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Abstract 

How is effort integrated in value-based decision-making? Animal models and human 

neuroimaging studies, primarily linked the anterior cingulate cortex (ACC) and ventral striatum 

(VS) to the integration of effort in valuation. Other studies demonstrated the role of these 

regions in invigoration to effort demands, thus it is hard to separate the neural activity linked to 

anticipation and subjective valuation from actual performance. Here, we studied the neural basis 

of effort valuation separated from performance. We scanned forty participants with fMRI and 

they were asked to accept or reject monetary gambles that could be resolved with future 

performance of a familiar grip force effort challenge or a fixed risk prospect. Participants’ 

willingness to accept prospective gambles reflected discounting of values by physical effort and 

risk. Choice-locked neural activation in contralateral primary sensory cortex and ventromedial 

prefrontal cortex (vmPFC) tracked the magnitude of prospective effort the participants faced, 

independent of choice time and monetary stakes. Estimates of subjective value discounted by 

effort were found to be tracked by the activation of a network of regions common to valuation 

under risk and delay, including vmPFC, VS and sensorimotor cortex. Together, our findings 

show separate neural mechanisms underlying prospective effort and actual effort performance. 
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Introduction 

Effortful behavior, whether among laboratory participants or foraging animals, generally 

demonstrates that effort imposes a cost on valuation, revealed by discounting of rewards and 

preferences for less effortful alternatives (Hull 1943; Charnov 1976; Rudebeck et al. 2006). 

Theoretical models of valuation suggest that the integration of expected cost and benefit 

representations guides choice behaviors (Rangel et al. 2008; Padoa-Schioppa 2011). 

Converging evidence from animal models and human neuroimaging studies link integrated 

value to neural activity within a network of regions that includes the ventral striatum (VS), 

posterior cingulate cortex, anterior insula and ventromedial prefrontal cortex (vmPFC; Bartra, 

McGuire, & Kable, 2013; Clithero & Rangel, 2013; Rushworth & Behrens, 2008) and 

demonstrate modulation of its activity by common costs such as risk (Mohr et al. 2010) and 

delay (Carter et al. 2010). However, accounts of effort-based valuation have instead emphasized 

the specific role of the anterior cingulate cortex (ACC) together with VS. For example, animals 

with lesions to ACC (Walton et al. 2003; Rudebeck et al. 2006), or depletion of dopamine 

within VS (Salamone et al. 2007) fail to allocate effort properly to maximize available rewards. 

Patterns of phasic dopamine release within VS (Day et al. 2010) and the activity of single 

neurons within ACC reflect the association of effort cost to expected reward in isolation 

(Pasquereau and Turner 2013) and competitive contexts (Hillman and Bilkey 2012). Human 

neuroimaging studies extended the relationship of VS to effort-discounted reward (Croxson et 

al. 2009; Kurniawan et al. 2010) and the ACC to effort-based cost-benefit analyses (Prévost et 

al. 2010; Kurniawan et al. 2013). Related studies also implicated primary and supplementary 

motor areas (SMA), insula and posterior parietal cortex as sensitive to expected effort costs 

(Croxson et al. 2009; Burke, Brünger, et al. 2013; Meyniel et al. 2013; Skvortsova et al. 2014). 

Together, effort-based valuation studies have consistently emphasized the relationship of ACC 
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and VS to effortful behavior, but inconsistently present several possible loci for the integration 

of effort and value. 

Effort relates to the difficulty of performing a behavior, such as physical force or response rate 

required within a limited time. Previous reports typically presented effort costs within passive 

or forced choice paradigms that demanded invigoration to meet upcoming effort challenges 

(Croxson et al. 2009; Prévost et al. 2010; Kurniawan et al. 2013). This is a distinct process from 

the prospective imposed cost of effort upon the subjective value of a potential outcome. 

Accordingly, recent reports suggest that ACC and VS activations in effort-based tasks may 

reflect these invigoration demands, rather than the valuation processes (McGinty et al. 2013; 

Holec et al. 2014; Shenhav et al. 2014). Similarly, single neurons within ACC were shown to 

exhibit encoding of task demands more often than effort-discounted value (Hosokawa et al. 

