recent study, we adopted 

negative matrix factorization (NNMF) as an appropriate learning algorithm of the 2D vectorized vers

a dynamic functional brain network (Marimpis et al., 2016). 
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In our previous study where we first demonstrated how to model dynamic functional connectivity 

graph (dFCG) (Dimitriadis et al., 2013a), we vectorised the upper triangular of each of the quasi-static 

FCGs building a 2D matrix where the 1
st

 dimension is the number of temporal segments and the 2
nd

 the 

vectorised version of a static FCG. The final outcome of this approach is to define the so-called functional 

connectivity microstates (FCμstates). In a next study, we moved one step further by estimating node-wise 

global efficiency as the best descriptor to characterize the brain activity. The final outcome of the 

modelling using the same methodology of neural-gas algorithm was task-based network microstates 

(Dimitriadis et al., 2015a). Here, the vectorised version of a 90x90 FCG produces a long vector of 4005 

values while the number of temporal segments ranged from 598 to 2140 which caused the so-called curse 

of dimensionality where the number of number of the temporal segment over which the modelling will 

learn the brain states is much smaller compared to the vectorised snapshot of FCG. Simultaneously, the 

vectorised notion of a brain network didn’t maintain the inherent format of a functional brain network 

which is a 2D matrix, a tensor. 

The outline of this procedure is illustrated in Fig.3. In Fig.3.A, a characteristic bandpass filtered 

time series for each of the studying frequency band is estimated from each ROI. Here, instead of 

vectorising the upper triangular of an undirected FCG, we used the statistical and topological filtering FCG 

on its inherent format which is a 2D tensor. In the case of dynamic networks, the dimension is a 3D tensor 

where the 3
rd

 dimension is the time. Fig.3B illustrates a few snapshots of the dFCG for δ frequency of the 

first subject. At the next level, we estimated the laplacian matrix of each quasi-static FCG. Given a FCG, 

the laplacian matrix is given by : 

L = D - A,  (16) 

where D is the degree matrix and A is the FCG. 

Fig.3C demonstrates the laplacian matrix of the FCG in Fig.3B. In the main diagonal, the degree of each 

node is tabulated. Afterward, we applied an eigenanalysis for each of these laplacian matrixes and the 

eigenvalues of this procedure describes the synchronizability of the original FCG. Fig.3d illustrates for the 

1
st

 minute the eigenvalues for each quasi-static FCG. One can easily detect the abrupt transition between 

the brain states. Here, neural-gas algorithm was applied on the 2D matrix presented in Fig.3D after first 

concatenated across subjects independently for each frequency band and scan session. The main scope of 

this codebook learning algorithm is to define FCμstates. 
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By estimating the reconstruction error E between the original 3D graphs and the one 

reconstructed via the k FCμstates assigned to each snapshot of the DFCG for each predefined threshold, 

we can detect the optimal threshold T for each case. In this work, the criterion of the reconstruction error 

E was set less than 4%. Practically for all the frequency bands and in both connectivity estimators, the 

reconstruction error E was less than 2%. The selected threshold was detected based on the plateau by 

plotting of reconstruction error E versus the threshold T.  

 In this way, the richness of information contained in the dynamic connectivity patterns is 

represented, by a partition matrix U, with elements uij indicating the assignment of input connectivity 

patterns to code vectors. Following the inverse procedure, we can rebuild a given time series from the k 

FCμstates, with a small reconstruction error E. The selection of parameter k reflects the trade-off between 

fidelity and compression level. As a consequence, the symbolic time series closely follows the underlying 

functional connectivity dynamics. The derived symbolic times series that keep the information of network 

FCμstates (nFCμstates) are called hereafter as STS
L-EIGEN

 (L:Laplacian – Eigen:Eigenalysis). Fig.3E tabulates 

the correlation of the eigenvalues between every pair of temporal segments while in Fig.3F, the matrix in 

Fig.3E was reordered such as the FCμstates to be revealed via the neural-gas algorithm. The network 

topology of the extracted FCμstates is illustrated in Fig.3G. From, Fig.3F, one can understand that the two 

FCμstates describe the DCFG of this subject.  

