bioRxiv preprint doi: https://doi.org/10.1101/357491; this version posted June 27, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Electron microscopy 3-dimensional segmentation and quantification of axonal dispersion and
diameter distribution in mouse brain corpus callosum

Hong-Hsi Lee®*, Katarina Yaros®, Jelle Veraart!, Jasmine Pathan?, Feng-Xia Liang3, Sungheon G.
Kim*?, Dmitry S. Novikov'?, Els Fieremans™?

1 Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First
Avenue, New York, NY 10016, USA

2 Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, 660 First
Avenue, New York, NY 10016, USA

3 Department of Cell Biology and Microscopy Core, New York University School of Medicine, 520 First Avenue,
New York, NY 10016, USA

* Corresponding author: Hong-Hsi Lee (email: Hong-Hsi.Lee@nyumc.org)
ORCID ID: 0000-0002-3663-6559

Abstract

To model the diffusion MRI signal in brain white matter, general assumptions have been made
about the microstructural properties of axonal fiber bundles, such as the axonal shape and the
fiber orientation dispersion. In particular, axons are modeled by perfectly circular cylinders with
no diameter variation within each axon, and their directions obey a specific orientation
distribution. However, these assumptions have not been validated by histology in 3-dimensional
high-resolution neural tissue. Here, we reconstructed sequential scanning electron microscopy
images in mouse brain corpus callosum, and introduced a semi-automatic random-walker (RaW)
based algorithm to rapidly segment individual intra-axonal spaces and myelin sheaths of
myelinated axons. Confirmed with a conventional machine-learning-based interactive
segmentation method, our semi-automatic algorithm is reliable and less time-consuming. Based
on the segmentation, we calculated histological estimates of size-related (e.g., inner axonal
diameter, g-ratio) and orientation-related (e.g., Fiber orientation distribution and its rotational
invariants, dispersion angle) quantities, and simulated how these quantities would be observed
in actual diffusion MRI experiments by considering diffusion time-dependence. The reported
dispersion angle is consistent with previous 2-dimensional histology studies and diffusion MRI
measurements, though the reported diameter is larger than those in other mouse brain studies.
Our results show that the orientation-related metrics have negligible diffusion time-dependence;
however, inner axonal diameters demonstrate a non-trivial time-dependence at diffusion times
typical for clinical and preclinical use. In other words, the fiber dispersion estimated by diffusion
MRI modeling is relatively independent, while the “apparent” axonal size estimated by axonal
diameter mapping potentially depends on experimental MRI settings.

Keywords

3d axon segmentation, corpus callosum, fiber orientation distribution, axonal diameter distribution, g-ratio,
diffusion coarse-graining, diffusion time-dependence


https://doi.org/10.1101/357491
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/357491; this version posted June 27, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Introduction

Diffusion MRI (dMRI) is a noninvasive imaging modality that, by measuring the random motion
of water molecules at clinically accessible diffusion times (t ~ 50 ms), is sensitive to a length scale
of about ten micrometer, comparable to cell sizes. Several tissue models for dMRI have been
proposed to specifically probe the neuronal microstructure, in order to estimate the axon
orientation dispersion (Jespersen et al. 2017; Novikov et al. 2018b; Reisert et al. 2017; Ronen et
al. 2014; Schilling et al. 2018; Tariq et al. 2016; Zhang et al. 2012) and the axonal diameter
distribution (Alexander et al. 2010; Assaf et al. 2008; Barazany et al. 2009; Benjamini et al. 2016;
Duval et al. 2015; Komlosh et al. 2013). To enable dMRI modeling, assumptions have been made,
which so far have not been fully validated by comparing against histology. In particular, axons are
assumed to be circular cylinders with no diameter variations along each axon (Alexander et al.
2010; Assaf and Basser 2005; Assaf et al. 2008). This widely adopted assumption contradicts
histological observations of neurite beadings (varicosities) (Baron et al. 2015; Budde and Frank
2010; Li and Murphy 2008; Shepherd et al. 2002; Tang-Schomer et al. 2012), and needs to be
further evaluated when modeling the orientation dispersion and the axonal diameter
distribution, particularly with respect to their dependency on experimental settings such as the
diffusion time ¢t .

To validate dMRI models in the brain white matter (WM) against histology, previous
studies reported multiple tissue parameters, including the fiber orientation distribution (FOD)
(Grussu et al. 2016; Mollink et al. 2017; Ronen et al. 2014; Schilling et al. 2016; Schilling et al.
2018), axon dispersion angle (Ronen et al. 2014), inner axonal diameter (Abdollahzadeh et al.
2017; Aboitiz et al. 1992; Caminiti et al. 2009; Kleinnijenhuis et al. 2017; Liewald et al. 2014;
Mason et al. 2001; West et al. 2015), and g-ratio (Abdollahzadeh et al. 2017; Kleinnijenhuis et al.
2017; Mason et al. 2001; Stikov et al. 2015; West et al. 2015; West et al. 2016; Yang et al. 2016).
In histology, size-related quantities, e.g., diameter and g-ratio, were estimated either by 2d
(Aboitiz et al. 1992; Caminiti et al. 2009; Liewald et al. 2014; Mason et al. 2001; West et al. 2015)
or 3d high-resolution electron microscopy (EM) images (Abdollahzadeh et al. 2017; Kleinnijenhuis
et al. 2017). In contrast, the orientation-related metrics, e.g., FOD and dispersion angle, were
evaluated either by 2d low-resolution polarized light images (4 um/pixel, in-plane) (Mollink et al.
2017) and light microscopy images (1-1.6 um/pixel, in-plane) (Grussu et al. 2016; Ronen et al.
2014), or by 3d moderate-resolution confocal microscopy images (0.42 um/slice, through plane)
(Schilling et al. 2016; Schilling et al. 2018). Although the tissue anisotropy index has been
evaluated on 3d EM images (Salo et al. 2018), retrieving other orientation metrics, e.g., FOD,
rotational invariant and dispersion angle, from 3d high-resolution EM images (< 0.1 um/slice,
through plane) has not yet been attempted.

Furthermore, definitions of tissue parameters differ between studies, both in histology
and MRI, and need to be clarified before use. In particular, the orientation dispersion of axon
bundles could be summarized by (1) the standard deviation (SD) of dispersion angles projected
on a 2d plane (Ronen et al. 2014), by (2) rotational invariants and the root-mean-square (rms) of
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the dispersion angle’s cosine for spherical harmonics (SH)-based methods (Jespersen et al. 2017;
Novikov et al. 2018b; Reisert et al. 2017), or by (3) the normalized orientation dispersion index
(ODI) of specific orientation distributions (e.g., Watson or Bingham distributions) (Schilling et al.
2018; Tariq et al. 2016; Zhang et al. 2012). In this study, we focus on the first two definitions to
avoid introducing further assumptions on the axon dispersion.

Similarly, axonal diameters have been estimated using various methods. To avoid
overestimation of the inner axonal diameter caused by obliquely sliced axons, most of the 2d
histological studies measured the inscribed circle diameter as the diameter estimate (Aboitiz et
al. 1992; Caminiti et al. 2009; Liewald et al. 2014). Other histological studies adopted an
equivalent circle diameter calculated by the cross-sectional area (West et al. 2015) or the short
axis length of a fitted ellipse (Abdollahzadeh et al. 2017). In this study, we focus on the equivalent
circle diameter since (1) the 3d axon structure is fully reconstructed and free from problems of
oblique cross-sections, and (2) contours of the intra-axonal space and the myelin sheath might
be different, leading to unreliable estimates of the g-ratio (ratio of inner to outer diameter) when
using other definitions.

