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Abstract	

To	model	the	diffusion	MRI	signal	in	brain	white	matter,	general	assumptions	have	been	made	
about	the	microstructural	properties	of	axonal	fiber	bundles,	such	as	the	axonal	shape	and	the	
fiber	orientation	dispersion.	In	particular,	axons	are	modeled	by	perfectly	circular	cylinders	with	
no	 diameter	 variation	 within	 each	 axon,	 and	 their	 directions	 obey	 a	 specific	 orientation	
distribution.	However,	these	assumptions	have	not	been	validated	by	histology	in	3-dimensional	
high-resolution	neural	tissue.	Here,	we	reconstructed	sequential	scanning	electron	microscopy	
images	in	mouse	brain	corpus	callosum,	and	introduced	a	semi-automatic	random-walker	(RaW)	
based	 algorithm	 to	 rapidly	 segment	 individual	 intra-axonal	 spaces	 and	 myelin	 sheaths	 of	
myelinated	 axons.	 Confirmed	 with	 a	 conventional	 machine-learning-based	 interactive	
segmentation	method,	our	semi-automatic	algorithm	is	reliable	and	less	time-consuming.	Based	
on	 the	 segmentation,	we	 	 calculated	 histological	 estimates	 of	 size-related	 (e.g.,	 inner	 axonal	
diameter,	g-ratio)	and	orientation-related	(e.g.,	Fiber	orientation	distribution	and	its	rotational	
invariants,	dispersion	angle)	quantities,	and	simulated	how	these	quantities	would	be	observed	
in	 actual	 diffusion	MRI	 experiments	 by	 considering	 diffusion	 time-dependence.	 The	 reported	
dispersion	angle	 is	consistent	with	previous	2-dimensional	histology	studies	and	diffusion	MRI	
measurements,	though	the	reported	diameter	is	larger	than	those	in	other	mouse	brain	studies.	
Our	results	show	that	the	orientation-related	metrics	have	negligible	diffusion	time-dependence;	
however,	inner	axonal	diameters	demonstrate	a	non-trivial	time-dependence	at	diffusion	times	
typical	for	clinical	and	preclinical	use.	In	other	words,	the	fiber	dispersion	estimated	by	diffusion	
MRI	modeling	is	relatively	 independent,	while	the	“apparent”	axonal	size	estimated	by	axonal	
diameter	mapping	potentially	depends	on	experimental	MRI	settings.	
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Introduction	

Diffusion	MRI	(dMRI)	is	a	noninvasive	imaging	modality	that,	by	measuring	the	random	motion	
of	water	molecules	at	clinically	accessible	diffusion	times	(𝑡	~	50	ms),	is	sensitive	to	a	length	scale	
of	about	ten	micrometer,	comparable	to	cell	sizes.	Several	 tissue	models	 for	dMRI	have	been	
proposed	 to	 specifically	 probe	 the	 neuronal	 microstructure,	 in	 order	 to	 estimate	 the	 axon	
orientation	dispersion	(Jespersen	et	al.	2017;	Novikov	et	al.	2018b;	Reisert	et	al.	2017;	Ronen	et	
al.	 2014;	 Schilling	 et	 al.	 2018;	 Tariq	 et	 al.	 2016;	 Zhang	 et	 al.	 2012)	 and	 the	 axonal	 diameter	
distribution	(Alexander	et	al.	2010;	Assaf	et	al.	2008;	Barazany	et	al.	2009;	Benjamini	et	al.	2016;	
Duval	et	al.	2015;	Komlosh	et	al.	2013).	To	enable	dMRI	modeling,	assumptions	have	been	made,	
which	so	far	have	not	been	fully	validated	by	comparing	against	histology.	In	particular,	axons	are	
assumed	to	be	circular	cylinders	with	no	diameter	variations	along	each	axon	(Alexander	et	al.	
2010;	Assaf	 and	Basser	 2005;	Assaf	 et	 al.	 2008).	 This	widely	 adopted	 assumption	 contradicts	
histological	observations	of	neurite	beadings	(varicosities)	(Baron	et	al.	2015;	Budde	and	Frank	
2010;	Li	and	Murphy	2008;	Shepherd	et	al.	2002;	Tang-Schomer	et	al.	2012),	and	needs	to	be	
further	 evaluated	 when	 modeling	 the	 orientation	 dispersion	 and	 the	 axonal	 diameter	
distribution,	particularly	with	respect	to	their	dependency	on	experimental	settings	such	as	the	
diffusion	time	𝑡	.	

	 To	 validate	 dMRI	models	 in	 the	 brain	 white	matter	 (WM)	 against	 histology,	 previous	
studies	reported	multiple	tissue	parameters,	 including	the	fiber	orientation	distribution	(FOD)	
(Grussu	et	al.	2016;	Mollink	et	al.	2017;	Ronen	et	al.	2014;	Schilling	et	al.	2016;	Schilling	et	al.	
2018),	axon	dispersion	angle	(Ronen	et	al.	2014),	 inner	axonal	diameter	(Abdollahzadeh	et	al.	
2017;	Aboitiz	et	al.	1992;	Caminiti	et	al.	2009;	Kleinnijenhuis	et	al.	2017;	 Liewald	et	al.	2014;	
Mason	et	al.	2001;	West	et	al.	2015),	and	g-ratio	(Abdollahzadeh	et	al.	2017;	Kleinnijenhuis	et	al.	
2017;	Mason	et	al.	2001;	Stikov	et	al.	2015;	West	et	al.	2015;	West	et	al.	2016;	Yang	et	al.	2016).	
In	 histology,	 size-related	 quantities,	 e.g.,	 diameter	 and	 g-ratio,	 were	 estimated	 either	 by	 2d	
(Aboitiz	et	al.	1992;	Caminiti	et	al.	2009;	Liewald	et	al.	2014;	Mason	et	al.	2001;	West	et	al.	2015)	
or	3d	high-resolution	electron	microscopy	(EM)	images	(Abdollahzadeh	et	al.	2017;	Kleinnijenhuis	
et	al.	2017).	 In	contrast,	 the	orientation-related	metrics,	e.g.,	FOD	and	dispersion	angle,	were	
evaluated	either	by	2d	low-resolution	polarized	light	images	(4	µm/pixel,	in-plane)	(Mollink	et	al.	
2017)	and	light	microscopy	images	(1-1.6	µm/pixel,	 in-plane)	(Grussu	et	al.	2016;	Ronen	et	al.	
2014),	or	by	3d	moderate-resolution	confocal	microscopy	images	(0.42	µm/slice,	through	plane)	
(Schilling	 et	 al.	 2016;	 Schilling	 et	 al.	 2018).	 Although	 the	 tissue	 anisotropy	 index	 has	 been	
evaluated	on	3d	EM	 images	 (Salo	et	al.	2018),	 retrieving	other	orientation	metrics,	e.g.,	FOD,	
rotational	 invariant	and	dispersion	angle,	 from	3d	high-resolution	EM	 images	 (≤	0.1	µm/slice,	
through	plane)	has	not	yet	been	attempted.		

	 Furthermore,	definitions	of	tissue	parameters	differ	between	studies,	both	in	histology	
and	MRI,	and	need	to	be	clarified	before	use.	 In	particular,	the	orientation	dispersion	of	axon	
bundles	could	be	summarized	by	(1)	the	standard	deviation	(SD)	of	dispersion	angles	projected	
on	a	2d	plane	(Ronen	et	al.	2014),	by	(2)	rotational	invariants	and	the	root-mean-square	(rms)	of	
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the	dispersion	angle’s	cosine	for	spherical	harmonics	(SH)-based	methods	(Jespersen	et	al.	2017;	
Novikov	et	al.	2018b;	Reisert	et	al.	2017),	or	by	(3)	the	normalized	orientation	dispersion	index	
(ODI)	of	specific	orientation	distributions	(e.g.,	Watson	or	Bingham	distributions)	(Schilling	et	al.	
2018;	Tariq	et	al.	2016;	Zhang	et	al.	2012).	In	this	study,	we	focus	on	the	first	two	definitions	to	
avoid	introducing	further	assumptions	on	the	axon	dispersion.		

Similarly,	 axonal	 diameters	 have	 been	 estimated	 using	 various	 methods.	 To	 avoid	
overestimation	of	the	 inner	axonal	diameter	caused	by	obliquely	sliced	axons,	most	of	the	2d	
histological	studies	measured	the	inscribed	circle	diameter	as	the	diameter	estimate	(Aboitiz	et	
al.	 1992;	 Caminiti	 et	 al.	 2009;	 Liewald	 et	 al.	 2014).	 Other	 histological	 studies	 adopted	 an	
equivalent	circle	diameter	calculated	by	the	cross-sectional	area	(West	et	al.	2015)	or	the	short	
axis	length	of	a	fitted	ellipse	(Abdollahzadeh	et	al.	2017).	In	this	study,	we	focus	on	the	equivalent	
circle	diameter	since	(1)	the	3d	axon	structure	is	fully	reconstructed	and	free	from	problems	of	
oblique	cross-sections,	and	(2)	contours	of	the	intra-axonal	space	and	the	myelin	sheath	might	
be	different,	leading	to	unreliable	estimates	of	the	g-ratio	(ratio	of	inner	to	outer	diameter)	when	
using	other	definitions.	

Aside	from	ambiguous	definitions	of	microstructural	features,	comparison	between	dMRI	
and	 histology	 depends	 on	 the	 experimental	 settings	 of	 the	 dMRI	 experiment.	 Indeed,	 the	
diffusion	 process	 can	 be	 approximately	 understood	 as	 a	 coarse-graining	 process,	 which	 is	
equivalent	to	smoothing	the	tissue	microstructure	(Novikov	et	al.	2014)	using	a	kernel	of	a	width	
commensurate	with	the	diffusion	length	𝐿 ∝ 𝑡.	In	other	words,	the	diffusion	times	applied	in	
dMRI	measurements	potentially	affect	the	metric	estimations	between	studies	using	different	
acquisition	parameters,	and	have	to	be	carefully	accounted	for.	