An exemplar of prototypical FCμstates is illustrated in Fig.3.G. The outcome of this clustering 

procedure is also to extract a symbolic time series per subject, repeat scan and frequency that describes 

the transition of brain activity between the extracted brain states (FCμstates ; Fig.3.D). The transition 

probability P for this example and for the two FCμstates  is illustrated with a classical figure for Markovian 

Chain. The self-arrows refer to the percentage of sliding windows where the brain stays stable in a 

FCμstate without any transition while the directed arrow gives the percentage of transition from one 

FCμstate to the other.This symbolic time series can be seen as a Markovian chain where these switching 

between ‘quasi-static’ FCμstates  can be modeled as a finite Markov chain (Dimitriadis et al., 

2013a,b,2015a ; O’-Neill et al.,2015 ; Vidaurre et al., 2016 ). One can clearly understand that human brain 

demonstrates a preferred transition from FCμstates
2
 to FCμstates

1
 (off-diagonal lines of the TP) compared 

to the opposite direction (Fig.3.H). The sketch of the markovian chain and the colored TP matrix can 

reveal the aforementioned trend of preferred direction FCμstates
2
 to FCμstates

1
. 
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From the symbolic timeseries, specific metrics tailored to the dynamic evolution of FCμstates were 

estimated (see next section) and their reliability was assessed via the correlation coefficient between scan 

session 1 and scan session 2. The whole approach was repeated independently for each frequency band 

and connectivity estimator by integrating subject and scan-based DFCG. 
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Fig.3. From dynamic functional connectivity graphs (DFCG) to FCμstates. 

A) A characteristic bandpass filtered time series for each of the studying frequency band is given from 

a ROI.  

B) Topologies of snapshots of DFCG from the three first temporal segments from δ band of subject 1 

in order to make clear the estimation of FCG in a dynamic fashion. The first three brain networks 

refer to the first three temporal segments demonstrated in A). 

These functional brain networks were statistically and topologically filtered as described in 

sections 2.7 and 2.8. The tN refers to the last temporal segment of the DFCG. 

C) Laplacian matrices for a few snapshots of DFCG 

D) The dynamic evolution of the eigenvalues of the laplacian matrices  for each frequency band. An 

example for δ frequency band. 

E) Euclidean Distance matrix of the laplacian eigenvalues between every pair of temporal segments 

F) Reordering the correlation matrix in E to enhance the visualization of the two clusters – Fcμstates 

illustrated in G 

G) The prototypical Fcμstates in a circular visualization 

H) The outcome of this procedure is a symbolic time series that can be seen as a Markovian Chain 

that expresses the evolution of  FCμstates across experimental time. The transition probabilities 

(TP) of this Markovian Chain based is illustrated in the 2 x 2 colored figure. One can understand 

that human brain demonstrates a preferred transition from FCμstates
2
 to FCμstates

1
 compared to 

the opposite direction (see 2D colormap). The chronnectomics were derived from this symbolic 

time series. 

(ED:Euclidean Distance, LEG:Laplacian EiGenvalues, ED:Euclideand Distance, 

AAL:Automated Anatomical Labeling 

LEG:Laplacian EiGenvalues) 

 

 [Figure 3 around here] 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/358192doi: bioRxiv preprint 

https://doi.org/10.1101/358192
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

24 

 

2.12 Characterization of time-varying connectivity 

Once the integrated DFCG is formed and it is modelled via the combination of neural-gas and 

graph diffusion distance scheme (N-GAS
GDD

), relevant features can be extracted from the data based on 

the state-transition states. There features are called chronnectomics (chronos – Greek word for time and 

connectomics for network metrics) which are described in the following section. 

 

2.13  Chronnectomics  

The following chronnectomics (dynamic network metrics) will be estimated on the STS
L-EIGEN

 which 

expresses the fluctuation of the FCμstates. 

 

2.13.1 State Transition Rate 

Based on the state transition vectors STS
L-EIGEN

 as demonstrated in Fig.3.A, we estimated the 

transition rate  (TR) for every pair of states as followed: 

 

)16(
1slides

stransitionofno
TR

−
=  

Where slides denote the number of temporal segments using the sliding window approach. 

