

1 Retrospective whole-genome sequencing analysis distinguished PFGE and drug resistance
2 matched retail meat and clinical *Salmonella* isolates

3

4 Andrea B. Keefer^a, Lingzi Xiaoli^a, Nkuchia M. M'ikanatha^b, Kuan Yao^c, Maria Hoffmann^c, and
5 Edward G. Dudley^{a,#}

6

7 ^aDepartment of Food Science, The Pennsylvania State University, University Park,
8 Pennsylvania, USA

9 ^bPennsylvania Department of Health, Harrisburg, Pennsylvania, USA

10 ^cCenter for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA),
11 College Park, Maryland, USA

12

13 Running Title: WGS distinguished historic *Salmonella* isolates

14

15 [#]Address correspondence to Edward Dudley, egd100@psu.edu

16

17 Keywords: Whole-genome sequencing, retail meat, *Salmonella*, antimicrobial resistance

18

19

20

21

22

23

24 **Abstract**

25 Non-typhoidal *Salmonella* are a leading cause of outbreak and sporadic-associated
26 foodborne illnesses in the U.S. These infections have been associated with a range of foods,
27 including retail meats. Traditionally, pulsed-field gel electrophoresis (PFGE) and antibiotic
28 susceptibility testing (AST) have been used to facilitate public health investigations of
29 *Salmonella* infections. However, whole-genome sequencing (WGS) has emerged as an
30 alternative tool that can be routinely implemented. To assess its potential in enhancing integrated
31 surveillance in Pennsylvania, WGS was used to directly compare the genetic characteristics of 7
32 retail meat and 43 clinical historic *Salmonella* isolates, subdivided into three subsets based on
33 PFGE and AST results, to retrospectively resolve their genetic relatedness and identify
34 antimicrobial resistance (AMR) determinants. Single nucleotide polymorphism (SNP) analyses
35 revealed the retail meat isolates within *S. Heidelberg*, *S. Typhimurium* var. O5- subset 1, and *S.*
36 *Typhimurium* var. O5- subset 2 were separated from each primary PFGE pattern-matched
37 clinical isolate by 6-12, 41-96, and 21-81 SNPs, respectively. Fifteen resistance genes were
38 identified across all isolates, including *fosA7*, a gene only recently found in a limited number of
39 *Salmonella* and a $\geq 95\%$ phenotype to genotype correlation was observed for all tested
40 antimicrobials. Moreover, AMR was primarily plasmid-mediated in *S. Heidelberg* and *S.*
41 *Typhimurium* var. O5- subset 2; whereas, AMR was chromosomally-carried in *S. Typhimurium*
42 var. O5- subset 1. Similar plasmids were identified in both the retail meat and clinical isolates.
43 Collectively, these data highlight the utility of WGS in retrospective analyses and enhancing
44 integrated surveillance of *Salmonella* from multiple sources.

45

46

47 **Importance**

48 Due to its enhanced resolution, whole-genome sequencing has emerged as a public health
49 tool that can be utilized for pathogen monitoring, outbreak investigations, and surveillance for
50 antimicrobial resistance. This study demonstrated that historical isolates that are
51 indistinguishable by pulsed-field gel electrophoresis, a conventional genotyping method, and
52 antibiotic susceptibility testing, could in fact be different strains, further highlighting the power
53 of whole-genome sequencing. Moreover, we evaluated the role of whole-genome sequencing in
54 integrated surveillance for drug-resistant *Salmonella* from retail meat and clinical sources in
55 Pennsylvania and found a high correlation between antimicrobial resistance phenotype, as
56 determined by antibiotic susceptibility testing, and genotype. Furthermore, the genomic context
57 of each resistance gene was elucidated, which is critical to understanding how resistance is
58 spreading within *Salmonella* in Pennsylvania. Taken together, these results demonstrate the
59 utility and validity of whole-genome sequencing in characterizing human and food-derived
60 *Salmonella*.

61

62

63

64

65

66

67

68

69

70 **Introduction**

71 Non-typhoidal *Salmonella enterica* subsp. *enterica* are the leading bacterial etiological
72 agent of foodborne illness, hospitalization, and death in the U.S. (1). The Centers for Disease
73 Control and Prevention (CDC) estimates that non-typhoidal *Salmonella* cause 1.2 million
74 infections, 23,000 hospitalizations, and 450 deaths annually (2). Furthermore, compared to other
75 bacterial pathogens, non-typhoidal *Salmonella* account for the majority of foodborne outbreaks
76 that occur in the U.S., with associated food commodities including eggs, vegetables, fruits, and
77 retail meats (3, 4). Two important serovars of *Salmonella* are *S. Typhimurium*, including its
78 variant, *S. Typhimurium* var. O5-, and *S. Heidelberg*; these serovars are consistently ranked
79 within the top ten most commonly isolated from humans and retail meats in the U.S. (5, 6).

80 Although *Salmonella* infections are typically self-limiting, antimicrobial treatment can be
81 necessary in some cases (7); accordingly, drug-resistant non-typhoidal *Salmonella* are
82 categorized by the CDC as a serious public health threat (2). Indeed, an estimated 100,000 drug
83 resistant non-typhoidal *Salmonella* infections occur annually in the U.S. (2). Specifically in
84 Pennsylvania, to contribute to the One Health approach outlined by the White House for
85 combating antimicrobial resistance (AMR), the Pennsylvania Department of Health (PADOH)
86 conducts integrated AMR surveillance in enteric bacteria, including *Salmonella*, isolated from
87 clinical samples and retail meats, as part of the National Antimicrobial Resistance Monitoring
88 System (NARMS) (8, 9).

89 Moreover, the current standard methods employed to conduct integrated surveillance and
90 foodborne outbreak investigations are antibiotic susceptibility testing (AST) and pulsed-field gel
91 electrophoresis (PFGE). Even though PFGE has been considered the gold standard molecular
92 epidemiological tool for decades, it has numerous documented limitations (10), including the

93 inability to differentiate between clonal or low genetic diversity isolates, such as *S. Heidelberg*
94 (11). Similarly, despite its utility, AST has several shortcomings, including MIC breakpoint
95 inconsistencies (12), inability to efficiently test all known drugs, and only providing phenotype-
96 level resolution (13), which is not adequate, if AMR gene alleles and/or transmission
97 mechanisms need to be discerned.

98 Due to increases in affordability and ease of performance, whole-genome sequencing
99 (WGS) has emerged as an attractive tool that can be utilized for foodborne outbreak
100 investigations and pathogen-specific surveillance. Compared to conventional subtyping methods,
101 WGS yields increased discriminatory power, which results from its nucleotide-level resolution,
102 enabling the differentiation between clonal and closely related bacterial isolates (11, 14–17).
103 Accordingly, prior studies have assessed and established the utility of WGS in *Salmonella*
104 outbreak investigations, primarily by performing WGS retroactively on outbreak-associated
105 isolates from various serovars (11, 14–22). WGS is also effective at source-tracking (20), as it
106 provides the resolution needed to establish a genetic link between clinical and food isolates,
107 which traditionally, can be difficult to attain (17, 18).

108 In addition, WGS has significant potential for use as an AMR surveillance tool that can
109 be used to monitor and track resistance in human, animal, and food isolates. Indeed, NARMS has
110 recently incorporated WGS into its AMR monitoring efforts (23). WGS allows for the
111 elucidation of a bacterium's full resistome; this information can be used to associate resistance
112 phenotype with genotype and reveal possible transmission mechanisms, by characterizing the
113 genomic context of each AMR gene (13, 24, 25).

114 Due to the enhanced resolution conferred by WGS, there is now motivation to re-examine
115 historic collections of isolates to further resolve their relatedness and genetic AMR profiles.

116 Therefore, this study aimed to 1) use WGS to retrospectively resolve the genetic relatedness of a
117 historic collection of PFGE-matched and multi-drug resistant (MDR) retail meat and clinical *S.*
118 *Heidelberg* and *S. Typhimurium* var. O5- isolates, respectively and 2) to ascertain the genetic
119 AMR profile of each isolate in that collection, in an effort to assess the role of WGS in integrated
120 surveillance for drug-resistant *Salmonella* from clinical and retail meat sources in Pennsylvania.

121 **Materials and Methods**

122 ***Bacterial isolates***

123 All bacterial isolates (n = 50) sequenced in this study, along with their associated
124 metadata, are listed in Table 1. Henceforth, isolates SH-01 through SH-12 will collectively be
125 referred to as the *S. Heidelberg* subset; isolates SC-01 through SC-28 will be referred to as *S.*
126 *Typhimurium* var. O5- subset 1; and isolates SC-29 through SC-38 will be referred to as *S.*
127 *Typhimurium* var. O5- subset 2.

128 As part of NARMS surveillance, isolates SH-01, SH-02, SC-01, SC-29, and SC-35
129 through SC-37 were recovered and identified from retail meats (ground turkey, pork chop, and
130 chicken breast), purchased throughout the state of Pennsylvania between 2009-2014, following
131 standard protocols by the PADOH (26). Of note, the *S. Heidelberg* retail meat isolates were
132 derived from meats processed at different facilities; however, the *S. Typhimurium* var. O5-
133 subset 2 retail meat isolates SC-29, SC-35, and SC-36 were all derived from meats that were
134 originally processed at the same facility. All clinical *Salmonella* were from a collection of human
135 isolates that had indistinguishable PFGE patterns with retail meat isolates collected as part of
136 NARMS in Pennsylvania; the clinical isolates were submitted to the PADOH Bureau of
137 Laboratories by clinical laboratories in compliance with public health reporting requirements
138 (27).

139 ***Pulsed-field gel electrophoresis (PFGE) and antibiotic susceptibility testing (AST)***

140 All retail meat and clinical isolates previously underwent PFGE and AST
141 characterization through the PADOH. Each retail meat and clinical isolate was subjected to
142 PFGE using the XbaI restriction enzyme, following the CDC's PulseNet protocol for *Salmonella*
143 subtyping (28). For all isolates, except SH-09, SH-10, SC-19, and SC-24 through SC-28, the
144 BlnI restriction enzyme was also used to obtain a secondary PFGE pattern. All retail meat and
145 matched clinical isolates were also subjected to AST as previously described (29) for
146 susceptibility to the antimicrobial agents: gentamicin, streptomycin, ampicillin, amoxicillin-
147 clavulanic acid, cefoxitin, ceftiofur, ceftriaxone, azithromycin, chloramphenicol, nalidixic acid,
148 ciprofloxacin, sulfisoxazole, trimethoprim-sulfamethoxazole, and tetracycline. Resistance was
149 defined using CLSI criteria if available, otherwise NARMS interpretative criteria were used (30).

150 ***Genomic DNA extraction, library construction, and genome sequencing***

151 A 3 mL Lysogeny Broth (LB) overnight culture, derived from a single colony, was
152 prepared for each isolate. Total genomic DNA was extracted using the Wizard[©] Genomic DNA
153 Purification Kit (Promega, Madison, WI, USA) following the manufacturer's instructions.
154 Genomic DNA purity was confirmed via an A₂₆₀/A₂₈₀ measurement (target ≥ 1.8) and the
155 concentration was determined using the QubitTM dsDNA Broad-Range quantification kit
156 (Thermo Fisher Scientific, Waltham, MA, USA). Following quantification, genomic DNA was
157 diluted to 0.2 ng/ μ L. A paired-end DNA library was prepared and normalized using the Nextera
158 XT DNA Library Prep Kit (Illumina, Inc., San Diego, CA, USA). The resulting library was
159 sequenced on an Illumina MiSeq sequencer (Illumina, Inc., San Diego, CA, USA) using a MiSeq
160 reagent v2, 500-cycle kit, with 250 bp read length. Additionally, a representative isolate from
161 each subset (SH-04, SC-09, and SC-31, respectively) was sequenced on a PacBio RS II (Pacific

162 Biosciences, Menlo Park, CA, USA) as previously described (31). Specifically, we prepared the
163 library using 10 µg genomic DNA that was sheared to a size of 20-kb fragments by g-tubes
164 (Covaris, Inc., Woburn, MA, USA) according to the manufacturer's instruction. The SMRTbell
165 20-kb template library was constructed using DNA Template Prep Kit 1.0 with the 20-kb insert
166 library protocol (Pacific Biosciences, Menlo Park, CA, USA). Size selection was performed with
167 BluePippin (Sage Science, Beverly, MA, USA). The library was sequenced using the P6/C4
168 chemistry on 2 single-molecule real-time (SMRT) cells with a 240-min collection protocol along
169 with stage start. Analysis of the sequence reads was implemented using SMRT Analysis 2.3.0.
170 The best *de novo* assembly was established with the PacBio Hierarchical Genome Assembly
171 Process (HGAP3.0) program, which resulted in the closed chromosome of each isolate (Table
172 S1). Each closed chromosome was annotated using Rapid Annotation using Subsystem
173 Technology (RAST) (32).

174 ***Sequencing quality control***

175 Following sequencing, Illumina read quality was confirmed using FastQC v0.11.5 (33).
176 Raw Illumina reads for each isolate within each subset were aligned to the closed chromosome
177 of SH-04, SC-09, and SC-31, respectively using Burrows-Wheeler Aligner v0.7.15 (BWA-
178 MEM) (34). Subsequently, average genome coverage was calculated using the SAMtools v1.4
179 depth command (35). Additionally, Illumina reads from each isolate were *de novo* assembled
180 using SPAdes v3.9 (36). QUAST v4.5 (37) was used to assess assembled/draft genome quality.
181 All isolates sequenced in this study by Illumina technology had > 30X coverage, < 200 contigs,
182 an N50 score > 200,000, and total assembly length between 4.4-5.1 megabases (Mb) (Fig. S1A,
183 B). The previously determined agglutination derived serotype of each isolate was also confirmed
184 using SeqSero (38).

185 ***Comparative SNP and phylogenetic analyses***

186 The validated single nucleotide polymorphism/variant (SNP or SNV) calling pipeline
187 SNVPhyl v1.0.1 (39) was utilized to identify variants. Default parameters were used with the
188 exception of the following: minimum coverage was set to 10X, minimum mean mapping was set
189 to 30, and the SNV abundance ratio was set to 0.75. Preliminarily, the assembled genomes (from
190 Illumina sequencing) of SH-04, SC-09, and SC-38 were used as the reference genomes for SNP
191 and phylogenetic analyses in each subset (data not shown). Subsequently, the complete
192 chromosome sequences (from PacBio sequencing) of isolates SH-04, SC-09, and SC-31 were
193 used as the reference genomes for the *S. Heidelberg* subset, *S. Typhimurium* var. O5- subset 1,
194 and *S. Typhimurium* var. O5- subset 2, respectively. The SNVPhyl pipeline outputted a
195 concatenated SNP alignment file, a pairwise SNP distance matrix, and a maximum likelihood
196 phylogenetic tree generated using PhyML v3.1.1 for each subset. The SNP alignment file was
197 also used to construct a custom maximum likelihood phylogenetic tree using PhyML v3.1.1
198 (40). This tree was constructed using the GTR + gamma model with 1,000 bootstrap replicates.