	 So	far,	many	EM	segmentation	software	tools	have	been	released	for	segmenting	gray	
matter	 images	 that	 use	 semi-automatic	 analysis	 with	 an	 interactive	 proofreading	 interface	
(Benjamini	et	al.	2016;	Dorkenwald	et	al.	2017;	Jeong	et	al.	2009;	Kaynig	et	al.	2015;	Sommer	et	
al.	 2011).	 Such	methods	 require	 abundant	 training	 data,	 for	 which	 generation	 is	 very	 labor-
intensive	and	time-consuming.	In	WM,	however,	appropriate	EM	segmentation	methods	are	still	
limited	 (Abdollahzadeh	et	 al.	 2017;	Kleinnijenhuis	et	 al.	 2017;	 Zaimi	et	 al.	 2018).	 To	 segment	
myelinated	 axons	 within	 acceptable	 processing	 time,	 we	 propose	 here	 a	 semi-automatic	
segmentation	algorithm	depending	on	diffusion	trajectories	obtained	by	random-hopping	on	a	
cubic	 lattice	 bounded	by	 a	 binary	myelin	mask,	 as	 a	 simplified	 version	of	 the	 seeded-region-
growing	 method	 (Abdollahzadeh	 et	 al.	 2017;	 Adams	 and	 Bischof	 1994).	 Our	 segmentation	
method	was	 further	 validated	by	 comparing	against	 the	 interactive	Carving	 function	 in	 ilastik	
(Sommer	et	al.	2011).	

	 Here,	by	analyzing	segmented	myelinated	axons,	we	calculated	both	orientation-related	
and	size-related	axonal	features	based	on	definitions	from	either	histology	or	MRI	experiment,	
where	the	effect	of	varying	diffusion	time	was	simulated	by	applying	a	corresponding	smoothing	
kernel,	 and	 demonstrated	 a	 non-trivial	 discrepancy	 between	 estimated	 microstructural	
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characteristics	from	both	definitions.	In	particular,	we	demonstrated	by	3d	high-resolution	EM	
segmentation,	 for	 the	 first	 time,	 the	 influence	 of	 the	 diffusion	 time-dependence	 on	 the	
orientation	dispersion	and	the	inner	axon	diameter.	
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Materials	and	Methods	

All	 procedures	 performed	 in	 studies	 involving	 animals	 were	 in	 accordance	 with	 the	 ethical	
standards	of	the	institution	or	practice	at	which	the	studies	were	conducted.	This	article	does	not	
contain	any	studies	with	human	participants	performed	by	any	of	the	authors.	

Animals	and	image	acquisition	

A	female	8-week-old	C57BL/6	mouse	was	perfused	trans-cardiacally	using	a	fixative	solution	of	
4%	PFA,	2.5%	glutaraldehyde,	and	0.1M	sucrose	in	0.1M	phosphate	buffer	(PB,	pH	7.4).	The	genu	
of	corpus	callosum	was	later	excised	from	the	dissected	brain,	and	the	tissue	was	fixed	in	the	
same	fixative	solution,	followed	by	a	PB	containing	2%	OsO4	and	1.5%	potassium	ferrocyanide	
for	 1	 hour.	 The	 tissue	 was	 then	 stained	 with	 1%	 thiocarbohydrazide	 (Electron	 Microscopy	
Scientices,	EMS,	PA)	for	20min,	2%	osmium	tetroxide	for	30min,	and	1%	aqueous	uranyl	acetate	
at	 4°C	 overnight.	 An	 En	 Bloc	 lead	 staining	 was	 performed	 at	 60°C for 30 min	 to enhance 
membrane contrast. The	brain	sample	was	dehydrated	in	alcohol	and	acetone,	and	embedded	in	
Durcupan	 ACM	 resin	 (EMS,	 PA	 (Wilke	 et	 al.	 2013)).	 The	 tissue	 sample	 was	 analyzed	 with	 a	
scanning	electron	microscope	(SEM)	(Zeiss	Gemini	300	SEM	with	3View),	and	401	consecutive	
images	of	6000	×	8000	pixels	were	acquired,	representing	a	volume	of	36	×	48	×	40.1	μm3	with	a	
resolution	of	6	×	6	×	100	nm3.	

Image	processing	and	axon	segmentation	by	Random-Walker	algorithm	(RaW)	

We	down-sampled	the	image	to	a	resolution	of	24	×	24	×	100	nm3	using	Lanczos	interpolation	to	
lower	 the	 computational	 cost	without	 compromising	 the	 segmentation	accuracy.	 Further,	we	
corrected	the	geometric	distortion	 in	slices	disagreeing	with	the	 interpolation	estimated	from	
adjacent	slices,	by	using	a	non-linear	deformation	calculated	with	optical	flow	estimation	(Sun	et	
al.	2010;	Sun	et	al.	2014),	and	selected	a	subset	of	200	slices	(36	×	48	×	20	μm3	in	volume)	to	rule	
out	slices	with	intractable	distortions	(Fig.	1a).	

To	 semi-automatically	 segment	 the	 intra-axonal	 space	 (IAS)	 of	 myelinated	 axons,	 we	
employed	a	random-hopping	diffusion	process,	dubbed	Random-Walker	algorithm	(RaW),	as	a	
simplified	seeded-region-growing	algorithm	(Adams	and	Bischof	1994)	applied	on	a	binary	mask:	
We	manually	seeded	an	initial	position	per	axon	within	the	central	slice	(451	seeds	in	Fig.	1c),	and	
filled	the	IAS	by	diffusion	trajectories,	obtained	by	random-hopping	on	a	cubic	lattice,	of	4000	
particles	per	axon	with	640,000	steps.	The	diffusion	trajectory	is	confined	by	a	myelin	mask	(Fig.	
1b)	obtained	by	fitting	and	thresholding	the	EM	image	 intensity	histogram	with	a	bi-Gaussian	
model.	Segmented	axons	with	an	imperfect	myelin	mask	were	deleted	by	proofreading,	resulting	
in	an	IAS	mask	of	316	segmented	axons	(~	51,000	axon	segments).	The	IAS	segmentation	was	
then	completed	by	automatically	seeding	within	the	previously	generated	diffusion	trajectories	
confined	by	the	non-leaky	myelin	mask	(Fig.	1d).	The	seeding	density	is	a	seed	per	ten	slices	for	
each	 axon,	 filled	with	 10,000	 particles	 per	 seed	with	 40,000	 steps.	 The	 IAS	mask	was	 down-
sampled	 into	 (100	 nm)3-resolution	 to	 further	 analyze	 axon	 geometries,	 e.g.,	 fiber	 dispersion,	
axonal	diameter,	myelin	thickness,	and	g-ratio.	
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All	the	processing	was	implemented	in	Matlab	and	accelerated	by	parallel	computation	
with	12	CPU	cores.	Total	processing	time,	including	the	manual	seeding,	numerical	computations	
and	the	proofreading,	was	1-2	days.	

Conventional	axon	segmentation	(ilastik,	Carving)	

To	compare	RaW	with	a	conventional	segmentation	method,	the	IAS	of	100	selected	axons	was	
manually	carved	by	K.Y.	and	J.P.,	using	the	ilastik	software	package	(Sommer	et	al.	2011).	Seeded	
watershed	segmentation	was	performed	by	ilastik	with	following	settings:	

1. Each	2d	image	(resolution	=	24	×	24	nm2)	was	smoothed	by	a	kernel	with	a	size	of	1.6	pixel	
(38.4	nm),	 and	was	 filtered	 to	enhance	edges,	 e.g.,	 cell	membrane,	mitochondria	 and	
myelin	sheath.	

2. Markers	 inside	 the	 IAS	 (object	 seeds)	 and	 outside	 the	 IAS	 (background	 seeds)	 were	
manually	assigned	in	multiple	slices	to	initiate	the	Carving	process	in	ilastik	and	connect	
the	IAS	across	the	image	layers.	Markers	were	further	added	if	initial	segmentation	was	
deemed	 insufficient	 after	 proofreading.	 Manual	 correction	 was	 necessary	 for	 axonal	
branching,	 mitochondria	 attached	 to	 the	 myelin	 sheath,	 and	 the	 transition	 from	
myelinated	to	unmyelinated	axonal	segments.	

The	total	processing	time	was	about	2	weeks.	

The	comparison	of	segmentations	from	ilastik	(Fig.	2a)	and	RaW	(Fig.	2b)	is	based	on	the	
Jaccard	index	and	the	Sørensen-Dice	index	computed	for	individual	IAS	segmentations,	and	the	
foreground-restricted	Rand	F-score	(Vrand)	and	the	information	theoretic	F-score	(Vinfo)	(Arganda-
Carreras	et	al.	2015)	computed	for	IAS	segmentations	of	all	axons.	The	Jaccard	index	for	each	
axon	(Fig.	2d)	is	the	pixel	number	of	the	intersection	divided	by	the	pixel	number	of	the	union	of	
IAS	segmentations	from	both	methods.	The	Sørensen-Dice	index	for	each	axon	(Fig.	2e)	 is	the	
pixel	number	of	the	intersection	divided	by	the	average	pixel	number	of	IAS	segmentations	from	
both	methods.	The	foreground-restricted	rand	F-score	and	the	information	theoretic	F-score	are	
closely	related	to	the	Rand	index	and	the	variation	of	information,	respectively	(Arganda-Carreras	
et	al.	2015).	

Myelin	sheath	

Each	axon’s	individual	myelin	sheath	(Fig.	1e)	was	obtained	by	overlapping	the	myelin	mask	and	
the	expanded	IAS	segmentation	(Kleinnijenhuis	et	al.	2017),	which	is	dilated	by	a	myelin	thickness	
upper	bound	=	0.4	µm,	a	biologically	plausible	value	for	myelinated	axons	in	the	brain	WM	(see	
Discussions,	limitations	for	further	explanations).	Cases	of	adjacent	axons	with	touching	myelin	
sheath	are	 segmented	by	applying	a	non-weighted	distance	 transform	and	watershed	on	 the	
binary	mask	including	all	of	the	segmented	IAS.	

Fiber	Orientation	Distribution	(FOD)	
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For	the	segmented	IAS	of	each	axon,	the	corresponding	axon	skeleton	connecting	all	centers	of	
mass	 in	 each	 slice	 was	 computed.	 To	 mimic	 the	 microstructure	 coarse-grained	 by	 diffusion	
(Novikov	et	al.	2016;	Novikov	et	al.	2018a),	the	piecewise	linear	skeleton	of	each	segmented	axon	
was	then	smoothed	by	a	Gaussian	kernel	with	a	variance	𝜎% = 𝐿%/4	(Novikov	et	al.	2014),	where	
𝐿	is	the	diffusion	length	 2𝐷𝑡,	where	𝐷	=	2	μm2/ms	is	a	typical	value	for	the	intrinsic	intra-axonal	
diffusion	coefficient	 (Novikov	et	al.	2018b;	Veraart	et	al.	2016),	and	𝑡	=	 [1,	10,	100]	ms	 is	 the	
diffusion	time	range	as	applicable	for	dMRI.		

Dispersion	angle	

The	dispersion	angle	of	axon	segments	was	calculated	by	using	definitions,	corresponding	to	2d	
histological	observations	and	dMRI	measurements.	

