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Abstract

Determining the genetic causal variants and estimating their effect sizes are considered to

be correlated but independent problems. Fine-mapping studies often rely on the ability

to integrate useful functional annotation information into genome wide association univari-

ate/multivariate analysis. In the present study, by modeling the probability of a SNP being

causal and its effect size as a set of correlated Gaussian/non-Gaussian random variables, we

design an optimization routine for simultaneous fine-mapping and effect size estimation. The

algorithm is released as an open source C package MODE.

Availability and Implementation: http://sites.google.com/site/sundarvelkur/mode

Contact: amdale@ucsd.edu, svelkur@ucsd.edu

1 Introduction

Detection and estimation of the genetic causal variants associated with a particular phenotypic

trait is typically accomplished by reinforcing Genome Wide Association Studies (GWAS) find-

ings with fine mapping analysis. However, for highly polygenic phenotypes, more often than

not, biologically causal SNPs do not reach genome-wide significance [1, 2, 3, 4, 5, 6]. In this

work, we aim to simultaneously estimate the probability of a SNP being causal and its ef-

fect size by developing a well designed optimization routine, that allows for incorporation of

functional annotation data. This could potentially aid in accurate detection and estimation of

causal loci.
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2 Problem statement

Modeling the genotype-phenotype relation through a linear model [7]

y = Xβ + ε (1)

where N is the number of subjects, n is the number of genetic markers, y is a N×1 phenotype

vector, X related is the N × n genotype matrix, and ε is a N × 1 is the vector of noise

terms modeled as N(0,Σε), we aim to estimate the regression coefficients β such that ε̂ =

(ŷ − y)T (ŷ − y) is minimum. The elements of X are typically coded as 0,1 or 2. It is well

documented that due to the correlated and sparse nature of the SNPs, the univariate regression

results in erroneous estimates [8, 9, 10]. Following [11], we minimize F = L+ C, with

L = −log
[
(2π)−n/2|Σ̃ε|−1/2

]
+ 1

2(y −Xβ̂)T Σ̃−1
ε (y −Xβ̂)

C =
n∑
j=1

cj(β̂j)
(2)

where the cost associated with the jth SNP is given as

cj(β̂j) = −log
[
π̂1jp1j(β̂j) + (1− π̂1j)p0j(β̂j)

]
(3)

Here π̂1 = [π̂11, π̂12, · · · , π̂1n]T is the n × 1 vector of non-null prior probabilities of the SNPs.

p1j(•) and p0j(•) denote the pdf of causal and null SNPs, respectively. The causal variants

and their effect sizes are obtained by minimizing F with respect to π1 and β. Due to Linkage

Disequilibrium (LD) and other covariates, the effect sizes and the prior probabilities could be

correlation. We take into account these correlations while solving for π1 and β. Minimization

of the two-term objective function (likelihood and cost functions) is carried out efficiently using

the conjugate gradient method.

3 Method

The function to be minimized is a combination of an error minimizing term - the negative

log-likelihood function, and a cost term which imparts the necessary sparse characteristics to

the effect sizes. We model the probability of a SNP being causal as uniformly distributed
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between a and b, i.e. π1j ∼ U [aj , bj ], and the effect sizes as a Gaussian distribution, βj ∼

N(µ, σ). Probabilistic shrinkage is achieved by modeling the null SNPs using a Laplace pdf

with zero mean and σ0 standard deviation. Incorporation of Linkage Disequilibrium and

function annotation information is through the distributions of prior probabilities, effect sizes,

and the correlations among them. The 2n× 2n correlation matrix structure is given as

ρ =

ρππ ρπβ

ρβπ ρββ


If no information about the correlation structure is known, the ρ matrix is taken to be

the identity matrix. The correlated non-Gaussian random variables are first transformed into

standard normal random variables using the Nataf’s transformation [12], as implemented in

[13]. Central difference scheme is used to obtain the gradients of the cost function with respect

to β and π1. Mathematical details regarding the gradients and hessian (with respect to

β) can be found in [11]. A similar approach can be used in obtaining the derivatives with

respect to π1. MODE source code and binary executables can be downloaded from http:

//sites.google.com/sites/sundarvelkur/mode. MODE borrows functions from ART [13],

an open source package for simulation of correlated non-Gaussian random variables.

4 Results

4.1 Simulation studies

The phenotype vector with a heritability 0.5 is simulated for 100000 individuals using Eq.

(1) utilizing the genotype matrix obtained using Hapgen2 [14] and 1000 Genomes [15]. We

consider the first 20000 SNPs of chromosomes 1 to 22 with minor allele frequency greater

than 0.01. The number of causal variants are taken to be 50% of all the SNPs belonging

to the functional annotation {Exon, 3’UTR, 5’UTR}, with effect sizes distributed as N(0, 1).

We consider three replication sets and three different effect size vectors, resulting in 18 cases

to estimate the mean positive predictive value (PPV), negative predictive value (NPV), and

correlation between the estimated and true effect size. MODE results, along with few other

techniques [11] are shown in Figure 1.
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Figure 1: (a) correlation between the estimated and true effect sizes, (b) PPV and NPV.
RegPI: Regularized pseudo inverse (green triangle); MM-EP: Mixture model with enriched

priors (magenta diamond); MM-DAP: Mixture model with DAP priors (orange star);
MM-CP: Mixture model with constant priors (red inverted triangle); Infinitesimal: Normal
prior (no mixture) (blue circle); LASSO (black square); Univariate (brown cross); MODE

(purple plus). Refer to [11] for the details of the methods.
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5 Discussions

It is observed that in comparison with the MM-CP and MM-DAP [6], MODE estimates have

better PPV and NPV characteristics. The improvement in the correlation is due to better NPV

of MODE. The relationship between the causal nature of the SNPs and its effect size, and cor-

relations among the causal probabilities and effect sizes are typically unknown. Specification of

these quantities require heuristics or additional information, possibly from gene-network analy-

sis, which could identify potential causal SNPs and their relationship with adjacent SNPs. The

algorithm is computational tractable unlike MCMC based bayesian methods which requires

heavy computational resources and time. MODE locates the causal SNPs and estimates its

effect size efficiently with acceptable accuracy.
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