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ABSTRACT

The associations between diseases/traits and copy number variants (CNVs) have not been
systematically investigated in genome-wide association studies (GWASs), primarily due to a lack
of robust and accurate tools for CNV genotyping. Herein, we propose a novel ensemble learning
framework, ensembleCNV, to detect and genotype CNVs using single nucleotide polymorphism
(SNP) array data. EnsembleCNYV a) identifies and eliminates batch effects at raw data level; b)
assembles individual CNV calls into CNV regions (CNVRs) from multiple existing callers with
complementary strengths by a heuristic algorithm; c) re-genotypes each CNVR with local
likelihood model adjusted by global information across multiple CNVRs; d) refines CNVR
boundaries by local correlation structure in copy number intensities; e) provides direct CNV
genotyping accompanied with confidence score, directly accessible for downstream quality
control and association analysis. Benchmarked on two large datasets, ensembleCNV
outperformed competing methods and achieved a high call rate (93.3%) and reproducibility
(98.6%), while concurrently achieving high sensitivity by capturing 85% of common CNVs
documented in the 1000 Genomes Project. Given this CNV call rate and accuracy, which are
comparable to SNP genotyping, we suggest ensembleCNV holds significant promise for
performing genome-wide CNV association studies and investigating how CNVss predispose to

human diseases.
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INTRODUCTION

As known GWAS loci only account for a fraction of disease/trait heritability (i.e., “Missing
heritability”) (1), assessment of other types of human genetic variation besides single nucleotide
polymorphisms (SNPs) is warranted. The human genome is rich in structural diversity, where
copy number variants (CNV) are the most common form. CNVs are individually rare but
collectively common across the human population (2). In fact, an estimated 8% of the general
population carries a large (>500 kb) deletion or duplication occurring at an allele frequency of
<0.05% (1,2). Moreover, CNVs affect transcription in mouse (3) and human (4), and contribute to
a variety of different diseases (5). However, methods to genotype CNVs, particularly at the
population level, are still in their infancy, lagging substantially behind genotyping of SNPs (6,7).
Furthermore, the landscape of CNVs in the human genome is not fully characterized, including
accurate assessments of CN'V boundaries in terms of probes targeting each specific CNV on the
SNP arrays. Taken together, although many CNV analysis software tools exist, the performance
(sensitivity and accuracy) is sub-optimal, making CNV characterization significantly more

challenging than SNP genotyping.

In general, existing CNV calling methods based on SNP array data can be categorized into two
types: (i) individual-wise analysis and (ii) joint analysis of multiple individuals (see review by
Pinto et al. (8)). Among individual-wise analysis, popular methods include hidden-Markov model
(HMM)-based methods, such as PennCNV (9) and QuantiSNP (10), and segmentation-based
methods, such as CBS (11) and fused-lasso methods (12,13). These methods utilize various types
of information derived from SNP (or CNV) probes such as total intensity (i.e. Log R Ratio; LRR)
and allele fraction (i.e., B Allele Frequency; BAF) from Illumina platforms as well as external
information, such as population frequencies of the B allele at each locus (9) and linkage-
disequilibrium (LD) structure between adjacent loci (14). Generally, these methods are good at

detecting rare, large CNVs spanning at least ten probes on a SNP array. On the other hand, they
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rely on the assumption that allele intensities are properly normalized such that they are
comparable across probes throughout the genome, and are thus less tolerant to spatial noise (e.g.
genomic wave related to GC content) and heterogeneity across different loci (15). For example,
at copy number polymorphism (CNP) loci with a high frequency of CNV alleles, the baseline
LRR corresponding to a normal copy number may be distorted during normalization, and as a
result, deviates from 0, making individual-based analysis error-prone. Moreover, from these
methods, the individual-level CNV calls are frequently not aligned across individuals, adding

additional difficulties in comparing CNVs in the downstream analysis.

Joint analysis of multiple individuals, such as iPattern (8), Piet (16), and msscan (17), to name a
few, takes advantage of consensus CNV signals across individuals, which are particularly useful
for CNP detection. They often align CN'Vs called across individuals into CNV regions (CNVRs),
making the downstream analysis more accessible than individual-based methods. However, the
boundaries of such constructed CNVRs are not carefully recalibrated. Moreover, they mainly
focus on signal patterns in total intensity and do not fully utilize other CNV-related information
(e.g., BAF), and as a consequence, are less sensitive to detect rare CNVs than individual-based
methods. Lastly, both individual-wise and joint analyses usually report CNV calls only, and do
not perform direct genotyping (i.e., explicitly differentiating between normal copy number and
missing genotype). This fact, we believe, creates additional barriers for quality control and

downstream association analyses.

In sum, many CNV calling methods have been proposed, each with various strengths and
weaknesses. Thus, it is logical to aggregate multiple methods using an ensemble machine
learning framework with the aim of achieving superior statistical performance. Herein, we
propose a novel CNV detection and genotyping framework, ensembleCNV, which is primarily
implemented in two phases: (1) the detection phase: initially locating CNVRs by assembling
CNV calls from multiple methods with complementary advantages; (2) the re-genotyping phase:
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refining the initial calls with local models tuned for each CNVR. The ensembleCNV framework
also includes steps to identify and eliminate batch effect at raw data level, which are essential to
generate high-quality CNV signals. By leveraging large empirical datasets, we compare and

intensively evaluated the performance of ensembleCNV with existing methods.