2013). To specifically target effort- and risk-cost valuation, we developed a paradigm that 

presented participants with choices about effort and risk separated from effort production and 

outcome resolution. Participants were first trained to associate cues with physical grip force 

effort levels. In a subsequent choice phase, participants rated the subjective attractiveness of 

mixed gambles that offered a monetary gain or loss from their initial endowment. The outcome 

of these mixed gambles could depend upon future effort performance. Participants separately 

made similar choices in a task with fixed risk prospects. We hypothesized that prospective effort 

would impose a cost upon decision makers, reflected in both their willingness to gamble and 

neural activation related to value. Neuroimaging analyses examined the relationship of neural 

activity during choice to the magnitude of potential gain, loss and effort or risk present in each 

gamble. We further separately tested neural correlates of behavioral model-based predictions 

of subjective value from each task. Thus, we present a novel approach to characterize the neural 

basis of valuation under prospective effort, a common cost in economic choices.  

We share all neuroimaging and behavioral data as well as analyses codes used. 
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Materials and Methods 

Participants 

Forty-six healthy, right-handed participants recruited from the University of Texas at Austin 

community participated in the experiment. Six participants were excluded from further analyses 

due to either excessive head movement, MRI artifacts or failure to meet behavioral criteria 

described below. The remaining forty participants comprised the sample group for our fMRI 

analyses (mean age = 22.62 years, standard deviation = 2.90 years, 21 females). Sample size 

was determined a priori by a power analysis for a contrast of interest (parametric prospective 

effort) from a pilot study of 13 participants (mean age = 21.3 years, standard deviation 2.31 

years, 7 females) with the fMRIpower software package (Mumford and Nichols 2008). Each 

participant provided informed consent prior to the experiment. All participants had normal or 

corrected-to-normal vision, reported no history of psychiatric diagnoses, and neuralgic or 

metabolic illnesses. The Institutional Review Board at the University of Texas at Austin 

approved all experimental procedures. 

 

Behavioral paradigm 

General methods 

Prior to the experiment, participants were endowed with $20 cash. Participants were instructed 

that they were participating in a study about preferences in economic choices. Stimuli 

presentation and participant response collection were implemented with custom MATLAB 

code and the Psychophysics toolbox (Brainard 1997). 

 

Baseline force measurement 
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Once inside the MRI scanner, each participant’s maximum voluntary contraction (MVC) force 

was assessed with an MR-compatible dynamometer (BIOPAC TSD121B-MRI, BIOPAC 

Systems Inc., USA). Participants were prompted to squeeze the dynamometer with their right 

hand as hard as possible in three intervals of two seconds interspersed with periods of rest for 

two seconds (Fig.1A). The calibration procedure was performed without feedback or incentives. 

The average force assessed by this procedure was considered the participants’ MVC for 

calibration of the training and test task phases. After calibration, participants were shown a 

display with real-time force feedback for demonstration purposes. 

 

Effort training 

To examine the role of effort in economic choices, participants were first trained to associate 

color and height cues with the performance of physical grip effort levels. For each participant, 

five effort levels were determined at 30, 40, 50, 60 and 70% of their calibrated MVC (Fig.1B). 

During the effort training phase, participants attempted to complete physical grip effort 

production trials without incentives at five levels of difficulty. Each training run consisted of 

80 total trials, 16 trials at each effort level, drawn randomly from one of five orders optimized 

for event-related fMRI. To successfully complete a trial, participants were required to exert grip 

force at or above a given effort level for at least 1 second of total time within a 2 second response 

period. Participants received two types of feedback during the training phase: real-time effort 

production level (dynamically adjusted height of red bar in effort display, Fig. 1C) and success 

or failure to meet the effort goal on a trial-by-trial basis. 
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Figure 1. Summary of behavioral task: A, Effort level calibrated for each subject without incentive or feedback B, 
Training phase tested performance at 5 calibrated levels of grip force with real-time effort feedback. After training 
phase, subjects rated subjective attractiveness of prospective effort mixed gambles C, then prospective risk mixed 
gambles D, before resolution of one randomly selected gamble from each session. 
 