  TR yields higher values for increased numbers of ‘jumps’ of the brain between the derived brain 

states over consecutive time windows. This approach leads to one feature per participant. Finally, we 

transformed the transition matrix (TM) into a probability matrix by dividing the TM by the sum of totally 

observed transitions over all possible pairwise states. TR was also estimated between every possible pair 

of states leading to an 8x8 TR matrix and extra 64 features per subject and condition. 
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2.13.2 Occupancy Times of the nFCμstates 

 Complementary to the aforementioned chronnectomics, we estimated also the occupancy time 

(OC) of each FCμstates as the percentage of its occurrence across the experimental time.  OC was 

estimated from STS
L-EIGEN

 as follows: 

)17(
slides

OccuranceofFrequency
)k(OC =  

where k denotes the FCμstates. 

 

2.14 Reliability of Static Network Metrics and Chronnectomics 

The reliability of static node-wise network metrics and the chronnectomics was assessed with the 

correlation coefficient between forty values derived from scan session 1 and forty values from scan 

session 2 for each frequency band, condition and connectivity estimator (see Fig.1-3). 

 

2.15 Optimizing the Width of the Time-Window and the Stepping Criterion 

We optimized both the width of the time-window and the step criteria for the sliding-window 

approach based on the maximization of the reliability of TR. The reliability was estimated based on 

the correlation coefficient of the TR across the whole group between scan session 1 and 2. The whole 

procedure was followed independently for each brain rhythm. The settings for the width of temporal 

window and the step were defined as a percentage of the cycles of the studying frequencies : {from 1 

up to 10 cycles with step equals to 0.5 cycle} for the width of the temporal window and {from 0.1 

cycles to 2 cycles with step equals to 0.1 cycle} for the step. 

To avoid overfitting of both TR and OT since, we used TR for both the optimization of the width of 

the temporal window and the stepping criterion, we used the optimized parameters in an external 

second repeat scan dataset for further evaluation. 
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3. Results 

3.1 Tuning Parameters for Dynamic Functional Connectivity Analysis 

 The optimization of the temporal window and the stepping criterion for each brain rhythm reveals 

a nice trend for dynamic functional connectivity analysis. The width of the temporal window increased 

from δ to γ2 while the stepping criterion decreased in both connectivity estimators. 

 

Table 1. Optimization of the width of temporal window and the stepping criterion per frequency band 

and for both connectivity estimators 

  δ θ α1 α2 β1 β2 γ1 γ2 

iPLV {time 

window 

,step} 

{2,0.5} {3,0.4} {4,0.4} {4,0.4} {6,0.3} {6.5,0.3} {8,0.2} {8.5,0.2} 

CorEnv {time 

window 

,step} 

{2,0.5} {3,0.4} {5,0.4} {5,0.4} {7,0.3} {7,0.3} {8,0.3} {9,0.2} 

 

3.2 Common Projection Space of Frequency-Dependent Static FCG 

 To demonstrate the (dis)similarities between sessions and subjects of the frequency-dependent 

static FCG, we constructed a distance matrix of dimensions 80 x 80 (subjects x sessions) using the graph 

diffusion distance metric. Then, we applied multidimensional scaling (MDS) to project the distance matrix 

into a common 2D feature space. Using a different coloured circle for each scanning session (blue for 

session 1 and red for session 2) and connecting both of them with a black line for each subject, we further 

enhanced the (dis)similarities of the static FCGs. Figure 4 – 5 illustrate these FCG-based projections for 

static FCG
Iplv

 and FCG
CorEnv 

correspondingly. In Fig.4G one can detect a few subjects with high reliable 

static FCG between the two scan sessions and also subject-specific network topologies that occupied an 

isolated subarea in the common projection FCG space. The stress index estimated via the MDS approach 
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was low and the relationship of the 80 FCGs in the original 80x80 matrix is preserved in the projecte

space. 

Figure 4. Muldimensional Scaling Projection of Frequency-Dependent Static Functional Connectivity

Graphs (FCG
iPLV

) in a Common Feature Space. 

(A-H : δ - γ2) Each subplot illustrates the (dis)similarities of static FCGs across scanning sessions

subjects. The 2D matrix demonstrates the (dis)similarities of the static FCGs across the subjects and

repeat scans. Scanning sessions were coded with blue and red circles correspondingly and a blac

connects the FCG of each subject between the two scanning sessions. With this representation on

read out the similarity of a static FCG between two scanning sessions and participants.  