In	histology,	each	microscopy	image	is	a	2d	cross-section	of	3d	structures.	To	compare	
our	 results	with	 previous	 2d	 histological	 studies,	we	 projected	 all	 the	 axon	 segments	 onto	 a	
projection	plane	parallel	to	the	bundle’s	mean	direction,	and	calculated	the	projected	dispersion	
angle	𝜃%,(𝜙),	defined	by	the	standard	deviation	of	angles	between	the	projected	segments	and	
the	mean	bundle	direction,	along	which	we	rotated	the	projection	plane	with	an	azimuthal	angle	
𝜙.		

On	 the	 other	 hand,	 the	 SH-based	 dMRI	models	 (Jespersen	 et	 al.	 2017;	Novikov	 et	 al.	
2018b)	 are	 sensitive	 to	 an	 effective	 dispersion	 angle	 𝜃011 ≡ cos67 ⟨cos% 𝜃9⟩ ,	 where	 the	
individual	axon	segment’s	dispersion	angle	𝜃9 	is	the	angle	between	the	axon	segment’s	direction	
and	 the	 bundle’s	 mean	 direction.	 The	𝜃011(𝜙) 	is	 calculated	 by	 only	 including	 axon	 segments	
oriented	between	𝜙 ± 𝛥𝜙/2	,	where	𝛥𝜙	=	12°.		

Furthermore,	we	express	the	FOD	𝒫(𝒏)	as	a	linear	combination	of	SH	basis	𝑌AB(𝒏)	via	

𝒫 𝒏 ≃ 1 + 𝑝AB𝑌AB 𝒏
A

BG6AAG%,I,…

	,	

where	𝑝AB	is	the	SH	coefficients.	The	rotational	invariants	𝑝A 	are	determined	by	the	2-norm	of	SH	
coefficients	via	(Novikov	et	al.	2018b;	Reisert	et	al.	2017)	

𝑝A% =
1
𝒩A

% 𝑝AB %
A

BG6A

,𝒩A = 4𝜋(2𝑙 + 1)	.	

The	 normalization	 factor	𝒩A 	is	 chosen	 such	 that	𝑝O ≡ 1	and	𝑝A ∈ 0, 1 	for	𝑙 > 0.	 The	 FOD	 of	
axon	segments	 is	contributed	only	by	even	orders	𝑙	(Novikov	et	al.	2018b;	Reisert	et	al.	2017)	
since	 the	 FOD	 has	 an	 antipodal	 symmetry.	 The	 dispersion	 angle	𝜃ST 	estimated	 by	 rotational	
invariants	is	given	by	(Novikov	et	al.	2018b)	

𝜃ST ≡ cos67 cos% 𝜃9 ST	,	
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and	

cos% 𝜃9 ST ≃
2𝑝% + 1

3 	.	

The	value	of	𝜃ST 	is	theoretically	close	to	the	value	of	𝜃011	since	both	of	their	definitions	are	related	
with	the	rms	of	cos 𝜃9.	

To	simplify	the	relationship	between	rotational	invariants	and	the	order	𝑙,	Reisert	et	al.	
proposed	a	simple	Poisson	kernel	for	the	axial	symmetric	FOD	with	the	form	𝑝A = 𝜆A,	where	𝜆 ∈
0, 1 	is	a	dispersion	parameter	(Reisert	et	al.	2017).	We	tested	the	applicability	of	this	Poisson	
kernel,	which	effectively	corresponds	to	the	multipole	expansion	of	a	Coulomb	potential.	

Inner	axonal	diameter	

To	evaluate	the	 influence	of	the	diffusion	time	on	the	axonal	diameter	distribution	measured	
with	dMRI,	we	aligned	each	axon’s	main	direction	(denoted	as	𝑧XYZ[)	parallel	to	the	z-axis,	cut	off	
1	μm	at	both	ends,	in	order	to	create	the	axon	skeleton	(a	line	connecting	the	center	of	mass	of	
each	slice),	and	calculated	the	cross-sectional	area	𝛺	for	each	slice	perpendicular	to	the	skeleton.	
Assuming	 axon	 as	 a	 circular	 cylinder,	 its	 inner	 diameter	 is	 defined	 as	 the	 diameter	 of	 an	
equivalent	circle	with	the	same	area:	2𝑟 ≡ 2 𝛺/𝜋.	

g-ratio	

The	g-ratio,	manifesting	axon	myelination,	was	estimated	as	follows:	we	aligned	the	IAS	and	the	
myelin	sheath	parallel	to	the	z-axis	for	each	axon,	cut	off	1	µm	at	both	ends,	and	estimated	the	
outer	 diameter	2𝑟^ ≡ 2 𝛺^/𝜋,	where	 the	 cross-sectional	 area	𝛺′,	 perpendicular	 to	 the	 axon	
skeleton,	contains	both	the	IAS	and	the	myelin	sheath.	The	g-ratio	was	estimated	by	g ≡ 	𝑟/𝑟′ =
𝛺/𝛺^	.	
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Results	

RaW	and	ilastik	(Carving)	

The	 metrics	 to	 compare	 segmentations	 from	 ilastik	 and	 RAW	 for	 all	 segmented	 IAS	 are	
summarized	in	Table	1.	

In	Fig.	2a,	the	IAS	segmented	using	ilastik	covers	all	contents	in	IAS,	such	as	the	cytoplasm	
and	 organelles	 (including	mitochondria	 and	 nuclei	 attached	 to	 the	myelin	 sheath	 by	manual	
corrections).	 However,	 Fig.	 2b	 shows	 that	 the	 IAS	 segmented	 by	 using	 RaW	 fails	 to	 cover	
organelles	attached	to	the	myelin	sheath	since	these	structures	are	always	considered	as	part	of	
the	myelin	mask	when	applying	a	bi-Gaussian	model	for	the	thresholding.	

	 Fig.	 2d-e	 shows	 the	 Jaccard	 index	 and	 the	 Sørensen-Dice	 index	 to	 compare	 the	 IAS	
segmentations	from	the	two	methods	(ilastik	and	RaW).	For	most	axons,	both	indices	are	high,	
manifesting	 the	 robustness	 of	 our	 random-hopping	 segmentation	 pipeline;	 this	 is	 also	
demonstrated	by	high	values	of	similarity	metrics	shown	in	Table	1.	

FOD	

Fig.	3a-b	shows	each	axon’s	smoothed	skeleton	displayed	with	a	3d	view	angle	(Fig.	3a)	or	a	2d	
projection	(Fig.	3b)	for	𝑡	=	[1,	10,	100]	ms.	Longer	diffusion	time	leads	to	a	longer	diffusion	length	
and	a	wider	smoothing	kernel,	and	effectively	smooths	out	each	axon’s	tortuous	skeleton.	The	
FOD,	displayed	either	on	a	triangulated	spherical	surface	(Womersley	2017)	(Fig.	3c)	or	by	a	SH-
constructed	 3d	 glyph	 up	 to	 the	 order	 of	𝑙 	=	 10	 (Politis	 2016)	 (Fig.	 3d),	 indicates	 that	 longer	
diffusion	 time	 corresponds	 to	 a	 narrower	 fiber	 dispersion,	 which	 can	 be	 quantified	 by	 the	
dispersion	angle	shown	in	Fig.	4.	

To	compare	with	the	previous	study	from	(Schilling	et	al.	2016)	that	applies	a	smoothing	
kernel	of	a	1	µm	width,	we	also	fitted	the	FOD	of	𝑡	=	1	ms	(𝜎	=	1	µm)	to	a	Bingham	distribution	
(Bingham	1974;	Sotiropoulos	et	al.	2012),	yielding	fitting	parameters	𝜅7	=	22.2	and	𝜅%	=	4.6.	The	
orientation	dispersion	index,	defined	by	(Mollink	et	al.	2017)	

ODI7,% =
2
𝜋 tan

67 1
𝜅7,%

	,	

is	ODI1	=	0.029	and	ODI2	=	0.136.	

Dispersion	angle	and	rotational	invariants	

Fig.	4a-b	shows	the	(cross-sectional)	projected	dispersion	angle	𝜃%,(𝜙)	(Fig.	4a)	and	the	effective	
dispersion	angle	𝜃011(𝜙)	(Fig.	4b)	with	respect	to	the	azimuthal	angle	𝜙	for	𝑡	=	[1,	10,	100]	ms.	
Generally,	𝜃%,(𝜙)	varies	between	8˚	to	23˚,	and	𝜃011(𝜙)	varies	between	5˚	to	31˚.	
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	 In	Fig.	4c,	the	time-dependence	of	rotational	invariants	is	small	for	𝑝%	(3	%),	moderate	for	
𝑝I	(9	%),	and	large	for	𝑝h	(20	%)	for	𝑡	ranging	over	1-20	ms,	and	is	insignificant	(<	0.4%)	for	𝑝%,	𝑝I	
and	𝑝h	for	diffusion	time	>	20	ms.	

To	 further	 display	 the	 time-dependence	 of	 the	 dispersion	 angle,	 we	 calculated	 the	
averaged	dispersion	angle	of	the	three	definitions	for	𝑡	ranging	over	1-100	ms	in	Fig.	4d,	where	
the	averaged	𝜃%, 	(rms	of	𝜃%,(𝜙)	at	𝜙	=	1˚,	2˚,	…,360˚)	decreases	with	the	diffusion	time,	from	
17.7˚	(𝑡	=	1	ms,	𝜎	=	1	µm)	to	16.9˚	(𝑡	=	100	ms,	𝜎	=	10	µm);	the	dMRI-sensitive	dispersion	angle	
𝜃011 	(calculated	by	using	 all	 axon	 segments),	 demonstrates	 a	 similar	 time-dependence,	 and	 is	
always	larger	than	the	corresponding	histology-observed	projected	dispersion	angle	𝜃%, 	for	all	
diffusion	times;	the	dispersion	angle	𝜃ST,	estimated	by	rotational	invariants	of	the	FOD,	is	slightly	
smaller	than	𝜃011	and	shows	a	similar	time-dependence	as	well.	Generally,	the	time-dependence	
of	dispersion	angles	(𝜃%,, 𝜃011, 𝜃ST)	is	small	(~	1˚	for	𝑡	=	1-100	ms)	and	negligible	for	diffusion	time	
>	20	ms.	