199 ***SNP annotation***

200 Concatenated base call files from SNVPhyl were downloaded and converted to VCF files
201 using BCFtools v1.3.1 view (35); vcf-subset v0.1.13 (41) was used to filter out all non-variant
202 positions. The filtered VCF files for each isolate were combined into a single VCF file using
203 BCFtools merge for each subset. A custom SnpEff database was built for annotation of each
204 subset using the RAST-generated GenBank file for either SH-04, SC-09, or SC-31. SNPs were
205 then annotated using SnpEff v4.3 (42). SNP annotations were subsequently filtered to only
206 include valid SNPs, as determined by SNVPhyl. Gene names for each valid SNP were extracted

207 from the RAST-generated GFF file of either SH-04, SC-09, or SC-31. SNP annotation script can
208 be found at <https://github.com/DudleyLabPSU/SNP-Annotation>.

209 ***Genetic AMR profile determination***

210 Genetic AMR determinants were identified in all genomes, using the Bacterial
211 Antimicrobial Resistance Reference Gene Database (BARRGD) (Accession number
212 PRJNA313047; accessed April 2018) and BLAST+ (43). To confirm BARRGD results and
213 determine if any AMR-associated chromosomal point mutations were present, ResFinder 3.0
214 (44) was used. AMR genes that were detected by either method were only considered to be
215 present if they had $\geq 90\%$ nucleotide identity and $\geq 60\%$ coverage (these parameters align with
216 ResFinder's default search settings).

217 ***Plasmid identification and characterization***

218 Known plasmid replicon sequences were identified using the PlasmidFinder (45)
219 database and BLAST+. BLAST alignments were filtered to only include those present at $\geq 95\%$
220 nucleotide identity and $\geq 60\%$ coverage (these parameters align with PlasmidFinder's default
221 search settings), with the exception of IncX1 in the *S. Heidelberg* subset, which was included due
222 to its presence at 94.9% nucleotide identity. PacBio sequencing and subsequent processing (as
223 described above) were also used to attain complete plasmid sequences within SH-04, SC-09, and
224 SC-31 (Table S1). Each closed plasmid sequence was annotated using RAST (32). BLAST Ring
225 Image Generator (BRIG) (46) was used to visualize plasmid comparisons in all subsets.
226 Complete plasmid sequences were also compared to plasmids deposited in NCBI's GenBank
227 database (Table S2) using BLAST (47) and BRIG, to assess novelty.

228

229

230 ***Accession numbers***

231 Raw Illumina WGS data were submitted to NCBI and subsequently, assigned BioSample
232 and SRA accession numbers (Table S3); all data can also be found under BioProject
233 PRJNA357723. The closed chromosome and plasmid sequences of isolates SH-04, SC-09, and
234 SC-31 were submitted to GenBank and their accession numbers are also found in Table S3.

235 **Results**

236 ***Comparison of retail meat and human isolates based on PFGE and AST results***

237 In total, the PFGE patterns of 86 retail meat isolates were indistinguishable from the
238 PFGE patterns of 1,665 clinical isolates located in the Pennsylvania surveillance database. From
239 that larger collection, three subsets were chosen to whole-genome sequence and are referred to as
240 the *S. Heidelberg* subset, *S. Typhimurium* var. O5- subset 1, and *S. Typhimurium* var. O5- subset
241 2. These subsets were selected based on quantity (\geq one retail meat matching multiple clinical
242 isolates), AMR (primarily identical MDR patterns within each subset), and serovar relevance.

243 All isolates within the *S. Heidelberg* subset (two retail meat and ten clinical) matched by
244 primary PFGE pattern (JF6X01.0058) and all isolates, except SH-09 and SH-10 (secondary
245 patterns unknown), shared the same secondary PFGE pattern (JF6A26.0076) (Table 1). Isolates
246 SH-01 through SH-10 displayed resistance to ampicillin, gentamicin, streptomycin, and
247 tetracycline antimicrobials; whereas, isolates SH-11 and SH-12 were only resistant to ampicillin,
248 gentamicin, and tetracycline (Table 1). All *S. Typhimurium* var. O5- subset 1 isolates (one retail
249 meat and 27 clinical) shared the same primary PFGE pattern (JPXX01.0018) and isolates SC-01
250 through SC-17 also shared the same secondary PFGE pattern (JPXA26.0156) (Table 1).
251 Additionally, all isolates within this subset were phenotypically resistant to ampicillin,
252 chloramphenicol, streptomycin, sulfisoxazole, and tetracycline (ACSSuT pattern) (Table 1). All

253 *S. Typhimurium* var. O5- subset 2 isolates (four retail meat and six clinical) matched by primary
254 PFGE pattern (JPXX01.1283) and all isolates except SC-33 and SC-34 matched by secondary
255 PFGE pattern (JPXA26.0397) (Table 1). However, this subset was defined by two distinct AMR
256 profiles: isolates SC-29 through SC-34 displayed resistance to ampicillin, amoxicillin-clavulanic
257 acid, ceftiofur, ceftriaxone, cefoxitin, sulfisoxazole, and tetracycline; whereas, isolates SC-35
258 through SC-38 were resistant to only sulfisoxazole and tetracycline antimicrobials (Table 1).

259 ***Comparative SNP analysis resolved phylogenetic relationships in each subset***

260 To retrospectively resolve the genetic relatedness of each PFGE-matched retail meat and
261 clinical isolate within all three subsets, the validated SNP-calling pipeline, SNVPhyl was
262 utilized. In total, the *S. Heidelberg* subset was defined by 35 SNPs. These SNPs were generally
263 distributed over the length of the reference chromosome (Fig. S2A, top) and were predominantly
264 non-synonymous (Fig. S2B); notably, SNP annotation revealed that missense mutations were
265 located in flagellar-associated genes (*fliC* and *fliE*) in some isolates. In terms of SNP distances,
266 the retail meat isolates (SH-01 and SH-02) were separated from their ten PFGE-matched clinical
267 isolates by 6 to 12 SNPs (Table 2). Interestingly, despite being derived from two different
268 processing facilities, the two retail meat isolates were separated from one another by 1 unique
269 SNP (Table 2); a missense variant (Ala138Thr) in *rapA*. Furthermore, within this subset, six
270 clinical isolates were previously determined to be outbreak-associated (outbreak A). These
271 isolates (SH-03 through SH-06, SH-11, and SH-12) were separated from each other by 3 to 9
272 SNPs (Table 2). Additionally, clinical isolates SH-09 and SH-10 were previously determined to
273 be part of a separate outbreak (outbreak B). Indeed, under these experimental conditions, they
274 were separated by 0 SNPs (Table 2). Moreover, to visualize the phylogenetic relationships of the
275 *S. Heidelberg* isolates, a maximum likelihood phylogenetic tree was constructed. The retail meat

276 isolates branched distinctly away from the *S. Heidelberg* clinical isolates (Fig. 1). The clinical
277 isolates all clustered on the same primary branch; notably, sporadic clinical isolate SH-08
278 clustered with the confirmed outbreak isolates (Fig. 1). Furthermore, the use of the draft genome
279 of SH-04 as the reference genome resulted in nearly identical SNP distances and phylogenetic
280 tree topologies; these similarities were also observed in each *S. Typhimurium* var. O5- subset,
281 when the SC-09 or SC-38 assembled genome was utilized as the reference (data not shown).

282 Furthermore, *S. Typhimurium* var. O5- subset 1 was defined by 482 SNPs that were
283 uniformly distributed across the reference chromosome (Fig. S2A, middle). The majority of the
284 SNPs were non-synonymous (Fig. S2C). Moreover, in some *S. Typhimurium* var. O5- subset 1
285 isolates, missense mutations were located in multiple fimbrial-associated genes (*fimD*, *stdB*,
286 *fimF*), type III secretion system 1 (T3SS1)-associated genes (*spaN*, *sirC*), and flagellar-
287 associated genes (*fliC*, *motA*). The overall pairwise SNP distances within this collection ranged
288 from 0 to 105 (Table 3). Even though the retail meat isolate (SC-01) shared the same primary
289 and secondary PFGE patterns and drug resistance profile as clinical isolates SC-02 through SC-
290 17, on the genome level, it was surprisingly separated from each of those isolates by 41 to 75
291 SNPs (Table 3). Furthermore, SC-01 was separated from clinical isolates SC-18 through SC-28
292 by 46 to 96 SNPs, despite matching by primary PFGE pattern and drug resistance (Table 3).
293 Nonetheless, some clinical isolates were genetically indistinguishable from one another (SC-05
294 and SC-06 and SC-14 and SC-19) or otherwise very closely related (shown in light grey shading
295 in Table 3). A maximum likelihood tree was also constructed for visualization of phylogenetic
296 relationships. Retail meat isolate SC-01 generally clustered with clinical isolates SC-02 through
297 SC-06 and SC-17, but importantly, SC-01 was still separated from those isolates by 41 to 44
298 SNPs (Fig. 2 and Table 3). Interestingly, these isolates all originated from the southern portion of

299 Pennsylvania. SC-01 and SC-06 were classified as southeast; SC-04 and SC-05 were classified
300 as southcentral; SC-02, SC-03, and SC-17 were classified as southwest. The remainder of the
301 clinical isolates branched separately, with some forming distinct clusters consistent with the
302 pairwise SNP distances (Fig. 2).

303 Lastly, *S. Typhimurium* var. O5- subset 2 was defined by 225 SNPs that were evenly
304 dispersed across the reference chromosome (Fig. S2A, bottom). Similar to the previous two
305 subsets, the majority of the SNPs were non-synonymous (Fig. S2D). Interestingly, in some *S.*
306 *Typhimurium* var. O5- subset 2 isolates missense or nonsense mutations were located in genes
307 that encode the T3SS1 effector *sipA* and the type III secretion system 2 (T3SS2) structural
308 component and effector protein, *ssaV* and *sseF*. In terms of relatedness, the first retail meat
309 isolate, SC-29, was separated from its primary PFGE, secondary PFGE, and AST-matched
310 clinical isolates (SC-30 through SC-32) by 58, 61, and 27 SNPs, respectively (Table 4). The
311 remaining three retail meat isolates, SC-35, SC-36, and SC-37, and clinical isolate SC-38
312 matched by both PFGE patterns and drug resistance. However, SC-38 was separated from SC-
313 35, SC-36, and SC-37 by 24, 27, and 31 SNPs, respectively (Table 4). Of note, the smallest
314 pairwise SNP distance between a clinical and retail meat isolate was 21, which occurred between
315 clinical isolate SC-32 and retail meat isolate SC-35 (Table 4); these isolates matched by both
316 PFGE patterns, but did not share the same resistance phenotype. In total, all four retail meat
317 isolates were separated from the six clinical isolates in this subset by 21 to 81 SNPs (Table 4).
318 When visualized on a phylogenetic tree, two distinct clusters of isolates were observed (Fig. 3).
319 Clinical isolates SC-30, SC-31, SC-33, and SC-34 all distinctly branched away from the four
320 retail meat isolates and furthermore, were fairly dissimilar from one another as well (Fig. 3).
321 Conversely, clinical isolates SC-32 and SC-38 clustered with all four retail meat isolates, but

322 importantly, these isolates were still separated from the retail meat isolates by 21 to 31 SNPs
323 (Fig. 3 and Table 4). In general, the trend of relatedness was the same in both *S. Typhimurium*
324 var. O5- subsets, in that, isolates that matched by conventional methods, were all separated by a
325 relatively large number of SNPs, especially when compared to the *S. Heidelberg* collection.

326 ***Genetic AMR profile generally aligned with observed AMR phenotype in each subset***

327 To further characterize these isolates, assess whether they carry the same AMR genes,
328 and determine AMR phenotype/genotype correlations, BARRGD and ResFinder 3.0 were used.
329 Within the *S. Heidelberg* subset, six AMR genes were identified: *aadA1* (STR^r), *aac(3)-IId*
330 (GEN^r), *aph(3'')-Ib/strA* (STR^r), *bla_{TEM-1B}* (broad-spectrum β-lactam^r), *tet(A)* (TET^r), and *fosA7*
331 (fosfomycin; FOF^r) (Fig. 4A). All six of these genes, except for *aph(3'')-Ib/strA*, were identified
332 in the assembled genomes of all isolates; only isolates SH-01 through SH-03, SH-06, SH-07,
333 SH-09, and SH-10 carried *aph(3'')-Ib/strA* (Fig. 4A). Interestingly, the genome of SH-04, when
334 sequenced by PacBio, housed an additional copy of *bla_{TEM-1B}* (Fig. 4A). Indeed, *bla_{TEM-1B}* was
335 located in a relatively short contig in the draft genomes of all isolates, likely indicating it did not
336 assemble well, providing a possible explanation for why it was detected once in the MiSeq-based
337 assembly, but twice in the PacBio-based genome. No known AMR-conferring chromosomal
338 mutations were identified in any isolate within this subset or in either *S. Typhimurium* var. O5-
339 subset.

340 Within *S. Typhimurium* var. O5- subset 1, a total of six different AMR genes were
341 identified: *aadA2* (STR^r), *bla_{PSE}/bla_{CARB-2}* (broad-spectrum β-lactam^r), *tet(G)* (TET^r), *floR*
342 (CHL^r), *sull* (FIS^r), and *catA1* (CHL^r) (Fig. 4B). In addition, *qacEΔ1*, a gene that confers
343 resistance to quaternary ammonium compounds was identified in all isolates (Fig. 4B). All AMR
344 genes, but *catA1*, were identified in each isolate; *catA1* was only present in clinical isolate SC-23

345 (Fig. 4B). Within the PacBio genome of SC-09, an additional copy of *qacEΔ1* was identified, as
346 well as a partial and complete copy of *sull*, which was only partially present once (~66% query
347 coverage) in the assembled genome of each isolate (Fig. 4B).

348 Within the last subset, *S. Typhimurium* var. O5- subset 2, three AMR genes were
349 identified: *bla_{CMY-2}* (broad and extended-spectrum β -lactam^r), *tet(A)* (TET^r), and *sul2* (FIS^r),
350 (Fig. 4C). Each AMR gene, except *bla_{CMY-2}*, was identified in each assembled genome; *bla_{CMY-2}*
351 was only identified in isolates SC-29 through SC-34 (Fig. 4C). Moreover, within the PacBio
352 genome of SC-31, two *bla_{CMY-2}* genes were identified (Fig. 4C).

353 Accordingly, across all three subsets, there was a 100% correlation between AMR
354 phenotype and genotype for β -lactam, gentamicin (an aminoglycoside), chloramphenicol,
355 sulfonamide, and tetracycline antimicrobials; whereas, there was a 95% correlation for
356 streptomycin (an aminoglycoside) (Table 5). Additionally, no correlation for fosfomycin could
357 be calculated, as resistance to this drug was not phenotypically tested for.