Aside from ambiguous definitions of microstructural features, comparison between dMRI
and histology depends on the experimental settings of the dMRI experiment. Indeed, the
diffusion process can be approximately understood as a coarse-graining process, which is
equivalent to smoothing the tissue microstructure (Novikov et al. 2014) using a kernel of a width
commensurate with the diffusion length L « +/t. In other words, the diffusion times applied in
dMRI measurements potentially affect the metric estimations between studies using different
acquisition parameters, and have to be carefully accounted for.

So far, many EM segmentation software tools have been released for segmenting gray
matter images that use semi-automatic analysis with an interactive proofreading interface
(Benjamini et al. 2016; Dorkenwald et al. 2017; Jeong et al. 2009; Kaynig et al. 2015; Sommer et
al. 2011). Such methods require abundant training data, for which generation is very labor-
intensive and time-consuming. In WM, however, appropriate EM segmentation methods are still
limited (Abdollahzadeh et al. 2017; Kleinnijenhuis et al. 2017; Zaimi et al. 2018). To segment
myelinated axons within acceptable processing time, we propose here a semi-automatic
segmentation algorithm depending on diffusion trajectories obtained by random-hopping on a
cubic lattice bounded by a binary myelin mask, as a simplified version of the seeded-region-
growing method (Abdollahzadeh et al. 2017; Adams and Bischof 1994). Our segmentation
method was further validated by comparing against the interactive Carving function in ilastik
(Sommer et al. 2011).

Here, by analyzing segmented myelinated axons, we calculated both orientation-related
and size-related axonal features based on definitions from either histology or MRI experiment,
where the effect of varying diffusion time was simulated by applying a corresponding smoothing
kernel, and demonstrated a non-trivial discrepancy between estimated microstructural


https://doi.org/10.1101/357491
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/357491; this version posted June 27, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

characteristics from both definitions. In particular, we demonstrated by 3d high-resolution EM
segmentation, for the first time, the influence of the diffusion time-dependence on the
orientation dispersion and the inner axon diameter.
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Materials and Methods

All procedures performed in studies involving animals were in accordance with the ethical
standards of the institution or practice at which the studies were conducted. This article does not
contain any studies with human participants performed by any of the authors.

Animals and image acquisition

A female 8-week-old C57BL/6 mouse was perfused trans-cardiacally using a fixative solution of
4% PFA, 2.5% glutaraldehyde, and 0.1M sucrose in 0.1M phosphate buffer (PB, pH 7.4). The genu
of corpus callosum was later excised from the dissected brain, and the tissue was fixed in the
same fixative solution, followed by a PB containing 2% OsO4 and 1.5% potassium ferrocyanide
for 1 hour. The tissue was then stained with 1% thiocarbohydrazide (Electron Microscopy
Scientices, EMS, PA) for 20min, 2% osmium tetroxide for 30min, and 1% aqueous uranyl acetate
at 4°C overnight. An En Bloc lead staining was performed at 60°C for 30 min to enhance
membrane contrast. The brain sample was dehydrated in alcohol and acetone, and embedded in
Durcupan ACM resin (EMS, PA (Wilke et al. 2013)). The tissue sample was analyzed with a
scanning electron microscope (SEM) (Zeiss Gemini 300 SEM with 3View), and 401 consecutive
images of 6000 x 8000 pixels were acquired, representing a volume of 36 x 48 x 40.1 pm® with a
resolution of 6 x 6 x 100 nm®.

Image processing and axon segmentation by Random-Walker algorithm (RaW)

We down-sampled the image to a resolution of 24 x 24 x 100 nm® using Lanczos interpolation to
lower the computational cost without compromising the segmentation accuracy. Further, we
corrected the geometric distortion in slices disagreeing with the interpolation estimated from
adjacent slices, by using a non-linear deformation calculated with optical flow estimation (Sun et
al. 2010; Sun et al. 2014), and selected a subset of 200 slices (36 x 48 x 20 um3 in volume) to rule
out slices with intractable distortions (Fig. 1a).

To semi-automatically segment the intra-axonal space (IAS) of myelinated axons, we
employed a random-hopping diffusion process, dubbed Random-Walker algorithm (RaW), as a
simplified seeded-region-growing algorithm (Adams and Bischof 1994) applied on a binary mask:
We manually seeded an initial position per axon within the central slice (451 seeds in Fig. 1c), and
filled the IAS by diffusion trajectories, obtained by random-hopping on a cubic lattice, of 4000
particles per axon with 640,000 steps. The diffusion trajectory is confined by a myelin mask (Fig.
1b) obtained by fitting and thresholding the EM image intensity histogram with a bi-Gaussian
model. Segmented axons with an imperfect myelin mask were deleted by proofreading, resulting
in an IAS mask of 316 segmented axons (~ 51,000 axon segments). The IAS segmentation was
then completed by automatically seeding within the previously generated diffusion trajectories
confined by the non-leaky myelin mask (Fig. 1d). The seeding density is a seed per ten slices for
each axon, filled with 10,000 particles per seed with 40,000 steps. The IAS mask was down-
sampled into (100 nm)3—resolution to further analyze axon geometries, e.g., fiber dispersion,
axonal diameter, myelin thickness, and g-ratio.
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All the processing was implemented in Matlab and accelerated by parallel computation
with 12 CPU cores. Total processing time, including the manual seeding, numerical computations
and the proofreading, was 1-2 days.

Conventional axon segmentation (ilastik, Carving)

To compare RaW with a conventional segmentation method, the IAS of 100 selected axons was
manually carved by K.Y. and J.P., using the ilastik software package (Sommer et al. 2011). Seeded
watershed segmentation was performed by ilastik with following settings:

1. Each 2dimage (resolution =24 x 24 nm?) was smoothed by a kernel with a size of 1.6 pixel
(38.4 nm), and was filtered to enhance edges, e.g., cell membrane, mitochondria and
myelin sheath.

2. Markers inside the IAS (object seeds) and outside the IAS (background seeds) were
manually assigned in multiple slices to initiate the Carving process in ilastik and connect
the IAS across the image layers. Markers were further added if initial segmentation was
deemed insufficient after proofreading. Manual correction was necessary for axonal
branching, mitochondria attached to the myelin sheath, and the transition from
myelinated to unmyelinated axonal segments.

The total processing time was about 2 weeks.

The comparison of segmentations from ilastik (Fig. 2a) and RaW (Fig. 2b) is based on the
Jaccard index and the Sgrensen-Dice index computed for individual IAS segmentations, and the
foreground-restricted Rand F-score (V") and the information theoretic F-score (V") (Arganda-
Carreras et al. 2015) computed for IAS segmentations of all axons. The Jaccard index for each
axon (Fig. 2d) is the pixel number of the intersection divided by the pixel number of the union of
IAS segmentations from both methods. The Sgrensen-Dice index for each axon (Fig. 2e) is the
pixel number of the intersection divided by the average pixel number of IAS segmentations from
both methods. The foreground-restricted rand F-score and the information theoretic F-score are
closely related to the Rand index and the variation of information, respectively (Arganda-Carreras
et al. 2015).

Myelin sheath

Each axon’s individual myelin sheath (Fig. 1e) was obtained by overlapping the myelin mask and
the expanded IAS segmentation (Kleinnijenhuis et al. 2017), which is dilated by a myelin thickness
upper bound = 0.4 um, a biologically plausible value for myelinated axons in the brain WM (see
Discussions, limitations for further explanations). Cases of adjacent axons with touching myelin
sheath are segmented by applying a non-weighted distance transform and watershed on the
binary mask including all of the segmented IAS.