In	Fig.	4e,	rotational	 invariants	are	plotted	as	a	function	of	even	orders	𝑙,	and	seem	to	
obey	a	power-law	over	the	range	𝑙	=	2,	4,	…,	10.	The	base	of	the	power-law	is	estimated	via	the	
slope	log 𝜆,	and	the	predicted	𝑝O	is	given	by	the	intercept	𝐶	at	𝑙	=	0	(Eq.	(1)	 in	Discussions).	By	
definition,	𝑝O ≡ 1;	yet,	this	power-law	relation	predicts	a	𝑝O	>	1,	as	manifested	by	an	intercept	𝐶	
>	1	at	𝑙	=	0.	 In	Fig.	4f,	 the	 time-dependence	of	dispersion	parameters	 is	 small	 for	𝜆	(5	%)	and	
moderate	for	𝐶	(11%)	for	𝑡	ranging	over	1-100	ms.	

g-ratio	

The	histogram	of	the	outer	axonal	diameter,	inner	axonal	diameter,	and	the	g-ratio	are	shown	in	
Fig.	5a-c.	Their	mean	±	SD	is	for	the	outer	axonal	diameter	=	1.68	±	0.46	µm,	inner	axonal	diameter	
=	1.03	±	0.41	µm,	and	g-ratio	=	0.59	±	0.09.	For	further	comparisons	with	other	studies,	we	also	
reported	 the	 median	 and	 the	 interquartile	 range	 (IQR	 in	 parenthesis)	 for	 the	 outer	 axonal	
diameter	=	1.61	(0.52)	µm,	inner	axonal	diameter	=	0.95	(0.52)	µm,	and	g-ratio	=	0.60	(0.12).	

Fig.	 5d	 shows	 the	 dependency	 of	 g-ratio	 on	 the	 inner	 diameter.	 This	 relationship	 is	
consistent	with	previous	studies	and	fitted	well	by	the	reported	log-linear	(Berthold	et	al.	1983;	
Little	and	Heath	1994;	West	et	al.	2015),	where	the	myelin	sheath	thickness	is	proportional	to	
the	number	of	myelin	lamellae	𝑛𝑙 = 𝐶O + 𝐶7 ⋅ 2𝑟 + 𝐶% ⋅ ln 2𝑟 .	The	red	curve	in	Fig.	5d	is	the	
fit,	and	corresponding	parameters	are	𝐶O𝑘	=	0.31	µm,	𝐶7𝑘	=	0.02,	and	𝐶%𝑘	=	0.02	µm,	where	𝑘	is	
the	myelin	lamellar	width.	

Inner	axonal	diameter	

Fig.	6a-c	shows	the	inner	axonal	diameter	variation	along	each	axon,	smoothed	by	a	Gaussian	
kernel	 with	 the	 variance	𝜎% 	for	𝑡 	=	 [1,	 10,	 100]	 ms,	 along	 with	 the	 corresponding	 diameter	
histogram	(Fig.	6d).	Fig.	6e	shows	the	time-dependences	of	the	average	diameter	2⟨𝑟⟩	and	dMRI-
sensitive	effective	diameter	2𝑟011,	where	𝑟011I ≡ 𝑟h /⟨𝑟%⟩	(Burcaw	et	al.	2015)	based	on	the	signal	
attenuation	in	the	wide-pulse	limit	(Neuman	1974).	
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At	 short	 diffusion	 time	 (Fig.	 6a),	 the	 axonal	 diameter	 varies	 a	 lot	 within	 each	 axon,	
whereas,	at	long	diffusion	time	(Fig.	6c),	axonal	diameter	variation	is	smoothed	out	within	each	
axon.	Therefore,	the	axonal	diameter	distribution	at	short	diffusion	time	(blue	curve	in	Fig.	6d)	is	
slightly	wider	 than	 that	 at	 long	 diffusion	 time	 (yellow	 curve	 in	 Fig.	 6d).	 In	 Fig.	 6e,	 the	mean	
diameter	 2⟨𝑟⟩ 	shows	 no	 obvious	 time-dependence.	 However,	 the	 dMRI-sensitive	 effective	
diameter	2𝑟011	shows	significant	time-dependence,	~	18%	change,	for	𝑡	ranging	over	1-100	ms.	

Table	2	shows	the	inner	axonal	diameter	estimations	using	different	definitions,	such	as	
the	short	and	long	axis	length	of	the	fitted	ellipse	with	the	same	second-moments	of	the	axon	
cross-section,	and	the	inscribed	circle	diameter	calculated	by	employing	the	distance	transform	
to	 the	 axon	 cross-section.	 The	median	 of	 the	 inscribed	 circle	 diameter	 provides	 the	 smallest	
diameter	estimates	=	0.71	µm,	and,	in	contrast,	the	mean	of	the	long	axis	length	provides	the	
largest	diameter	estimates	=	1.24	µm.	The	cross-section	perpendicular	to	the	skeleton	has	an	
average	eccentricity	of	0.63	±	0.15	(mean	±	SD)	and	0.65	(0.21)	(median	(IQR)),	indicating	that	
axons	are	in	general	approximately	elliptical,	rather	than	circular	or	cylindrical	(Abdollahzadeh	et	
al.	2017).	
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Discussion	

We	successfully	 segmented	~	51,000	axon	segments	 from	~	300	myelinated	axons	by	using	a	
semi-automatic	 random-hopping-based	 algorithm.	 Diffusion	 time-dependence	 of	 the	
orientation-related	 and	 size-related	 tissue	 characteristics	 of	 the	 brain	 white	 matter	
microstructure	is,	for	the	first	time,	analyzed	via	3d	high-resolution	EM	images.	The	estimated	
dispersion	 angle	 of	 myelinated	 axons	 has	 negligible	 diffusion	 time-dependence	 at	 typical	
diffusion	times	observed	with	dMRI.	In	contrast,	the	estimated	inner	axonal	diameter	has	a	non-
trivial	 time-dependence	 at	 diffusion	 times	 relevant	 for	 both	 pre-clinical	 and	 clinical	 diffusion	
imaging.		

	 Here,	 we	 discuss	 our	 RaW	 algorithm	 as	 compared	 to	 a	 commonly	 used	 interactive	
segmentation	 tool,	 as	 well	 as	 how	 our	 results	 of	 orientation-related	 (FOD,	 dispersion	 angle,	
rotational	 invariants)	 and	 size-related	 (g-ratio,	 inner	 axonal	 diameter)	 tissue	 parameters	
compare	to	previous	histological	and	MRI	studies.	Finally,	we	address	some	limitations	of	our	
methods.	

Segmentation	methods	(ilastik	and	RaW)	

Although	ilastik	greatly	facilitates	tracing	individual	axons	(one	axon	at	a	time),	it	 is	still	 labor-
intensive.	 Each	 individual	 axon	 required	many	 training	 data	 (object	markers	 and	 background	
markers)	in	multiple	slices,	and	the	segmentation	results	change	dynamically	while	new	markers	
are	added,	increasing	the	loading	of	proofreading.	The	program	was	quite	accurate	in	delineating	
the	 IAS,	but	more	manual	 input	was	 required	at	 specific	 locations,	 such	as	axonal	branching,	
mitochondria	or	nuclei	attached	to	the	myelin	sheath.	

In	contrast,	RaW	algorithm	is	straightforward,	and	depends	solely	on	the	quality	of	the	
binary	 myelin	 mask.	 An	 imperfect	 myelin	 mask	 results	 in	 a	 segmentation	 (random-hopping	
trajectory)	 infiltrating	 into	 other	 axons	 or	 compartments,	 such	 as	 extra-axonal	 space.	 In	 this	
study,	we	successfully	segmented	~	70	%	of	axons	crossing	the	central	slice,	albeit	~	30	%	of	axons	
were	deleted	by	 the	proofreading	because	of	 the	 leaky	myelin	mask.	Random-hopping-based	
method	minimizes	the	need	of	manual	seeding	and	proofreading	(1-2	days,	~	300	axons/person),	
reducing	hard	labor	and	simplifying	the	segmentation	pipeline,	c.f.	2	weeks,	~	100	axons/person	
by	using	ilastik	(Carving).	The	manual	seeding	step	can	be	further	automated	by	extracting	the	
regional	maxima	 from	the	distance	 transform	map	of	 the	myelin	mask	and	 the	dilated	edges	
(Abdollahzadeh	et	 al.	 2017).	 Confirmed	with	 segmentation	 results	 by	 the	Carving	 function	of	
ilastik,	RaW	algorithm	is	robust	and	reliable	to	segment	the	IAS	of	myelinated	axons.	Similar	to	
ilastik,	mitochondria	attached	to	the	myelin	sheath	are	deemed	to	be	part	of	the	myelin	mask	
and	therefore	not	delineated	accurately,	though	it	should	be	possible	to	separately	identify	the	
mitochondria	using	 the	 semi-automatic	pipeline	 incorporating	 superpixel-based	 simple-linear-
iterative-clustering	(SLIC)	method	(Abdollahzadeh	et	al.	2017;	Achanta	et	al.	2012).	

For	 machine-learning-based	 segmentation	 methods,	 it	 is	 time-consuming	 to	 produce	
training,	development,	and	test	data	set	from	3d	EM	data.	Using	RaW	method,	we	can	rapidly	
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generate	enough	data	to	train	and	validate	other	segmentation	algorithms.	Also,	simultaneously	
acquiring	EM	and	light	microscopy	images	(Wouters	and	Koerten	1982)	provides	extra	features	
by	 staining	 specific	 organelles,	 facilitating	 automatic	 seeding	 for	 RAW	 and	 potentially	model	
training	data	for	machine-learning-based	methods.	

FOD,	dispersion	angle,	and	rotational	invariants	

Our	study	presents	a	3d	EM-based	extraction	of	fiber	dispersion	in	the	mouse	brain	genu	of	CC,	
and	 reports	 good	 agreement	 with	 dispersion	 estimated	 using	 confocal	 microscopy	 and	 light	
microscopy.	 In	 particular,	 the	 FOD	 at	𝑡 	=	 1	ms	 (smoothed	 by	𝜎 	=	 1	 µm)	 fitted	 to	 a	 Bingham	
distribution	 suggests	 a	𝜅7 	value	 (≈	 22),	 corresponding	 to	 small	 dispersion	 (e.g.,	 single	 fiber	
dispersion),	consistent	with	existing	 literature	~	21	(Schilling	et	al.	2016),	where	the	structure	
tensor	analysis	was	applied	to	3d	stacks	of	confocal	microscopy	images	in	monkey	brains	by	using	
a	Gaussian	kernel	(standard	deviation	=	1	µm)	to	calculate	spatial	derivatives.	In	contrast,	the	𝜅%	
value	(≈	5	 in	this	study),	related	to	large	dispersion	(e.g.,	fiber	fanning/branching),	 is	different	
from	the	previous	study	~	12	(Schilling	et	al.	2016),	probably	influenced	by	the	sampling	site	in	
CC.	