Prospective effort mixed gambles 

Following the effort training session, participants rated the attractiveness of prospective effort 

mixed gambles. Each mixed gamble presented participants with three components: a potential 
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gain in addition to their endowment ($2-$12 in $2 increments); a potential loss from their 

endowment ($1-$6 in $1 increments) and one of the five effort levels established in the previous 

training session (30, 40, 50, 60 and 70% of calibrated MVC force; Fig. 1D). There were 180 

trials in the choice set, all 36 combinations of potential gain and loss at each of the five effort 

levels. Effort level trial order and inter-stimulus interval timing were determined by an 

efficiency calculation for the prospective effort contrast of interest (Kao et al., 2009). Potential 

gain and loss amounts were drawn from the choice set for each effort level randomly without 

replacement. To encourage participants to reflect on the subjective attractiveness of mixed 

prospects rather than a fixed decision rule (e.g. accept all gambles with potential gain > $6), we 

asked participants to indicate one of four responses to each gamble (strongly accept, weakly 

accept, weakly reject, and strongly reject) as quickly as possible with a four-button response 

box. Participants were instructed that one gamble trial would be drawn at random at the end of 

the experiment. If the gamble was accepted, the resolution of the gamble (monetary gain or 

loss) would depend upon successful performance of the indicated effort level five times in 

succession without error at the end of the experiment as practiced during the earlier training 

session. If the randomly selected gamble trial was previously rejected, then no gain or loss 

would occur to their endowment. 

 

Prospective risk mixed gambles  

To compare effort-based valuation with valuation under risk, participants completed a similar 

set of prospective risk mixed gambles. This phase always followed the effort mixed gambles 

phase to limit potential framing effects (e.g. thinking of prospective efforts in terms of fixed 

probabilities). Prospective risk gambles also presented participants with three components: a 

potential gain in addition to their endowment ($2-$12 in $2 increments), and a potential loss 

from their endowment ($1-$6 in $1 increments), and one of five winning probability levels (10, 
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30, 50, 70 and 90%; Fig. 1E). The five levels were selected to span a wide range of success 

probabilities. Trial orders and choice sets were constructed similarly to the previous phase for 

the prospective risk contrast of interest. Participants indicated one of four responses as above 

to each trial and were informed that one trial from this phase would be selected at random at 

the end of the experiment and its outcome honored according to their choice to accept or reject, 

as in the previous phase. 

Confidence ratings 

To assess the effect of the grip force effort training paradigm on subsequent prospective effort 

gamble valuations, participants were asked to rate how confident they were that they could 

perform five successive grip force trials, as in the training phase, at nine levels (10-90% of their 

MVC in 10% increments). Participants used a button pad to freely indicate between 0 and 100% 

confidence in their ability to successfully perform a grip force at each effort level. This phase 

was always completed after both effort and risk mixed gamble phases to limit probability-based 

framing effects during prospective gambles valuations. 

 

Resolution 

Finally, while still in the scanner, participants faced the resolution of each prospective gamble 

phase. One trial from the prospective effort mixed gambles phase and one trial from the 

prospective risk mixed gambles phase, were randomly selected. For each selected trial, if the 

participant indicated ’strong reject’ or ’weak reject’ to the randomly drawn gamble, the 

associated gamble resolution phase ended without gain or loss. However, if for the selected trial 

the participant responded with ’strong accept’ or ’weak accept’, the drawn gamble was played 

out as follows: For the selected trial from the prospective effort mixed gambles phase, 

participants were required to attempt five consecutive physical grip force trials at the effort 

level of the randomly drawn prospect (e.g. 40% in Fig.1C). For the selected trial from the 
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prospective-risk mixed gambles phase, participants passively viewed the outcome of the 

randomly drawn gamble played out by the computer. For each case, success resulted in the 

monetary gain associated with the drawn gamble and failure resulted with the associated loss. 

All monetary gains or losses that incurred in the resolution phase were added or subtracted from 

the participant’s initial endowment. After the experiment, participants were debriefed and paid 

in cash for their time and the results of the mixed gamble resolutions. 

Behavioral analyses 

We tested participants’ overall willingness to gamble (proportion of gambles accepted) prior to 

other behavioral analyses. This test revealed two participants that failed to meet a predetermined 

behavioral threshold (accepted or rejected more than 95% of all gamble trials) and excluded 

them from further analyses. From the training phase, we calculated mean success rate 

(percentage of making the goal in effort trials). We fitted a binary-logistic mixed-effects 

regression model to each of the mixed gambles phases to predict gamble acceptance by 

prospective effort or risk, gain and loss magnitudes. In addition, we fitted a linear model to 

predict acceptance rates across the different gamble components and reaction times. Finally, 

mean confidence rates were calculated from the confidence rating phase. All statistical analyses 

were performed in R using lme4 package. 