Stress expresses the loss of information expressed in the projected Frequency-Dependent 

Functional Connectivity Graphs in 2D feature space from an original 80D space. The low stress v

mean that the relationship of the 80 FCGs in the original 80x80 matrix is preserved in the projecte

space. R1,2 refer to the 2D projected space of the 80 FCGs. 

(FCG :  Functional Connectivity Graph ; gDD:graph Diffusion Distance) 
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Figure 5. Muldimensional Scaling Projection of Frequency-Dependent Static Functional Connectivity

Graphs (FCG
CorEnv

) in a Common Feature Space. 

(A-H : δ - γ2) Each subplot illustrates the (dis)similarities of static FCGs across scanning sessions

subjects. The 2D matrix demonstrates the (dis)similarities of the static FCGs across the subjects and

repeat scans. Scanning sessions were coded with blue and red circles correspondingly and a blac

connects the FCG of each subject between the two scanning sessions. With this representation on

read out the similarity of a static FCG between two scanning sessions and participants.  

Stress expresses the loss of information expressed in the projected Frequency-Dependent 

Functional Connectivity Graphs in 2D feature space from an original 80D space. The low stress v

mean that the relationship of the 80 FCGs in the original 80x80 matrix is preserved in the projecte

space. R1,2 refer to the 2D projected space of the 80 FCGs. 

(FCG :  Functional Connectivity Graph ; gDD:graph Diffusion Distance) 
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[Figure 4 and 5 around here] 

 

3.3 Reliability of Static Network Metrics 

 Fig. 6 and 7 demonstrate the correlation coefficients for each node-wise network metric bet

the two scanning sessions for every frequency-dependent static FCG. From the visual comparison of

figures one can clearly reveal that the correlation values are higher for CorEnv compared to iPLV. App

Wilcoxon Rank-Sum Test for every frequency and network metric between the 90 correlation value

detected statistical significant differences in every case (p < 0.01 ,p’ < p/32, Bonferroni Corre

However, the averaged correlation values did not reach high reliability (e.g. > 0.9) even for the CorE

is obvious from the correlation plots that the reliability of node-wise static network metrics has

spatial variability in both connectivity estimators. 

29 
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Figure 6. Reliability of node-wise network metrics derived from static brain networks with iPLV 

connectivity estimator. 

Each subplot demonstrates the correlation coefficient (CC) of each network metric at every studying 

frequency band of each brain area between the two scanning sessions. 

(CC: the correlation coefficient ; AAL:Automated Anatomical Labeling) 

 

 

Figure 7. Reliability of node-wise network metrics derived from static brain networks with CorEnv 

connectivity estimator. 

Each subplot demonstrates the correlation coefficient (CC) of each network metric at every studying 

frequency band of each brain area between the two scanning sessions. 

(CC: the correlation coefficient ; AAL:Automated Anatomical Labeling) 

30 
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[Figure 6-7 around here] 

 

3.4 Frequency-Dependent FCGμstates and Reliability Chronnectomics for iPLV 

 Our analysis of DFCG based on iPLV revealed two FCGμstates
iPLV

 for each frequency band. The 

topology of these frequency-dependent FCGμstates
iPLV

 is illustrated in Fig.8. We integrated the nodes into 

five well-known brain networks: default-mode (DMN), fronto-parietal (FPN), occipital (O), sensorimotor 

(SM) and cingulo-opercular (CO). The mapping between the 90 ROIs of AAL and the five brain networks 

can be retrieved from section 3 in supp.material. One can clearly detect that the functional coupling 

between the default mode network and the cingulo-opercular dominates the coupling strength across the 

frequency bands and FCGμstates with less pronounced effect in both γ bands. Complementary, the 

coupling strength between and within the networks is diminished after α2 frequency. This behaviour can 

be interpreted as a reduction of  the connections up to the defined threshold following the increment of 

the frequency. The two FCGμstates
iPLV

 showed also a different distribution of strength globally and locally. 

 Both types of chronnectomics, transition rates (TR) (Fig.9) and occupancy times (OC) (Fig.10)  

demonstrated high reliability (Corr > 0.9, p < 10
-7

) across frequency bands. Similar results, we obtained 

also for the second external dataset (see section 2 in sup.material). 
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Fig.8. Frequency-dependent FCGμstates
iPLV  

Network topologies of the FCGμstates
iPLV

 for each of the studying frequency band. 