358 ***Identification of plasmid and chromosomal AMR determinants in each subset***

359 Lastly, to further elucidate the genetic AMR profile of each isolate, plasmids were
360 identified in an effort to determine and compare AMR gene location in each isolate. PacBio
361 sequencing of SC-09, from *S. Typhimurium* var. O5- subset 1, revealed one plasmid with the
362 replicon sequences, IncFIB(S), IncFII(S). This plasmid (pSC-09-1) was conserved in all isolates
363 within this subset and was found to house multiple virulence-associated genes, but no AMR
364 genes were identified (Fig. S3). This observation indicated that AMR was chromosomally
365 carried in this subset. Indeed, all AMR genes identified in this subset were located on the SC-09
366 chromosome. Furthermore, following alignment, it was found that all isolates carried their AMR
367 genes within an approximate 12-kb chromosomal region (Fig. 5). Moreover, annotation

368 demonstrated that approximately 3-kb upstream of *sul1* is an integrase and immediately
369 downstream of *aadA2* is an additional integrase, suggesting that all AMR genes are associated
370 with a similar mobile genetic element in this subset.

371 Within the *S. Heidelberg* subset, PacBio sequencing of SH-04 resulted in two plasmids,
372 pSH-04-1 (IncI1-alpha) and pSH-04-2 (IncX1). pSH-04-1 was present in both retail meat and all
373 ten clinical isolates and housed four (*aac(3)-IId*, *bla_{TEM-1B}*, *aadA1*, and *tet(A)*) of the six
374 identified AMR genes (Fig. 6A). pSH-04-2 was also conserved in all twelve isolates and carried
375 an additional copy of *bla_{TEM-1B}* (Fig. 6B). Interestingly, a BLAST search indicated that pSH-04-2
376 was different than other known *Salmonella* plasmids, with the top three hits sharing 98-99%
377 nucleotide identity and 60-95% query coverage (pFDAARGOS_312_2, pSE95-0621-1, and
378 pSTY3-1898) (Fig. S4A; Table S2); the main differences between the plasmids in Fig. S4A were
379 the presence/absence of various mobile element and hypothetical proteins. Additionally, through
380 annotation of the SH-04 chromosome, it was determined that *fosA7* was chromosomally-carried.

381 Finally, sequencing of SC-31, from *S. Typhimurium* var. O5- subset 2, resulted in three
382 complete plasmid sequences. pSC-31-1 (IncI1-alpha) housed the beta-lactamase, *bla_{CMY-2}*.
383 Moreover, comparative sequence analysis demonstrated that pSC-31-1 was only present in
384 isolates SC-29 through SC-33 (Fig. 7A). This result aligned clearly with phenotype as SC-29
385 through SC-33 were resistant to β-lactams, but SC-35 through SC-38 were sensitive. However,
386 SC-34 also displayed resistance to β-lactam antibiotics, but did not appear to have this plasmid,
387 despite carrying the *bla_{CMY-2}* gene (Fig. 4C). Therefore, it is postulated that SC-34 carries this
388 gene on its chromosome. Supporting this hypothesis, SC-31 also carried a chromosomal copy of
389 *bla_{CMY-2}*. Conversely, pSC-31-2 (IncA/C2) was present in all isolates within this subset (Fig. 7B)
390 and was found to house the remaining two AMR genes, *sul2* and *tet(A)*. Furthermore, a BLAST

391 search revealed that only two other plasmids have been sequenced that show high similarity to
392 this plasmid: pCFSAN001921 (99% nucleotide identity/100% query coverage) and
393 pFDAARGOS_312_3 (99% nucleotide identity/92% query coverage) (Fig. S4B). Interestingly,
394 both of those plasmids were also isolated from *S. Typhimurium* var. O5-. Lastly, pSC-31-3
395 (ColpVC) was only fully present in SC-29, SC-31, and SC-34, and housed no known AMR
396 determinants (Fig. 7C).

397 **Discussion**

398 An important source of *Salmonella* is retail meat; in Pennsylvania, previous studies have
399 demonstrated that non-typhoidal *Salmonella*, including isolates that are drug-resistant, are
400 prevalent on meat products sold at grocery stores and farmers' markets (48, 49). Here, we
401 exploited the strength of WGS to compare the genetic characteristics of three historic subsets of
402 drug-resistant and PFGE-matched retail meat and clinical *S. Heidelberg* and *S. Typhimurium* var.
403 O5- isolates, to reassess their relatedness and identify their resistome.

404 Two previous studies have used WGS to compare *S. Heidelberg* isolated from multiple
405 sources, including humans and retail meats. Hoffmann *et al.* (14) utilized 454 sequencing and
406 SNP analysis to distinguish outbreak-associated Heidelberg isolates from non-outbreak isolates,
407 collected from several sources between 1982 and 2011, with similar PFGE patterns.
408 Edirmanasinghe *et al.* (24) used WGS to characterize *S. Heidelberg* from various sources,
409 collected through routine surveillance in Canada. However, in this study, we focused on directly
410 comparing the genomic characteristics of 50 historic retail meat and human *S. Heidelberg* and *S.*
411 *Typhimurium* var. O5- isolates that matched, importantly, by multiple conventional methods
412 (PFGE and AST) and were collected through routine surveillance in Pennsylvania between 2009
413 and 2014. The narrow geographical region and temporal distribution of this collection is

414 reflective of what other state public health laboratories would examine during their own
415 retrospective and comparative analyses using WGS.

416 **Comparative SNP analysis in *S. Heidelberg* subset reveals isolates are closely related**

417 Within the *S. Heidelberg* subset, comparative SNP analysis revealed that the retail meat
418 isolates, SH-01 and SH-02, were separated by 6 to 12 SNPs from the ten matched clinical
419 isolates (Table 2). Prior studies have reported SNP differences of 0 to 4, an average of 17, and 4
420 to 19 for previous confirmed *S. Heidelberg* outbreaks (11, 14, 19). Thus, the observed SNP
421 distances between the retail meat and clinical isolates within this subset align with outbreak-
422 associated values reported in the literature for the Heidelberg serovar, indicating that these
423 isolates are closely related and may share a common source. However, due to the historic nature
424 of these isolates, an epidemiological link was not investigated between the food and human
425 isolates in this case. Moreover, the retail meat isolates were collected in 2013, whereas, the
426 majority of the clinical isolates were isolated from 2010 and 2011. Accordingly, these data
427 underscore the importance of interpreting genomic results in the context of epidemiological data,
428 which is particularly crucial when analyzing historic isolate collections.

429 **Comparative SNP analysis in *S. Typhimurium* var. O5- subsets reveals genetic differences**

430 Conversely, comparative SNP analysis revealed a range of phylogenetic relationships
431 within each *S. Typhimurium* var. O5- subset (Tables 3, 4). Importantly, the retail meat isolate
432 within subset 1 was separated from all clinical isolates by 41 to 96 SNPs (Table 3); similarly, the
433 four retail meat isolates within subset 2 were separated from the six clinical isolates by 21 to 81
434 SNPs (Table 4). Previous reports have determined that *S. Typhimurium* outbreak-associated
435 isolates have been separated by 2 to 12, 3 to 30, 0 to 12, 0 to 7, and a maximum of 3 SNPs (19,
436 22, 50, 51). Furthermore, others have proposed specific SNP cutoffs to classify an isolate as

437 outbreak-associated (22); however, a clearly defined consensus in the field on a maximum SNP
438 distance threshold for outbreak analysis has not been established. Nonetheless, our data suggest
439 that there is not a genetic link between the retail meat and clinical isolates within the two *S.*
440 *Typhimurium* var. O5- subsets, despite them matching by conventional methods. Indeed,
441 previous studies have found similar genetic distances between PFGE-matched sporadic and
442 outbreak isolates; for example, one sporadic *S. Bareilly* isolate that shared the same primary
443 PFGE pattern as an *S. Bareilly* outbreak was separated by 117 SNPs from those strains (intra-
444 outbreak SNP distance was 1 to 6) (20).

445 **AMR phenotype and resistome were well correlated in each subset**

446 Within this study, we also determined the resistome of each isolate, which included the
447 identification of specific AMR genes and elucidation of each gene's genomic context, in an
448 effort to assess the role of WGS in enhancing integrated surveillance for drug-resistant
449 *Salmonella* in Pennsylvania. Overall, the AMR profiles, as determined by conventional AST,
450 correlated well with AMR genotype. Across all subsets, a 100% correlation was observed for all
451 tested antimicrobials, except streptomycin, where a 95% correlation was observed (Table 5).
452 Similarly, in a comprehensive *Salmonella* study encompassing 640 isolates, the AMR
453 phenotype/genotype correlation was 99% (13); these results are corroborated by a smaller study
454 that observed a 100% correlation between AMR phenotype and genotype for 49 *Salmonella*
455 isolates from swine (52). Furthermore, the slightly lower streptomycin correlation that we
456 observed has been noted previously. McDermott *et al.* (13) postulate that this discordance
457 between phenotype and genotype is likely the result of a MIC breakpoint value that is too high.
458 Consequently, another study found that by lowering the breakpoint MIC value for streptomycin
459 resistance from $\geq 64 \mu\text{g/L}$ to $\geq 32 \mu\text{g/L}$, a higher correlation was observed (53). Thus, it is

460 plausible that the lower correlation observed in this study is also the result of not enough isolates
461 being considered resistant based on standard MIC testing; however, silent genes or a non-
462 functional protein product could also be responsible.

463 **AMR is primarily plasmid-mediated in the *S. Heidelberg* subset**

464 Within the *S. Heidelberg* subset, six AMR genes were identified (Fig. 4A). These genes
465 or their close variants have been identified in *S. Heidelberg* previously (14, 54–58). Specifically,
466 *fosA7* was identified in *Salmonella* for the first time in 2017; this particular gene sequence was
467 only found in 35 of the approximately 40,000 *Salmonella* draft and complete genomes in NCBI,
468 of which 75% were *S. Heidelberg* (58). Notably, *fosA7* was located in both retail meat and all ten
469 clinical *S. Heidelberg* isolates in this study. Moreover, PacBio sequencing revealed that this gene
470 was located on the chromosome of SH-04, consistent with prior data suggesting that *fosA7* is
471 exclusively chromosomal in *Salmonella* (58). PacBio sequencing also elucidated the presence of
472 multi-copy AMR genes, which were not detected in the draft genomes within this subset (i.e.
473 *bla_{TEM-1B}*) and in each *S. Typhimurium* var. O5- subset as well; this observation highlights a
474 potential advantage of incorporating long-read sequencing into routine surveillance methods.

475 In addition, comparative plasmid analysis identified two plasmids that were present in
476 each retail meat and clinical isolate. pSH-04-1, an IncI1-alpha plasmid, carried four of the six
477 AMR genes (*aadA1*, *aac(3)-IId*, *bla_{TEM-1B}*, *tet(A)*) (Fig. 6A). Similar resistance genes have been
478 reported on an IncI1 plasmid in *S. Heidelberg* previously (14). This replicon type plasmid has
479 also been found to house sulfonamide resistance and importantly, the *bla_{CMY}* beta-lactamase,
480 which encodes resistance to extended-spectrum cephalosporins, in *S. Heidelberg* (24, 57, 59).
481 pSH-04-2, an IncX1 plasmid, housed an additional copy of *bla_{TEM-1B}* (Fig. 6B); IncX1 plasmids
482 have been identified in *S. Heidelberg* isolates previously (14).

483 **AMR is chromosomally-carried in *S. Typhimurium* var. O5- subset 1**

484 Within *S. Typhimurium* var. O5- subset 1, seven different resistance genes were
485 identified (Fig. 4B). Annotation and subsequent alignment of each isolate's chromosome
486 determined that all of the identified genes, with the exception of *catA1* in isolate SC-23, were
487 located within a 12-kb chromosomal region (Fig. 5). This AMR gene topology is typical of
488 *Salmonella* Typhimurium strains that also display the ACSSuT penta-resistance pattern. Previous
489 work has demonstrated that a region of the chromosome, termed *Salmonella* genomic island 1
490 (SGI1), houses the AMR gene cluster that is responsible for this phenotype; within this region,
491 the AMR genes, *floR* and *tet(G)*, are flanked by integrons carrying the AMR genes, *aadA2* and
492 *bla_{PSE}*/*bla_{CARB-2}* (60, 61). Consistent with this observation, the single plasmid identified within
493 this subset did not carry AMR genes.

494 **AMR is plasmid-mediated in *S. Typhimurium* var. O5- subset 2**

495 Lastly, within *S. Typhimurium* var. O5- subset 2, three AMR genes were identified (Fig.
496 4C). These genes have previously been identified in *S. Typhimurium* and *S. Typhimurium* var.
497 O5- (62–64). Comparative plasmid analysis revealed that pSC-31-1 (IncI1-alpha), which carried
498 *bla_{CMY-2}*, was present only in isolates SC-29 through SC-33 (Fig. 7A). Indeed, IncI1 plasmids are
499 frequently associated with this gene in *Salmonella*, including *S. Typhimurium* var. O5- (62).
500 Moreover, this genetic observation is consistent with the AST results, as isolates SC-29 through
501 SC-33 were resistant to β-lactams, whereas, SC-35 through SC-38 were sensitive. Intriguingly,
502 isolate SC-34 was resistant to β-lactams and was found to carry the *bla_{CMY-2}* gene; however, the
503 IncI1-alpha plasmid was not present in this isolate. Indeed, a previous *S. Heidelberg* study
504 identified *bla_{CMY-2}* on the chromosome, which is suggestive of plasmid integration being possible
505 (24). Conversely, the second plasmid, pSC-31-2, was found in all retail meat and clinical isolates

506 within this subset (Fig. 7B). This 188 kb IncA/C2 plasmid housed the AMR genes, *sul2* and
507 *tet(A)*. Notably, a BLAST query indicated that this plasmid was only similar to two other
508 plasmids, both of which were from other *S. Typhimurium* var. O5- isolates (Fig. S4B). When
509 comparing these plasmids to pSC-31-2, the main differences were the presence or absence of
510 multiple conjugal transfer-associated and hypothetical proteins. Accordingly, these data suggest
511 that pSC-31-2 is a novel version of an IncA/C2, AMR-encoding plasmid that appears to
512 generally be restricted to the serovar *Typhimurium* var. O5-.

513 In summary, this study demonstrated that historic retail meat and human *Salmonella*
514 isolates, collected through routine monitoring, that are indistinguishable by the conventional
515 methods PFGE and AST, could be different strains, further underscoring the power of WGS.
516 These data also highlight the importance and necessity of interpreting WGS data in the context
517 of epidemiological findings—a point that is particularly crucial, when analyzing historic isolate
518 collections. In addition, we evaluated the role of WGS in enhancing integrated surveillance of
519 drug-resistant *Salmonella* from retail meat and clinical sources in Pennsylvania, by identifying
520 resistance genes and characterizing their genomic environment, as this information is vital to
521 understanding how resistance is disseminating. We observed that resistance phenotype and
522 genotype correlated well in each isolate and that the same AMR-encoding plasmids were found
523 in both the retail meat and clinical isolates. As one of the first studies to directly compare historic
524 retail meat and clinical *Salmonella* isolates using WGS, these results demonstrate the usefulness
525 and value of WGS to public health laboratories performing retrospective comparisons of
526 bacterial isolates from multiple sources.