MATERIAL AND METHODS

Food Allergy (FA) dataset

In the genome-wide association study (GWAS) of food allergy (FA) in a US cohort of children
with/without FA and their biological parents (18), a total of 2,790 blood DNA samples, including
839 nuclear families and 100 technically duplicated pairs, were genotyped on the Illumina
HumanOmnil-Quad BeadChip with 1,048,713 SNP probes and 91,706 CNV probes. The mean
and median of distances between neighboring probes are 2.63kb and 1kb (Supplementary Table
S1). After quality control (QC), a total of 2,765 samples remained, including 835 nuclear families
and 95 technically duplicated pairs (see Quality Control section for details). The majority (85.5%)

of the samples are of European ancestry (Supplementary Table S1).

STARNET dataset

In the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task study (STARNET)
(19), a total of 874 blood DNA samples collected from coronary artery disease (CAD) patients,
including 12 technically duplicated pairs, were genotyped on the Illumina
HumanOmniExpressExome-8 BeadChip with 951,117 SNP probes. The mean and median of
distance between neighboring markers are 3.23kb and 1kb (Supplementary Table S1). After
quality control (see Quality Control section for details), a total of 834 samples remained,

including 12 technically duplicated pairs (Supplementary Table S1).
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1000 Genomes Project (KGP) CNV dataset

We downloaded the KGP structural variant (SV) dataset (in GRCh37 coordinates) in variant call
format (VCF), which consists of 68,818 SVs detected by whole-genome sequencing (WGS) in
2,504 individuals from different genetic populations (20). In this study, we focused on the subset
(CNYV dataset) of 40,975 bi-allelic deletions (DELSs), 6,025 bi-allelic duplications (DUPs) and
2,929 multi-allelic copy number variants (CNVs) (Supplementary Table S2), because only these
types of SVs can be detected by SNP array platforms. To compare with the CNVs detected in the
FA and STARNET SNP array data, we further defined the subset of detectable CNVs spanning at
least 5 probes of the SNP arrays used in the two studies, resulting in a total of 6,456 and 3,571

detectable CNVs for the FA and STARNET datasets, respectively (Supplementary Table S2).

Data processing and quality control

We processed the raw data (i.e., .idat files) with Genome Studio 2011.1 (Illumina, CA) following
similar protocols as described (21). For data processing with Genome Studio, an important step is
to update the cluster centers corresponding to the so-called AA, AB and BB genotypes for each
SNP probe (CNV probe has only one cluster), where A and B refers to the two alleles for the SNP
probe. This was done by re-clustering on the data points from samples with high call rate (e.g.,
>95%). This step is necessary since the cluster centers (in .egt file) accompanying the SNP array,
or which are built from other studies, do not always align with the real cluster centers in the
current study. In the FA and STARNET datasets, the sample sizes are large enough to build
customized clusters. For the updated cluster centers of each probe, we updated genotype calls and
derived quantities (including LRR and BAF used for CNV analysis) and exported them to final

reports.

We performed two types of sample-level quality control (QC). Firstly, as routine QC for a GWAS

based on SNP genotype data, we excluded samples with (1) mismatched genders, (2) excessive
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missing genotype rates, (3) excessive heterozygosity in autosomes (an indication of potential
sample contamination) and (4) outliers in principle component analysis (PCA). We retained
technical duplicates in this study to evaluate CNV methods (see below). It should be noted that
we did not perform QC at the probe-level (as in a typical QC for GWAS), because SNP probes
with high missing genotype rates and deviation from Hardy-Weinberg equilibrium may be
associated with CNVs. At these SNP probes, data points corresponding to CNVs usually deviate
from empirical genotype clusters and such deviation is especially magnificent for those with CN
=0 (i.e., 0 copies of the allele) (13,14). Secondly, we performed additional sample-level QC to
remove samples with abnormal CNV signals and alleviate batch effects. Please refer to

ensembleCNYV step (b) (see below) and Supplementary Results for details.

ensembleCNYV workflow

The overall workflow of ensembleCNYV is summarized in Figure 1. This involves an initial
localization of CNVRs by assembling CNV calls from multiple methods with complementary
advantages, and then a refining of the initial calls using local models tuned for each CNVR. The
workflow consists of two major phases implemented in five steps. In the initial detection phase,
we processed the raw image data with Genome Studio (Illumina, CA) and extracted genotype and
CNV signals, particularly log R ratio (LRR) and B allele frequency (BAF) from the final report.
Next, we applied three popular CNV detection methods, PennCNV (9), QuantiSNP (10), and
iPattern (8), to create the initial CNV call sets, respectively (step (a)). In the raw data and initial
call sets, batch effects may exist and affect the downstream analysis. For this reason, we applied
PCA on the raw LRR data and sample-level summary statistics of CNV results from the
individual callers to identify batches. When batches existed, we re-processed each batch along the
pipeline for the initial detection phase (step (b)). In the following ensemble and re-genotyping
phase, we aimed to address three sub-tasks: First, we aligned the CNVs called from the individual

methods in all subjects and merged overlapping CNVs to construct initial CNVRs using a
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heuristic algorithm (step (c)). Second, we trained a local likelihood model on both LRR and BAF
CNV signals at each CNVR with the “global” information from frequent CNVRs incorporated
(see Supplementary Methods); and assigned a copy number (CN) genotype to each subject,
accompanied by a genotyping quality (GQ) score to quantify the confidence level (step (d)).
Third, we refined the boundaries of CNVRs using the correlation structure of the LRR values of
the probes around the CNVRs (step (e)). The whole pipeline results in CN genotype data of

refined CNVRs across each subject. Details of the implementations are described as follows.