To enhance the visualization and contrast of FCGμstates across frequency bands, we adopted a netw

wise representation instead of plotting the brain network in a 90 nodes layout. The 90 ROIs of the

template were assigned to each of the five networks: default-mode (DMN), fronto-parietal (FPN), occ

(O), sensorimotor (SM) and cingulo-opercular (CO). The color of each node denotes total streng

within network connections while the color of each line the total strength of between net

connections. Both strength values were normalized across both frequencies and FCGμstates.  
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Fig.9 Reliability of Transition Rates (TR) based on FCμstates
iPLV

 across frequency bands. 

A.Mean and median values of TR across subjects and scan sessions for each frequency band 

B.Scatter-plot of subject-specific TR for both sessions with the corresponding fitted line for each 

frequency band. All the correlations were  Corr.> 0.9 (p < 10
-7

) 

Each blue circle corresponds to a participant. 
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Fig.10 Reliability of Occupancy Time (OT) based on on FCμstates
iPLV

 across frequency bands. 

a. Mean and median values of OT across subjects and scan sessions for FCμstates
1 

and for ea

frequency band 

b. Mean and median values of OT across subjects and scan sessions for FCμstates
2 

and for ea

frequency band 

c. Scatter-plot of subject-specific OT for both sessions with the corresponding fitted line for e

frequency band. All the correlations were  Corr.> 0.9 (p < 10
-7

). 

Each blue circle corresponds to a participant. 

 

 

 

[Figure 8-10 around here] 
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3.5 Frequency-Dependent FCGμstates and Reliability Chronnectomics for CorEnv 

 Our analysis of DFCG based on the correlation of the envelope connectivity estimators revealed 

two FCGμstates
CorEnv

 for each frequency band. The topology of these frequency-dependent 

FCGμstates
CorEnv

 is illustrated in Fig.11. default-mode (DMN), fronto-parietal (FPN), occipital (O), 

sensorimotor (SM) and cingulo-opercular (CO). The mapping between the 90 ROIs of AAL and the five 

brain networks can be retrieved from section 3 in supp.material. One can clearly detect that the 

functional coupling between the default mode network and the cingulo-opercular dominates the coupling 

strength across the frequency bands and FCGμstates. Complementary, the coupling strength between and 

within the networks is diminished after α2 frequency as it was observed for FCGμstates
iPLV

. 

Complementarily, the network topologies of FCGμstates
CorEnv

 between low and high frequencies basad on 

the strength coupling  are more common than the FCGμstates
iPLV

.This common substrate across the 

FCGμstates
CorEnv

 is consistent with the general notion that correlation of the envelope is more stacked to 

the structural connectome compared to the phase-based connectivity patterns which demonstrate higher 

degrees of freedom (Engel et al., 2013 ; compare Fig.8 with Fig.11). 

 Only transition rates (TR) showed high reliability for CorEnv (Cor.> 0.8, p < 10
-4

) in all the frequency 

bands with the only exception of β1 (Fig.12). Occupancy times (OT) showed low reliability across the 

frequency bands (p  > 0.4)(Fig.13). TR of FCGμstates
CorEnv

 increased with the increment of frequency 

reaching a plateau in γ1. In contrast, TR of FCGμstates
iPLV

 did not show such a frequency-dependent 

behavior. Similar results, we obtained also for the second external dataset (see section 2 in sup.material). 
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Fig.11. Frequency-dependent FCGμstates
CorEnv 

Network topologies of the FCGμstates
CorEnv

 for each of the studying frequency band. 

To enhance the visualization and contrast of FCGμstates across frequency bands, we adopted a netw

wise representation instead of plotting the brain network in a 90 nodes layout. The 90 ROIs of the

template were assigned to each of the five networks: default-mode (DMN), fronto-parietal (FPN), occ

(O), sensorimotor (SM) and cingulo-opercular (CO).  The color of each node denotes total streng

within network connections while the color of each line the total strength of between net

connections. 7Both strength values were normalized across both frequencies and FCGμstates.  
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Fig.12 Reliability of Transition Rates (TR) based on FCGμstates
CorEnv

 across frequency bands. 