 

Neuroimaging 

Image acquisition 

Imaging data were acquired on a 3 Tesla Skyra MRI scanner system (Siemens) with a 32-

channel head coil. Anatomical images for registration to Montreal Neurological Institute (MNI) 

template space were acquired with a high-resolution magnetization prepared rapid gradient 

echo (MPRAGE) pulse sequence (TR = 1900 ms, TI = 900 ms, TE = 2.43 ms, flip angle = 9°, 

FOV = 256, voxel size 1.0 x 1.0 x 1.0 mm). Functional images were acquired with a T2* 
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weighted multiband echo-planar imaging sequence (TR= 1000 ms, multiband acceleration 

factor= 4, iPAT parallel acceleration factor = 2, TE=30 ms, flip angle = 63°, FOV=230, voxel 

size 2.4 x 2.4 x 2.4 mm; Moeller et al., 2010). For functional scans, fifty-six gapless axial slices 

were positioned 30°off the anterior commissure-posterior commissure line to reduce frontal 

signal dropout (Deichmann et al. 2003). Higher-order shimming was used to reduce 

susceptibility artifacts. 

fMRI data preprocessing 

Raw DICOM data images were converted to NIFTI format and organized to conform to the 

‘Brain Imaging Data Structure’ specifications (BIDS; Gorgolewski et al., 2016). Preprocessing 

was conducted using FMRIPREP (version 1.0.0-rc13; Esteban et al., 2018; K. Gorgolewski et 

al., 2011, 2017). Within the FMRIPREP framework, each T1 weighted volume was corrected 

for bias field using N4BiasFieldCorrection v2.1.0 (Tustison et al. 2010) and skullstripped using 

antsBrainExtraction.sh v2.1.0 (using OASIS template). Cortical surface was estimated using 

FreeSurfer v6.0.0 (Dale et al. 1999). The skullstripped T1w volume was coregistered to 

skullstripped ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov et al. 2009) 

using nonlinear transformation implemented in ANTs v2.1.0 (Avants et al. 2008). Functional 

data was motion corrected using MCFLIRT v5.0.9 (Jenkinson et al. 2002). This was followed 

by co-registration to the corresponding T1-weighted volume using boundary based registration 

9 degrees of freedom - implemented in FreeSurfer v6.0.0 (Greve and Fischl 2009). Motion 

correcting transformations, T1 weighted transformation and MNI template warp were applied 

in a single step using antsApplyTransformations v2.1.0 with Lanczos interpolation. Three tissue 

classes were extracted from T1w images using FSL FAST v5.0.9 (Zhang et al. 2001). Voxels 

from cerebrospinal fluid and white matter were used to create a mask in turn used to extract 

physiological noise regressors using a CompCor (Behzadi et al. 2007). Mask was eroded and 

limited to subcortical regions to limit overlap with gray matter, six principal components were 
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estimated. Frame-wise displacement (Power et al. 2014) was calculated for each functional run 

using Nipype implementation. Spatial smoothing of functional images was performed with a 

Gaussian kernel with a full-width half maximum of 5 mm. Data and design matrices were high-

pass filtered with a Gaussian-weighted least-squares straight line fit with a cutoff period of 100 

s. Grand-mean intensity normalization of each functional image volume’s entire four-

dimensional data set was performed by a single multiplicative factor.  

 

fMRI data analyses 

Whole-brain analyses 

All neuroimaging analyses focused on neural activity at the time of prospective valuation. In 

each whole-brain analysis, general linear models assessed the relationship of neural activity to 

mixed gamble variables or subjective value model predictions. The first whole-brain parametric 

model (GLM1) modeled five parametric regressors, three from the prospective effort mixed 

gambles phase: monetary gain, monetary loss and physical-demand (grip force effort level). To 

account for the uncertainty component of the effort phase (probability of not making the goal), 

two additional regressors modeled actual success-probability (goal success rate during 

training), and perceived success-probability (post task confidence rating). A second whole-

brain parametric model (GLM2) modeled three parametric regressors from the prospective risk 

mixed gambles phase: monetary gain, monetary loss and prospective risk level associated with 

gamble resolution. In both models, parametric mixed gamble regressors were chosen to identify 

brain regions wherein activation or deactivation correlated with magnitude of each regressor, 

independent of changes in the other regressors without orthogonalization (Mumford et al. 