(a) Initial CNV calls by selected methods. We chose PennCNV (9), QuantiSNP (10), and
iPattern (8) to make the initial CNV calls using final report files generated by Genome Studio
2011.1 (Illumina, CA). These methods use different information to call CNVs from different
perspectives. Both PennCNV and QuantiSNP are hidden Markov Model (HMM)-based
approaches, which take LRR (reflecting total copy number) and BAF (reflecting allelic
proportion/balance) jointly as observed data while modeling copy number (CN) status in the
hidden layer. PennCNV further accounts for population frequency of the B allele, which can be
estimated by the data. They make CNV calls on an individual-wise basis. iPattern takes
normalized intensities from fluorescent measurements of the two alleles of each SNP as input,
calculates total intensities for each SNP, and normalizes the total intensities (reflecting total CN)
across individuals. It then screens the genome with sliding windows, within which a Gaussian
mixture model (GMM)) is fitted to the normalized total intensities across individuals and CNV
calls are made based on the fitted model. While PennCNV and QuantiSNP are good at calling
large rare CNVs in a more sensitive way, iPattern performs better in calling more frequent CNVs
across individuals. We took the complementary advantages of these methods and combined their

discovery sets to boost the sensitivity of CNV detection for the initial call set.

(b) Sample-level QC for batch effects. We used two orthogonal signals to identify batch effects
in CNV calling: (i) Along with CNV calls, the three detection methods can generate per-sample
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summary statistics, such as standard deviations (SD) of LRR, SD of BAF, wave factor in LRR
(15), BAF drift (9), and the number of CNVs detected, reflecting the quality of CNV calls at the
sample level. Since these quantities are highly correlated among themselves and between
methods (Supplementary Figure S1), we used PCA to summarize their information. By
examining the first two or three PCs, we can identify sample outliers or batches that deviate from
the majority of the normally behaved samples (Supplementary Figure S2). (ii) Batch effects may
also be orthogonally reflected in the first two or three PCs from the LRR data before any CNV
analysis is performed. We randomly selected 100,000 probes and applied PCA to the LRR values
at these probes across individuals and visualized the first few PCs in scatter plots. Batches can be
identified by visual check if they exist (Supplementary Figure S2). The batches identified by
these two independent approaches should be consistent with each other. While isolated outliers
were excluded from downstream analysis, if batch effects were identified, we re-normalized the
samples within each outstanding batch with Genome Studio (see data processing section), re-did
the CNV calling in step (a), and combined the re-called CN'Vs with the remaining call set of good
quality (Figure 1). Please refer to Supplementary Results and Figures S1-3 for details regarding

the identification and removal of batch effects in the FA dataset.

(c) Construction of CNVRs. We defined CNVR as the region in which CNVs called from
different individuals by different callers substantially overlap with each other. CNV events
belonging to the same CNVR are comparable across individuals and thereby the estimation of
population frequency can be made. For copy number polymorphisms (CNPs) frequently observed
in populations and inherited CNVs segregating within pedigrees, their boundaries would be
aligned precisely across individuals. For recurrent CNVs (but not CNPs), their affected genomic

regions would largely overlap, albeit if not exactly aligned.

We modeled the CNVR construction problem as identification of cliques (a sub-network in which
every pair of nodes is connected) in a network context (Supplementary Figure S4), where (i)

9
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CNVs detected for each individual from a method are considered as nodes; (ii) two nodes are
connected when the reciprocal overlap between their corresponding CNV segments is greater
than a pre-specified threshold (e.g. 30%); (iii) a clique corresponds to a CNVR in the sense that,
for each CNV (node) belonging to the CNVR (clique), its average overlap with all the other
CNVs of this CNVR is above a pre-specified threshold (e.g. 30%). The computational complexity
for clique identification can be dramatically reduced in this special case, since the CNVs can be
sorted by their genomic locations and the whole network can be partitioned by chromosome arms
— CNVs from different arms never belong to the same CNVR. Correspondingly, the adjacent

matrix representing the network model is banded along the diagonal (Supplementary Figure S4).

Briefly, for CNVs in each chromosome arm, which were sorted by their genomic locations, we
constructed CNVRs in a forward-screening and backward-pruning procedure. In the forward-
screening step, we initialized the first CNVR with the first CNV in the list and screened the
remaining CNVs in their genomic order. For the current CNV under consideration, we compared
it against all existing CNVRs. If its average overlap with all CNVs of a most overlapping CNVR
was above the pre-specified threshold (see above definition (iii)), we assigned it to this CNVR;
otherwise we created a new CNVR with it. The screening continued until all CNVs in the list
were assigned to a CNVR. In the backward-pruning step, for each CNVR, we re-checked, for
each CNV belonging to this CNVR, if its average overlap with all the other CNVs of this CNVR
was above the pre-specified threshold. If a CNV did not meet this criterion, we removed it from
this CNVR. This pruning procedure would continue until no more CNVs could be removed from
the CNVR. The leftover CNVs would be assigned to other CNVRs whenever possible; otherwise,

they would be assigned to newly created CNVRs.

To define the boundary of each CNVR, we stacked all CNVs in a CNVR and defined the
footprint carried by at least a pre-specified proportion of CNVs (e.g. 50%) as the initial
boundaries of this CNVR (Supplementary Figure S4). We adopted this major-vote type of

10
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strategy to enrich CNV signals within the CNVR and reduce the noise from surrounding probes.

The initial boundaries were refined in an iterative way as shown in Figure 1 and step (e) below.