a. Mean and median values of TR across subjects and scan sessions for each frequency band 

b. Scatter-plot of subject-specific TR for both sessions with the corresponding fitted line for each

frequency band. All the correlations were with the exception of β1 were Corr.> 0.8 (p < 10
-4

). 

c. Each blue circle corresponds to a participant. 
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Fig.13 Reliability of Occupancy Time (OT) based on on FCGμstates
CorEnv

 across frequency bands. 

a. Mean and median values of OT across subjects and scan sessions for FCμstates
1 

and for each 

frequency band 

b. Mean and median values of OT across subjects and scan sessions for FCμstates
2 

and for each 

frequency band 

c. Scatter-plot of subject-specific OT for both sessions with the corresponding fitted line for each

frequency band. All the correlations were weak and non-significant(p  > 0.4). 

d. Each blue circle corresponds to a participant. 

 

 

 

 

[Figure 11-13 around here] 
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4. Discussion 

In the present study, we assessed the reliability of both static and dynamic functional connectivity 

network descriptors  using resting-state MEG data from  40 subjects with repeat scan sessions. This is the 

first time that the reliability of chronnectomics, at least for the MEG modality, has been taken into 

account. Source time series were first beamformed independently for each frequency band (Brookes et 

al., 2011b; Hillebrand et al., 2005; Schoffelen and Gross, 2009), and then representative voxel time series 

based on the AAL atlas were extracted using a novel linear interpolation analysis. This procedure produces 

informative timeseries with a characteristic carrier frequency compared to the noisy time series derived 

by PCA or by selecting the voxel time series within a ROI that encapsulates the maximum power. Then, 

both static and dynamic frequency-dependent functional connectivity graphs were computed for each 

subject and scan session using the imaginary part of phase locking value (iPLV) and the correlation of the 

amplitude envelope (CorEnv). Both static and dynamic FCG (SFCG-DFCG) were filtered both statistically 

(surrogates) and topologically (OMST; Dimitriadis et al., 2017a,b).  

Here, we adopted a data-driven pipeline of how to estimate both static and dynamic FCG statistically 

and topologically filtered using an algorithm previously applied to EEG recordings. We explored the 

reliability of both static network metrics and chronnectomics (dynamic network metrics) by employing 

two representative connectivity estimators for the construction of static and dynamic brain networks. 

Using this pipeline, prototypical FCμstates were derived which were highly reproducible across subjects 

and scan sessions in both connectivity estimators and in all frequencies. The reliability of node-wise static 

network metrics based on four network metrics was low and spatially variable with both connectivity 

estimators while the CorEnv demonstrates higher ICC values compared to iPLV. The reliability of  

chronnectomics (TR,OT) for iPLV was high while for CorEnv the reliability of only the TR reaches high 

acceptable levels. Our results were reproduced also in a second external dataset (see supp. material). Our 

study strongly encouraging the use of DFCG with neuromagnetic recordings that takes the advantage of 

the nature of MEG modality, its high temporal resolution. 

To our knowledge, this is the very first study that explored the reliability of both static and dynamic 

FCG and the related network metrics and chronnectomics, respectively in neuromagnetic source space 

at. In static FCG, node-wise network metrics demonstrated poor reliability for iPLV and poor to 
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medium for CorEnv. The node-wise reliability was highly spatial variable and static FCG have also 

demonstrated low repeatability in both connectivity estimators and especially in CorEnv. In contrast, 

prototypical  FCμstates were high reproducible across subjects and scan sessions in both connectivity 

estimators and in all frequencies supporting by the low reconstruction error (< 2%) of our brain 

network learning algorithm. Complementary, the reliability of  chronnectomics (TR,OT) for iPLV was 

high while for CorEnv the reliability of only the TR reaches high acceptable levels. These results 

strongly encourages the neuroscientists to adopt the notion of DFCG with neuromagnetic recordings 

that takes the advantage of its high temporal resolution. 