In	 addition,	 the	 estimated	 dispersion	 angle	 is	 in	 agreement	with	 previous	 histological	
studies	yielding	a	dispersion	of	~	18.1˚	for	the	human	brain	CC	in	(Ronen	et	al.	2014)	and	17˚	for	
the	rat	brain	CC	in	(Leergaard	et	al.	2010).	Remarkably,	it	is	also	in	agreement	with	the	recently	
dMRI-estimated	in	vivo	fiber	dispersion	~	17˚	in	major	human	WM	tracts	(Veraart	et	al.	2016).	
Along	directions	with	small	fiber	spread	(𝜙	≈	-30˚	and	150˚	in	Fig.	4a-b),	the	dispersion	angle	is	~	
8˚	with	ODI2	=	0.029,	consistent	with	values	estimated	from	confocal	microscopy	images	of	the	
CC	(Schilling	et	al.	2018).		

Furthermore,	the	estimated	dispersion	angle	is	comparable	between	dMRI	studies	using	
different	diffusion	times,	as	we	found	the	time-dependence	of	dispersion	angles	is	minimal	(~	5	
%	 for	𝑡	=	 1-100	ms	 in	 Fig.	 4d).	 Similarly,	 for	 diffusion	 time	 >	 20	ms,	 the	 time-dependence	 of	
rotational	 invariants	 (𝑝%, 𝑝I, 𝑝h)	 is	minimal	 (<	0.4	%	 for	𝑡	=	20-100	ms	 in	Fig.	4c),	 assuring	 the	
assumption	of	the	time-independence	of	rotational	invariants	in	SH-based	models	(Novikov	et	al.	
2018b;	Reisert	et	al.	2017).		

As	 initially	proposed	by	 (Reisert	et	al.	2017),	we	verified	 that	 the	 rotational	 invariants	
approximately	obey	a	power-law	(Poisson	kernel)	of	the	order	𝑙		for	𝑙	=	2-10,	and	found	that	this	
power-law	behavior	is	not	well-normalized	and	overshoots	at	𝑙	=	0	(Fig.	4e).	To	compensate	for		
that,	a	negative	isotropic	term	needs	to	be	introduced	into	the	power-law,	losing	the	simplicity	
of	the	Poisson	kernel,	i.e.	

𝑝A ≃ 𝐶 ⋅ 𝜆A − 𝐶 − 1 𝛿OA	, #(1)	

where	𝐶 	is	 a	 constant	 ≥	 1,	 and	𝛿OA 	is	 a	 Kronecker	 delta.	 Indeed,	 in	 Fig.	 4f,	 the	 dispersion	
parameters	(𝜆, 𝐶)	are	obtained	by	using	a	linear	fit	of	log 𝑝A 	with	respect	to	𝑙	=2-10,	whereby	the	
fitted	𝐶	(≈	1.1-1.2)	>	1	indicates	the	overshoot	of	the	power-law	relation	(𝜆	≈	0.8)	at	𝑙	=	0.	
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g-ratio	

We	 obtained	 a	 relatively	 smaller	 histology	 g-ratio	 value	 ≈	 0.6,	 as	 compared	 to	 previous	
histological	studies:	0.808	for	>	18-week-old	mice	(Mason	et	al.	2001),	0.81	for	adult	mice	(West	
et	al.	2015)	(age	not	specified),	and	0.76	for	2-month-old	mice	(Yang	et	al.	2016).	This	could	be	
caused	by	(1)	the	difference	of	changes	in	myelin	structures	during	the	EM	processing	(Kirschner	
and	 Hollingshead	 1980),	 such	 as	 fixation	 and	 dehydration,	 and	 (2)	 potentially	 inaccurate	
segmentation	of	 the	myelin	 sheath.	Since	we	only	 segmented	some	axons,	 instead	of	all,	 the	
watershed	algorithm	cannot	avoid	overestimation	of	the	segmented	myelin	sheath	touching	the	
myelin	 sheath	of	 the	unsegmented	axons,	 leading	 to	an	overall	 overestimated	myelin	 sheath	
thickness	and	a	slightly	underestimated	g-ratio	in	our	study.	

Different	definitions	of	g-ratio	are	used	in	the	field	of	histology	versus	MRI,	with	the	latter	
(gqrs )	 sometimes	 being	 called	 the	 aggregate	 g-ratio	 ,	 as	 defined	 by	gqrs = 1 − MVF/FVF	
(Stikov	et	al.	2011),	where	MVF	and	FVF	are	the	myelin	volume	fraction	and	the	fiber	volume	
fraction,	respectively.	However,	while	MRI	models	typically	assume	a	single	g-ratio	value	for	the	
axons	within	an	MRI	 voxel,	we	 reported	 that	 the	genuine	g-ratio	g	from	histology	has	a	non-
negligible	variation	over	our	sample	size	(Fig.	5d)	which	is	much	smaller	than	a	typical	MRI	voxel	
(by	an	order	of	100).	In	order	to	compare	MRI	measurement	with	histology,	(West	et	al.	2016)	
proposed	the	following	relation	between	the	gqrs	and	the	genuine	histology	g:	

gqrs% =
g%𝑟^%

⟨𝑟^%⟩ 	,	

which	corresponds	to	an	estimated	gqrs	=	0.64	in	this	study,	in	agreement	with	the	aggregate	g-
ratio	 =	 0.62	 for	 rat	 brain	 CC	 in	 (Abdollahzadeh	 et	 al.	 2017)	 and	 aggregate	 g-ratio	 =	 0.69	 for	
macaque	brain	CC	in	(Stikov	et	al.	2015).	

Inner	axonal	diameter	and	its	distribution	

By	calculating	the	cross-sectional	area	perpendicular	to	the	axon	skeleton	(Abdollahzadeh	et	al.	
2017),	the	estimated	inner	axonal	diameter	is	1-2	%	smaller	than	the	estimation	calculated	by	
using	the	cross-sectional	area	perpendicular	to	axon’s	main	direction	(data	not	shown).	In	other	
words,	diameter	estimations	are	not	significantly	affected	by	either	considering	axon	skeletons	
or	not	as	in	our	sample,	since	axons	in	CC	are	generally	straight	(mean	sinuosity	=	1.04).	

Although	the	Gamma	distribution	is	the	most	commonly	used	model	for	the	inner	axonal	
diameter	 distribution,	 the	 generalized	 extreme	 value	 distribution	 describes	 the	 diameter	
distribution	better	(Sepehrband	et	al.	2016a).	This	argument	is	also	true	in	our	data	for	the	inner	
diameter	distribution	shown	in	Fig.	5b	(fits	to	distributions	are	shown	in	Appendix	A	and	Fig.	8).	

In	this	study,	we	used	the	equivalent	circle	diameter	to	evaluate	inner	and	outer	axonal	
diameters	and	the	genuine	g-ratio.	Alternatively,	the	inner	axonal	diameter	can	be	estimated	by	
other	definitions,	such	as	short	and	long	axis	length	of	the	fitted	ellipse,	and	the	inscribed	circle	
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diameter	 (Table	2).	Generally,	median	diameters	 are	 smaller	 than	mean	diameters	by	6-9	%;	
compared	with	the	equivalent	circle	diameter,	the	short	axis	length	is	smaller	by	~11	%,	the	long	
axis	length	is	larger	by	~	20	%,	and	the	inscribed	circle	diameter	is	smaller	by	~	24	%.	The	inscribed	
circle	diameter	was	used	as	a	diameter	estimate	in	many	histology	studies	(Aboitiz	et	al.	1992;	
Caminiti	et	al.	2009;	Liewald	et	al.	2014),	while	some	studies,	on	the	other	hand,	did	not	mention	
their	calculation	methods	of	inner	diameters.	

For	 the	mouse	 brain	 CC,	 our	 inner	 diameter	 estimates	 (equivalent	 circle	 diameter)	 is	
larger	than	values	reported	in	previous	EM	studies	by	a	factor	of	1.2-1.8:	0.47	µm	for	45-day-old	
mice	in	(Sturrock	1980),	0.88	µm	for	>	18-week-old	mice	in	(Mason	et	al.	2001),	0.56	µm	for	adult	
mice	 in	 (West	 et	 al.	 2015)	 (age	 not	 specified),	 and	 0.54	 µm	 for	 an	 8-week-old	 mouse	 in	
(Sepehrband	et	al.	2016a).	This	is	potentially	caused	by	differences	in	calculation	methods	(e.g.,	
equivalent	circle	diameter,	short	axis	length,	inscribed	circle	diameter),	the	image	quality,	and	
the	tissue	shrinkage	during	fixation	(Bozzola	and	Russell	1999).	

The	MRI-sensitive	effective	diameter	2𝑟011	varies	from	1.59	µm	to	1.35	µm	for	𝑡	=	1-100	
ms,	values	that	are	slightly	 larger	than	reported	values	of	2𝑟011	in	a	previous	histological	study	
(1.32	µm)	(Sepehrband	et	al.	2016b).	However,	in	previous	MRI	literature,	the	dMRI-measured	
diameter	is	larger	than	our	2𝑟011	estimation	by	a	factor	of	≥	1.4,	even	when	applying	very	strong	
diffusion-sensitive	gradients	 𝒈 	≤	1350	mT/m	(Sepehrband	et	al.	2016b).	This	discrepancy	could	
be	due	 to	neglecting	 the	diffusion	 time-dependence	of	 the	extra-axonal	 signal	 (Burcaw	et	 al.	
2015;	De	Santis	et	al.	2016;	Lee	et	al.	2017),	or	potentially	due	to	misinterpreting	the	extra-axonal	
signal	change	as	the	intra-axonal	one.	In	particular,	when	applying	strong	diffusion	gradients,	the	
dMRI-measured	diameter	is	further	biased	by	neglecting	the	higher	order	 𝒈 I	corrections	(Lee	
et	al.	2017)	to	the	intra-axonal	model	in	(Neuman	1974).	

Limitations	

The	random-hopping-based	segmentation	method	depends	heavily	on	the	quality	of	the	myelin	
mask.	Mitochondria	and	nuclei	directly	attached	to	the	inner	myelin	border	are	recognized	as	
part	of	the	myelin	mask	and	need	to	be	separately	identified	by	other	algorithms	(Abdollahzadeh	
et	al.	2017;	Achanta	et	al.	2012).	

	 While	 segmenting	 the	 individual	myelin	 sheath	 for	 each	 axon,	 we	 assigned	 an	 upper	
bound	for	the	myelin	thickness	(Kleinnijenhuis	et	al.	2017).	The	upper	bound	has	to	be	chosen	
carefully	when	proofreading	since	the	g-ratio	has	a	strong	dependence	on	this	tuning	parameter	
(Fig.	7):	A	small	upper	bound	leads	to	an	under-segmented	myelin	sheath	and	a	large	g-ratio,	and	
a	large	upper	bound	leads	to	an	over-expanded	myelin	sheath	and	a	small	g-ratio.	Determining	
the	upper	bound	of	the	myelin	thickness	 is	crucial	when	evaluating	the	g-ratio	and	the	actual	
myelin	thickness,	whereas	this	upper	bound	is	usually	not	reported	in	other	studies.	