Fiber Orientation Distribution (FOD)
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For the segmented IAS of each axon, the corresponding axon skeleton connecting all centers of
mass in each slice was computed. To mimic the microstructure coarse-grained by diffusion
(Novikov et al. 2016; Novikov et al. 2018a), the piecewise linear skeleton of each segmented axon
was then smoothed by a Gaussian kernel with a variance 02 = L? /4 (Novikov et al. 2014), where
L is the diffusion length v/2Dt, where D =2 pm*/ms is a typical value for the intrinsic intra-axonal
diffusion coefficient (Novikov et al. 2018b; Veraart et al. 2016), and t = [1, 10, 100] ms is the
diffusion time range as applicable for dMRI.

Dispersion angle

The dispersion angle of axon segments was calculated by using definitions, corresponding to 2d
histological observations and dMRI measurements.

In histology, each microscopy image is a 2d cross-section of 3d structures. To compare
our results with previous 2d histological studies, we projected all the axon segments onto a
projection plane parallel to the bundle’s mean direction, and calculated the projected dispersion
angle 0,,(¢), defined by the standard deviation of angles between the projected segments and
the mean bundle direction, along which we rotated the projection plane with an azimuthal angle

o.
On the other hand, the SH-based dMRI models (Jespersen et al. 2017; Novikov et al.

2018b) are sensitive to an effective dispersion angle O = cos™!/(cos?8;), where the
individual axon segment’s dispersion angle 6; is the angle between the axon segment’s direction
and the bundle’s mean direction. The O.¢(¢) is calculated by only including axon segments
oriented between ¢ + A¢p /2, where A¢p = 12°.

Furthermore, we express the FOD P (1) as a linear combination of SH basis Y, () via

P@ =1+ ) iplmmm(ﬁ),
l

1=2,4,..m=—

where p;,, is the SH coefficients. The rotational invariants p; are determined by the 2-norm of SH
coefficients via (Novikov et al. 2018b; Reisert et al. 2017)

l
1
pi=m ) Il M =A@ D).
L m=-1

The normalization factor 2V is chosen such that p, = 1 and p; € [0, 1] for [ > 0. The FOD of
axon segments is contributed only by even orders [ (Novikov et al. 2018b; Reisert et al. 2017)
since the FOD has an antipodal symmetry. The dispersion angle 6,,, estimated by rotational
invariants is given by (Novikov et al. 2018b)

6,, = cos™ 1 /(cos2 6i)p,
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and

2p, +1

(cos? 6;),,, = 3

The value of 6,,, is theoretically close to the value of 6. since both of their definitions are related
with the rms of cos 6;.

To simplify the relationship between rotational invariants and the order [, Reisert et al.
proposed a simple Poisson kernel for the axial symmetric FOD with the form p; = AL, where 1 €
[0,1] is a dispersion parameter (Reisert et al. 2017). We tested the applicability of this Poisson
kernel, which effectively corresponds to the multipole expansion of a Coulomb potential.

Inner axonal diameter

To evaluate the influence of the diffusion time on the axonal diameter distribution measured
with dMRI, we aligned each axon’s main direction (denoted as z,4,,,) parallel to the z-axis, cut off
1 um at both ends, in order to create the axon skeleton (a line connecting the center of mass of
each slice), and calculated the cross-sectional area (2 for each slice perpendicular to the skeleton.
Assuming axon as a circular cylinder, its inner diameter is defined as the diameter of an

equivalent circle with the same area: 2r = 2,/2/m.
g-ratio

The g-ratio, manifesting axon myelination, was estimated as follows: we aligned the IAS and the
myelin sheath parallel to the z-axis for each axon, cut off 1 um at both ends, and estimated the
outer diameter 2r' = 2,/2'/mt, where the cross-sectional area £2’, perpendicular to the axon
skeleton, contains both the IAS and the myelin sheath. The g-ratio was estimatedby g = r/r' =

Jo/ar.
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Results
RaW and ilastik (Carving)

The metrics to compare segmentations from ilastik and RAW for all segmented IAS are
summarized in Table 1.

In Fig. 2a, the IAS segmented using ilastik covers all contents in IAS, such as the cytoplasm
and organelles (including mitochondria and nuclei attached to the myelin sheath by manual
corrections). However, Fig. 2b shows that the IAS segmented by using RaW fails to cover
organelles attached to the myelin sheath since these structures are always considered as part of
the myelin mask when applying a bi-Gaussian model for the thresholding.

Fig. 2d-e shows the Jaccard index and the Sgrensen-Dice index to compare the IAS
segmentations from the two methods (ilastik and RaW). For most axons, both indices are high,
manifesting the robustness of our random-hopping segmentation pipeline; this is also
demonstrated by high values of similarity metrics shown in Table 1.

FOD

Fig. 3a-b shows each axon’s smoothed skeleton displayed with a 3d view angle (Fig. 3a) or a 2d
projection (Fig. 3b) for t =[1, 10, 100] ms. Longer diffusion time leads to a longer diffusion length
and a wider smoothing kernel, and effectively smooths out each axon’s tortuous skeleton. The
FOD, displayed either on a triangulated spherical surface (Womersley 2017) (Fig. 3c) or by a SH-
constructed 3d glyph up to the order of [ = 10 (Politis 2016) (Fig. 3d), indicates that longer
diffusion time corresponds to a narrower fiber dispersion, which can be quantified by the
dispersion angle shown in Fig. 4.

To compare with the previous study from (Schilling et al. 2016) that applies a smoothing
kernel of a 1 um width, we also fitted the FOD of t =1 ms (o = 1 um) to a Bingham distribution
(Bingham 1974; Sotiropoulos et al. 2012), yielding fitting parameters k, = 22.2 and k, = 4.6. The
orientation dispersion index, defined by (Mollink et al. 2017)

2 1
ODll,Z = ;tan_l K_ ,
1,2

is ODIl; =0.029 and ODI, = 0.136.
Dispersion angle and rotational invariants

Fig. 4a-b shows the (cross-sectional) projected dispersion angle 6,,(¢) (Fig. 4a) and the effective
dispersion angle O.¢(¢) (Fig. 4b) with respect to the azimuthal angle ¢ for t = [1, 10, 100] ms.
Generally, 8,4 (¢) varies between 8° to 23°, and B.¢(¢) varies between 5° to 31°.
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In Fig. 4c, the time-dependence of rotational invariants is small for p, (3 %), moderate for
P4 (9 %), and large for pg (20 %) for t ranging over 1-20 ms, and is insignificant (< 0.4%) for p,, p,
and pg for diffusion time > 20 ms.

To further display the time-dependence of the dispersion angle, we calculated the
averaged dispersion angle of the three definitions for t ranging over 1-100 ms in Fig. 4d, where
the averaged 0,4 (rms of 8,,(¢) at ¢ = 1°, 2°, ...,360°) decreases with the diffusion time, from
17.7° (t=1ms, 0 =1 um) to 16.9° (t = 100 ms, ¢ = 10 um); the dMRI-sensitive dispersion angle
Oc¢r (calculated by using all axon segments), demonstrates a similar time-dependence, and is
always larger than the corresponding histology-observed projected dispersion angle 6, for all
diffusion times; the dispersion angle 6,,, estimated by rotational invariants of the FOD, is slightly
smaller than O.¢ and shows a similar time-dependence as well. Generally, the time-dependence
of dispersion angles (6,4, Otr, 0y, ) is small (~ 1° for ¢ = 1-100 ms) and negligible for diffusion time
> 20 ms.