(d) CNV re-genotyping. The initial CNV calls within a CNVR may be mixed with false positives
and false negatives from the initial call set. Moreover, the baseline LRR value corresponding to
normal CN status may substantially deviate from 0, violating the essential model assumptions for
individual-wise CNV callers (e.g., PennCNV and QuantiSNP) (Supplementary Figures S5A and
S6). To address these issues, we re-genotyped CN status per individual at each CNVR by a
locally fitted likelihood model, with information from other CNVRs borrowed for the
initialization of model parameters (see Supplementary Methods). Both the LRR and BAF signals
from SNP probes and the LRR signal from CNV probes within a particular CNVR were used for
model fitting. With the additional signal from BAF, the original samples with non-identifiable
CN status based on the LRR signal alone (e.g., iPattern) may be distinguishable in the expanded

BAF-LRR 2-D space (Supplementary Figure S5B-C).

For BAF signal, denote X (i=1,...,n;j=1,...,p) as the observed BAF value for the i-th

individual at the j-th SNP probe in the CNVR. We adopted the mixture model (9):

p_ G(z)-1
Poar(X;12) = 1_[ E b(g:G(z,) - l’pB,j W(xy;ux,z,,g’ax,z,,g)
j=1  g=0

where b(g;G(z)-1,p,) and ¢(x;u, . .0, ) are density functions for binomial and normal
distributions respectively; z, (z; €{0,1,2,3}) is CN; G(z,) is the number of possible genotypes
associated with the CN (e.g., G(z; =3) =4 corresponding to genotype AAA, AAB, ABB and

BBB); p, is the population B allele frequency (PFB), which can be retrieved from PennCNV

analysis (9) in step (a). The parameters in the BAF model are estimated from a set of selected

CNVRs (see Supplementary Methods).
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For LRR signal, denote the median value of all probes within the CNVR as y, (i=1,...,n) for the

I -th individual. We adopted the commonly used Gaussian mixture model (GMM):

Pu3)= Y TpmOilz)= Y wd(su,,.0,.)
%€{0.1.2,3} %€{0.1.2,3}
The model can be fitted by an EM algorithm (22). For a CN Gaussian component in the GMM
with adequate sample size (e.g. >= 10) from the initial call set generated in step (a), we use these
samples to estimate the initial value of parameters for the EM algorithm; otherwise, we adopted
the parameters estimated from a set of selected CNVRs as the initial value (see Supplementary
Methods). It should be noted that LRR signals are not always properly normalized and centered at

0, so we used the mode of y, of the samples absent from the initial CNV call set (i.e., CN = 2) for
the CNVR to estimate the initial location of normal CN component (i, _, ) and calculate the

relative locations of other CN components with respect to @, _, .

Once the CNVR-specific model is fitted, we computed the Phred-scaled likelihood (PL) of a CN

status (z, €40,1,2,3}):

PL(z;)=-10log, (ﬂz,-pLRR i 12)Ppar(x; | Zi)) :

We decided the CN genotype (including CNV and normal CN) as the one with the smallest PL
value, with associated genotype quality (GQ) score defined by the difference between the
smallest and the second smallest PL values. This definition is similar to the GQ score used in
GATK pipeline for the analysis of next-generation sequencing data (23). The GQ score can be
used to measure the confidence of a CN genotype call. The CN genotype with GQ score greater
than a pre-specified threshold will be reported and otherwise be set as missing (“no call””). The

GQ threshold can be tuned in a data-driven manner that balances accuracy and call rate. For
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example, technical duplicates are often adopted for QC purposes. We can adjust the GQ score
threshold to a level that the CN'Vs detected in technical duplicates achieve a high concordance
rate while the call rates at the individual-level and CNVR-level are not heavily compromised (see

Results).

(e) Boundary refinement. For a CNVR with high frequency of variant alleles, the LRR signals
are highly correlated across individuals among involved probes (Supplementary Figure S7). We
can take advantage of this structure to further refine CNVR boundaries. In other words, we are
able to find a sub-block of high correlations within a local correlation matrix. This strategy has
also been adopted for CNV detection in other studies (24,25). Considering the M SNPs within
the local region by expanding the initial boundaries several times (e.g. twice the size of the initial

region on both sides), let I be the Pearson correlation of LRR values between SNP i and j. The

refined left / and right 7 boundaries are obtained by optimizing:

(.9 =g 20 S0M1=51)) / J(ul),
mesiEh m m, —m, m, m,—m

where SG. /)= 3 3 1. my=(j=(j=i+1)/2, my=M(M~1)/2, and m is the pre-

specified minimum size of CNVR (e.g., spanning 5 probes). This optimization is feasible by
simple exhaustive search, since the number of SNPs M involved in a CNVR is commonly

within the range of tens to hundreds.

When the refined boundaries are different from the initial boundaries, the probes falling within
the range of updated boundaries will change. We needed to update the local likelihood model as
in step (d) and re-did the genotyping step (Figure 1). If several CN'VRs share the exact boundaries

after boundary refinement, we merged them into one.
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Concordance rate in duplicated pairs

To avoid overestimating the concordance rate, for each pair of technical duplicates, we only
considered the CNVRs with CNV genotype (CN # 2) in at least one of the pair, while those with
only normal CN genotype (CN = 2) in both were excluded. The concordance rate was defined as
the proportion of CNVRs with consistent CNV status in both duplicates among all the CNVRs

considered for each pair of duplicates.

Mendelian errors and transmission rate in trios

From the nuclear families in the FA cohort, we included those with complete trios (father-mother-
child). Larger nuclear families with multiple children were converted to multiple trios. For
example, a quartet family was converted to two trios, each with one child and the parents. This
resulted in a total number of 1019 trios. In each trio, the CNVRs with normal CN status (CN = 2)
in all three individuals were excluded. A CNVR has a Mendelian error if the CN status in the
trios does not follow the normal inheritance pattern. For example, if CN = 0 in the father, CN =2
in the mother, then CN = 2 in the child will lead to a Mendelian error. A Mendelian error could
possibly arise from a de novo mutation in the child, false positive CNV calls in the child, or false
negatives in the parents. To avoid ambiguity in the estimation of transmission rate in a trio, we

only considered the CNVR with CNV status (CN # 2) in only one of the parents. The

transmission rate was estimated as the proportion of CNVRs carrying CNV genotype in the child

among all CNVRs considered in the trio.