527

528

529 **Acknowledgements**

530 We thank Lisa Dettinger, James Tait, Carina Davis, Melinda Johnston, and Barry Perry
531 for assistance with preparation of *Salmonella* isolates. A.B.K. was supported by The Black
532 Endowed Graduate Fellowship through the Penn State College of Agricultural Sciences. This
533 work was supported by the U.S. Food and Drug Administration grant number 1U18FD006222-
534 01 to E.G.D. for support of GenomeTrakr in Pennsylvania, the U.S. Food and Drug
535 Administration grant number 1U01FD006253-01 to PADOH for collaboration in the National
536 Antimicrobial Resistance Monitoring System, Centers for Disease Control and Prevention
537 Epidemiology and Laboratory Capacity (ELC) for collaboration in National Antimicrobial
538 Resistance Monitoring (CDC-RFA-CI10-101204PPHF13), and the USDA National Institute of
539 Food and Agriculture Federal Appropriations under Project PEN04522 and Accession number
540 0233376.

541 **References**

- 542 1. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A, Roy SL, Jones JL, Griffin PM. 2011. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17:7–15.
- 543 2. CDC. 2013. Antibiotic resistance threats in the United States, 2013. Atlanta, Georgia. <https://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf>
- 544 3. Jackson BR, Griffin PM, Cole D, Walsh KA, Chai SJ. 2013. Outbreak-associated *Salmonella enterica* serotypes and food commodities, United States, 1998–2008. Emerg Infect Dis 19:1239–1244.
- 545 4. CDC. 2017. Surveillance for foodborne disease outbreaks, United States, 2015, annual report. Atlanta, Georgia.

552 https://www.cdc.gov/foodsafety/pdfs/2015FoodBorneOutbreaks_508.pdf

553 5. Boore AL, Hoekstra RM, Iwamoto M, Fields PI, Bishop RD, Swerdlow DL. 2015.

554 *Salmonella enterica* infections in the United States and assessment of coefficients of

555 variation: a novel approach to identify epidemiologic characteristics of individual

556 serotypes, 1996-2011. PLoS One 10:e0145416.

557 6. FDA. 2015. 2014-2015 Retail meat interim report. Rockville, MD.

558 https://www.fda.gov/downloads/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/

559 NationalAntimicrobialResistanceMonitoringSystem/UCM498134.pdf

560 7. Acheson D, Hohmann EL. 2001. Nontyphoidal salmonellosis. Clin Infect Dis 32:263–269.

561 8. White House. 2014. National Strategy For Combating Antibiotic-Resistant Bacteria.

562 Washington DC.

563 https://obamawhitehouse.archives.gov/sites/default/files/docs/carb_national_strategy.pdf

564 9. Gilbert JM, White DG, McDermott PF. 2007. The US National Antimicrobial Resistance

565 Monitoring System. Future Microbiol 2:493–500.

566 10. Salipante SJ, SenGupta DJ, Cummings LA, Land TA, Hoogestraat DR, Cookson BT.

567 2015. Application of whole-genome sequencing for bacterial strain typing in molecular

568 epidemiology. J Clin Microbiol 53:1072–1079.

569 11. Bekal S, Berry C, Reimer AR, Van Domselaar G, Beaudry G, Fournier E, Doualla-Bell F,

570 Levac E, Gaulin C, Ramsay D, Huot C, Walker M, Sieffert C, Tremblay C. 2016.

571 Usefulness of high-quality core genome single-nucleotide variant analysis for subtyping

572 the highly clonal and the most prevalent *Salmonella enterica* serovar Heidelberg clone in

573 the context of outbreak investigations. J Clin Microbiol 54:289–295.

574 12. Kahlmeter G. 2014. Defining antibiotic resistance-towards international harmonization.

598 Tennessee obtained from related peanut butter foodborne outbreaks. PLoS One
599 11:e0146929.

600 19. Leekitcharoenphon P, Nielsen EM, Kaas RS, Lund O, Aarestrup FM. 2014. Evaluation of
601 whole genome sequencing for outbreak detection of *Salmonella enterica*. PLoS One
602 9:e87991.

603 20. Hoffmann M, Luo Y, Monday SR, Gonzalez-Escalona N, Ottesen AR, Muruvanda T,
604 Wang C, Kastanis G, Keys C, Janies D, Senturk IF, Catalyurek U V., Wang H, Hammack
605 TS, Wolfgang WJ, Schoonmaker-Bopp D, Chu A, Myers R, Haendiges J, Evans PS, Meng
606 J, Strain EA, Allard MW, Brown EW. 2016. Tracing origins of the *Salmonella* Bareilly
607 strain causing a food-borne outbreak in the United States. J Infect Dis 213:502–508.

608 21. Taylor AJ, Lappi V, Wolfgang WJ, Lapierre P, Palumbo MJ, Medus C, Boxrud D. 2015.
609 Characterization of foodborne outbreaks of *Salmonella enterica* serovar Enteritidis with
610 whole-genome sequencing single nucleotide polymorphism-based analysis for
611 surveillance and outbreak detection. J Clin Microbiol 53:3334–3340.

612 22. Octavia S, Wang Q, Tanaka MM, Kaur S, Sintchenko V, Lan R. 2015. Delineating
613 community outbreaks of *Salmonella enterica* serovar Typhimurium by use of whole-
614 genome sequencing: insights into genomic variability within an outbreak. J Clin Microbiol
615 53:1063–1071.

616 23. CDC. 2014. NARMS 2014 human isolates surveillance report. Atlanta, Georgia.
617 <https://www.cdc.gov/narms/pdf/2014-annual-report-narms-508c.pdf>

618 24. Edirmanasinghe R, Finley R, Parmley EJ, Avery BP, Carson C, Bekal S, Golding G,
619 Mulvey MR. 2017. A whole genome sequencing approach to study cefoxitin-resistant
620 *Salmonella enterica* serovar Heidelberg from various aources. Antimicrob Agents

621 Chemother 61:e01919-e16.

622 25. Zhao S, Tyson GH, Chen Y, Li C, Mukherjee S, Young S, Lam C, Folster JP, Whichard
623 JM, McDermott PF. 2015. Whole-genome sequencing analysis accurately predicts
624 antimicrobial resistance phenotypes in *Campylobacter* spp. Appl Environ Microbiol
625 82:459–466.

626 26. FDA. 2012. 2012 Retail meat report National Antimicrobial Resistance Monitoring
627 System. Laurel, Maryland.
628 <https://www.fda.gov/downloads/animalveterinary/safetyhealth/antimicrobialresistance/nationalantimicrobialresistancemonitoringsystem/ucm442212.pdf>

630 27. Pennsylvania Department of Health. List of reportable diseases.
631 [http://www.health.pa.gov/Your-Department-of-
632 Health/Offices%20and%20Bureaus/epidemiology/Pages/Reportable-
633 Diseases.aspx#.Wy6PXBJKho6](http://www.health.pa.gov/Your-Department-of-Health/Offices%20and%20Bureaus/epidemiology/Pages/Reportable-Diseases.aspx#.Wy6PXBJKho6)

634 28. CDC. 2017. Standard Operating Procedure for PulseNet PFGE of *Escherichia coli*
635 O157:H7, *Escherichia coli* non-O157 (STEC), *Salmonella* serotypes, *Shigella sonnei* and
636 *Shigella flexneri*. Atlanta, GA.
637 <https://www.cdc.gov/pulsenet/pdf/ecoli-shigella-salmonella-pfge-protocol-508c.pdf>

638 29. Sandt CH, Fedorka-Cray PJ, Tewari D, Ostroff S, Joyce K, Mikanatha NM. 2013. A
639 comparison of non-typhoidal *Salmonella* from humans and food animals using pulsed-
640 field gel electrophoresis and antimicrobial susceptibility patterns. PLoS One 8:e77836.

641 30. FDA. Breakpoints Table 1. interpretive criteria used for susceptibility testing of
642 *Salmonella* and *E. coli*.
643 <https://www.fda.gov/downloads/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/>

644 NationalAntimicrobialResistanceMonitoringSystem/UCM581395.pdf

645 31. Yao K, Muruvanda T, Roberts RJ, Payne J, Allard MW, Hoffmann M. 2016. Complete
646 genome and methylome sequences of *Salmonella enterica* subsp. *enterica* serovar Panama
647 (ATCC 7378) and *Salmonella enterica* subsp. *enterica* serovar Sloterdijk (ATCC 15791).
648 Genome Announc 4:e00133-16.

649 32. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S,
650 Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil
651 LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O,
652 Vonstein V, Wilke A, Zagnitko O. 2008. The RAST Server: Rapid Annotations using
653 Subsystems Technology. BMC Genomics 9:75.

654 33. Babraham Bioinformatics. 2016. FastQC v0.11.5.

655 34. Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-
656 MEM. arXiv 0:1–3.

657 35. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G,
658 Durbin R, 1000 Genome Project Data Processing Subgroup 1000 Genome Project Data
659 Processing. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics
660 25:2078–2079.

661 36. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,
662 Nikolenko SI, Pham S, Prjibelski AD, Pyshkin A V, Sirotkin A V, Vyahhi N, Tesler G,
663 Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its
664 applications to single-cell sequencing. J Comput Biol 19:455–477.

665 37. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for
666 genome assemblies. Bioinformatics 29:1072–1075.

667 38. Zhang S, Yin Y, Jones MB, Zhang Z, Deatherage Kaiser BL, Dinsmore BA, Fitzgerald C,
668 Fields PI, Deng X. 2015. *Salmonella* serotype determination utilizing high-throughput
669 genome sequencing data. *J Clin Microbiol* 53:1685–1692.

670 39. Petkau A, Mabon P, Sieffert C, Knox NC, Cabral J, Iskander M, Iskander M, Weedmark
671 K, Zaheer R, Katz LS, Nadon C, Reimer A, Taboada E, Beiko RG, Hsiao W, Brinkman F,
672 Graham M, Van Domselaar G. 2017. SNVPhyl: a single nucleotide variant phylogenomics
673 pipeline for microbial genomic epidemiology. *Microb Genomics* 3.

674 40. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New
675 algorithms and methods to estimate maximum-likelihood phylogenies: assessing the
676 performance of PhyML 3.0. *Syst Biol* 59:307–321.

677 41. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, Depristo MA, Handsaker RE,
678 Lunter G, Marth GT, Sherry ST, Mcvean G, Durbin R, Project G, Group A. 2011. The
679 variant call format and VCFtools. *Bioinforma Appl Note* 27:2156–2158.

680 42. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden
681 DM. 2012. A program for annotating and predicting the effects of single nucleotide
682 polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w1118;
683 iso-2; iso-3. *Fly (Austin)* 6:80–92.

684 43. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL.
685 2009. BLAST+: architecture and applications. *BMC Bioinformatics* 10:421.

686 44. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM,
687 Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. *J Antimicrob
688 Chemother* 67:2640–2644.

689 45. Carattoli A, Zankari E, Garcia-Fernandez A, Larsen MV, Lund O, Villa L, Aarestrup FM,

690 Hasman H. 2014. PlasmidFinder and pMLST: in silico detection and typing of plasmids.
691 Antimicrob Agents Chemother 58:3895–3903.

692 46. Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image
693 Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402.

694 47. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment
695 search tool. J Mol Biol 215:403–410.

696 48. M 'ikanatha NM, Sandt CH, Localio AR, Tewari D, Rankin SC, Whichard JM, Altekro
697 SF, Lautenbach E, Folster JP, Russo A, Chiller TM, Reynolds SM, Mcdermott PF. 2010.
698 Multidrug-resistant *Salmonella* isolates from retail chicken meat compared with human
699 clinical isolates. Foodborne Pathog Dis 7:929–934.

700 49. Scheinberg J, Doores S, Cutter CN. 2013. A microbiological comparison of poultry
701 products obtained from farmers' markets and supermarkets in Pennsylvania. J Food Saf
702 33:259–264.

703 50. Gymoese P, Sørensen G, Litrup E, Olsen JE, Nielsen EM, Torpdahl M. 2017.
704 Investigation of outbreaks of *Salmonella enterica* serovar Typhimurium and its
705 monophasic variants using whole-genome sequencing, Denmark. Emerg Infect Dis
706 23:1631–1639.

707 51. Ashton PM, Peters T, Ameh L, McAleer R, Petrie S, Nair S, Muscat I, de Pinna E,
708 Dallmand T. 2015. Whole genome sequencing for the retrospective investigation of an
709 outbreak of *Salmonella* Typhimurium DT 8. PLoS Curr 7.

710 52. Zankari E, Hasman H, Kaas RS, Seyfarth AM, Agerso Y, Lund O, Larsen M V.,
711 Aarestrup FM. 2013. Genotyping using whole-genome sequencing is a realistic alternative
712 to surveillance based on phenotypic antimicrobial susceptibility testing. J Antimicrob

713 Chemother 68:771–777.

714 53. Tyson GH, Li C, Ayers S, McDermott PF, Zhao S. 2016. Using whole-genome
715 sequencing to determine appropriate streptomycin epidemiological cutoffs for *Salmonella*
716 and *Escherichia coli*. FEMS Microbiol Lett 363.

717 54. Chen S, Zhao S, White DG, Schroeder CM, Lu R, Yang H, McDermott PF, Ayers S,
718 Meng J. 2004. Characterization of multiple-antimicrobial-resistant *Salmonella* serovars
719 isolated from retail meats. Appl Environ Microbiol 70:1–7.

720 55. Folster JP, Pecic G, Rickert R, Taylor J, Zhao S, Fedorka-Cray PJ, Whichard J,
721 McDermott P. 2012. Characterization of multidrug-resistant *Salmonella enterica* serovar
722 Heidelberg from a ground turkey-associated outbreak in the United States in 2011.
723 Antimicrob Agents Chemother 56:3465–3466.

724 56. Patchanee P, Zewde BM, Tadesse DA, Hoet A, Gebreyes WA. 2008. Characterization of
725 multidrug-resistant *Salmonella enterica* serovar Heidelberg isolated from humans and
726 animals. Foodborne Pathog Dis 5:839–851.

727 57. Han J, Lynne AM, David DE, Tang H, Xu J, Nayak R, Kaldhone P, Logue CM, Foley SL.
728 2012. DNA sequence analysis of plasmids from multidrug resistant *Salmonella enterica*
729 serotype Heidelberg isolates. PLoS One 7:e51160.

730 58. Rehman MA, Yin X, Persaud-Lachhman MG, Diarra MS. 2017. First detection of a
731 fosfomycin resistance gene, *fosA7*, in *Salmonella enterica* serovar Heidelberg isolated
732 from broiler chickens. Antimicrob Agents Chemother 61:e00410–e00417.

733 59. Folster JP, Pecic G, Singh A, Duval B, Rickert R, Ayers S, Abbott J, Mcglinchey B,
734 Bauer-Turpin J, Haro J, Hise K, Zhao S, Fedorka-Cray PJ, Whichard J, Mcdermott PF.
735 2012. Characterization of extended-spectrum cephalosporin-resistant *Salmonella enterica*

736 serovar Heidelberg isolated from food animals, retail meat, and humans in the United
737 States 2009. *Foodborne Pathog Dis* 9:638–645.

738 60. Boyd DA, Peters GA, Ng L-K, Mulvey MR. 2000. Partial characterization of a genomic
739 island associated with the multidrug resistance region of *Salmonella enterica*
740 Typhimurium DT104. *FEMS Microbiol Lett* 189:285–291.