	 Compared	with	other	imaging	techniques,	such	as	light	microscopy	(Grussu	et	al.	2016;	
Ronen	 et	 al.	 2014),	 polarized	 light	 imaging	 (Mollink	 et	 al.	 2017),	 and	 confocal	 microscopy	
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(Schilling	et	al.	2016;	Schilling	et	al.	2018),	the	size	of	EM	samples	is	relatively	small,	and	results	
based	on	EM	segmentations	could	be	less	representative	because	of	the	limited	field-of-view.	

In	this	study,	we	only	focus	on	myelinated	axons.	Other	structures,	such	as	unmyelinated	
axons,	astrocytes,	and	blood	vessels,	are	also	important	and	need	to	be	segmented	for	a	more	
comprehensive	analysis.	
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Conclusion	

We	 present	 here	 a	 random-hopping-based	 segmentation	 method	 facilitating	 a	 3d	 EM	
segmentation	pipeline	in	brain	white	matter,	with	minimal	labor	for	proofreading	and	manual	
seeding	that	could	also	be	further	automated.	The	3d	EM	segmentation	provides	an	accurate	and	
reliable	evaluation	of	the	fiber	orientation	dispersion,	and	the	calculated	projected	dispersion	
angle	is	compatible	with	previous	2d	histological	studies,	as	well	as	agreement	of	the	estimated	
MRI-measured	 dispersion	 angle	 with	 previous	MRI	 studies,	 with	 a	 very	 small	 diffusion	 time-
dependence.	 Besides	 the	 fiber	 orientation	 information,	 the	 3d	 EM	 segmentation	 enables	 to	
estimate	 the	 inner	 and	 outer	 axonal	 diameter	 as	 well	 as	 the	 g-ratio	 according	 to	 various	
definitions	by	 analyzing	 the	 cross-section	perpendicular	 to	 the	 axon	 skeleton.	Our	 simulation	
shows	 that	 the	diffusion	 time-dependence	of	 the	dMRI-derived	axon	diameter	metric	 is	non-
trivial	and	has	to	be	taken	into	account	for	studies	mapping	axonal	diameters	with	dMRI.	
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Appendix	A.	Axonal	diameter	estimates	in	various	definitions	

In	this	section,	distributions	of	axonal	diameters	are	showed	based	on	different	definitions,	such	
as	equivalent	circle	diameter	(Fig.	8a),	short	and	long	axis	length	of	the	fitted	ellipse	(Fig.	8b-c),	
and	 inscribed	 circle	 diameter	 (Fig.	 8d).	 To	 compare	with	 a	 previous	 study	 (Sepehrband	et	 al.	
2016a),	we	fitted	the	axonal	diameter	histogram	to	Gamma	distribution	and	generalized	extreme	
value	 (GEV)	 distribution	 in	 Fig.	 8,	 which	 shows	 that	 GEV	 distribution	 fits	 better	 to	 the	
experimental	 diameter	 distribution	 (of	 all	 four	 definitions)	 than	 Gamma	 distribution	 does,	
consistent	with	the	conclusion	in	(Sepehrband	et	al.	2016a).	Also,	GEV	distribution	has	a	longer	
tail	than	Gamma	distribution	does	for	thick	axons	in	diameters	>	3-5	µm,	manifested	by	semi-
logarithmic	plots	of	diameter	distributions	in	the	bottom	row	of	Fig.	8.	
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Fig.	1.	The	semi-automatic	IAS	segmentation	pipeline.	(a)	A	tissue	sample	of	genu	in	CC,	in	a	
volume	of	36	x	48	x	20	μm3,	was	acquired	by	sequential	SEM.	(b)	The	myelin	mask	(red)	was	
calculated	by	intensity	thresholding	with	a	bi-Gaussian	model	for	further	segmentation	of	the	
intra-axonal	space	(IAS).	(c)	Seeds	(red	dots)	for	random	diffusion	grid-hopping	process	were	
assigned	manually	over	one	central	slice	(451	seeds).	The	random-hopping	trajectory	was	
bounded	by	the	myelin	mask	in	(b).	(d)	IAS	(colors)	was	filled	by	all	random-hopping	trajectories	
(316	segmented	IAS).	The	IAS	from	axons	with	leaky	myelin	mask	has	been	excluded	by	
proofreading.	(e)	The	individual	myelin	sheath	(colors)	is	the	overlap	of	the	myelin	mask	and	
the	expanded	IAS	dilated	by	≤	0.4	µm.	Touching	myelin	sheaths	of	adjacent	axons	are	separated	
based	on	a	non-weighted	watershed	algorithm.	(f-g)	By	transforming	each	segmented	IAS	and	
individual	myelin	sheath	into	polyhedrons,	it	is	feasible	to	perform	numerical	simulations	in	
such	3d	realistic	microstructure	
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Fig.	2.	IAS	segmented	by	(a)	ilastik,	Carving	(blue	pixels),	(b)	RaW	(red	pixels)	and	(c)	both	
methods	(intersection,	yellow	pixels)	in	a	representing	slice.	The	histogram	of	the	(d)	Jaccard	
index	and	the	(e)	Sørensen-Dice	index	for	the	comparison	of	IAS	segmentations	from	the	two	
methods.	The	scale	bar	below	(a-c)	is	4	µm	
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Fig.	3.	(a)	The	skeleton	of	each	segmented	axon	is	smoothed	to	mimic	the	diffusion	time-
dependent	coarse-grained	microstructure	along	each	axon’s	main	direction	with	diffusion	time	
𝑡	=	[1,	10,	100]	ms.	(b)	The	skeleton	of	each	segmented	axon	in	(a)	was	viewed	from	another	
view	angle.	Each	axon	becomes	effectively	straighter	for	longer	diffusion	times.	(c)	The	FOD	of	
tangent	vectors	of	all	axon	segments,	starting	at	the	center	of	a	unit	sphere,	shows	the	intrinsic	
axonal	dispersion.	The	unit	of	the	colorbar	is	steradian-1.	(d)	The	3d	FOD	glyph	was	generated	
by	fitting	the	FOD	in	(c)	to	spherical	harmonics	up	to	the	order	of	𝑙	=	10.	Arrows	in	(c)	indicate	
the	view	angle	for	FOD	glyphs	in	(d)	
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Fig.	4.	(a)	Projected	dispersion	angle	𝜃%,(𝜙)	and	(b)	dMRI-sensitive	dispersion	angle	𝜃011(𝜙)	
(calculated	within	a	bin	width	𝛥𝜙	=	12˚)	with	respect	to	the	azimuthal	angle	𝜙	at	diffusion	time	
𝑡	=	[1,	10,	100]	ms.	(c)	The	rotational	invariants	(𝑝%, 𝑝I, 𝑝h)	show	a	time-dependence	<	0.4	%	for	
diffusion	time	𝑡	=	20-100	ms.	(d)	The	dispersion	angle	averaged	over	all	𝜙	shows	a	time-
dependence	of	~	1˚	for	diffusion	time	𝑡	=	1-100	ms.	(e)	Rotational	invariants	𝑝A 	with	respect	to	
the	even	orders	𝑙	=	2,	4,	…,	10	at	diffusion	time	𝑡	=	[1,	10,	100]	ms.	(f)	Dispersion	parameters	of	
the	modified	power-law	relation	(𝜆, 𝐶	in	Eq.	(1))	obtained	by	using	a	linear	fit	of	log 𝑝A 	with	
respect	to	𝑙	=	2-10	for	diffusion	time	𝑡	=	1-100	ms	
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Fig.	5.	The	histogram	of	(a)	outer	axonal	diameter,	(b)	inner	axonal	diameter,	and	(c)	genuine	g-
ratio.	The	relation	of	g-ratio	and	inner	diameter	is	shown	in	(d)	as	a	2d	histogram,	fitted	by	the	
log-linear	equation	(red	curve)	proposed	by	(Berthold	et	al.	1983)	

	 	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/357491doi: bioRxiv preprint 

https://doi.org/10.1101/357491
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 25	

	

Fig.	6.	The	axonal	diameter	(2𝑟)	variation,	estimated	by	the	cross-sectional	area	perpendicular	
to	the	skeleton	and	displayed	along	the	main	direction	of	each	axon	(𝑧XYZ[),	was	smoothed	by	a	
Gaussian	kernel	mimicking	the	diffusion	process	with	an	effective	diffusion	time	𝑡	=	(a)	1	ms,	(b)	
10	ms,	and	(c)	100	ms.	(d)	The	diameter	histogram	becomes	narrower	with	longer	diffusion	
time.	(e)	The	average	diameter	2⟨𝑟⟩	has	no	significant	time-dependence,	whereas	the	dMRI-
sensitive	effective	diameter	2𝑟011,	where	𝑟011I = 𝑟h /⟨𝑟%⟩	(Burcaw	et	al.	2015),	has	a	non-trivial	
time-dependence	for	diffusion	time	𝑡	<	50	ms	
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Fig.	7.	The	artificial	upper	bound	applied	for	myelin	sheath	segmentation	influences	the	mean	
g-ratio.	A	small	upper	bound	for	the	myelin	thickness	leads	to	under-segmented	individual	
myelin	sheaths	(top	left,	upper	bound	=	0.1	µm).	In	contrast,	a	large	upper	bound	causes	over-
expanded	individual	myelin	sheaths	(top	right,	upper	bound	=	0.6	µm).	In	this	study,	an	upper	
bound	of	0.3-0.4	µm	results	in	appropriate	individual	myelin	sheaths	(top	middle,	upper	bound	
=	0.4	µm)	
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Fig.	8.	The	distribution	of	axonal	diameters,	defined	by	(a)	equivalent	circle	diameter	calculated	
from	the	cross-sectional	area,	(b)	short	axis	length	and	(c)	long	axis	length	of	the	fitted	ellipse,	
and	(d)	Inscribed	circle	diameter.	The	upper	row	shows	an	exemplified	axon	cross-section	(gray	
area)	and	the	corresponding	diameter	estimates	(double-arrowed	lines).	The	middle	row	shows	
experimental	diameter	distributions	(purple	bars)	and	the	fits	based	on	the	Gamma	distribution	
(red)	and	the	generalized	extreme	value	distribution	(GEV)	(blue).	The	bottom	row	is	the	middle	
row	displayed	in	a	semi-logarithmic	scale	for	experimental	data	(data	points)	and	the	fits	(solid	
lines)	
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Similarity	metric	 IAS	segmentations	(ilastik,	RaW)	
Jaccard	Index	 0.86	
Sørensen-Dice	index	 0.92	
Vrand	 0.75	
Vinfo	 0.90	
Table	1.	Similarity	metrics	to	compare	IAS	segmentations	by	ilastik	and	RaW	

	