Two main studies explored the reliability of static FCG on the source level using MEG-beamformed 

resting-state connectivity analysis. Garces et al., (2016) studied the reliability of resting-state networks 

using four connectivity estimators: phase-locking value (PLV), phase lag index (PLI), direct envelope 

correlation (d-ecor), and envelope correlation with leakage correction (lc-ecor).  They adopted intra-

class correlation coefficient (ICC) and Kendall’s W for assessing within and between-subjects 

agreement respectively. Higher  test-retest reliability was found for PLV from θ to γ, and for lc-ecor 

and d-ecor in β. They commented that high ICC in PLV and d-ecor could be artifactual due to volume 

conduction effects. Colclough et al., (2016) investigated the reliability of static FCG at resting-state 

using beamformed source static connectivity analysis. They reported high reliability mostly for the 

partial correlation analysis and the correlation of the envelope among 12 connectivity estimators. Two 

more studies, Deuker et al., (2009) estimated the reliability of resting-state network metrics derived 

from MEG in sensor space using mutual information. They obtained high ICC for clustering, global 

efficiency and strength at a network level. Jin et al.,(2011) found medium ICC for nodal global 

efficiency, nodal degree and betweeness centrality in α and β bands. 

Our results revealed that nodal network metrics derived from static FCG are less reproducible then 

their dynamic counterparts. In contrast, chronnectomics are highly reproducible with both adopted 

connectivity estimators. These results complemented with the results presented in (Colclough et al., 

2016) where they adopted multiple connectivity estimators for the construction of static brain 

networks on the source level using MEG-beamformed resting-state activity. Colclough et al., (2016) 

showed that the static full-weighted FCG are high repeatable within the group-level mostly for the 

correlation of the envelope adopting a split-half strategy on a dataset with single scans. Here, we 
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accessed the reliability of any network metric using a two scan session design per subject. We should 

state here that edge-weights are significant for the construction of network topology and the 

reliability of connectomic biomarkers (Dimitriadis et al., 2018). 

One of the key findings of our analysis are the frequency-dependent FCμstates for each 

connectivity estimator. Figures 8 and 11 illustrate the strength of the coupling within and between 

brain networks for the prototypical FCμstates at every frequency band. It is obvious that the highest 

strength within a network is observed within the DMN in both connectivity estimators. The strength 

between the brain networks is mainly distributed between DMN and the rest of the networks 

demonstrating the highest value till α2 and dropped from β1 to γ2 (Figs.8,11). DMN reignited a high 

interest the last years for the description of intrinsic ongoing activity in studies of the human brain in 

health and disease  (Raichle et al.,2015). Disruptions of functional connections within the DMN and 

between DMN and the rest of brain networks has been linked to various neurological and 

neuropsychiatric disorders (Mohan et al., 2016). Studies in healthy aging and Alzheimer’s disease have 

revealed the significant role of DMN (Mevel et al., 2011). 

Flexible hub theory based on clustering analysis of functional networks gave an explanation of how 

temporal functional modes exist where one neural region may be switched from a certain network at 

one time to a different network at another time (Smith et al., 2012). It remains still unclear how the 

different brain networks are connected together during spontaneous and task-related activity. 

Dosenbach et al. (2008) proposed that the FPN may serve to initiate and adjust cognitive control, 

whereas  another control-type network, the CO network (CON), provides stable set-maintenance. Cole 

and colleagues (Cole et al., 2013) helped to untangle the flexible role of the FPN, many questions 

remain regarding the interaction between the FPN and the CON and also with other networks such as 

the DMN,SM and O. In the present study, we characterized the dynamic relationships of the brain 

networks across time at resting-state in various frequency bands and using representative connectivity 

estimators. We found that these functional patterns are high reproducible which will help multi 

groups worldwide to explore these interactions and build reproducible connectomic biomarkers in 

various diseases and disorders. Understanding the neural basis of intrinsic activity, cognition and 

structure–function relationships, will further enhance the prognostic/diagnostic abilities in clinical 

populations. 
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The interactions of large-scale brain networks at resting-state and during tasks is characterized by 

the studying frequency. Frequency-specific functional interactions between large-scale brain networks 

may be individual fingerprints of the idle activity and cognition (Siegel et al., 2012). It will be 

interesting in the future to explore how the FCμstates from a dynamic integrated functional 

connectivity graph (Dimitriadis et al., 2017c) that incorporates different intrinsic coupling modes both 

intra and cross-frequency coupling  can be used for brain fingerprinting (Engel et al., 2013).  