2015). A second set of analyses (GLM3) and (GLM4) modeled a parametric regressor that 

reflected an estimate of a participant’s probability of accepting a gamble from the effort- and 

risk-based phases, respectively. For each participant, responses were collapsed into accept or 
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reject categories and a binary logistic regression was fitted to predict response by the size of 

the potential gain, loss and effort (GLM3) or risk (GLM4). We then applied the resulting 

logistic equation parameters to generate a predicted probability of gamble acceptance regressor 

for each trial for each phase. In a separate whole brain-analyses, these regressors were used to 

identify brain regions that tracked the predicted probability of accepting a gamble, an estimate 

related to the subjective value of the gamble at choice. The binary logistic regression equations 

followed the forms: 

1. GLM3: p(accept) = !"#$%#&'()∙+&'()%#,-..∙+,-..%#/00-12∙+/00-123

45!"#$%#&'()∙+&'()%#,-..∙+,-..%#/00-12∙+/00-123
 

2. GLM4: p(accept) = !(#$%#&'()∙+&'()%#,-..∙+,-..%#1(.7∙+1(.7)

45!(#$%#&'()∙+&'()%#,-..∙+,-..%#1(.7∙+1(.7)
 

In all of the GLMs participants’ reaction times were modeled using the mean centered trial-by-

trial reaction time. Additional regressors of no interest included all trials unmodulated 

(intercept), trials without behavioral responses, and nine confound regressors derived from 

preprocessing with FMRIPREP. These nine regressors included six motion parameters over 

time (rigid-body x-y-z translation and rotation transform ) and three derivative of RMS variance 

over voxels (standardized, non-standardized and voxel-wise standardized). All statistical 

analyses were corrected for multiple comparisons with Gaussian Field Theory (GFT) based 

whole-brain cluster correction at a threshold of p <0.05.  

 

Data sharing 

Unthresholded whole-brain statistical maps of activations are available for reference at 

NeuroVault.org (https://neurovault.org/collections/3955/; K. J. Gorgolewski et al., 2015). 

Neuroimaging data necessary to recreate all analyses will be made available as part of the 

OpenfMRI project (https://openneuro.org/datasets/ds001167/versions/00001; Poldrack & 
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Gorgolewski, 2017). Behavioral data, analysis codes and fMRI analysis codes as well are 

available at: osf.io/mb3qw. 

 

Results  

Behavioral Results 

Behavior: effort training 

Participants’ behavior reflected modulation by effort, whereby success rates on effort training 

trials and post task confidence ratings decreased as the level of effort increased (Fig. 2A). In 

the training phase, increased effort requirements reduced the probability of successful 

performance (OR = 0.92, 95% CI [0.91, 0.93], p < 0.001). Averaging training performance 

within each effort level for each participant showed a strong negative linear correlation of effort 

level and training success ratio: (r = −0.81, t(159) = −10.12, p < 0.001). Similarly, post-task 

confidence ratings of effort performance decreased as effort increased (r = −0.50, t(319) = -17.95, 

p < 0.001); Fig. 2A). 

 

Behavior: mixed gambles 

Participants’ overall willingness to gamble reflected an effect of prospective effort and risk 

costs (see Table 1). In the mixed gambles effort task, as the level of prospective effort increased, 

probability of gamble acceptance decreased. Similarly, in the mixed gambles risk task, 

prospective risk reduced average gamble acceptance rates.  

Table 1. Prospective mixed gambles results  
  OR 95% CI p 

Prospective effort mixed gambles 
Effort 0.32 [0.30, 0.35] < 0.001 
Gain 3.62 [3.35, 3.90] < 0.001 
Loss 0.56 [0.52, 0.60 ] < 0.001 

Prospective risk mixed gambles 
Risk 0.11 [0.10, 0.12] < 0.001 
Gain 3.27 [3.00, 3.57] < 0.001 
Loss 0.51 [0.48, 0.55 ] < 0.001 
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Participants’ median reaction times followed a negative quadratic relationship (i.e. slowest 

median RT for gambles accepted on average 50% of the time) under prospective effort (R2 = 

0.60, p < 0.001) and prospective risk (R2 = 0.78, p < 0.001; Fig. 2B). To illustrate participants’ 

choice preferences for mixed gambles under prospective effort and risk, gain and loss levels 

were collapsed into 3 bins each . Group average acceptance rates for effort-based gambles (Fig. 