Sensitivity analysis

We used the “detectable” subset of the 1000 Genomes Project (KGP) CNV dataset
(Supplementary Table S2) as the reference to evaluate the sensitivity of the six methods in CNV
detection. A CNV in KGP data was considered as detected by a method if a CNV from the call

set of the method was found with > 30% reciprocal overlap with the KGP CNV and the allelic

14


https://doi.org/10.1101/356667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/356667; this version posted June 27, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

types of the two CNVs were compatible. For example, if the CNV called by the method had only
a deletion allele while the KGP CNV had only a duplication allele, then the KGP CNV was not
counted as detected even though they had > 30% reciprocal overlap. The sensitivity of a method

was defined as the proportion of the CNVs in the KGP data that could be detected by the method.

RESULTS

Performance of ensembleCNV

We evaluated the performance of ensembleCNV using two empirical datasets from the FA and
STARNET studies (see Material and Methods; Supplementary Table S1) and compared with the
three methods we adopted in our pipeline. In addition, we also considered two simple integration
methods commonly used in CNV studies: (i) the “intersection” method where the CNVs called by
at least two of the three methods (i.e., major voting) were selected to the final call set; and (ii) the
“union” method where the CN'Vs called by any of the three methods were added to the final call
set (Supplementary Figure S8). For the other five methods, we used the ensembleCNV CNVR
construction algorithm to create CNVRs. Key summary statistics of the CNV call sets from the
six methods are shown in Supplementary Table S3. The individual performance of these six
methods were compared from three perspectives: (1) concordance rate of detected CNV's between
technical duplicates in both datasets; (2) Mendelian error and transmission rate evaluated in trios
of FA study; (3) the quality of detected CNVs evaluated by the external CNV data from the 1000

Genomes Project (KGP) (20).

Concordance rate and genotype call rate

To benchmark the accuracy of CNV detection methods, the ideal way is to use real datasets with

known ground truth of CNVs in all subjects. Such a benchmark is usually not available,
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especially for large-scale genetic studies. However, for QC purposes in SNP genotyping,
technical duplicates are often considered in the experimental design as in the FA and STARNET
studies. Thus, the concordance rate (see Methods for definition) of CNV calls in duplicated pairs,
i.e. the reproducibility, can be used as a surrogate of accuracy measurement — with high
reproducibility being an indication of good quality for a CNV call set. In ensembleCNV, we also
defined the genotyping quality (GQ) score (see Methods) to quantify the confidence of the CN
genotype assigned to each individual at each CNVR. As the GQ score threshold increases, the
concordance rate constantly increases with the median value across duplicated pairs gradually
approaching 100% at the cost of decreased sample-wise and CNVR-wise call rates
(Supplementary Figures S9 and S10). To achieve a balance between concordance rate and call
rate, we selected GQ score thresholds of 15 and 20 in the FA and STARNET datasets,
respectively (Supplementary Figures S9 and S10). We also used these thresholds in the results
sections below. Of note, the strategy of utilizing technical duplicates along with the GQ score can
be used when applying ensembleCNV in real data analyses. For the other five methods, however,
there is no such quantification of genotyping confidence for every individual at each CNVR. In
particular, these methods do not distinguish between normal CN (CN = 2) vs. no call. Instead, we

set the genotype of an individual without a CNV call (CN # 2) at a CNVR as normal (CN = 2).

The call rate, therefore, cannot be defined for these five methods.

In this evaluation, not only did ensembleCNV achieve the highest concordance rates with
medians of 98.6% and 95.5% in the FA and STARNET datasets, but it also resulted in the
greatest stability (i.e., the smallest variability) across duplicated pairs (Figure 2A and D). On the
other hand, the medians of sample-wise call rate and CNVR-wise call rate reached 93.3% and
97.0% for the FA data and 96.3% and 99.5% for the STARNET data, respectively (Figure 2B, C,
E, and F). A similar QC based on call rate at both individual and CNVR levels can be performed

as what is routinely done for SNP QC in GWAS. For the purpose of fair comparison, we kept all
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samples and CNVRs generated by ensembleCNV without any filtering unless otherwise
specified. Following ensembleCNV, the joint analysis based method, iPattern, performed better
than the individual-wise analysis based methods, PennCNV and QuantiSNP, in terms of
concordance rate. It should be noted that the straightforward integration methods “intersection”
and “union” did not make any improvement on the individual methods, but instead reached a
compromise between the three methods — they underperformed as compared to iPattern and
outperformed as compared to PennCNV and QuantiSNP (Figure 2A and D). Moreover, in the FA
data, the concordance rate produced by ensembleCNV was mostly comparable between the
duplicated pairs, either within the same batches or those belonging to different batches. This
suggests robustness of ensembleCNV to batch effects, whereas the other five methods were

vulnerable (Supplementary Figure S11).