In Fig. 4e, rotational invariants are plotted as a function of even orders [, and seem to
obey a power-law over the range [ = 2, 4, ..., 10. The base of the power-law is estimated via the
slope log A, and the predicted p, is given by the intercept C at [ = 0 (Eq. (1) in Discussions). By
definition, py = 1; yet, this power-law relation predicts a p, > 1, as manifested by an intercept C
> 1 atl= 0. In Fig. 4f, the time-dependence of dispersion parameters is small for A (5 %) and
moderate for C (11%) for t ranging over 1-100 ms.

g-ratio

The histogram of the outer axonal diameter, inner axonal diameter, and the g-ratio are shown in
Fig. 5a-c. Their mean £ SD is for the outer axonal diameter =1.68 £ 0.46 um, inner axonal diameter
=1.03 £ 0.41 pm, and g-ratio = 0.59 *+ 0.09. For further comparisons with other studies, we also
reported the median and the interquartile range (IQR in parenthesis) for the outer axonal
diameter = 1.61 (0.52) um, inner axonal diameter = 0.95 (0.52) um, and g-ratio = 0.60 (0.12).

Fig. 5d shows the dependency of g-ratio on the inner diameter. This relationship is
consistent with previous studies and fitted well by the reported log-linear (Berthold et al. 1983;
Little and Heath 1994; West et al. 2015), where the myelin sheath thickness is proportional to
the number of myelin lamellae nl = Cy + C; - (2r) + C, - In(2r). The red curve in Fig. 5d is the
fit, and corresponding parameters are Cyk =0.31 um, C;k =0.02, and C,k =0.02 um, where k is
the myelin lamellar width.

Inner axonal diameter

Fig. 6a-c shows the inner axonal diameter variation along each axon, smoothed by a Gaussian
kernel with the variance a2 for t = [1, 10, 100] ms, along with the corresponding diameter
histogram (Fig. 6d). Fig. 6e shows the time-dependences of the average diameter 2(r) and dMRI-
sensitive effective diameter 27.¢, where re"ff = (r®)/(r?) (Burcaw et al. 2015) based on the signal
attenuation in the wide-pulse limit (Neuman 1974).
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At short diffusion time (Fig. 6a), the axonal diameter varies a lot within each axon,
whereas, at long diffusion time (Fig. 6c), axonal diameter variation is smoothed out within each
axon. Therefore, the axonal diameter distribution at short diffusion time (blue curve in Fig. 6d) is
slightly wider than that at long diffusion time (yellow curve in Fig. 6d). In Fig. 6e, the mean
diameter 2(r) shows no obvious time-dependence. However, the dMRI-sensitive effective
diameter 27.¢ shows significant time-dependence, ~ 18% change, for t ranging over 1-100 ms.

Table 2 shows the inner axonal diameter estimations using different definitions, such as
the short and long axis length of the fitted ellipse with the same second-moments of the axon
cross-section, and the inscribed circle diameter calculated by employing the distance transform
to the axon cross-section. The median of the inscribed circle diameter provides the smallest
diameter estimates = 0.71 um, and, in contrast, the mean of the long axis length provides the
largest diameter estimates = 1.24 um. The cross-section perpendicular to the skeleton has an
average eccentricity of 0.63 + 0.15 (mean % SD) and 0.65 (0.21) (median (IQR)), indicating that
axons are in general approximately elliptical, rather than circular or cylindrical (Abdollahzadeh et
al. 2017).
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Discussion

We successfully segmented ~ 51,000 axon segments from ~ 300 myelinated axons by using a
semi-automatic random-hopping-based algorithm. Diffusion time-dependence of the
orientation-related and size-related tissue characteristics of the brain white matter
microstructure is, for the first time, analyzed via 3d high-resolution EM images. The estimated
dispersion angle of myelinated axons has negligible diffusion time-dependence at typical
diffusion times observed with dMRI. In contrast, the estimated inner axonal diameter has a non-
trivial time-dependence at diffusion times relevant for both pre-clinical and clinical diffusion
imaging.

Here, we discuss our RaW algorithm as compared to a commonly used interactive
segmentation tool, as well as how our results of orientation-related (FOD, dispersion angle,
rotational invariants) and size-related (g-ratio, inner axonal diameter) tissue parameters
compare to previous histological and MRI studies. Finally, we address some limitations of our
methods.

Segmentation methods (ilastik and RaW)

Although ilastik greatly facilitates tracing individual axons (one axon at a time), it is still labor-
intensive. Each individual axon required many training data (object markers and background
markers) in multiple slices, and the segmentation results change dynamically while new markers
are added, increasing the loading of proofreading. The program was quite accurate in delineating
the IAS, but more manual input was required at specific locations, such as axonal branching,
mitochondria or nuclei attached to the myelin sheath.

In contrast, RaW algorithm is straightforward, and depends solely on the quality of the
binary myelin mask. An imperfect myelin mask results in a segmentation (random-hopping
trajectory) infiltrating into other axons or compartments, such as extra-axonal space. In this
study, we successfully segmented ~ 70 % of axons crossing the central slice, albeit ~ 30 % of axons
were deleted by the proofreading because of the leaky myelin mask. Random-hopping-based
method minimizes the need of manual seeding and proofreading (1-2 days, ~ 300 axons/person),
reducing hard labor and simplifying the segmentation pipeline, c.f. 2 weeks, ~ 100 axons/person
by using ilastik (Carving). The manual seeding step can be further automated by extracting the
regional maxima from the distance transform map of the myelin mask and the dilated edges
(Abdollahzadeh et al. 2017). Confirmed with segmentation results by the Carving function of
ilastik, RaW algorithm is robust and reliable to segment the IAS of myelinated axons. Similar to
ilastik, mitochondria attached to the myelin sheath are deemed to be part of the myelin mask
and therefore not delineated accurately, though it should be possible to separately identify the
mitochondria using the semi-automatic pipeline incorporating superpixel-based simple-linear-
iterative-clustering (SLIC) method (Abdollahzadeh et al. 2017; Achanta et al. 2012).

For machine-learning-based segmentation methods, it is time-consuming to produce
training, development, and test data set from 3d EM data. Using RaW method, we can rapidly
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generate enough data to train and validate other segmentation algorithms. Also, simultaneously
acquiring EM and light microscopy images (Wouters and Koerten 1982) provides extra features
by staining specific organelles, facilitating automatic seeding for RAW and potentially model
training data for machine-learning-based methods.

FOD, dispersion angle, and rotational invariants

Our study presents a 3d EM-based extraction of fiber dispersion in the mouse brain genu of CC,
and reports good agreement with dispersion estimated using confocal microscopy and light
microscopy. In particular, the FOD att = 1 ms (smoothed by o = 1 um) fitted to a Bingham
distribution suggests a k; value (= 22), corresponding to small dispersion (e.g., single fiber
dispersion), consistent with existing literature ~ 21 (Schilling et al. 2016), where the structure
tensor analysis was applied to 3d stacks of confocal microscopy images in monkey brains by using
a Gaussian kernel (standard deviation = 1 um) to calculate spatial derivatives. In contrast, the k,
value (= 5 in this study), related to large dispersion (e.g., fiber fanning/branching), is different
from the previous study ~ 12 (Schilling et al. 2016), probably influenced by the sampling site in
CC.

In addition, the estimated dispersion angle is in agreement with previous histological
studies yielding a dispersion of ~ 18.1° for the human brain CC in (Ronen et al. 2014) and 17° for
the rat brain CC in (Leergaard et al. 2010). Remarkably, it is also in agreement with the recently
dMRI-estimated in vivo fiber dispersion ~ 17° in major human WM tracts (Veraart et al. 2016).
Along directions with small fiber spread (¢ = -30" and 150° in Fig. 4a-b), the dispersion angle is ~
8° with ODI, = 0.029, consistent with values estimated from confocal microscopy images of the
CC (Schilling et al. 2018).