It is critically important to take advantage of new imaging modalities to untangle the mechanisms 

that produce circuit dysfunctions in many brain diseases and disorders. The development of 

biomarkers is very important and for that reason the proposed experimental paradigm and analytics 

of the meta-data derived from the analysis of human brain activity must be highly reliable and 

reproducible. Magnetoencephalography (MEG) allows us to measure neuronal events noninvasively 

with millisecond resolution and recent advanced methods opens new avenues of exploring and 

answering fundamental key research questions tailored to each brain disease/disorder. MEG can 

become a pioneering clinical research tool for mental disorders (Bowyer et al., 2015 ; Grent-T-Jong et 

al., 2016) (Uhlhaas et al., 2017), Alzheimer’s disease (Lopez et al., 2014,2017 ; Koelewijn et al., 2017), 

dyslexia (Dimitridis et al., 2013b,2016b), traumatic brain injury (Dimitriadis et al., 2015c, Antonakakis 

et al., 2016, Antonakakis et al., 2017), multiple sclerosis (Tewarie et al., 2015), and other brain 

diseases.  To establish  MEG-based biomarkers that can be used for daily clinical practise and clinical 

evaluation, their reproducibility should be further explored. Complementary, the transition rate and 

also the occupancy times could be personalized biomarkers of a subject’s resting-state condition 

where more task-related FCμstates and the related markers derived from them could build a subject 

specific database for longitudinal studies. Transition rates could be also correlated with IQ scores and 

also with behavioural performance during execution of cognitive tasks. 

In the present study, we proposed a data-driven analytic pathway to assess the reliability of 

connectomics using MEG-beamformed connectivity analysis. Our results clearly support the notion of 

dynamic functional connectivity on the source level, the derived prototypical FCμstates and the 

related chronnectomics. Last years, many studies explored the dynamic functional connectivity graphs 

in many modalities (EEG/MEG/fMRI) and in both resting-state and during tasks ( Dimitriadis et al., 

2010a, 2012a,c, 2013a,b, 2015a,b,c,d, 2016a,b; Bassett et al., 2011; Allen et al., 2012; Handwerker et 

al., 2012; Ioannides et al., 2012; Hutchison et al., 2013; Liu and Duyn, 2013; Braun et al., 
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2015b; Mylonas et al., 2015; Toppi et al., 2015; Yang and Lin, 2015; Calhoun and Adali, 2016, for 

reviews see Calhoun et al., 2014). This is the very first study according to authors’ knowledge that the 

reliability of chronnectomics was explored. The outcome of this study opens new avenues in the 

exploration of human brain dynamics with MEG-beamformed source activity and under the notion of 

dynamic functional connectivity.  

We addressed the key question of the readiness of neuromagnetic-based based functional 

connectomics to lead to clinically meaningful biomarker identification through the reliability approach 

that offers a repeat scan study in healthy controls. It is more than significant to customize stable 

approaches for analysing neuromagnetic recordings and present reproducible brain connectomics 

across scans in healthy control populations without sacrificing the individual characteristics that can 

be used for personalized intervention neuroscience (Gratton et al., 2018). It is highly recommend to 

access the reliability of any metric derived from any neuroimaging modality in a repeat scan protocol 

in healthy control population before applying it to a larger disease group where the cost of scanning is 

too high (diffusion MRI : Dimitriadis et al., 2017d). Additionally, we will  expand this analysis in future 

efforts to identify disease status alone including clinical variables related to genetic risk (Lancaster et 

al., 2018), expected treatment response and prognosis. 

 

5. Conclusions 

In conclusion, we provided the first source-space test-retest reliability of dynamic functional 

connectivity of neuromagnetic recordings at resting-state. We computed both static and dynamic 

functional connectivity based on 90 ROIs according to AAL templated and using two connectivity 

estimators, the iPLV and the CorEnv. Nodal network metrics were unreliable in both connectivity 

estimators but with higher reliability demonstrated for CorEnv. Moreover, their reliability demonstrates 

highly spatial variability. Static FCG were also unreliable and especially for CorEnv. In contrast, 

prototypical FCμstates were reliable in both connectivity estimators and across frequency bands. The 

derived chronnectomics (TR,OT) were highly reproducible for iPLV while only TR was reliable for CorEnv 

within acceptable levels. Our results strongly encourages future studies with main scope to explore 

resting-state networks in both healthy control and disease populations to apply a data-driven dynamic 

functional connectivity analysis using MEG-beamformed source reconstructed brain activity. 
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