741 61. Boyd D, Peters GA, Cloeckaert A, Boumedine KS, Chaslus-Dancla E, Imberechts H,
742 Mulvey MR. 2001. Complete nucleotide sequence of a 43-kilobase genomic island
743 associated with the multidrug resistance region of *Salmonella enterica* serovar
744 Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. *J*
745 *Bacteriol* 183:5725–5732.

746 62. Gray JT, Hungerford LL, Fedorka-Cray PJ, Headrick ML. 2004. Extended-spectrum-
747 cephalosporin resistance in *Salmonella enterica* isolates of animal origin. *Antimicrob*
748 *Agents Chemother* 48:3179–3181.

749 63. Frech G, Kehrenberg C, Schwarz S. 2003. Resistance phenotypes and genotypes of
750 multiresistant *Salmonella enterica* subsp. *enterica* serovar Typhimurium var. Copenhagen
751 isolates from animal sources. *J Antimicrob Chemother* 51:180–182.

752 64. Gebreyes WA, Altier C. 2002. Molecular characterization of multidrug-resistant
753 *Salmonella enterica* subsp. *enterica* serovar Typhimurium isolates from swine. *J Clin*
754 *Microbiol* 40:2813–2822.

755

756

757

758

759 **Figure Legends**

760 **Figure 1. Phylogenetic relationships of *S. Heidelberg* isolates.** Maximum likelihood
761 phylogenetic tree of *S. Heidelberg* retail meat (diamonds) and clinical (circles) isolates generated
762 by PhyML v3.1.1 (40) using the GTR + gamma model and 1,000 bootstrap replicates. Isolates
763 SH-03 through SH-06, SH-11, and SH-12 were previously determined to be part of an outbreak
764 (outbreak A); isolates SH-09 and SH-10 were previously determined to be part of a separate
765 outbreak (outbreak B). The SNP alignment file produced by SNVPhyl v1.0.1 (39) contained 35
766 SNPs and served as the input for PhyML. The closed chromosome of clinical isolate SH-04 was
767 used as the reference genome (grey arrow). Bootstrap values above 50 are included on the tree.

768

769 **Figure 2. Phylogenetic relationships of *S. Typhimurium* var. O5- subset 1 isolates.**

770 Maximum likelihood phylogenetic tree of *S. Typhimurium* var. O5- subset 1 retail meat
771 (diamond) and clinical (circles) isolates constructed by PhyML v3.1.1 (40) using the GTR +
772 gamma model and 1,000 bootstrap replicates. The SNP alignment file produced by SNVPhyl
773 v1.0.1 (39) served as the input for PhyML and contained 482 SNPs. The closed chromosome of
774 clinical isolate SC-09 was used as the reference genome (grey arrow). Bootstrap values above 65
775 are included on the tree.

776

777 **Figure 3. Phylogenetic relationships of *S. Typhimurium* var. O5- subset 2 isolates.**

778 Maximum likelihood phylogenetic tree of *S. Typhimurium* var. O5- subset 2 retail meat
779 (diamonds) and clinical (circles) isolates constructed by PhyML v3.1.1 (40) using the GTR +
780 gamma model and 1,000 bootstrap replicates. The SNP alignment file produced by SNVPhyl
781 v1.0.1 (39) served as the input for PhyML and contained 225 SNPs. The closed chromosome of

782 clinical isolate SC-31 was used as the reference genome (grey arrow). Bootstrap values above 70
783 are included on the tree.

784

785 **Figure 4. Identification of genetic resistance determinants in each subset.** (A) *S. Heidelberg*
786 subset. (B) *S. Typhimurium* var. O5- subset 1. (C) *S. Typhimurium* var. O5- subset 2. Each
787 column represents the resistance genes identified in each isolate's assembled genome, with the
788 exception of the last column in each graph, which represents the genes identified in the
789 chromosome and plasmid(s) of each isolate sequenced by PacBio: SH-04 in (A), SC-09 in (B),
790 and SC-31 in (C). A combination of BARRGD (Accession number PRJNA313047; accessed
791 April 2018) and ResFinder 3.0 (44) databases were used to identify genes. Solid-colored genes
792 were present at > 99.3% nucleotide identity and 100% query coverage. Pattern-colored genes
793 were present at > 99.3% nucleotide identity and > 63% query coverage. Each isolate's
794 phenotypic drug resistance profile is noted along the bottom. AMP=ampicillin;
795 AMC=amoxicillin-clavulanic acid; TIO=ceftiofur; AXO=ceftriaxone; FOX=cefoxitin;
796 CHL=chloramphenicol; GEN=gentamicin; STR=streptomycin; FIS=sulfisoxazole;
797 TET=tetracycline.

798

799 **Figure 5. Chromosomally carried AMR in *S. Typhimurium* var. O5- subset 1.** Alignment of
800 the SC-09 chromosome, closed by PacBio sequencing, against the assembled genomes of SC-01
801 through SC-08 and SC-10 through SC-28 using BRIG (46). Each colored concentric ring
802 represents one assembled genome aligning to the reference genome. The outermost ring
803 represents open reading frames (ORFs) within the SC-09 chromosome and AMR gene locations
804 are indicated.

805 **Figure 6. Comparative plasmid analysis in the *S. Heidelberg* subset. (A)** Alignment of pSH-
806 04-1 (IncI1-alpha), closed by PacBio sequencing, against the assembled genomes of SH-01
807 through SH-03 and SH-05 through SH-12 using BRIG (46). **(B)** Alignment of pSH-04-2
808 (IncX1), closed by PacBio sequencing, against the assembled genomes of SH-01 through SH-03
809 and SH-05 through SH-12. In (A) and (B), each colored concentric ring represents one
810 assembled genome aligning to pSH-04-1 or pSH-04-2. The outermost ring in each panel
811 represents ORFs in pSH-04-1 or pSH-04-2; the AMR annotations are included.

812

813 **Figure 7. Comparative plasmid analysis in *S. Typhimurium* var. O5- subset 2. (A)**
814 Alignment of pSC-31-1 (IncI1-alpha), closed by PacBio sequencing, against the assembled
815 genomes of SC-29, SC-30, and SC-32 through SC-38 using BRIG (46). The assembled genomes
816 of SC-34 through SC-38 did not align to the reference plasmid. **(B)** Alignment of pSC-31-2
817 (IncA/C2), closed by PacBio sequencing, against the assembled genomes of SC-29, SC-30, and
818 SC-32 through SC-38. **(C)** Alignment of pSC-31-3 (ColpVC), closed by Illumina sequencing,
819 against the assembled genomes of SC-29, SC-30, and SC-32 through SC-38. In (A-C), each
820 colored concentric ring represents one assembled genome aligning to either pSC-31-1, pSC-31-2,
821 or pSC-31-3. The outermost ring in each panel represents ORFs in each plasmid; the AMR
822 annotations are included.

823

824

825

826

827

828 **Tables**

829 **Table 1. Metadata of *S. Heidelberg* and *S. Typhimurium* var. *O5*- isolates sequenced in this**

830 study.

PSU Isolate Identifier ^a	State	Date	Source	PFGE Primary Pattern ^b	PFGE Secondary Pattern ^c	Phenotypic AMR Profile ^d
<i>S. Heidelberg</i> subset						
SH-01	PA	2013	Ground Turkey	JF6X01.0058	JF6A26.0076	AMP, GEN, STR, TET
SH-02	PA	2013	Ground Turkey	JF6X01.0058	JF6A26.0076	AMP, GEN, STR, TET
SH-03 ^e	PA	2011	Human	JF6X01.0058	JF6A26.0076	AMP, GEN, STR, TET
SH-04 ^e	PA	2011	Human	JF6X01.0058	JF6A26.0076	AMP, GEN, STR, TET
SH-05 ^e	PA	2011	Human	JF6X01.0058	JF6A26.0076	AMP, GEN, STR, TET
SH-06 ^e	PA	2011	Human	JF6X01.0058	JF6A26.0076	AMP, GEN, STR, TET
SH-07	PA	2012	Human	JF6X01.0058	JF6A26.0076	AMP, GEN, STR, TET
SH-08	PA	2013	Human	JF6X01.0058	JF6A26.0076	AMP, GEN, STR, TET
SH-09 ^f	PA	2010	Human	JF6X01.0058	-	AMP, GEN, STR, TET
SH-10 ^f	PA	2010	Human	JF6X01.0058	-	AMP, GEN, STR, TET
SH-11 ^e	PA	2011	Human	JF6X01.0058	JF6A26.0076	AMP, GEN, TET
SH-12 ^e	PA	2011	Human	JF6X01.0058	JF6A26.0076	AMP, GEN, TET
<i>S. Typhimurium</i> var. <i>O5</i>- subset 1						
SC-01	PA	2013	Pork Chop	JPXX01.0018	JPXA26.0156	AMP, CHL, STR, FIS, TET
SC-02	PA	2009	Human	JPXX01.0018	JPXA26.0156	AMP, CHL, STR, FIS, TET
SC-03	PA	2009	Human	JPXX01.0018	JPXA26.0156	AMP, CHL, STR, FIS, TET

SC-04	PA	2009	Human	JPXX01.0018	JPXA26.0156	AMP, CHL, STR, FIS, TET
SC-05	PA	2010	Human	JPXX01.0018	JPXA26.0156	AMP, CHL, STR, FIS, TET
SC-06	PA	2010	Human	JPXX01.0018	JPXA26.0156	AMP, CHL, STR, FIS, TET
SC-07	PA	2010	Human	JPXX01.0018	JPXA26.0156	AMP, CHL, STR, FIS, TET
SC-08	PA	2010	Human	JPXX01.0018	JPXA26.0156	AMP, CHL, STR, FIS, TET
SC-09	PA	2010	Human	JPXX01.0018	JPXA26.0156	AMP, CHL, STR, FIS, TET
SC-10	PA	2010	Human	JPXX01.0018	JPXA26.0156	AMP, CHL, STR, FIS, TET
SC-11	PA	2010	Human	JPXX01.0018	JPXA26.0156	AMP, CHL, STR, FIS, TET
SC-12	PA	2010	Human	JPXX01.0018	JPXA26.0156	AMP, CHL, STR, FIS, TET
SC-13	OH	2010	Human	JPXX01.0018	JPXA26.0156	AMP, CHL, STR, FIS, TET
SC-14	PA	2010	Human	JPXX01.0018	JPXA26.0156	AMP, CHL, STR, FIS, TET
SC-15	PA	2011	Human	JPXX01.0018	JPXA26.0156	AMP, CHL, STR, FIS, TET
SC-16	PA	2012	Human	JPXX01.0018	JPXA26.0156	AMP, CHL, STR, FIS, TET
SC-17	PA	2013	Human	JPXX01.0018	JPXA26.0156	AMP, CHL, STR, FIS, TET
SC-18	NJ	2010	Human	JPXX01.0018	JPXA26.0634	AMP, CHL, STR, FIS, TET
SC-19	PA	2011	Human	JPXX01.0018	-	AMP, CHL, STR, FIS, TET
SC-20	PA	2011	Human	JPXX01.0018	JPXA26.0003	AMP, CHL, STR, FIS, TET
SC-21	PA	2011	Human	JPXX01.0018	JPXA26.0155	AMP, CHL, STR, FIS, TET
SC-22	PA	2012	Human	JPXX01.0018	JPXA26.0490	AMP, CHL, STR, FIS, TET
SC-23	PA	2012	Human	JPXX01.0018	JPXA26.0490	AMP, CHL, STR, FIS, TET
SC-24	PA	2013	Human	JPXX01.0018	-	AMP, CHL, STR, FIS, TET
SC-25	PA	2013	Human	JPXX01.0018	-	AMP, CHL, STR, FIS, TET

SC-26	PA	2013	Human	JPXX01.0018	-	AMP, CHL, STR, FIS, TET
SC-27	PA	2014	Human	JPXX01.0018	-	AMP, CHL, STR, FIS, TET
SC-28 ^g	PA	2014	Human	JPXX01.0018	-	AMP, CHL, STR, FIS, TET

S. Typhimurium var. O5- subset 2

SC-29	PA	2012	Chicken Breast	JPXX01.1283	JPXA26.0397	AMP, AMC, TIO, AXO, FOX, FIS, TET
SC-30	PA	2010	Human	JPXX01.1283	JPXA26.0397	AMP, AMC, TIO, AXO, FOX, FIS, TET
SC-31	PA	2010	Human	JPXX01.1283	JPXA26.0397	AMP, AMC, TIO, AXO, FOX, FIS, TET
SC-32	PA	2011	Human	JPXX01.1283	JPXA26.0397	AMP, AMC, TIO, AXO, FOX, FIS, TET
SC-33	PA	2012	Human	JPXX01.1283	JPXA26.0786	AMP, AMC, TIO, AXO, FOX, FIS, TET
SC-34	PA	2012	Human	JPXX01.1283	JPXA26.0667	AMP, AMC, TIO, AXO, FOX, FIS, TET
SC-35	PA	2011	Chicken Breast	JPXX01.1283	JPXA26.0397	FIS, TET
SC-36	PA	2012	Chicken Breast	JPXX01.1283	JPXA26.0397	FIS, TET
SC-37	PA	2013	Chicken Breast	JPXX01.1283	JPXA26.0397	FIS, TET
SC-38	PA	2010	Human	JPXX01.1283	JPXA26.0397	FIS, TET

831 "Strain identifier; "SH" indicates *S. Heidelberg*; "SC" indicates *S. Copenhagen* (more commonly
832 referred to as *S. Typhimurium* var. O5-)