Mendelian error and transmission rate

Taking advantage of family information from the FA dataset, we calculated the number of
Mendelian errors in the trios (see Methods). Though a Mendelian error may imply a de novo
CNV, the number of such errors is expected to be within a certain range. As suggested by KGP
CNV data (Supplementary Table S2), the median number of singleton CNVs per sample is 8.
Therefore, an excessive number of Mendelian errors per trio indicates poor quality of a CNV call
set. Figure 3A summarizes the number of Mendelian errors per trio for the six methods. The
median number for ensembleCNV is 13, a little above the number suggested by KGP data. It
should be noted that the GQ score threshold was not optimized for Mendelian errors (see above
section). With the increment of GQ score threshold, the number of Mendelian errors continues to
decrease at the expense of call rate (Supplementary Figure S12). In contrast, the median number
for iPattern is 45 and those numbers for the other four methods are all above 200, implying a

large amount of false positive CNV calls in offspring and/or false negatives in parents.

17


https://doi.org/10.1101/356667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/356667; this version posted June 27, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Concurrently, with trio data, we estimated the transmission rate of CN'Vs from parents to
offspring (see Methods). Normally, the average transmission rate should be around 0.5 (26). The
medians of transmission rates in the trios for ensembleCNV and iPattern were close to 0.5,
whereas the median values for the other four methods were all well below 0.5 (Figure 3B).
Moreover, as expected, the median of transmission rates for ensembleCNV converged to 0.5 as

the GQ score threshold increased (Supplementary Figure S12).

Evaluation with 1000 Genomes Project CNV (KGP) data

We used the KGP CNV data (20) as an external dataset to evaluate the sensitivity of the six
methods (Supplementary Table S2). Since KGP CNV data was produced by whole-genome
sequencing (WGS), the size of detectable CNV's can be smaller than 1kb at base-pair resolution,
which is beyond the capability of SNP array platforms. To make the reference data comparable to
the results from the FA and STARNET datasets, we defined the subsets of “detectable” CNVs as
those spanning at least 5 probes in the SNP array used in the FA and STARNET studies,
respectively (Supplementary Table S2). Since the majority of subjects in the FA and STARNET
studies are of European ancestry and the SNP arrays used (Supplementary Table S1) are mainly
designed for European populations (reflected in the number of detectable singleton CNVs per
sample; Supplementary Table S2), we focused on the statistics in European populations from
KGP. The sensitivity assessment was further stratified by the allele frequency in KGP European
populations at 1% (Figure 4). Overall, the total number of CNVs detected per sample from
ensembleCNV (median: 620 and 38) was the closest, among the six methods, to the number
(median: 633 and 48 for European populations) of the detectable subsets of KGP data in both the
FA and STARNET studies (Supplementary Tables S2 and S3). Regarding the sensitivity,
ensembleCNV was able to identify 85% and 71% of detectable common CNVs in the FA and
STARNET data, respectively. That the sensitivity for rare CNVs was found to be much lower is

not surprising (Figure 4). The call set from iPattern is the most conservative and biased toward
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common CNVs, while the other four methods tend to be slightly more sensitive than
ensembleCNV at a greater cost of accuracy (Figures 2-4). Interestingly, for the detectable
common CNVs (containing >5 probes on the SNP genotype array), the CN genotype frequencies
documented in the KGP CNV dataset were better matched with those estimated by ensembleCNV

than the other 5 evaluated methods (see Methods; Supplementary Figure S13).

Size and frequency distribution of CNVRs

The size and frequency of CN'Vs called by the different methods were found to be comparable
both to each other and to CNVs released by KGP (Figure 5). In the FA study, 84.2% and 91.1%
of all CNVRs were below the frequencies of 1% and 5%, respectively. In the STARNET study,
83.7% and 93.7% of all CNVRs were below frequencies of 1% and 5%, respectively. This
frequency spectrum is similar to that observed for SNPs (27). Importantly, in the FA (by
ensembleCNV) and KGP data, a total of 1,752 and 1,948 CNVRs with frequency = 1% was

detectable, offering sufficient statistical power to perform large CNV-GWAS.

The CNVRs detected had a wide size range (Figure 5B and 5D), which is consistent with findings
in KGP. 63.7% and 43.8% of CNVRs in the FA and STARNET data were 20kb or shorter,
respectively. It should be noted that there were only 2 CNVs with a size of greater than 1Mb in
the KGP CNV dataset (Supplementary Table S2), and these two CNVs did not pass the 5-probe

lower limit and thus did not appear in the detectable sets for the FA and STARNET studies.

Correlation of CNVRs and nearby SNPs

A key question for CNV-GWAS is whether the CNVs are already well tagged by nearby SNPs, in
which case making CNV calling becomes redundant. We estimated linkage disequilibrium (LD;
r’) between each CNVR (with >90% call rate from ensembleCNV) and SNPs within 500 kb

(Figure 6). In the FA data for all CNVRs, only 7.3% were tagged at r* = 0.6. In contrast, for

CNVRs at frequencies = 1% and = 5%, the corresponding numbers were 46.5% and 76.3%,
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respectively. In STARNET, a SNP array with fewer SNPs than FA was used, and the LD
between CNVRs and SNPs was therefore even lower. For all CNVRs, 4.4% were tagged at r° =
0.6, and for CNVRs at frequencies =1% and =5%, 15.3% and 36.9% were tagged at 1* = 0.6,
respectively. These results indicate that testing CNV-disease associations is necessary and

potentially fruitful for both rare and common CNVs.

Functional relevance of CNV

In the STARNET and FA datasets, we found that 5.58% and 17.49% of the genome were affected
by CNVs, respectively. For more frequent CNVs (e.g. frequency > 5%), 0.74% (FA) and 1.23%
(STARNET) of the genome were affected. Furthermore, 0.54% (FA) and 0.4% (STARNET) of

the genome were affected by CNVs with null (CN = 0) genotype.