2C) and risk-based gambles (Fig. 2D) illustrate a pattern of decreased willingness to gamble 

across the entire choice set as prospective effort or risk increased.  

 

 

 

Figure 2. behavioral results: A. Increasing effort levels reduced performance success rate during training and 
confidence success rate during post-task survey. B. Group normalized median reaction times related to distance 
from indifference reflected in mean gamble acceptance rates in effort (red) and risk (blue) tasks. C,D. Heat maps 
depict preferences by level of prospective cost. For illustration, gain and loss were collapsed into 3 levels each. Error 
bars indicate S.E.M. 
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Neuroimaging results 

Whole-brain parametric mixed gambles 

Parametric analyses of neural activation at choice (GLM1, GLM2) revealed activity in distinct 

brain regions that was modulated by the components of effort- and risk-based mixed gambles 

tasks (Fig. 3). Increased activation for increasing prospective effort was found in left primary 

sensory cortex and increased activity for decreasing physical-demand was found in vmPFC 

(Fig. 3A). In contrast, increased activation for increased prospective risk showed a broader 

region that included left sensorimotor cortex and left superior parietal lobule. Decreased 

activation for increased prospective risk was found within the medial frontal cortex, anterior 

and posterior cingulate cortex, right striatum, frontal polar cortex and right sensorimotor cortex 

(Fig. 3D). In both the effort and risk tasks increasing prospective gain corresponded with 

increased activity in the right sensorimotor cortex, SMA, dorsal and posterior ACC and visual 

areas. In the effort task, increased activation for increasing prospective gains was also found 

within the ventral striatum, right hippocampus, ACC and ventral prefrontal regions (OFC, 

vmPFC Fig. 3B,E). In both effort and risk tasks, there were no decreased activations for 

increasing prospective gain. Under prospective effort, increased activations for increasing 

prospective loss were found in right dlPFC and lateral frontal polar cortex, left primary motor 

cortex, left posterior parietal cortex and medial premotor areas, and there were no decreased 

activations for increasing prospective loss (Fig. 3C). No activation were found for prospective 

loss under risk.  
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Figure 3. Parametric activation and deactivation related to magnitude of prospective effort A, potential gain 
B, and loss C, in effort-based mixed gamble stimuli, and activation related to prospective risk D, and gain E, 
in risk-based mixed gamble stimuli. Statistical maps corrected for multiple comparisons using Gaussian 
Random Field Theory at whole-brain level p < 0.05. 
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Whole-brain subjective value prediction analyses 

A parallel set of parametric analyses (GLM3, GLM4) identified brain regions where activation 

tracked model predictions of the probability of accepting each gamble. In contrast to the 

parametric analyses that considered the fixed magnitude of mixed gamble components, these 

analyses relied upon each participant’s choice behavior to generate individual estimates of 

subjective value for each trial. These analyses revealed shared and distinct contributions of 

regions for valuation under each prospective cost. The right VS, vmPFC and right sensorimotor 

cortex tracked value estimates under both prospective costs. Under prospective effort, activity 

within left dlPFC, right insula and right putamen tracked value estimates (Fig. 4A). Under 

prospective risk, right lPFC, and bilateral caudate tracked value estimates (Fig. 4B). 

 

  

Discussion 

We examined the neural basis of effort-based valuation isolated from production demands and 

outcome resolution. We adapted a prospective mixed gambles choice paradigm to present 

participants with mixed gambles associated with familiar effort challenges or fixed risk 

prospects. Participants’ choice behavior and confidence ratings separately reflected the 

imposition of a graded cost upon rewards associated with effort or risk, an observation 

consistent with many previous effort-based studies (Walton et al. 2006; Salamone et al. 2018). 