	 Inner	axonal	diameter	(µm)	
	 Mean	(SD)	 Median	(IQR)	
Equivalent	circle	diameter	=	2 𝛺/𝜋	 1.03	(0.41)	 0.95	(0.52)	
Short	axis	length	 0.92	(0.38)	 0.84	(0.47)	
Long	axis	length	 1.24	(0.50)	 1.14	(0.64)	
Inscribed	circle	diameter	 0.76	(0.33)	 0.71	(0.41)	
Table	2.	Inner	axonal	diameter	of	myelinated	axons,	calculated	by	the	equivalent	circle	
diameter	(cross-sectional	area),	the	short	axis	length	and	long	axis	length	of	the	fitted	ellipse,	
and	the	inscribed	circle	diameter.	Standard	deviation	(SD)	and	interquartile	range	(IQR)	are	
shown	in	the	parenthesis	

	

	 	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/357491doi: bioRxiv preprint 

https://doi.org/10.1101/357491
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 29	

Compliance	with	Ethical	Standards	

• Disclosure	of	potential	conflicts	of	interest	
1. Funding:	This	study	was	supported	by	the	National	Institute	of	Neurological	Disorders	

and	Stroke	of	the	NIH	under	award	number	R21	NS081230	(Fieremans,	E.,	Novikov,	D.	
S.,	and	Kim,	S.	G.)	and	R01	NS088040	(Fieremans,	E.	and	Novikov,	D.	S.),	and	was	
performed	at	the	Center	of	Advanced	Imaging	Innovation	and	Research	(CAI2R,	
www.cai2r.net),	an	NIBIB	Biomedical	Technology	Resource	Center	(NIH	P41	EB017183,	
Fieremans,	E.,	Novikov,	D.	S.,	and	Kim,	S.	G.).	

2. Conflict	of	Interest:	The	authors	declare	that	they	have	no	conflict	of	interest.	
• Ethical	approval:	All	procedures	performed	in	studies	involving	animals	were	in	accordance	

with	the	ethical	standards	of	the	institution	or	practice	at	which	the	studies	were	
conducted.	This	article	does	not	contain	any	studies	with	human	participants	performed	by	
any	of	the	authors.	

• Informed	consent:	Not	applicable.	

	 	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/357491doi: bioRxiv preprint 

https://doi.org/10.1101/357491
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 30	

References	

Abdollahzadeh	A,	Belevich	I,	Jokitalo	E,	Tohka	J,	Sierra	A	(2017)	3D	Axonal	Morphometry	of	White	
Matter	bioRxiv:239228	

Aboitiz	F,	Scheibel	AB,	Fisher	RS,	Zaidel	E	(1992)	Fiber	composition	of	the	human	corpus	callosum	Brain	
Res	598:143-153	

Achanta	R,	Shaji	A,	Smith	K,	Lucchi	A,	Fua	P,	Susstrunk	S	(2012)	SLIC	superpixels	compared	to	state-of-
the-art	superpixel	methods	IEEE	Trans	Pattern	Anal	Mach	Intell	34:2274-2282	
doi:10.1109/TPAMI.2012.120	

Adams	R,	Bischof	L	(1994)	Seeded	Region	Growing	Ieee	T	Pattern	Anal	16:641-647	
Alexander	DC,	Hubbard	PL,	Hall	MG,	Moore	EA,	Ptito	M,	Parker	GJ,	Dyrby	TB	(2010)	Orientationally	

invariant	indices	of	axon	diameter	and	density	from	diffusion	MRI	Neuroimage	52:1374-1389	
doi:10.1016/j.neuroimage.2010.05.043	

Arganda-Carreras	I	et	al.	(2015)	Crowdsourcing	the	creation	of	image	segmentation	algorithms	for	
connectomics	Front	Neuroanat	9:142	doi:10.3389/fnana.2015.00142	

Assaf	Y,	Basser	PJ	(2005)	Composite	hindered	and	restricted	model	of	diffusion	(CHARMED)	MR	imaging	
of	the	human	brain	Neuroimage	27:48-58	doi:10.1016/j.neuroimage.2005.03.042	

Assaf	Y,	Blumenfeld-Katzir	T,	Yovel	Y,	Basser	PJ	(2008)	AxCaliber:	a	method	for	measuring	axon	diameter	
distribution	from	diffusion	MRI	Magn	Reson	Med	59:1347-1354	doi:10.1002/mrm.21577	

Barazany	D,	Basser	PJ,	Assaf	Y	(2009)	In	vivo	measurement	of	axon	diameter	distribution	in	the	corpus	
callosum	of	rat	brain	Brain	132:1210-1220	doi:10.1093/brain/awp042	

Baron	CA,	Kate	M,	Gioia	L,	Butcher	K,	Emery	D,	Budde	M,	Beaulieu	C	(2015)	Reduction	of	Diffusion-
Weighted	Imaging	Contrast	of	Acute	Ischemic	Stroke	at	Short	Diffusion	Times	Stroke	46:2136-
2141	doi:10.1161/STROKEAHA.115.008815	

Benjamini	D,	Komlosh	ME,	Holtzclaw	LA,	Nevo	U,	Basser	PJ	(2016)	White	matter	microstructure	from	
nonparametric	axon	diameter	distribution	mapping	Neuroimage	135:333-344	
doi:10.1016/j.neuroimage.2016.04.052	

Berthold	CH,	Nilsson	I,	Rydmark	M	(1983)	Axon	diameter	and	myelin	sheath	thickness	in	nerve	fibres	of	
the	ventral	spinal	root	of	the	seventh	lumbar	nerve	of	the	adult	and	developing	cat	J	Anat	
136:483-508	

Bingham	C	(1974)	Antipodally	Symmetric	Distribution	on	Sphere	Ann	Stat	2:1201-1225	
Bozzola	JJ,	Russell	LD	(1999)	Electron	microscopy:	principles	and	techniques	for	biologists.	Jones	&	

Bartlett	Learning,		
Budde	MD,	Frank	JA	(2010)	Neurite	beading	is	sufficient	to	decrease	the	apparent	diffusion	coefficient	

after	ischemic	stroke	Proc	Natl	Acad	Sci	U	S	A	107:14472-14477	doi:10.1073/pnas.1004841107	
Burcaw	LM,	Fieremans	E,	Novikov	DS	(2015)	Mesoscopic	structure	of	neuronal	tracts	from	time-

dependent	diffusion	Neuroimage	114:18-37	doi:10.1016/j.neuroimage.2015.03.061	
Caminiti	R,	Ghaziri	H,	Galuske	R,	Hof	PR,	Innocenti	GM	(2009)	Evolution	amplified	processing	with	

temporally	dispersed	slow	neuronal	connectivity	in	primates	Proc	Natl	Acad	Sci	U	S	A	
106:19551-19556	doi:10.1073/pnas.0907655106	

De	Santis	S,	Jones	DK,	Roebroeck	A	(2016)	Including	diffusion	time	dependence	in	the	extra-axonal	space	
improves	in	vivo	estimates	of	axonal	diameter	and	density	in	human	white	matter	Neuroimage	
130:91-103	doi:10.1016/j.neuroimage.2016.01.047	

Dorkenwald	S,	Schubert	PJ,	Killinger	MF,	Urban	G,	Mikula	S,	Svara	F,	Kornfeld	J	(2017)	Automated	
synaptic	connectivity	inference	for	volume	electron	microscopy	Nat	Methods	14:435-442	
doi:10.1038/nmeth.4206	

Duval	T	et	al.	(2015)	In	vivo	mapping	of	human	spinal	cord	microstructure	at	300mT/m	Neuroimage	
118:494-507	doi:10.1016/j.neuroimage.2015.06.038	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/357491doi: bioRxiv preprint 

https://doi.org/10.1101/357491
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 31	

Grussu	F,	Schneider	T,	Yates	RL,	Zhang	H,	Wheeler-Kingshott	C,	DeLuca	GC,	Alexander	DC	(2016)	A	
framework	for	optimal	whole-sample	histological	quantification	of	neurite	orientation	
dispersion	in	the	human	spinal	cord	J	Neurosci	Methods	273:20-32	
doi:10.1016/j.jneumeth.2016.08.002	

Jeong	WK,	Beyer	J,	Hadwiger	M,	Vazquez	A,	Pfister	H,	Whitaker	RT	(2009)	Scalable	and	interactive	
segmentation	and	visualization	of	neural	processes	in	EM	datasets	IEEE	Trans	Vis	Comput	Graph	
15:1505-1514	doi:10.1109/TVCG.2009.178	

Jespersen	SN,	Olesen	JL,	Hansen	B,	Shemesh	N	(2017)	Diffusion	time	dependence	of	microstructural	
parameters	in	fixed	spinal	cord	Neuroimage	doi:10.1016/j.neuroimage.2017.08.039	

Kaynig	V	et	al.	(2015)	Large-scale	automatic	reconstruction	of	neuronal	processes	from	electron	
microscopy	images	Med	Image	Anal	22:77-88	doi:10.1016/j.media.2015.02.001	

Kirschner	DA,	Hollingshead	CJ	(1980)	Processing	for	electron	microscopy	alters	membrane	structure	and	
packing	in	myelin	J	Ultrastruct	Res	73:211-232	

Kleinnijenhuis	M,	Johnson	E,	Mollink	J,	Jbabdi	S,	Miller	K	(2017)	A	3D	electron	microscopy	segmentation	
pipeline	for	hyper-realistic	diffusion	simulations,	ISMRM	25th	annual	meeting,	Hawaii,	USA	
Proceedings	of	the	ISMRM	annual	meeting	25:1090	

Komlosh	ME,	Ozarslan	E,	Lizak	MJ,	Horkayne-Szakaly	I,	Freidlin	RZ,	Horkay	F,	Basser	PJ	(2013)	Mapping	
average	axon	diameters	in	porcine	spinal	cord	white	matter	and	rat	corpus	callosum	using	d-PFG	
MRI	Neuroimage	78:210-216	doi:10.1016/j.neuroimage.2013.03.074	

Lee	H-H,	Fieremans	E,	Novikov	DS	(2017)	What	dominates	the	time	dependence	of	diffusion	transverse	
to	axons:	Intra-	or	extra-axonal	water?	NeuroImage	
doi:https://doi.org/10.1016/j.neuroimage.2017.12.038	

Leergaard	TB,	White	NS,	de	Crespigny	A,	Bolstad	I,	D'Arceuil	H,	Bjaalie	JG,	Dale	AM	(2010)	Quantitative	
histological	validation	of	diffusion	MRI	fiber	orientation	distributions	in	the	rat	brain	PLoS	One	
5:e8595	doi:10.1371/journal.pone.0008595	