Given that CNVs directly change the dosage of genes, they are likely functional and possibly
important for disease. For that reason, we overlapped the CNVRs with the NHGRI-EBI GWAS
catalog (28), holding 43,927 unique variants with convincing evidence of variant-trait
associations. Importantly, 23.97% (10,530) of the GWAS catalog variants were affected by
CNVRs (i.e., within CNVR boundaries), where 2% (881) were affected by frequent CNVRs and

1.1% (485) by CNVRs with null genotype.

It is known that most genomic loci can affect several traits either by affecting multiple genes at
the locus or genetic pleiotropy (29-31). In our results, risk loci of the GWAS catalog affected by
CNVs we detected in either the FA or the STARNET data were linked to multiple traits. The top
diseases/traits with the most GWAS SNPs affected by CN'Vs were breast cancer (220 CNV-
affected variants), schizophrenia (220 variants), obesity-related traits (213 variants), height (174
variants), and body mass index (170 variants). As an example, the 7q36.3 locus with
susceptibility to testicular germ cell tumor (leading SNP rs11769858; p-value = 2e-8) (32) was

within a CNVR (CNVR 954 rl1 chr7 q) of 4kb length (Supplementary Figure S14A). In the FA
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cohort, 2014, 483 and 31 subjects are of 2, 1 and 0 copy numbers, respectively, at this CNVR
(Supplementary Figure S14B). This CNVR (CNVR 954 rl1 chr7 q) is reliably called based on
15 probes on the Illumina HumanOmnil-Quad-v1 BeadChip (Supplementary Figure S14C and
D). The promoter region of a gene proposed to be responsible for testicular germ cell tumor risk

(32), NCAPG2, was affected by this CNVR (Supplementary Figure S14A).

DISCUSSION

Despite the availability of large, relevant datasets (e.g. SNP array of large GWASs) (7), the
hypothesis that CNV broadly influences disease risk in the population and across diseases has not
been systematically evaluated in a well-powered study. The main challenge has been a lack of
robust and accurate methods to quantify CNVs. Here we describe and report on the utility of
ensembleCNV for detecting and genotyping CNVs; a technique that is readily applicable to a
large amount of existing data. We demonstrate that our ensemble approach quantifies CNV
genotype with accuracy and properties comparable to SNP genotyping, and as such paves the way

for large-scale population-based CNV-disease association studies (i.e., CNV-GWAS).

EnsembleCNV has several key advantages over existing methods:

(1) High genotyping accuracy and reproducibility. In the STARNET and FA cohorts, we
observed 96.2% and 98.6% consistency, respectively, among technical duplicates (Figure 2), and
the median number of Mendelian errors was 13 per family in the FA data, which outperformed
other methods.

(2) Detection and re-genotyping functions. Many existing methods are designed as CNV
detection tools (e.g. PennCNV and QuantiSNP) and do not distinguish CN=2 vs. “no call”,
causing substantial mis-classification. EnsembleCNV has both detection and re-genotyping
functions and employed a GQ score to identify “no call” for genotypes with low confidence.
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(3) High genotyping call rate. In the STARNET and FA cohorts, we obtained 97.0% and 93.3%
sample-wise genotyping call rates (Figure 2), respectively.

(4) High detection rate. The detection phase of ensembleCNV utilizes multiple underlying
callers, and ensures a high detection rate (i.e., ability to detect and genotype more CNVRs). For
example, in the FA cohort, ensembleCNV called 19,695 CNVRs, more than the 10,200 CNVRs
called by iPattern; in the meantime, ensembleCNV achieved a higher rate of consistency for
duplicate pairs (98.6% vs. 90.5%:; Figure 2) and fewer Mendelian errors (13 vs. 45; Figure 3).
(5) Improved calling quality and functional interpretability. The boundary refinement of
ensembleCNV both improves the CNV calling quality and downstream functional
interpretability.

(6) Prepared for CNV-GWAS. EnsembleCNV outputs aligned CNVRs and CNV genotype matrix
with similar format and properties as SNP genotype matrix (e.g. PLINK format(33)), ready for
association testing.

(7) Identification and elimination of batch effects. Proper ways to handle batch effects are
prerequisite to produce high-quality CNV signals. However, this is often overlooked and rarely
addressed in a proper way by existing methods. We proposed steps to address this issue at raw
data level from the beginning of the pipeline. In the FA dataset, we identified and eliminated
batch effects to a considerable extent (Supplementary Results and Supplementary Figures S1-S3

and S11).

CNVs in a given individual can be inherited and de novo. We found, when accurately typed,
CNVs are overwhelmingly inherited (98.1%), following simple Mendelian inheritance, which is
consistent with previous reports.(7) Importantly, we found that inherited CNVs are often not well
tagged by nearby SNPs. Inthe STARNET and FA studies, only 4.4% and 7.3% of CNVRs were
tagged by nearby SNPs at r* > 0.6 (Figure 6), emphasizing the need for CNV-GWAS to capture at

least part of the missing heritability of human diseases. Further, CNVs are of great functional
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relevance. Among the unique variants documented in the NHGRI-EBI GWAS catalog, 23.97%
(10,530 variants) were inside CNVRs detected in the STARNET and/or FA studies, and 485

variants were inside CNVRs with null (i.e., CN = 0) genotype.