Furthermore, the estimated dispersion angle is comparable between dMRI studies using
different diffusion times, as we found the time-dependence of dispersion angles is minimal (~ 5
% for t = 1-100 ms in Fig. 4d). Similarly, for diffusion time > 20 ms, the time-dependence of
rotational invariants (p,, p4, Pe) is minimal (< 0.4 % fort = 20-100 ms in Fig. 4c), assuring the
assumption of the time-independence of rotational invariants in SH-based models (Novikov et al.
2018b; Reisert et al. 2017).

As initially proposed by (Reisert et al. 2017), we verified that the rotational invariants
approximately obey a power-law (Poisson kernel) of the order [ for [ = 2-10, and found that this
power-law behavior is not well-normalized and overshoots at [ = O (Fig. 4e). To compensate for
that, a negative isotropic term needs to be introduced into the power-law, losing the simplicity
of the Poisson kernel, i.e.

pl = C '/’11 - (C_ 1)601,#(1)

where C is a constant 2 1, and §,; is a Kronecker delta. Indeed, in Fig. 4f, the dispersion
parameters (4, C) are obtained by using a linear fit of log p; with respect to [ =2-10, whereby the
fitted C (= 1.1-1.2) > 1 indicates the overshoot of the power-law relation (4 = 0.8) at [ = 0.
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g-ratio

We obtained a relatively smaller histology g-ratio value = 0.6, as compared to previous
histological studies: 0.808 for > 18-week-old mice (Mason et al. 2001), 0.81 for adult mice (West
et al. 2015) (age not specified), and 0.76 for 2-month-old mice (Yang et al. 2016). This could be
caused by (1) the difference of changes in myelin structures during the EM processing (Kirschner
and Hollingshead 1980), such as fixation and dehydration, and (2) potentially inaccurate
segmentation of the myelin sheath. Since we only segmented some axons, instead of all, the
watershed algorithm cannot avoid overestimation of the segmented myelin sheath touching the
myelin sheath of the unsegmented axons, leading to an overall overestimated myelin sheath
thickness and a slightly underestimated g-ratio in our study.

Different definitions of g-ratio are used in the field of histology versus MRI, with the latter

(gmr1) sometimes being called the aggregate g-ratio , as defined by gygr; = \/1 — MVF/FVF
(Stikov et al. 2011), where MVF and FVF are the myelin volume fraction and the fiber volume
fraction, respectively. However, while MRl models typically assume a single g-ratio value for the
axons within an MRI voxel, we reported that the genuine g-ratio g from histology has a non-
negligible variation over our sample size (Fig. 5d) which is much smaller than a typical MRI voxel
(by an order of 100). In order to compare MRI measurement with histology, (West et al. 2016)
proposed the following relation between the gyr; and the genuine histology g:

gz _ (gZT'2>
MRI <r,2) ’

which corresponds to an estimated gyr; = 0.64 in this study, in agreement with the aggregate g-
ratio = 0.62 for rat brain CC in (Abdollahzadeh et al. 2017) and aggregate g-ratio = 0.69 for
macaque brain CC in (Stikov et al. 2015).

Inner axonal diameter and its distribution

By calculating the cross-sectional area perpendicular to the axon skeleton (Abdollahzadeh et al.
2017), the estimated inner axonal diameter is 1-2 % smaller than the estimation calculated by
using the cross-sectional area perpendicular to axon’s main direction (data not shown). In other
words, diameter estimations are not significantly affected by either considering axon skeletons
or not as in our sample, since axons in CC are generally straight (mean sinuosity = 1.04).

Although the Gamma distribution is the most commonly used model for the inner axonal
diameter distribution, the generalized extreme value distribution describes the diameter
distribution better (Sepehrband et al. 2016a). This argument is also true in our data for the inner
diameter distribution shown in Fig. 5b (fits to distributions are shown in Appendix A and Fig. 8).

In this study, we used the equivalent circle diameter to evaluate inner and outer axonal
diameters and the genuine g-ratio. Alternatively, the inner axonal diameter can be estimated by
other definitions, such as short and long axis length of the fitted ellipse, and the inscribed circle

14


https://doi.org/10.1101/357491
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/357491; this version posted June 27, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

diameter (Table 2). Generally, median diameters are smaller than mean diameters by 6-9 %;
compared with the equivalent circle diameter, the short axis length is smaller by ~11 %, the long
axis length is larger by ~ 20 %, and the inscribed circle diameter is smaller by ~ 24 %. The inscribed
circle diameter was used as a diameter estimate in many histology studies (Aboitiz et al. 1992;
Caminiti et al. 2009; Liewald et al. 2014), while some studies, on the other hand, did not mention
their calculation methods of inner diameters.

For the mouse brain CC, our inner diameter estimates (equivalent circle diameter) is
larger than values reported in previous EM studies by a factor of 1.2-1.8: 0.47 um for 45-day-old
mice in (Sturrock 1980), 0.88 um for > 18-week-old mice in (Mason et al. 2001), 0.56 um for adult
mice in (West et al. 2015) (age not specified), and 0.54 um for an 8-week-old mouse in
(Sepehrband et al. 2016a). This is potentially caused by differences in calculation methods (e.g.,
equivalent circle diameter, short axis length, inscribed circle diameter), the image quality, and
the tissue shrinkage during fixation (Bozzola and Russell 1999).

The MRI-sensitive effective diameter 27, varies from 1.59 um to 1.35 pum for t = 1-100
ms, values that are slightly larger than reported values of 27,4 in a previous histological study
(1.32 um) (Sepehrband et al. 2016b). However, in previous MRI literature, the dMRI-measured
diameter is larger than our 2r.¢ estimation by a factor of > 1.4, even when applying very strong
diffusion-sensitive gradients |g| < 1350 mT/m (Sepehrband et al. 2016b). This discrepancy could
be due to neglecting the diffusion time-dependence of the extra-axonal signal (Burcaw et al.
2015; De Santis et al. 2016; Lee et al. 2017), or potentially due to misinterpreting the extra-axonal
signal change as the intra-axonal one. In particular, when applying strong diffusion gradients, the
dMRI-measured diameter is further biased by neglecting the higher order |g|* corrections (Lee
et al. 2017) to the intra-axonal model in (Neuman 1974).

Limitations

The random-hopping-based segmentation method depends heavily on the quality of the myelin
mask. Mitochondria and nuclei directly attached to the inner myelin border are recognized as
part of the myelin mask and need to be separately identified by other algorithms (Abdollahzadeh
et al. 2017; Achanta et al. 2012).

While segmenting the individual myelin sheath for each axon, we assigned an upper
bound for the myelin thickness (Kleinnijenhuis et al. 2017). The upper bound has to be chosen
carefully when proofreading since the g-ratio has a strong dependence on this tuning parameter
(Fig. 7): A small upper bound leads to an under-segmented myelin sheath and a large g-ratio, and
a large upper bound leads to an over-expanded myelin sheath and a small g-ratio. Determining
the upper bound of the myelin thickness is crucial when evaluating the g-ratio and the actual
myelin thickness, whereas this upper bound is usually not reported in other studies.

Compared with other imaging techniques, such as light microscopy (Grussu et al. 2016;
Ronen et al. 2014), polarized light imaging (Mollink et al. 2017), and confocal microscopy
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(Schilling et al. 2016; Schilling et al. 2018), the size of EM samples is relatively small, and results
based on EM segmentations could be less representative because of the limited field-of-view.