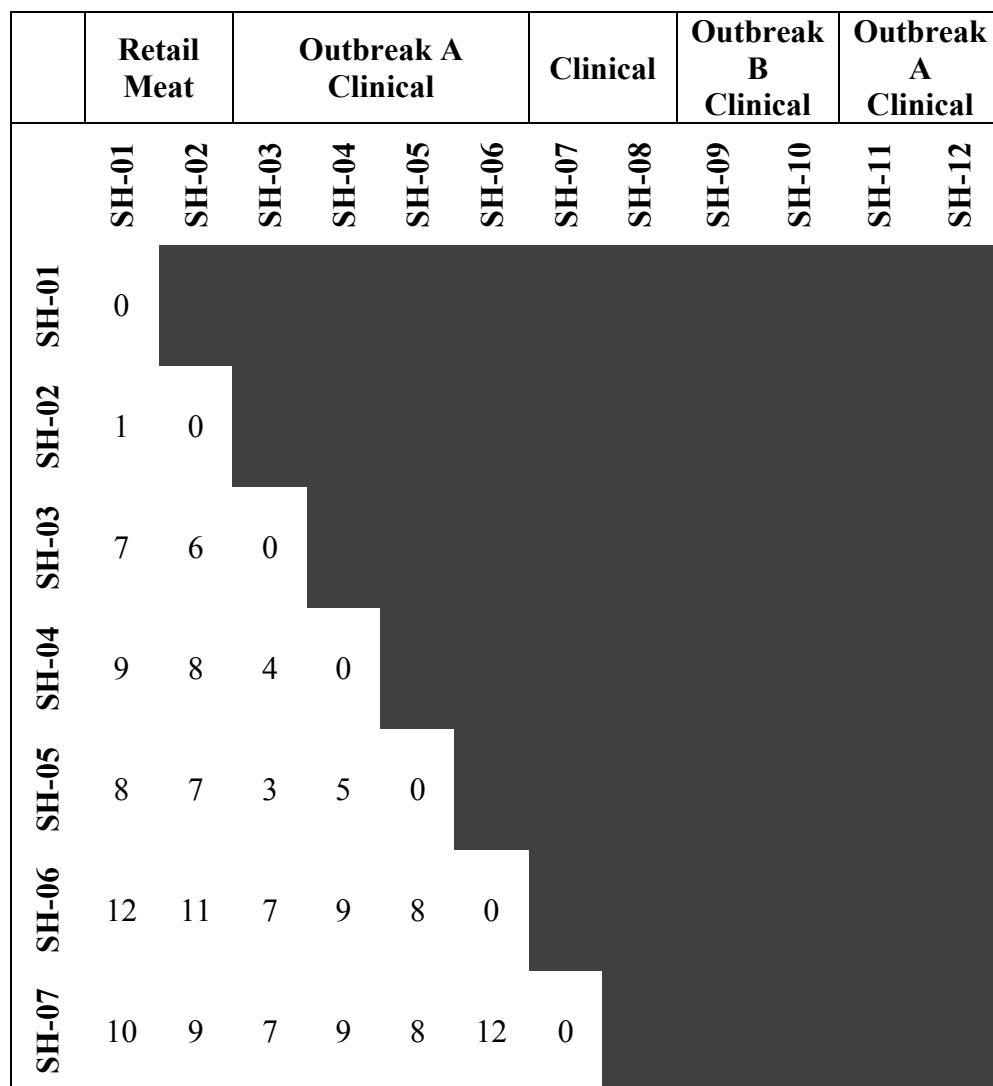
833 ^bXbaI enzyme restriction pattern

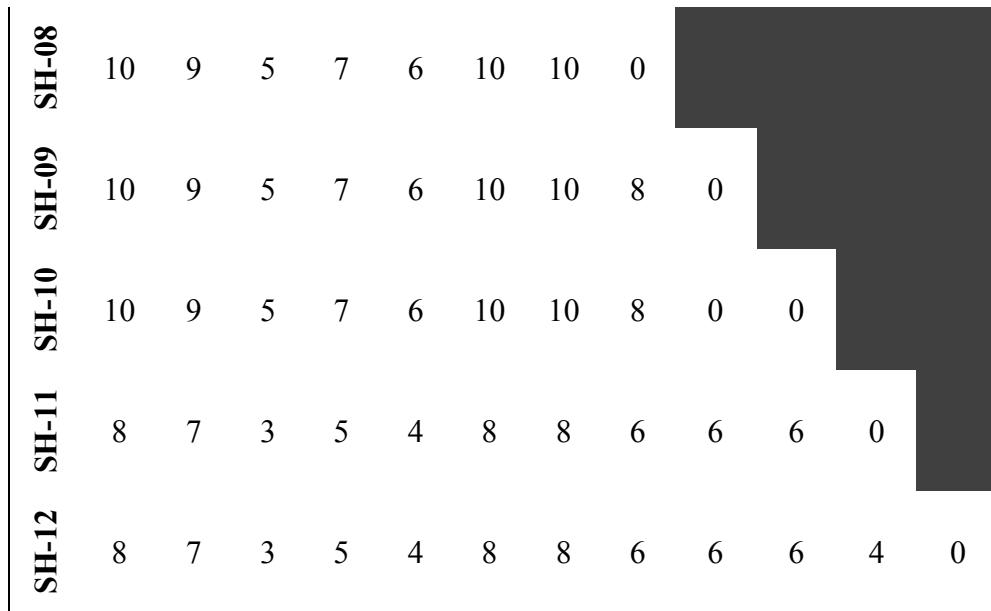
834 ^cBlnI enzyme restriction pattern

835 ^dAMP=Ampicillin; AMC=Amoxicillin-Clavulanic Acid; TIO=Ceftiofur; AXO=Ceftriaxone;

836 FOX=Cefoxitin; CHL=Chloramphenicol; GEN=Gentamicin; STR=Streptomycin;

837 FIS=Sulfisoxazole; TET=Tetracycline


838 ^eIsolate belongs to outbreak A


839 ^fIsolate belongs to outbreak B

840 ^gSerotyped as *S. Typhimurium* by agglutination and *S. Typhimurium* var. O5- by SeqSero

841

842 **Table 2. Pairwise SNP distances between *S. Heidelberg* isolates.**

843

844

845

846

847

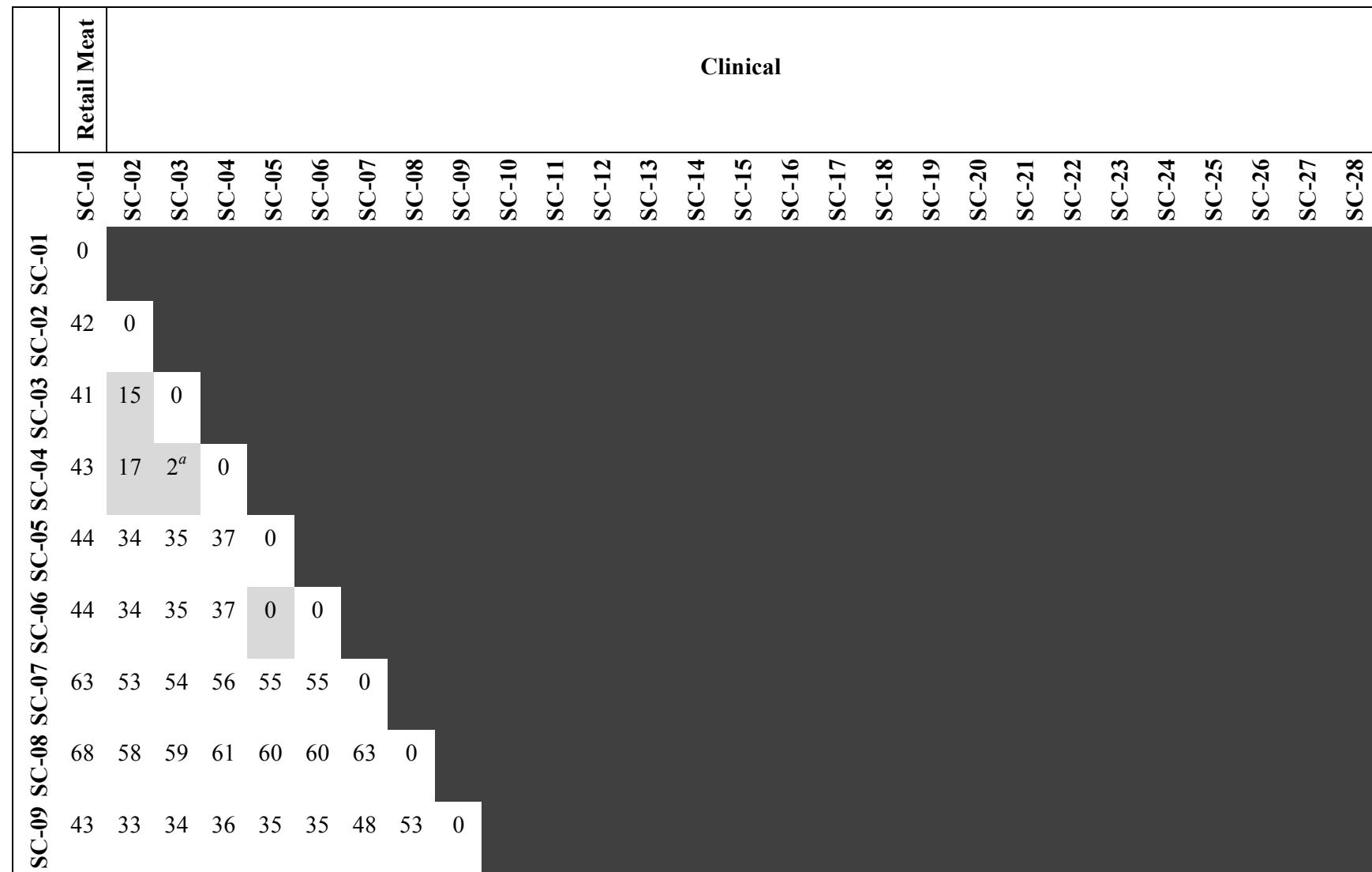
848

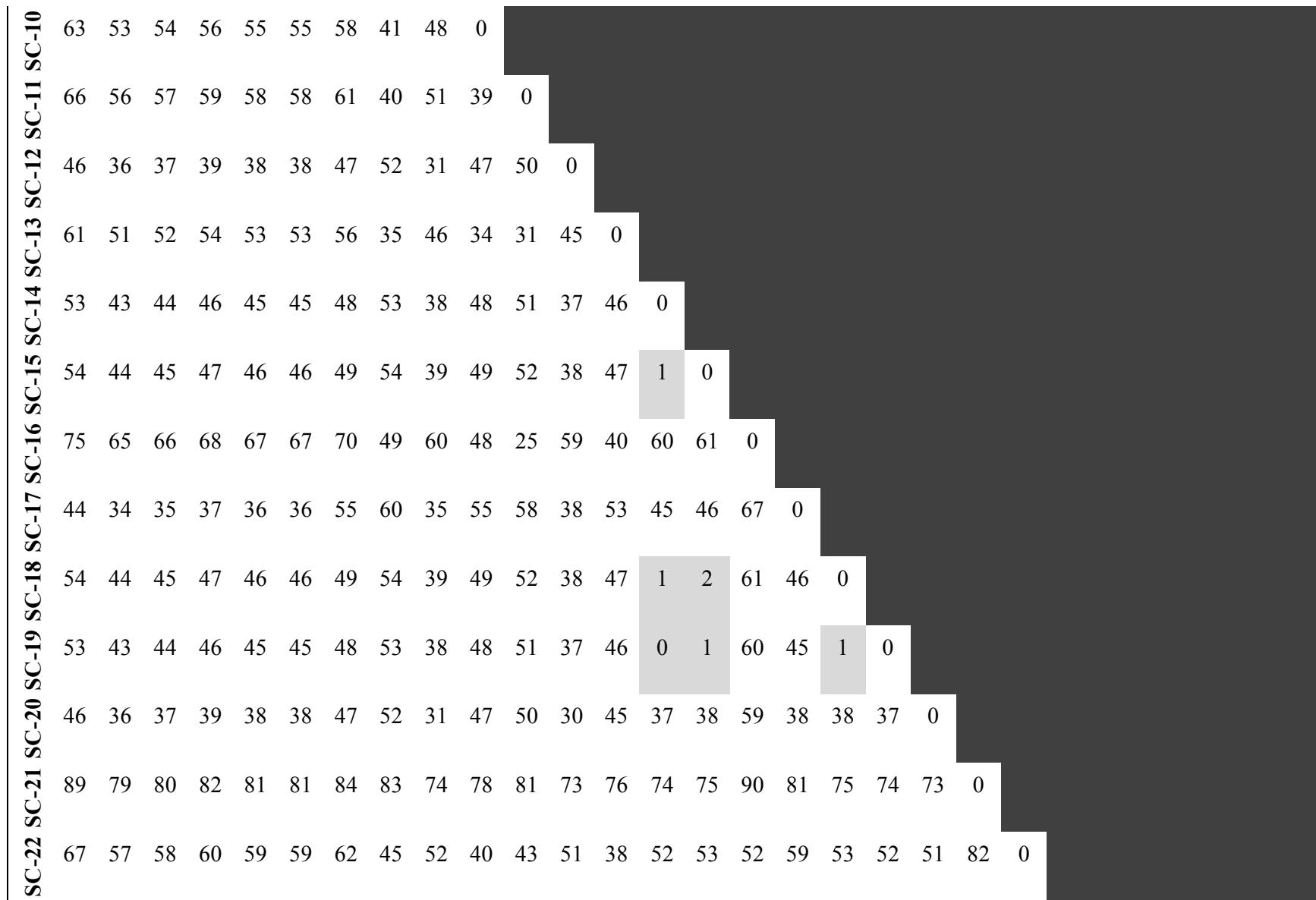
849

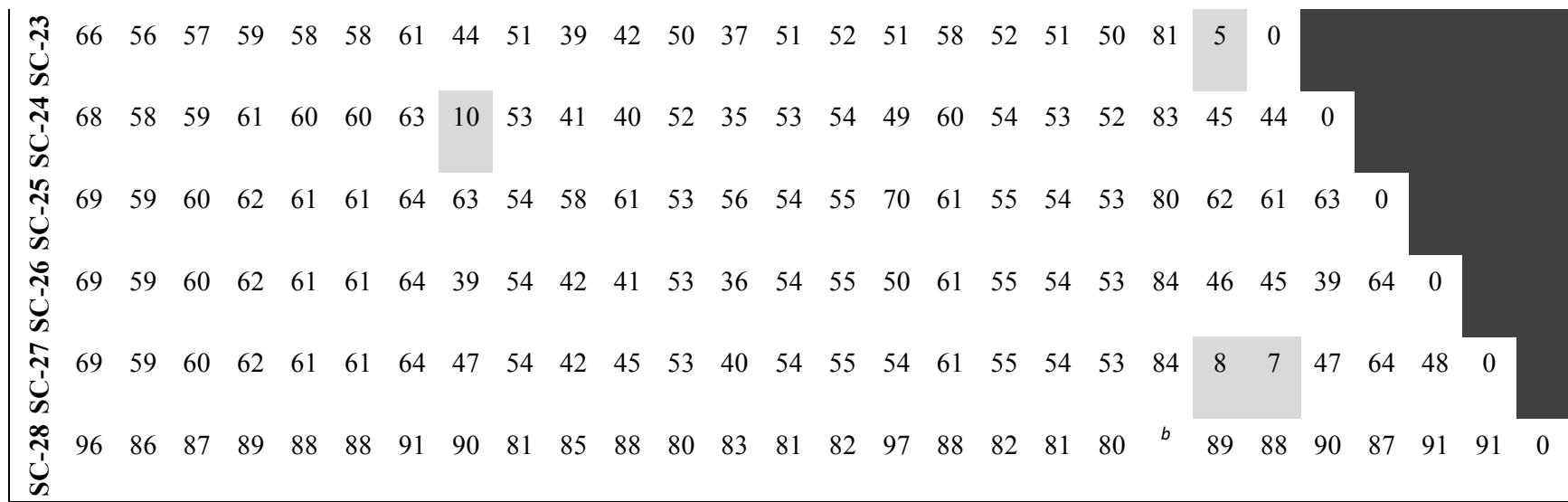
850

851

852


853


854


855

856

857

Table 3. Pairwise SNP distances between *S. Typhimurium* var. O5- subset 1 isolates.