An enormous amount of raw SNP array data generated from large GWASs has not been
comprehensively investigated in terms of CNVs, leaving a large gap of CNV genotyping and
CNV-based association analyses. To address this gap, we systematically benchmarked the
performance of ensembleCNV on large SNP array datasets, suggesting its applicability for CNV-
GWAS. In this context, it should be noted that the ensembleCNV framework can be extended to
next-generation sequencing (NGS) data (34), where multiple NGS-based CNV calling tools have
been proposed (e.g., GenomeSTRIiP (35,36) and LUMPY (37)) and their individual call sets can
be aggregated in a similar way. Extension of ensembleCNV to NGS data would address the
limitations of CNV detection using SNP array data. For example, using the boundary refinement
functionality of ensembleCNV, but limited by the pre-specified distribution of probes in a SNP
array, the boundaries of CNVs can only be approximated as being somewhere between
neighboring probes. By aggregating signals around CNV boundaries (i.e., break point) from split
reads and discordant read pairs across multiple individuals, the boundary location may be
increased to base-pair resolution (34). Using NGS data with sufficient coverage, we would also
alleviate the signal saturation limitation in SNP array data, where we cannot reliably distinguish

CN =3 vs. CN >4 genotypes at many CNVRs (35,36).

In the 1000 Genomes Project data, some CNVs are more frequent (i.e., frequency = 1%); which
are also termed copy number polymorphisms or CNPs (38-40). In the FA data, indicating a high
sensitivity for CNPs, we were able to detect and genotype 85% of these frequent CNVs using
ensembleCNV. Indeed, the ability to accurately detect and genotype CNPs is particularly
important from the perspective of successfully performing CNV-GWAS. The relative

contribution of rare and common variants to genetic variation can be measured as a fraction of the

23


https://doi.org/10.1101/356667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/356667; this version posted June 27, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

number of loci that differ in copy-number between any two unrelated individuals. In a recent
analysis, > 90% of the loci were observed to differ in copy-number between pairs of individuals
among involved CNPs, and ~80% involved common CNPs (with minor allele frequency >5%)
(38-40). This indicates that a large fraction of the copy-number differences between any two
individuals arise from a limited set of common polymorphisms (38-40), analogous to an earlier
observation that the largest component of human sequence variation (at fine scale) arises from
common SNPs. In the FA cohort, 15.8% of the CNVs detected belong to CNPs in which the same
mutant allele exists in multiple pedigrees. It should be noted that the detection rate of CNVs is
influenced by the density of SNP array probes. Our working definition requires at least five
probes per CNV, and SNP arrays with higher probe density as well as specifically designed CNV

probes, or next generation sequencing (NGS), may potentially detect even smaller CNVs.

In conclusion, we proposed and benchmarked ensembleCNV, a novel method for CNV calling
and genotyping. It makes highly reproducible and accurate CNV calls, obtains a high call rate,
and pinpoints CNV boundaries reliably. Importantly, this high performance is not achievable by
simply taking the intersection or union of the call sets from individual callers. Our tool is freely

available at https://github.com/HaoKeLab/ensembleCNV. Given the amount of SNP array data

that has been generated in large GWASs of many diseases and traits, we believe ensembleCNV is
a powerful and timely tool to quantify CN'Vs on existing data, and to investigate the contribution

of CN'Vs to human disease predisposition.
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AVAILABILITY

The source code for ensembleCNV is freely available on GitHub at

https://github.com/HaoKeLab/ensembleCNV. The food allergy dataset is available upon

reasonable request to the principal investigator, Dr. Xiaobin Wang. The STARNET dataset is
available at dbGaP under study accession number: phs001203.v1.pl. The 1000 Genomes Project
structural variant data is available at ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/phase3/integrated sv _map/

SUPPLEMENTARY DATA

Supplementary Data including supplementary results, methods, 14 figures and 3 tables are

available at NAR Online.
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Figure 2: Concordance rate and call rate of detected CNVs

Results are summarized for the FA (A-C) and STARNET datasets (D-F), respectively. In (A) and
(D), the concordance rate of CNV genotype for technically duplicated pairs are compared among
six methods. In (B), (C), (E) and (F), the distribution of the sample-wise and CNVR-wise call
rates of CNV genotype are shown for ensembleCNV, since only ensembleCNV makes direct

genotyping in each CNVR and distinguishes between normal copy number and missing genotype.
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Figure 3: Mendelian error and transmission rate in FA trios
Given the information regarding nuclear families in the FA dataset, the Mendelian error (A) and
transmission rate (B) calculated from CNV genotype data in trios were compared among the six

methods. The y-axis in (A) is on log10 scale.
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Figure 4: Sensitivity of detecting CNVRs in the KGP dataset

The fraction of detectable KGP CNVRs spanning at least 5 probes in the FA (A) and STARNET
datasets (B) were compared among the six methods. In each subfigure, the detectable CNVRs are
further stratified by allele frequencies in European populations of KGP into common (frequency >

1%; left panel) and rare CNVRs (frequency < 1%; right panel).
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Figure 5: CNVR frequency and size distribution

The frequency (A and C) and size (B and D) of CNVRs detected in the FA (A and B) and
STARNET (C and D) datasets using the six methods as well as those detectable CNVRs
(spanning at least 5 probes in each of the dataset). The frequency of a CNVR refers to the
proportion of the unrelated carriers of a CNV genotype instead of allele frequency at the CNVR.

The frequency in KGP was calculated based on European populations.
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Figure 6: Linkage disequilibrium (LD) between CNVR and nearby SNP probes

LD (r*) was estimated as the maximum of squared Pearson correlations between the copy number
at each CNVR resulted from ensembleCNV and the genotype (coded as 0, 1, and 2 copies of
alternative alleles) of SNPs within 500kb upstream and downstream of the CNVR in the FA (A)
and STARNET datasets (B). The plots show the fraction of CNVRs as the threshold of LD

measure increases. The call set of CNVRs is further categorized by frequency greater than 0%, 1%
and 5%, respectively, with the total number of CNVRs in each subset indicated in the legend. The
frequency of a CNVR refers to the percentage of the unrelated carriers of a CNV genotype at the

CNVR.
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