Figure 4. Parametric activation and deactivation related to estimates of subjective value from the effort A, and 
risk B tasks. Statistical maps corrected for multiple comparisons at whole-brain gaussian random field theory level 
p < 0.05. 
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Our neuroimaging analyses focused on the time of choice to reveal activation related to 

prospective effort or risk cost, and participants’ choice behavior. We found a modulation of 

vmPFC and left sensory cortex at choice by prospective effort magnitude. It has been suggested 

that vmPFC functions as a global comparator of multimodal valuation (Gläscher et al. 2009; 

Lebreton et al. 2009; Levy and Glimcher 2012), and several studies reported links between 

vmPFC activation and effort-based preferences (Basten et al. 2010; Treadway et al. 2012; 

Kroemer et al. 2014). Activity in primary sensory cortex has been reported to reflect the 

magnitude of effort demand (Keisker et al. 2009; Schmidt et al. 2012) as well as degree implied 

physical effort in read descriptions (Moody and Gennari 2010). Economic theories of decision 

making models often describe valuation as a cognitive process where options’ properties are 

compared independent of the sensorimotor contingencies (e.g., Padoa-Schioppa, 2011). In 

contrast, embodied cognition frameworks maintain that motor and sensory inputs are integral 

components of value representations (Kiefer and Pulvermüller 2012). Our findings support this 

interpretation of effort-cost representation as early as the relevant effector sensory cortex (hand 

area in our task), which in turn putatively relays the information for higher level integration in 

the vmPFC. 

The present findings do not align with related literature that emphasizes the role of the ACC 

and VS in effort-based valuation processes (Prévost et al. n.d.; Rudebeck et al. 2006; Skvortsova 

et al. 2014; Klein-Flugge et al. 2016). Our results support recent neurophysiological findings 

that suggested that the contribution of ACC relates to anticipation or invigoration to effort 

demands, that are absent in a prospective task (Cowen et al. 2012; Holec et al. 2014). Critical 

reviews and reports put into question the link of dopamine-related activity within VS to effort 

and reward expectations (Salamone and Correa 2012; McGinty et al. 2013), and reframe the 

role of ACC in valuation as control-based (Shenhav et al. 2013). Likewise, related evidence 

suggests that ACC activation during foraging decisions reflect inferences of choice difficulty, 
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not value (Shenhav et al. 2014). Furthermore, this interpretation is supported by similar 

neuroimaging studies that did not find significant evidence for ACC modulation by effort cost 

in prospective effort choice (Bernacer et al. 2016) and voluntary effort-based choices, either 

physical (Kurniawan et al. 2013) or cognitive (Schouppe et al. 2014),. 

In addition to identifying regions that tracked effort cost, the goal of our analyses was to relate 

neural activation at choice to participants’ behavior. We used subjective responses to 

individually predict the probability of accepting each prospective mixed gamble, an estimate of 

its’ subjective value. We found that activation of vmPFC and VS as well as visual and motor 

regions tracked subjective value estimates during choices under both prospective effort and 

risk. Notably, clusters encompassing insula, putamen and dorsal premotor regions were related 

to subjective value estimates under prospective effort, whereas prospective risk-based estimates 

related predominantly to activation of bilateral caudate and right lPFC. These findings accord 

with evidence that vmPFC and VS comprise a core network for the computation of value during 

choice. In contrast to ACC, premotor areas and insular cortex that encode arousal or salience 

(Bartra et al. 2013; Rangel and Clithero 2013). Similar to other studies of effort-based decisions 

(Burke, Brunger, et al. 2013; Mathar et al. 2016), our design included an effort task where the 

participants did not reach the target goal in all of the effort trials. We accounted for this 

uncertainty component (probability of not making the goal) in our model, yet we acknowledge 

that future designs should separate between these components.  

In summary, our results demonstrate the validity of the prospective effort paradigm and refine 

the association of several brain regions to the process of effort-based valuation that is 

independent of production. Notably, we provide evidence to support the notion that a common 

network represents value discounted by effort cost at choice as in other costs such as risk and 

delay (Kable and Glimcher 2007; Tom et al. 2007; Peters and Buchel 2009). While extensive 

literature supports a crucial role for ACC in effort-based valuation, our results suggest its 
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contribution may be constrained to invigoration or anticipation of upcoming effort production. 

Given the great societal cost of maladaptive sensitivity to effort and its role in common 

impairments to motivated behavior, further understanding of the neural basis effort-based 

valuation offers great promise to inform the next generation of behavioral and neurological 

treatments. 
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