859 ^aLight grey shading denotes pairwise SNPs distances of < 20 between clinical isolates

860 ^bPairwise SNP distance of 105

861 **Table 4. Pairwise SNP distances between *S. Typhimurium* var. O5- subset 2 isolates.**

	Retail Meat	Clinical					Retail Meat			Clinical
	SC-29	SC-30	SC-31	SC-32	SC-33	SC-34	SC-35	SC-36	SC-37	SC-38
SC-29	0									
SC-30	58	0								
SC-31	61	57	0							
SC-32	27	57	60	0						
SC-33	72	66	73	73	0					
SC-34	71	67	70	70	83	0				
SC-35	28	58	61	21	74	71	0			
SC-36	31	61	64	24	77	74	17	0		
SC-37	35	65	68	28	81	78	21	24	0	
SC-38	24	52	55	23	68	65	24	27	31	0

862

863

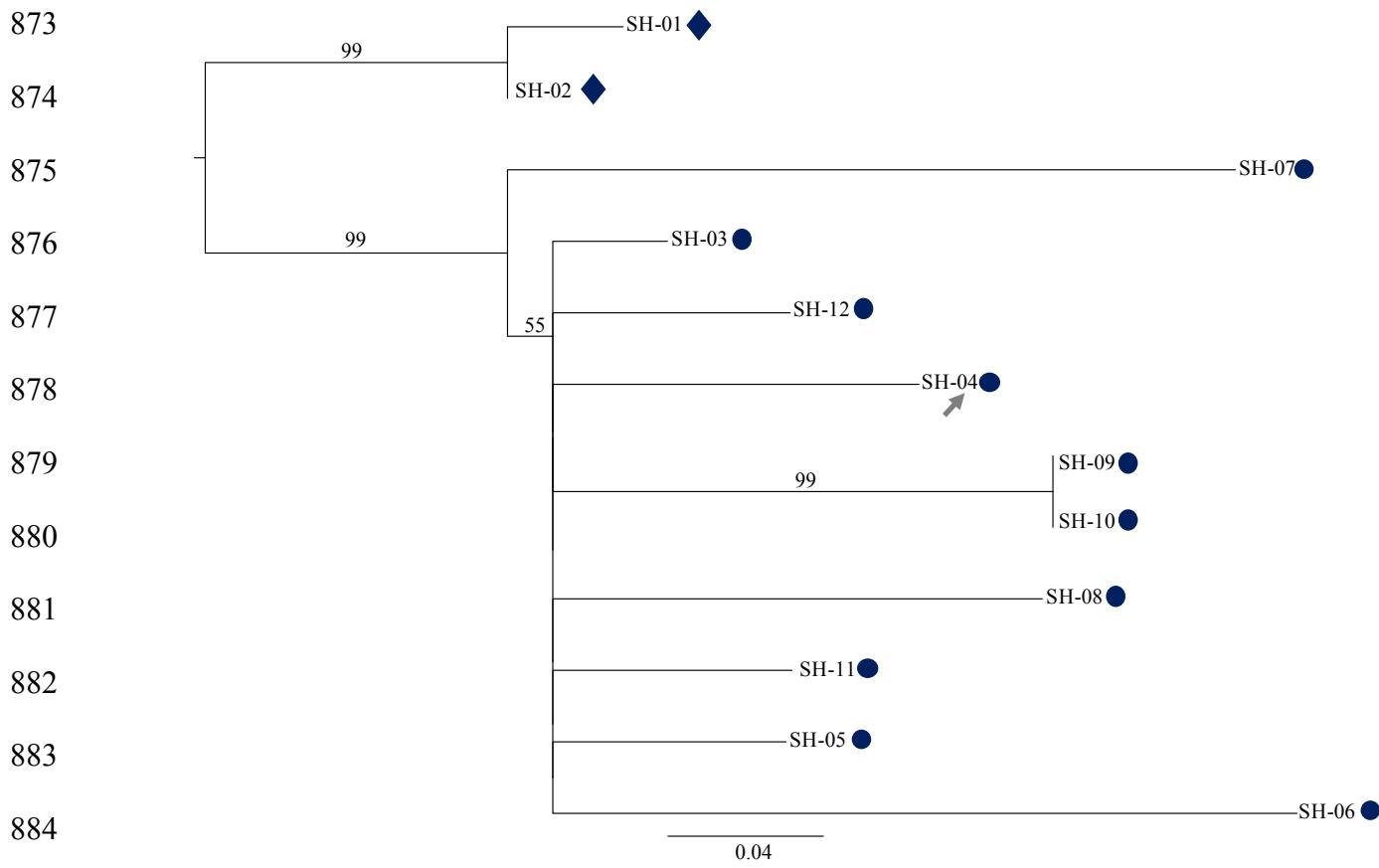
864 **Table 5. Overall correlation between AMR phenotype and genotype across all subsets.**

Antibiotic Class	Phenotype Resistant	Genotype Resistant	Phenotype Sensitive	Genotype Sensitive	Correlation
Aminoglycosides					
GEN	12	12	38	38	100%
STR	38	40	12	10	95%
β-lactam					
	46	46	4	4	100%
Chloramphenicol					
	28	28	22	22	100%
Fosfomycin					
	^a	12	^a	38	^a
Sulfonamide					
	38	38	12	12	100%
Tetracycline					
	50	50	0	0	100%

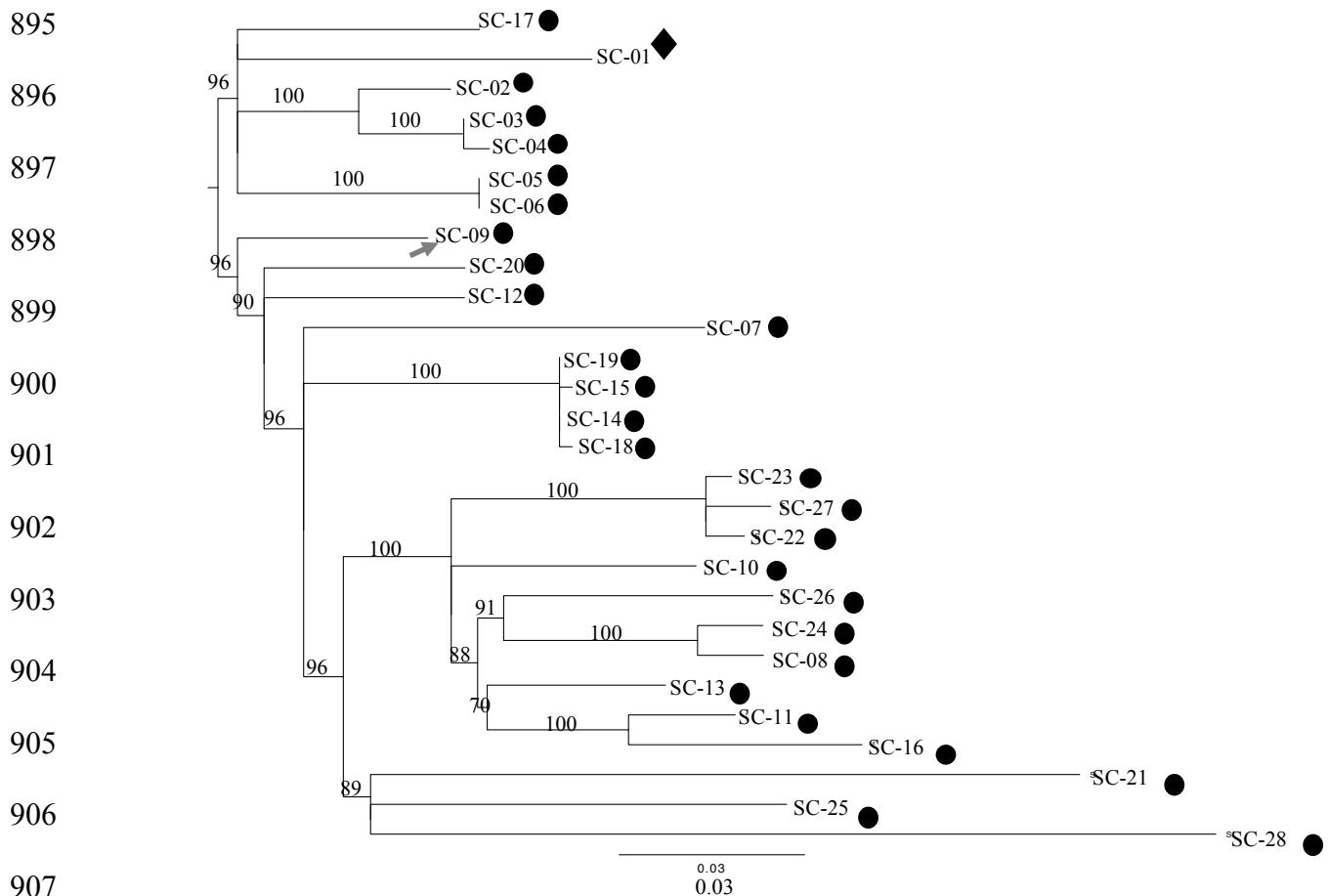
865 ^aIsolates were phenotypically not tested for resistance to the drug fosfomycin

866

867


868

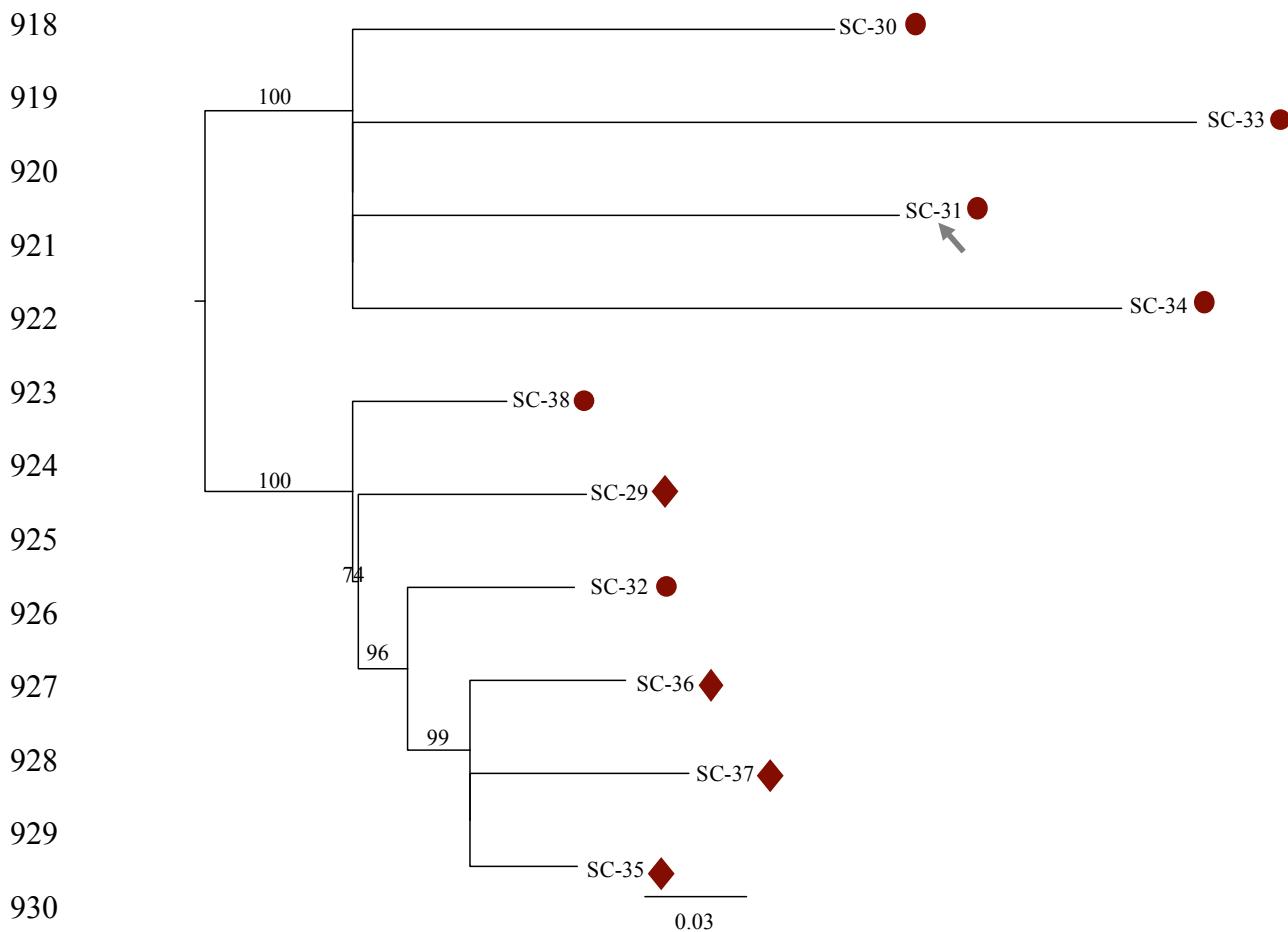
869


870

871

872 **Figures and Figure Legends**

886 **Figure 1. Phylogenetic relationships of *S. Heidelberg* isolates.** Maximum likelihood
887 phylogenetic tree of *S. Heidelberg* retail meat (diamonds) and clinical (circles) isolates generated
888 by PhyML v3.1.1 (40) using the GTR + gamma model and 1,000 bootstrap replicates. Isolates
889 SH-03 through SH-06, SH-11, and SH-12 were previously determined to be part of an outbreak
890 (outbreak A); isolates SH-09 and SH-10 were previously determined to be part of a separate
891 outbreak (outbreak B). The SNP alignment file produced by SNVPhyl v1.0.1 (39) contained 35
892 SNPs and served as the input for PhyML. The closed chromosome of clinical isolate SH-04 was
893 used as the reference genome (grey arrow). Bootstrap values above 50 are included on the tree.
894


908 **Figure 2. Phylogenetic relationships of *S. Typhimurium* var. O5- subset 1 isolates.**

909 Maximum likelihood phylogenetic tree of *S. Typhimurium* var. O5- subset 1 retail meat
910 (diamond) and clinical (circles) isolates constructed by PhyML v3.1.1 (40) using the GTR +
911 gamma model and 1,000 bootstrap replicates. The SNP alignment file produced by SNVPhyl
912 v1.0.1 (39) served as the input for PhyML and contained 482 SNPs. The closed chromosome of
913 clinical isolate SC-09 was used as the reference genome (grey arrow). Bootstrap values above 65
914 are included on the tree.

915

916

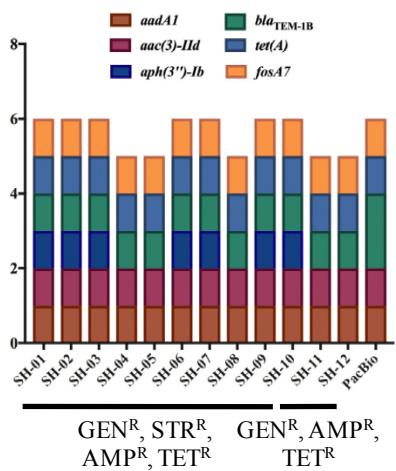
917

931 **Figure 3. Phylogenetic relationships of *S. Typhimurium* var. O5- subset 2 isolates.**

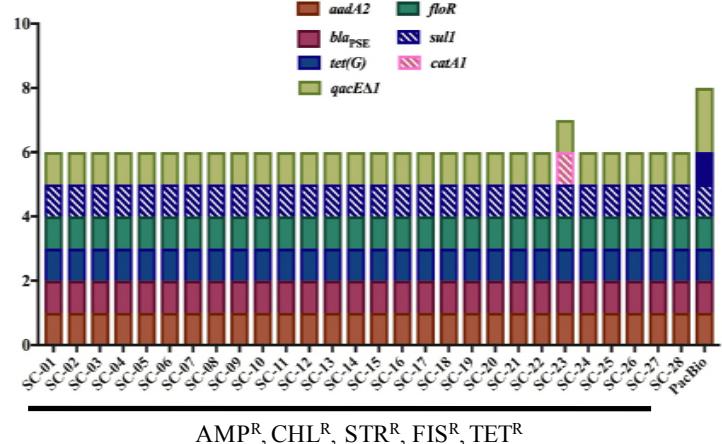
932 Maximum likelihood phylogenetic tree of *S. Typhimurium* var. O5- subset 2 retail meat
933 (diamonds) and clinical (circles) isolates constructed by PhyML v3.1.1 (40) using the GTR +
934 gamma model and 1,000 bootstrap replicates. The SNP alignment file produced by SNVPhyl
935 v1.0.1 (39) served as the input for PhyML and contained 225 SNPs. The closed chromosome of
936 clinical isolate SC-31 was used as the reference genome (grey arrow). Bootstrap values above 70
937 are included on the tree.