Li	P,	Murphy	TH	(2008)	Two-photon	imaging	during	prolonged	middle	cerebral	artery	occlusion	in	mice	
reveals	recovery	of	dendritic	structure	after	reperfusion	J	Neurosci	28:11970-11979	
doi:10.1523/JNEUROSCI.3724-08.2008	

Liewald	D,	Miller	R,	Logothetis	N,	Wagner	HJ,	Schuz	A	(2014)	Distribution	of	axon	diameters	in	cortical	
white	matter:	an	electron-microscopic	study	on	three	human	brains	and	a	macaque	Biol	Cybern	
108:541-557	doi:10.1007/s00422-014-0626-2	

Little	GJ,	Heath	JW	(1994)	Morphometric	analysis	of	axons	myelinated	during	adult	life	in	the	mouse	
superior	cervical	ganglion	J	Anat	184	(	Pt	2):387-398	

Mason	JL,	Langaman	C,	Morell	P,	Suzuki	K,	Matsushima	GK	(2001)	Episodic	demyelination	and	
subsequent	remyelination	within	the	murine	central	nervous	system:	changes	in	axonal	calibre	
Neuropathol	Appl	Neurobiol	27:50-58	

Mollink	J	et	al.	(2017)	Evaluating	fibre	orientation	dispersion	in	white	matter:	Comparison	of	diffusion	
MRI,	histology	and	polarized	light	imaging	Neuroimage	157:561-574	
doi:10.1016/j.neuroimage.2017.06.001	

Neuman	C	(1974)	Spin	echo	of	spins	diffusing	in	a	bounded	medium	The	Journal	of	Chemical	Physics	
60:4508-4511	

Novikov	DS,	Jensen	JH,	Helpern	JA,	Fieremans	E	(2014)	Revealing	mesoscopic	structural	universality	with	
diffusion	Proc	Natl	Acad	Sci	U	S	A	111:5088-5093	doi:10.1073/pnas.1316944111	

Novikov	DS,	Jespersen	SN,	Kiselev	VG,	Fieremans	E	(2016)	Quantifying	brain	microstructure	with	
diffusion	MRI:	Theory	and	parameter	estimation	arXiv	preprint	arXiv:161202059	

Novikov	DS,	Kiselev	VG,	Jespersen	SN	(2018a)	On	modeling	Magn	Reson	Med	79:3172-3193	
doi:10.1002/mrm.27101	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/357491doi: bioRxiv preprint 

https://doi.org/10.1101/357491
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 32	

Novikov	DS,	Veraart	J,	Jelescu	IO,	Fieremans	E	(2018b)	Rotationally-invariant	mapping	of	scalar	and	
orientational	metrics	of	neuronal	microstructure	with	diffusion	MRI	Neuroimage	
doi:10.1016/j.neuroimage.2018.03.006	

Politis	A	(2016)	Microphone	array	processing	for	parametric	spatial	audio	techniques		
Reisert	M,	Kellner	E,	Dhital	B,	Hennig	J,	Kiselev	VG	(2017)	Disentangling	micro	from	mesostructure	by	

diffusion	MRI:	A	Bayesian	approach	Neuroimage	147:964-975	
doi:10.1016/j.neuroimage.2016.09.058	

Ronen	I,	Budde	M,	Ercan	E,	Annese	J,	Techawiboonwong	A,	Webb	A	(2014)	Microstructural	organization	
of	axons	in	the	human	corpus	callosum	quantified	by	diffusion-weighted	magnetic	resonance	
spectroscopy	of	N-acetylaspartate	and	post-mortem	histology	Brain	Struct	Funct	219:1773-1785	
doi:10.1007/s00429-013-0600-0	

Salo	RA,	Belevich	I,	Manninen	E,	Jokitalo	E,	Grohn	O,	Sierra	A	(2018)	Quantification	of	anisotropy	and	
orientation	in	3D	electron	microscopy	and	diffusion	tensor	imaging	in	injured	rat	brain	
Neuroimage	172:404-414	doi:10.1016/j.neuroimage.2018.01.087	

Schilling	K,	Janve	V,	Gao	Y,	Stepniewska	I,	Landman	BA,	Anderson	AW	(2016)	Comparison	of	3D	
orientation	distribution	functions	measured	with	confocal	microscopy	and	diffusion	MRI	
Neuroimage	129:185-197	doi:10.1016/j.neuroimage.2016.01.022	

Schilling	KG,	Janve	V,	Gao	Y,	Stepniewska	I,	Landman	BA,	Anderson	AW	(2018)	Histological	validation	of	
diffusion	MRI	fiber	orientation	distributions	and	dispersion	Neuroimage	165:200-221	
doi:10.1016/j.neuroimage.2017.10.046	

Sepehrband	F,	Alexander	DC,	Clark	KA,	Kurniawan	ND,	Yang	Z,	Reutens	DC	(2016a)	Parametric	
Probability	Distribution	Functions	for	Axon	Diameters	of	Corpus	Callosum	Front	Neuroanat	
10:59	doi:10.3389/fnana.2016.00059	

Sepehrband	F,	Alexander	DC,	Kurniawan	ND,	Reutens	DC,	Yang	Z	(2016b)	Towards	higher	sensitivity	and	
stability	of	axon	diameter	estimation	with	diffusion-weighted	MRI	NMR	Biomed	29:293-308	
doi:10.1002/nbm.3462	

Shepherd	GM,	Raastad	M,	Andersen	P	(2002)	General	and	variable	features	of	varicosity	spacing	along	
unmyelinated	axons	in	the	hippocampus	and	cerebellum	Proc	Natl	Acad	Sci	U	S	A	99:6340-6345	
doi:10.1073/pnas.052151299	

Sommer	C,	Straehle	C,	Koethe	U,	Hamprecht	FA	Ilastik:	Interactive	learning	and	segmentation	toolkit.	In:	
Biomedical	Imaging:	From	Nano	to	Macro,	2011	IEEE	International	Symposium	on,	2011.	IEEE,	
pp	230-233	

Sotiropoulos	SN,	Behrens	TE,	Jbabdi	S	(2012)	Ball	and	rackets:	Inferring	fiber	fanning	from	diffusion-
weighted	MRI	Neuroimage	60:1412-1425	doi:10.1016/j.neuroimage.2012.01.056	

Stikov	N	et	al.	(2015)	In	vivo	histology	of	the	myelin	g-ratio	with	magnetic	resonance	imaging	
Neuroimage	118:397-405	doi:10.1016/j.neuroimage.2015.05.023	

Stikov	N,	Perry	LM,	Mezer	A,	Rykhlevskaia	E,	Wandell	BA,	Pauly	JM,	Dougherty	RF	(2011)	Bound	pool	
fractions	complement	diffusion	measures	to	describe	white	matter	micro	and	macrostructure	
Neuroimage	54:1112-1121	doi:10.1016/j.neuroimage.2010.08.068	

Sturrock	RR	(1980)	Myelination	of	the	mouse	corpus	callosum	Neuropathol	Appl	Neurobiol	6:415-420	
Sun	D,	Roth	S,	Black	MJ	Secrets	of	optical	flow	estimation	and	their	principles.	In:	Computer	Vision	and	

Pattern	Recognition	(CVPR),	2010	IEEE	Conference	on,	2010.	IEEE,	pp	2432-2439	
Sun	D,	Roth	S,	Black	MJ	(2014)	A	quantitative	analysis	of	current	practices	in	optical	flow	estimation	and	

the	principles	behind	them	International	Journal	of	Computer	Vision	106:115-137	
Tang-Schomer	MD,	Johnson	VE,	Baas	PW,	Stewart	W,	Smith	DH	(2012)	Partial	interruption	of	axonal	

transport	due	to	microtubule	breakage	accounts	for	the	formation	of	periodic	varicosities	after	
traumatic	axonal	injury	Exp	Neurol	233:364-372	doi:10.1016/j.expneurol.2011.10.030	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/357491doi: bioRxiv preprint 

https://doi.org/10.1101/357491
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 33	

Tariq	M,	Schneider	T,	Alexander	DC,	Gandini	Wheeler-Kingshott	CA,	Zhang	H	(2016)	Bingham-NODDI:	
Mapping	anisotropic	orientation	dispersion	of	neurites	using	diffusion	MRI	Neuroimage	
133:207-223	doi:10.1016/j.neuroimage.2016.01.046	

Veraart	J,	Fieremans	E,	Novikov	DS	(2016)	Universal	power-law	scaling	of	water	diffusion	in	human	brain	
defines	what	we	see	with	MRI	arXiv	preprint	arXiv:160909145	

West	KL,	Kelm	ND,	Carson	RP,	Does	MD	(2015)	Quantitative	analysis	of	mouse	corpus	callosum	from	
electron	microscopy	images	Data	Brief	5:124-128	doi:10.1016/j.dib.2015.08.022	

West	KL,	Kelm	ND,	Carson	RP,	Does	MD	(2016)	A	revised	model	for	estimating	g-ratio	from	MRI	
Neuroimage	125:1155-1158	doi:10.1016/j.neuroimage.2015.08.017	

Wilke	SA	et	al.	(2013)	Deconstructing	complexity:	serial	block-face	electron	microscopic	analysis	of	the	
hippocampal	mossy	fiber	synapse	J	Neurosci	33:507-522	doi:10.1523/JNEUROSCI.1600-12.2013	

Womersley	RS	(2017)	Efficient	spherical	designs	with	good	geometric	properties	arXiv	preprint	
arXiv:170901624	

Wouters	CH,	Koerten	HK	(1982)	Combined	light	microscope	and	scanning	electron	microscope,	a	new	
instrument	for	cell	biology	Cell	Biol	Int	Rep	6:955-959	

Yang	HJ,	Vainshtein	A,	Maik-Rachline	G,	Peles	E	(2016)	G	protein-coupled	receptor	37	is	a	negative	
regulator	of	oligodendrocyte	differentiation	and	myelination	Nat	Commun	7:10884	
doi:10.1038/ncomms10884	

Zaimi	A,	Wabartha	M,	Herman	V,	Antonsanti	PL,	Perone	CS,	Cohen-Adad	J	(2018)	AxonDeepSeg:	
automatic	axon	and	myelin	segmentation	from	microscopy	data	using	convolutional	neural	
networks	Sci	Rep	8:3816	doi:10.1038/s41598-018-22181-4	

Zhang	H,	Schneider	T,	Wheeler-Kingshott	CA,	Alexander	DC	(2012)	NODDI:	practical	in	vivo	neurite	
orientation	dispersion	and	density	imaging	of	the	human	brain	Neuroimage	61:1000-1016	
doi:10.1016/j.neuroimage.2012.03.072	

	

	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/357491doi: bioRxiv preprint 

https://doi.org/10.1101/357491
http://creativecommons.org/licenses/by-nc-nd/4.0/