In this study, we only focus on myelinated axons. Other structures, such as unmyelinated
axons, astrocytes, and blood vessels, are also important and need to be segmented for a more
comprehensive analysis.
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Conclusion

We present here a random-hopping-based segmentation method facilitating a 3d EM
segmentation pipeline in brain white matter, with minimal labor for proofreading and manual
seeding that could also be further automated. The 3d EM segmentation provides an accurate and
reliable evaluation of the fiber orientation dispersion, and the calculated projected dispersion
angle is compatible with previous 2d histological studies, as well as agreement of the estimated
MRI-measured dispersion angle with previous MRI studies, with a very small diffusion time-
dependence. Besides the fiber orientation information, the 3d EM segmentation enables to
estimate the inner and outer axonal diameter as well as the g-ratio according to various
definitions by analyzing the cross-section perpendicular to the axon skeleton. Our simulation
shows that the diffusion time-dependence of the dMRI-derived axon diameter metric is non-
trivial and has to be taken into account for studies mapping axonal diameters with dMRI.
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Appendix A. Axonal diameter estimates in various definitions

In this section, distributions of axonal diameters are showed based on different definitions, such
as equivalent circle diameter (Fig. 8a), short and long axis length of the fitted ellipse (Fig. 8b-c),
and inscribed circle diameter (Fig. 8d). To compare with a previous study (Sepehrband et al.
2016a), we fitted the axonal diameter histogram to Gamma distribution and generalized extreme
value (GEV) distribution in Fig. 8, which shows that GEV distribution fits better to the
experimental diameter distribution (of all four definitions) than Gamma distribution does,
consistent with the conclusion in (Sepehrband et al. 2016a). Also, GEV distribution has a longer
tail than Gamma distribution does for thick axons in diameters > 3-5 um, manifested by semi-
logarithmic plots of diameter distributions in the bottom row of Fig. 8.
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(f) (9)

Fig. 1. The semi-automatic IAS segmentation pipeline. (a) A tissue sample of genu in CC, in a
volume of 36 x 48 x 20 um?, was acquired by sequential SEM. (b) The myelin mask (red) was
calculated by intensity thresholding with a bi-Gaussian model for further segmentation of the
intra-axonal space (IAS). (c) Seeds (red dots) for random diffusion grid-hopping process were
assigned manually over one central slice (451 seeds). The random-hopping trajectory was
bounded by the myelin mask in (b). (d) IAS (colors) was filled by all random-hopping trajectories
(316 segmented IAS). The IAS from axons with leaky myelin mask has been excluded by
proofreading. (e) The individual myelin sheath (colors) is the overlap of the myelin mask and
the expanded IAS dilated by < 0.4 um. Touching myelin sheaths of adjacent axons are separated
based on a non-weighted watershed algorithm. (f-g) By transforming each segmented IAS and
individual myelin sheath into polyhedrons, it is feasible to perform numerical simulations in
such 3d realistic microstructure
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Fig. 2. IAS segmented by (a) ilastik, Carving (blue pixels), (b) RaW (red pixels) and (c) both
methods (intersection, yellow pixels) in a representing slice. The histogram of the (d) Jaccard
index and the (e) Sgrensen-Dice index for the comparison of IAS segmentations from the two
methods. The scale bar below (a-c) is 4 um
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t = 10ms t=1ms

t = 100 ms

0

Fig. 3. (a) The skeleton of each segmented axon is smoothed to mimic the diffusion time-
dependent coarse-grained microstructure along each axon’s main direction with diffusion time
t =[1, 10, 100] ms. (b) The skeleton of each segmented axon in (a) was viewed from another
view angle. Each axon becomes effectively straighter for longer diffusion times. (c) The FOD of
tangent vectors of all axon segments, starting at the center of a unit sphere, shows the intrinsic
axonal dispersion. The unit of the colorbar is steradian™. (d) The 3d FOD glyph was generated
by fitting the FOD in (c) to spherical harmonics up to the order of [ = 10. Arrows in (c) indicate
the view angle for FOD glyphs in (d)
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Fig. 4. (a) Projected dispersion angle 6,,(¢) and (b) dMRI-sensitive dispersion angle ¢ ()
(calculated within a bin width A¢ = 12°) with respect to the azimuthal angle ¢ at diffusion time
t =[1, 10, 100] ms. (c) The rotational invariants (p,, p4, Pg) show a time-dependence < 0.4 % for
diffusion time t = 20-100 ms. (d) The dispersion angle averaged over all ¢ shows a time-
dependence of ~ 1° for diffusion time t = 1-100 ms. (e) Rotational invariants p; with respect to
the even orders | = 2, 4, ..., 10 at diffusion time t = [1, 10, 100] ms. (f) Dispersion parameters of
the modified power-law relation (4, C in Eq. (1)) obtained by using a linear fit of log p; with
respect to [ = 2-10 for diffusion time t = 1-100 ms
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Fig. 5. The histogram of (a) outer axonal diameter, (b) inner axonal diameter, and (c) genuine g-
ratio. The relation of g-ratio and inner diameter is shown in (d) as a 2d histogram, fitted by the
log-linear equation (red curve) proposed by (Berthold et al. 1983)
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Fig. 6. The axonal diameter (2r) variation, estimated by the cross-sectional area perpendicular
to the skeleton and displayed along the main direction of each axon (z,4,,), was smoothed by a
Gaussian kernel mimicking the diffusion process with an effective diffusion time t = (a) 1 ms, (b)
10 ms, and (c) 100 ms. (d) The diameter histogram becomes narrower with longer diffusion
time. (e) The average diameter 2(r) has no significant time-dependence, whereas the dMRI-

sensitive effective diameter 27, where 72 = (r°)/(r?) (Burcaw et al. 2015), has a non-trivial
time-dependence for diffusion time t < 50 ms
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Fig. 7. The artificial upper bound applied for myelin sheath segmentation influences the mean
g-ratio. A small upper bound for the myelin thickness leads to under-segmented individual
myelin sheaths (top left, upper bound = 0.1 um). In contrast, a large upper bound causes over-
expanded individual myelin sheaths (top right, upper bound = 0.6 um). In this study, an upper

bound of 0.3-0.4 um results in appropriate individual myelin sheaths (top middle, upper bound
=0.4 um)
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Fig. 8. The distribution of axonal diameters, defined by (a) equivalent circle diameter calculated
from the cross-sectional area, (b) short axis length and (c) long axis length of the fitted ellipse,
and (d) Inscribed circle diameter. The upper row shows an exemplified axon cross-section (gray
area) and the corresponding diameter estimates (double-arrowed lines). The middle row shows
experimental diameter distributions (purple bars) and the fits based on the Gamma distribution
(red) and the generalized extreme value distribution (GEV) (blue). The bottom row is the middle
row displayed in a semi-logarithmic scale for experimental data (data points) and the fits (solid

lines)
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Similarity metric IAS segmentations (ilastik, RaW)
Jaccard Index 0.86
Serensen-Dice index 0.92
yrand 0.75
yinfe 0.90

Table 1. Similarity metrics to compare |IAS segmentations by ilastik and RaW

Inner axonal diameter (um)

Mean (SD) Median (IQR)
Equivalent circle diameter = 2,/2/m 1.03 (0.41) 0.95 (0.52)
Short axis length 0.92 (0.38) 0.84 (0.47)
Long axis length 1.24 (0.50) 1.14 (0.64)
Inscribed circle diameter 0.76 (0.33) 0.71(0.41)

Table 2. Inner axonal diameter of myelinated axons, calculated by the equivalent circle
diameter (cross-sectional area), the short axis length and long axis length of the fitted ellipse,
and the inscribed circle diameter. Standard deviation (SD) and interquartile range (IQR) are

shown in the parenthesis

28


https://doi.org/10.1101/357491
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/357491; this version posted June 27, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Compliance with Ethical Standards

* Disclosure of potential conflicts of interest

1. Funding: This study was supported by the National Institute of Neurological Disorders
and Stroke of the NIH under award number R21 NS081230 (Fieremans, E., Novikov, D.
S., and Kim, S. G.) and RO1 NS088040 (Fieremans, E. and Novikov, D. S.), and was
performed at the Center of Advanced Imaging Innovation and Research (CAI2R,
www.cai2r.net), an NIBIB Biomedical Technology Resource Center (NIH P41 EB017183,
Fieremans, E., Novikov, D. S., and Kim, S. G.).