938

939


940

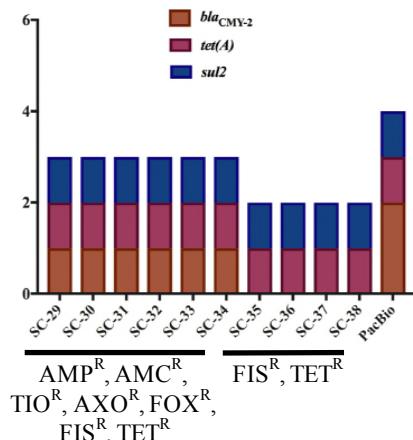
941


A.

B.

942

943



10

947

948

C.

955

956 **Figure 4. Identification of genetic resistance determinants in each subset.** (A) *S. Heidelberg*
957 subset. (B) *S. Typhimurium* var. O5- subset 1. (C) *S. Typhimurium* var. O5- subset 2. Each
958 column represents the resistance genes identified in each isolate's assembled genome, with the
959 exception of the last column in each graph, which represents the genes identified in the
960 chromosome and plasmid(s) of each isolate sequenced by PacBio: SH-04 in (A), SC-09 in (B),
961 and SC-31 in (C). A combination of BARRGD (Accession number PRJNA313047; accessed
962 April 2018) and ResFinder 3.0 (44) databases were used to identify genes. Solid-colored genes
963 were present at > 99.3% nucleotide identity and 100% query coverage. Pattern-colored genes

964 were present at > 99.3% nucleotide identity and > 63% query coverage. Each isolate's
965 phenotypic drug resistance profile is noted along the bottom. AMP=ampicillin;
966 AMC=amoxicillin-clavulanic acid; TIO=ceftiofur; AXO=ceftriaxone; FOX=cefoxitin;
967 CHL=chloramphenicol; GEN=gentamicin; STR=streptomycin; FIS=sulfisoxazole;
968 TET=tetracycline.

969

970

971

972

973

974

975

976

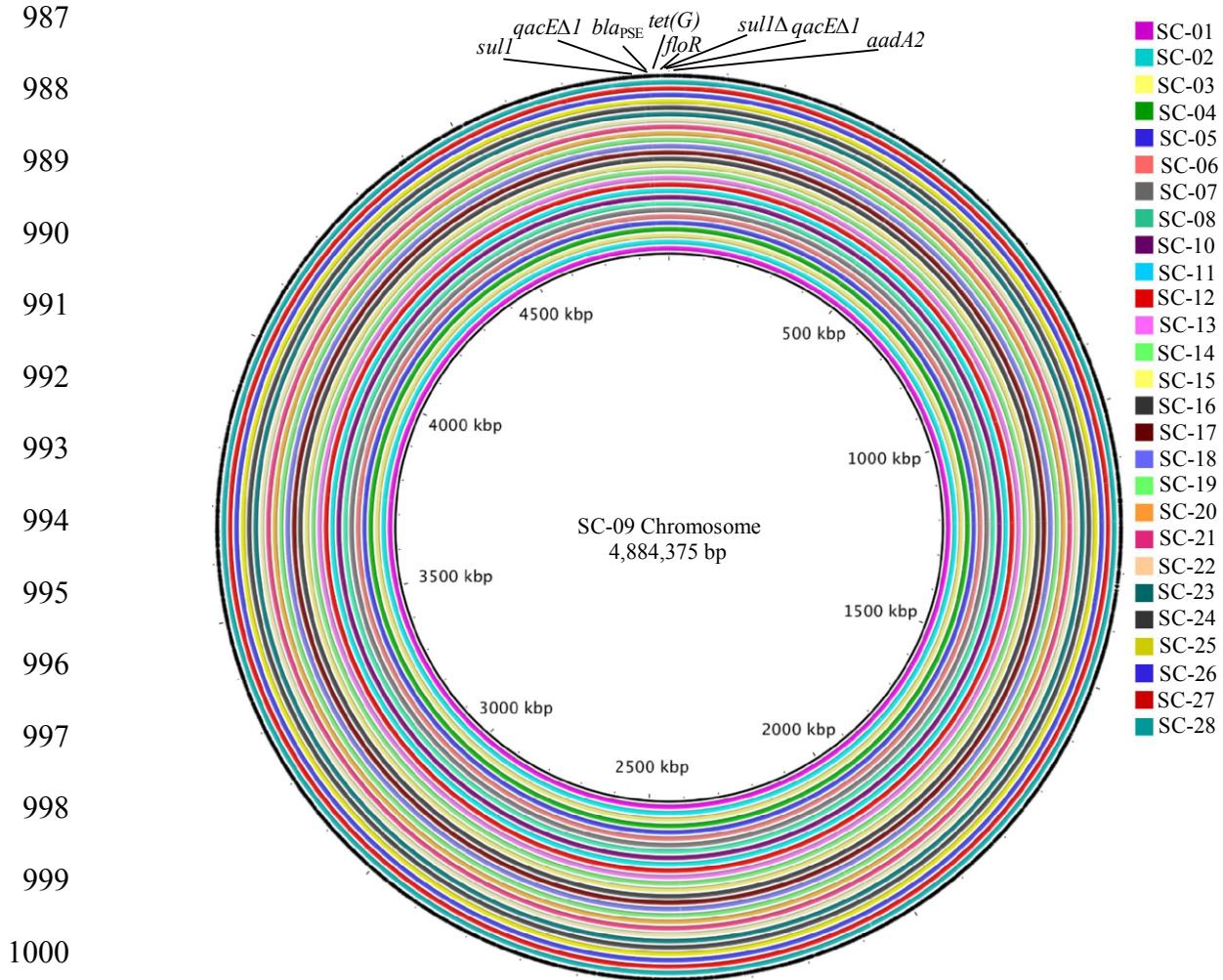
977

978

979

980

981


982

983

984

985

986

1001 **Figure 5. Chromosomally carried AMR in *S. Typhimurium* var. O5- subset 1.** Alignment of
1002 the SC-09 chromosome, closed by PacBio sequencing, against the assembled genomes of SC-01
1003 through SC-08 and SC-10 through SC-28 using BRIG (46). Each colored concentric ring
1004 represents one assembled genome aligning to the reference genome. The outermost ring
1005 represents open reading frames (ORFs) within the SC-09 chromosome and AMR gene locations
1006 are indicated.

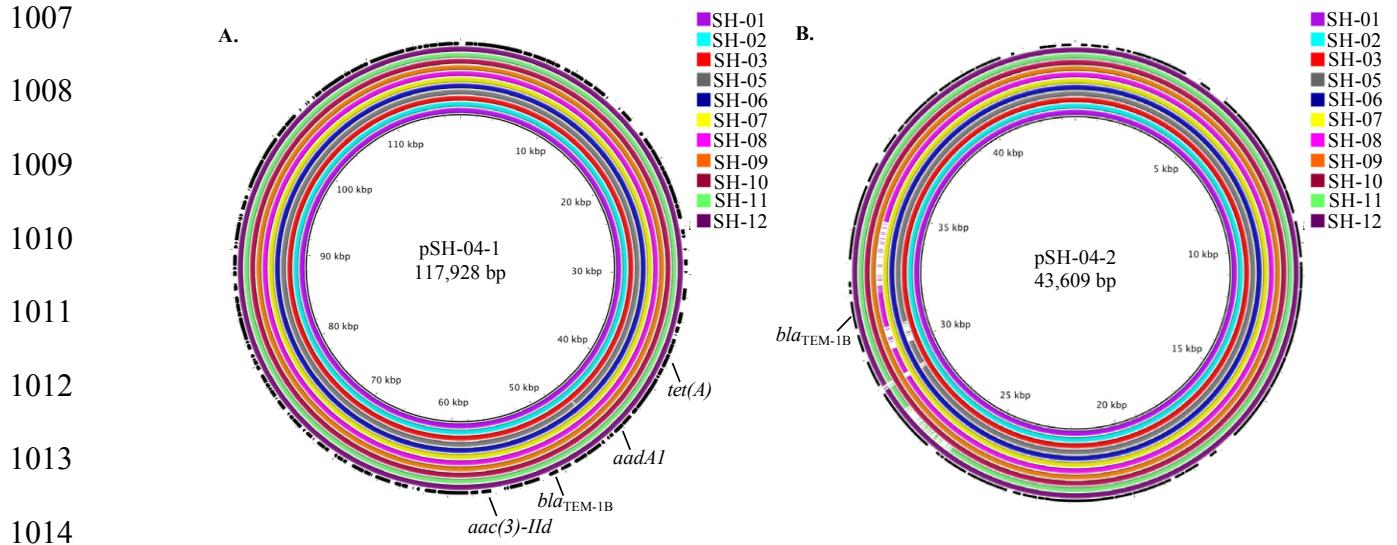


Figure 6. Comparative plasmid analysis in the *S. Heidelberg* subset. (A) Alignment of pSH-04-1 (IncI1-alpha), closed by PacBio sequencing, against the assembled genomes of SH-01 through SH-03 and SH-05 through SH-12 using BRIG (46). (B) Alignment of pSH-04-2 (IncX1), closed by PacBio sequencing, against the assembled genomes of SH-01 through SH-03 and SH-05 through SH-12. In (A) and (B), each colored concentric ring represents one assembled genome aligning to pSH-04-1 or pSH-04-2. The outermost ring in each panel represents ORFs in pSH-04-1 or pSH-04-2; the AMR annotations are included.

1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028

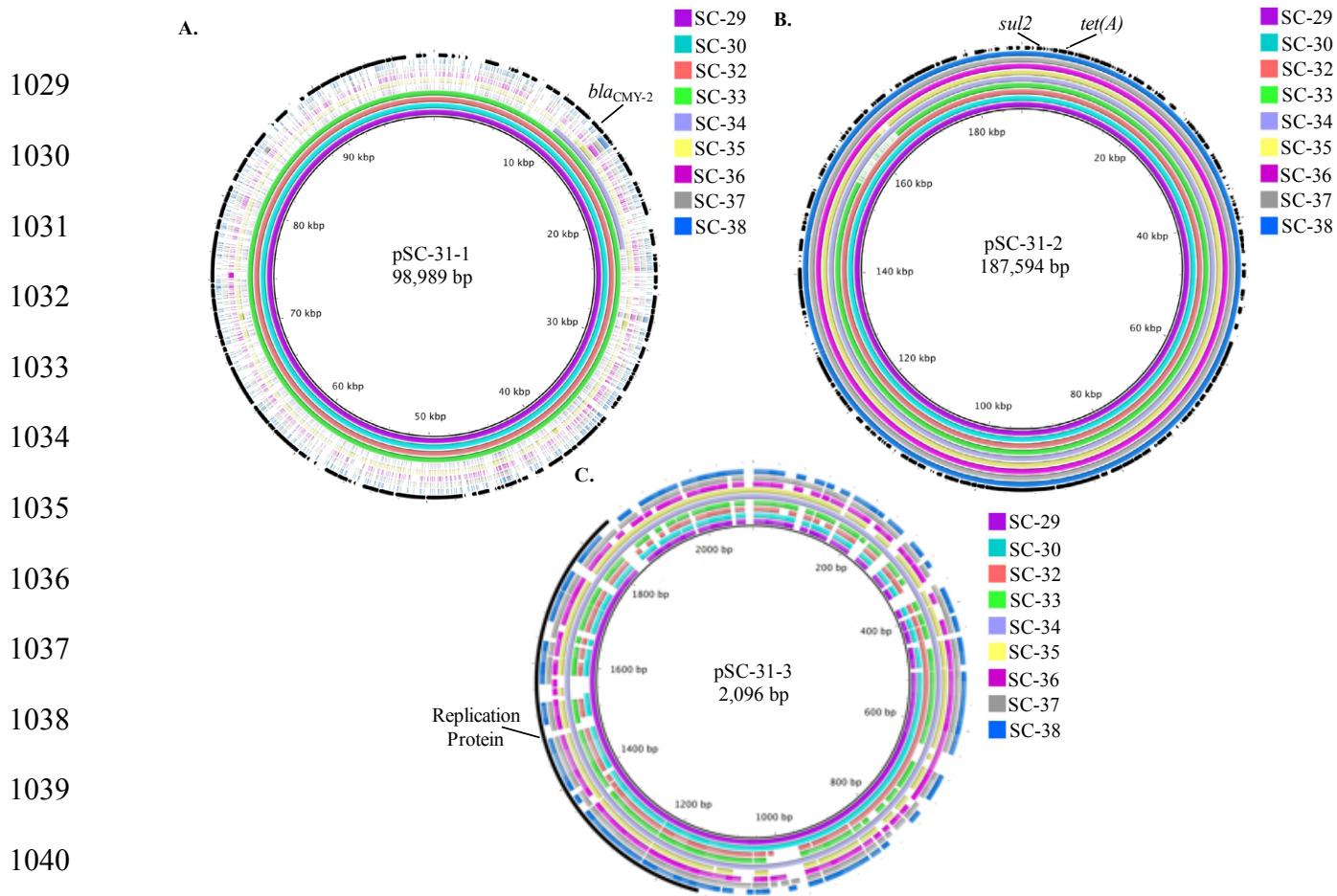


Figure 7. Comparative plasmid analysis in *S. Typhimurium* var. O5- subset 2. (A) Alignment of pSC-31-1 (IncI1-alpha), closed by PacBio sequencing, against the assembled genomes of SC-29, SC-30, and SC-32 through SC-38 using BRIG (46). The assembled genomes of SC-34 through SC-38 did not align to the reference plasmid. (B) Alignment of pSC-31-2 (IncA/C2), closed by PacBio sequencing, against the assembled genomes of SC-29, SC-30, and SC-32 through SC-38. (C) Alignment of pSC-31-3 (ColpVC), closed by Illumina sequencing, against the assembled genomes of SC-29, SC-30, and SC-32 through SC-38. In (A-C), each colored concentric ring represents one assembled genome aligning to either pSC-31-1, pSC-31-2, or pSC-31-3. The outermost ring in each panel represents ORFs in each plasmid; the AMR annotations are included.