2. Conflict of Interest: The authors declare that they have no conflict of interest.

* Ethical approval: All procedures performed in studies involving animals were in accordance
with the ethical standards of the institution or practice at which the studies were
conducted. This article does not contain any studies with human participants performed by
any of the authors.

* Informed consent: Not applicable.

29


https://doi.org/10.1101/357491
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/357491; this version posted June 27, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

References

Abdollahzadeh A, Belevich |, Jokitalo E, Tohka J, Sierra A (2017) 3D Axonal Morphometry of White
Matter bioRxiv:239228

Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum Brain
Res 598:143-153

Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S (2012) SLIC superpixels compared to state-of-
the-art superpixel methods IEEE Trans Pattern Anal Mach Intell 34:2274-2282
doi:10.1109/TPAMI.2012.120

Adams R, Bischof L (1994) Seeded Region Growing leee T Pattern Anal 16:641-647

Alexander DC, Hubbard PL, Hall MG, Moore EA, Ptito M, Parker GJ, Dyrby TB (2010) Orientationally
invariant indices of axon diameter and density from diffusion MRI Neuroimage 52:1374-1389
doi:10.1016/j.neuroimage.2010.05.043

Arganda-Carreras | et al. (2015) Crowdsourcing the creation of image segmentation algorithms for
connectomics Front Neuroanat 9:142 doi:10.3389/fnana.2015.00142

Assaf Y, Basser PJ (2005) Composite hindered and restricted model of diffusion (CHARMED) MR imaging
of the human brain Neuroimage 27:48-58 doi:10.1016/j.neuroimage.2005.03.042

Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ (2008) AxCaliber: a method for measuring axon diameter
distribution from diffusion MRI Magn Reson Med 59:1347-1354 d0i:10.1002/mrm.21577

Barazany D, Basser PJ, Assaf Y (2009) In vivo measurement of axon diameter distribution in the corpus
callosum of rat brain Brain 132:1210-1220 do0i:10.1093/brain/awp042

Baron CA, Kate M, Gioia L, Butcher K, Emery D, Budde M, Beaulieu C (2015) Reduction of Diffusion-
Weighted Imaging Contrast of Acute Ischemic Stroke at Short Diffusion Times Stroke 46:2136-
2141 doi:10.1161/STROKEAHA.115.008815

Benjamini D, Komlosh ME, Holtzclaw LA, Nevo U, Basser PJ (2016) White matter microstructure from
nonparametric axon diameter distribution mapping Neuroimage 135:333-344
doi:10.1016/j.neuroimage.2016.04.052

Berthold CH, Nilsson I, Rydmark M (1983) Axon diameter and myelin sheath thickness in nerve fibres of
the ventral spinal root of the seventh lumbar nerve of the adult and developing cat J Anat
136:483-508

Bingham C (1974) Antipodally Symmetric Distribution on Sphere Ann Stat 2:1201-1225

Bozzola JJ, Russell LD (1999) Electron microscopy: principles and techniques for biologists. Jones &
Bartlett Learning,

Budde MD, Frank JA (2010) Neurite beading is sufficient to decrease the apparent diffusion coefficient
after ischemic stroke Proc Natl Acad Sci U S A 107:14472-14477 doi:10.1073/pnas.1004841107

Burcaw LM, Fieremans E, Novikov DS (2015) Mesoscopic structure of neuronal tracts from time-
dependent diffusion Neuroimage 114:18-37 doi:10.1016/j.neuroimage.2015.03.061

Caminiti R, Ghaziri H, Galuske R, Hof PR, Innocenti GM (2009) Evolution amplified processing with
temporally dispersed slow neuronal connectivity in primates Proc Natl Acad SciUS A
106:19551-19556 doi:10.1073/pnas.0907655106

De Santis S, Jones DK, Roebroeck A (2016) Including diffusion time dependence in the extra-axonal space
improves in vivo estimates of axonal diameter and density in human white matter Neuroimage
130:91-103 doi:10.1016/j.neuroimage.2016.01.047

Dorkenwald S, Schubert PJ, Killinger MF, Urban G, Mikula S, Svara F, Kornfeld J (2017) Automated
synaptic connectivity inference for volume electron microscopy Nat Methods 14:435-442
doi:10.1038/nmeth.4206

Duval T et al. (2015) In vivo mapping of human spinal cord microstructure at 300mT/m Neuroimage
118:494-507 doi:10.1016/j.neuroimage.2015.06.038

30


https://doi.org/10.1101/357491
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/357491; this version posted June 27, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Grussu F, Schneider T, Yates RL, Zhang H, Wheeler-Kingshott C, DeLuca GC, Alexander DC (2016) A
framework for optimal whole-sample histological quantification of neurite orientation
dispersion in the human spinal cord J Neurosci Methods 273:20-32
d0i:10.1016/j.jneumeth.2016.08.002

Jeong WK, Beyer J, Hadwiger M, Vazquez A, Pfister H, Whitaker RT (2009) Scalable and interactive
segmentation and visualization of neural processes in EM datasets IEEE Trans Vis Comput Graph
15:1505-1514 doi:10.1109/TVCG.2009.178

Jespersen SN, Olesen JL, Hansen B, Shemesh N (2017) Diffusion time dependence of microstructural
parameters in fixed spinal cord Neuroimage doi:10.1016/j.neuroimage.2017.08.039

Kaynig V et al. (2015) Large-scale automatic reconstruction of neuronal processes from electron
microscopy images Med Image Anal 22:77-88 doi:10.1016/j.media.2015.02.001

Kirschner DA, Hollingshead CJ (1980) Processing for electron microscopy alters membrane structure and
packing in myelin J Ultrastruct Res 73:211-232

Kleinnijenhuis M, Johnson E, Mollink J, Joabdi S, Miller K (2017) A 3D electron microscopy segmentation
pipeline for hyper-realistic diffusion simulations, ISMRM 25th annual meeting, Hawaii, USA
Proceedings of the ISMRM annual meeting 25:1090

Komlosh ME, Ozarslan E, Lizak MJ, Horkayne-Szakaly I, Freidlin RZ, Horkay F, Basser PJ (2013) Mapping
average axon diameters in porcine spinal cord white matter and rat corpus callosum using d-PFG
MRI Neuroimage 78:210-216 doi:10.1016/j.neuroimage.2013.03.074

Lee H-H, Fieremans E, Novikov DS (2017) What dominates the time dependence of diffusion transverse
to axons: Intra- or extra-axonal water? Neurolmage
doi:https://doi.org/10.1016/j.neuroimage.2017.12.038

Leergaard TB, White NS, de Crespigny A, Bolstad I, D'Arceuil H, Bjaalie JG, Dale AM (2010) Quantitative
histological validation of diffusion MRI fiber orientation distributions in the rat brain PLoS One
5:e8595 doi:10.1371/journal.pone.0008595

Li P, Murphy TH (2008) Two-photon imaging during prolonged middle cerebral artery occlusion in mice
reveals recovery of dendritic structure after reperfusion J Neurosci 28:11970-11979
doi:10.1523/JINEUROSCI.3724-08.2008

Liewald D, Miller R, Logothetis N, Wagner HJ, Schuz A (2014) Distribution of axon diameters in cortical
white matter: an electron-microscopic study on three human brains and a macaque Biol Cybern
108:541-557 do0i:10.1007/s00422-014-0626-2

Little GJ, Heath JW (1994) Morphometric analysis of axons myelinated during adult life in the mouse
superior cervical ganglion J Anat 184 ( Pt 2):387-398

Mason JL, Langaman C, Morell P, Suzuki K, Matsushima GK (2001) Episodic demyelination and
subsequent remyelination within the murine central nervous system: changes in axonal calibre
Neuropathol Appl Neurobiol 27:50-58

Mollink J et al. (2017) Evaluating fibre orientation dispersion in white matter: Comparison of diffusion
MRI, histology and polarized light imaging Neuroimage 157:561-574
doi:10.1016/j.neuroimage.2017.06.001

Neuman C (1974) Spin echo of spins diffusing in a bounded medium The Journal of Chemical Physics
60:4508-4511

Novikov DS, Jensen JH, Helpern JA, Fieremans E (2014) Revealing mesoscopic structural universality with
diffusion Proc Natl Acad Sci U S A 111:5088-5093 do0i:10.1073/pnas.1316944111

Novikov DS, Jespersen SN, Kiselev VG, Fieremans E (2016) Quantifying brain microstructure with
diffusion MRI: Theory and parameter estimation arXiv preprint arXiv:161202059

Novikov DS, Kiselev VG, Jespersen SN (2018a) On modeling Magn Reson Med 79:3172-3193
d0i:10.1002/mrm.27101

31


https://doi.org/10.1101/357491
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/357491; this version posted June 27, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Novikov DS, Veraart J, Jelescu 10, Fieremans E (2018b) Rotationally-invariant mapping of scalar and
orientational metrics of neuronal microstructure with diffusion MRl Neuroimage
doi:10.1016/j.neuroimage.2018.03.006

Politis A (2016) Microphone array processing for parametric spatial audio techniques

Reisert M, Kellner E, Dhital B, Hennig J, Kiselev VG (2017) Disentangling micro from mesostructure by
diffusion MRI: A Bayesian approach Neuroimage 147:964-975
doi:10.1016/j.neuroimage.2016.09.058

Ronen I, Budde M, Ercan E, Annese J, Techawiboonwong A, Webb A (2014) Microstructural organization
of axons in the human corpus callosum quantified by diffusion-weighted magnetic resonance
spectroscopy of N-acetylaspartate and post-mortem histology Brain Struct Funct 219:1773-1785
doi:10.1007/s00429-013-0600-0

Salo RA, Belevich I, Manninen E, Jokitalo E, Grohn O, Sierra A (2018) Quantification of anisotropy and
orientation in 3D electron microscopy and diffusion tensor imaging in injured rat brain
Neuroimage 172:404-414 doi:10.1016/j.neuroimage.2018.01.087

Schilling K, Janve V, Gao Y, Stepniewska |, Landman BA, Anderson AW (2016) Comparison of 3D
orientation distribution functions measured with confocal microscopy and diffusion MRI
Neuroimage 129:185-197 doi:10.1016/j.neuroimage.2016.01.022

Schilling KG, Janve V, Gao Y, Stepniewska |, Landman BA, Anderson AW (2018) Histological validation of
diffusion MRI fiber orientation distributions and dispersion Neuroimage 165:200-221
doi:10.1016/j.neuroimage.2017.10.046

Sepehrband F, Alexander DC, Clark KA, Kurniawan ND, Yang Z, Reutens DC (2016a) Parametric
Probability Distribution Functions for Axon Diameters of Corpus Callosum Front Neuroanat
10:59 do0i:10.3389/fnana.2016.00059

Sepehrband F, Alexander DC, Kurniawan ND, Reutens DC, Yang Z (2016b) Towards higher sensitivity and
stability of axon diameter estimation with diffusion-weighted MRI NMR Biomed 29:293-308
d0i:10.1002/nbm.3462

Shepherd GM, Raastad M, Andersen P (2002) General and variable features of varicosity spacing along
unmyelinated axons in the hippocampus and cerebellum Proc Natl Acad Sci U S A 99:6340-6345
doi:10.1073/pnas.052151299

Sommer C, Straehle C, Koethe U, Hamprecht FA llastik: Interactive learning and segmentation toolkit. In:
Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on, 2011. IEEE,
pp 230-233

Sotiropoulos SN, Behrens TE, Jbabdi S (2012) Ball and rackets: Inferring fiber fanning from diffusion-
weighted MRI Neuroimage 60:1412-1425 doi:10.1016/j.neuroimage.2012.01.056

Stikov N et al. (2015) In vivo histology of the myelin g-ratio with magnetic resonance imaging
Neuroimage 118:397-405 doi:10.1016/j.neuroimage.2015.05.023

Stikov N, Perry LM, Mezer A, Rykhlevskaia E, Wandell BA, Pauly JM, Dougherty RF (2011) Bound pool
fractions complement diffusion measures to describe white matter micro and macrostructure
Neuroimage 54:1112-1121 doi:10.1016/j.neuroimage.2010.08.068

Sturrock RR (1980) Myelination of the mouse corpus callosum Neuropathol Appl Neurobiol 6:415-420

Sun D, Roth S, Black MJ Secrets of optical flow estimation and their principles. In: Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on, 2010. IEEE, pp 2432-2439

Sun D, Roth S, Black MJ (2014) A quantitative analysis of current practices in optical flow estimation and
the principles behind them International Journal of Computer Vision 106:115-137

Tang-Schomer MD, Johnson VE, Baas PW, Stewart W, Smith DH (2012) Partial interruption of axonal
transport due to microtubule breakage accounts for the formation of periodic varicosities after
traumatic axonal injury Exp Neurol 233:364-372 do0i:10.1016/j.expneurol.2011.10.030

32


https://doi.org/10.1101/357491
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/357491; this version posted June 27, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Tarig M, Schneider T, Alexander DC, Gandini Wheeler-Kingshott CA, Zhang H (2016) Bingham-NODDI:
Mapping anisotropic orientation dispersion of neurites using diffusion MRI Neuroimage
133:207-223 d0i:10.1016/j.neuroimage.2016.01.046

Veraart J, Fieremans E, Novikov DS (2016) Universal power-law scaling of water diffusion in human brain
defines what we see with MRI arXiv preprint arXiv:160909145

West KL, Kelm ND, Carson RP, Does MD (2015) Quantitative analysis of mouse corpus callosum from
electron microscopy images Data Brief 5:124-128 d0i:10.1016/j.dib.2015.08.022

West KL, Kelm ND, Carson RP, Does MD (2016) A revised model for estimating g-ratio from MRI
Neuroimage 125:1155-1158 do0i:10.1016/j.neuroimage.2015.08.017

Wilke SA et al. (2013) Deconstructing complexity: serial block-face electron microscopic analysis of the
hippocampal mossy fiber synapse J Neurosci 33:507-522 do0i:10.1523/JINEUROSCI.1600-12.2013

Womersley RS (2017) Efficient spherical designs with good geometric properties arXiv preprint
arXiv:170901624

Wouters CH, Koerten HK (1982) Combined light microscope and scanning electron microscope, a new
instrument for cell biology Cell Biol Int Rep 6:955-959

Yang HJ, Vainshtein A, Maik-Rachline G, Peles E (2016) G protein-coupled receptor 37 is a negative
regulator of oligodendrocyte differentiation and myelination Nat Commun 7:10884
do0i:10.1038/ncomms10884

Zaimi A, Wabartha M, Herman V, Antonsanti PL, Perone CS, Cohen-Adad J (2018) AxonDeepSeg:
automatic axon and myelin segmentation from microscopy data using convolutional neural
networks Sci Rep 8:3816 do0i:10.1038/s41598-018-22181-4

Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012) NODDI: practical in vivo neurite
orientation dispersion and density imaging of the human brain Neuroimage 61:1000-1016
doi:10.1016/j.neuroimage.2012.03.072

33


https://doi.org/10.1101/357491
http://creativecommons.org/licenses/by-nc-nd/4.0/

