

1 Single-trial characterization of neural rhythms: potential and challenges

2 Julian Q. Kosciessa^{1,2,3*}, Thomas H. Grandy², Douglas D. Garrett^{1,2}, Markus Werkle-Bergner^{2*}

3 ¹Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin/London;

4 ²Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94,
5 14195 Berlin, Germany; ³Department of Psychology, Humboldt-Universität zu Berlin, Rudower
6 Chaussee 18, 12489 Berlin, Germany.

7 * Corresponding authors: kosciessa@mpib-berlin.mpg.de; werkle@mpib-berlin.mpg.de

8 Abstract:

9 The average power of rhythmic neural responses as captured by MEG/EEG/LFP recordings is a
10 prevalent index of human brain function. Increasing evidence questions the utility of trial-/group
11 averaged power estimates however, as seemingly sustained activity patterns may be brought about
12 by time-varying transient signals in each single trial. Hence, it is crucial to accurately describe the
13 duration and power of rhythmic and arrhythmic neural responses on the single trial-level. However,
14 it is less clear how well this can be achieved in empirical MEG/EEG/LFP recordings. Here, we
15 extend an existing rhythm detection algorithm (extended Better OSCillation detection: “eBOSC”;
16 cf. Whitten et al., 2011) to systematically investigate boundary conditions for estimating neural
17 rhythms at the single-trial level. Using simulations as well as resting and task-based EEG recordings
18 from a micro-longitudinal assessment, we show that alpha rhythms can be successfully captured in
19 single trials with high specificity, but that the quality of single-trial estimates varies greatly between
20 subjects. Despite those signal-to-noise-based limitations, we highlight the utility and potential of
21 rhythm detection with multiple proof-of-concept examples, and discuss implications for single-trial
22 analyses of neural rhythms in electrophysiological recordings. Using an applied example of
23 working memory retention, rhythm detection indicated load-related increases in the duration of
24 frontal theta and posterior alpha rhythms, in addition to a frequency decrease of frontal theta
25 rhythms that was observed exclusively through amplification of rhythmic amplitudes.

26 Highlights:

- 27 • Traditional narrow-band rhythm metrics conflate the power and duration of rhythmic and arrhythmic
28 periods. We extend a state-of-the-art rhythm detection method (eBOSC) to derive rhythmic episodes in
29 single trials that can disambiguate rhythmic and arrhythmic periods.
- 30 • Simulations indicate that this can be done with high specificity given sufficient rhythmic power, but with
31 strongly impaired sensitivity when rhythmic SNR is low. Empirically, surface EEG recordings exhibit
32 stable inter-individual differences in α -rhythmicity in ranges where simulations suggest a gradual bias,
33 leading to high collinearity between narrow-band and rhythm-specific estimates.
- 34 • Beyond these limitations, we highlight multiple empirical benefits of characterizing rhythmic episodes
35 in single trials, such as (a) a principled separation of rhythmic and arrhythmic content, (b) an
36 amplification of rhythmic amplitudes, and (c) a specific characterization of sustained and transient
37 events.
- 38 • In an exemplary application, rhythm-specific estimates increase sensitivity to working memory load
39 effects, in addition to indicating a frequency modulation of frontal theta rhythms through the
40 amplification of rhythmic power.

41
42
43
44
45 Keywords: rhythm detection; duration; amplitude; inter-individual differences; single-trial estimates

46 1.1 Towards a single-trial characterization of neural rhythms

47
48 Episodes of rhythmic neural activity in electrophysiological recordings are of prime
49 interest for research on neural representations and computations across multiple scales of
50 measurement (e.g. Buzsáki, 2006; Wang, 2010). At the macroscopic level, the study of
51 rhythmic neural signals has a long heritage, dating back to Hans Berger's classic investigations
52 into the Alpha rhythm (Berger, 1938). Since then, advances in recording and processing
53 techniques have facilitated large-scale spectral analysis schemes (e.g. Gross, 2014) that were
54 not available to the pioneers of electrophysiological research, who often depended on the
55 manual analysis of single time series to indicate the presence and magnitude of rhythmic events.
56 Interestingly, improvements in analytic methods still do not capture all of the information that
57 can be extracted by manual inspection. For example, current analysis techniques are largely
58 naïve to the specific temporal presence of rhythms in the continuous recordings, as they often
59 employ windowing of condition- or group-based averages to extract putative rhythm-related
60 characteristics (Cohen, 2014). However, the underlying assumption of stationary, sustained
61 rhythms within the temporal window of interest might not consistently be met (Jones, 2016;
62 Stokes & Spaak, 2016), thus challenging the appropriateness of the averaging model (i.e., the
63 ergodicity assumption (Molenaar & Campbell, 2009)). Furthermore, in certain situations,
64 single-trial characterizations become necessary to derive unbiased individual estimates of
65 neural rhythms (Cohen, 2017). For example, this issue becomes important when asking whether
66 rhythms appear in transient or in sustained form (van Ede, Quinn, Woolrich, & Nobre, 2018),
67 or when only single-shot acquisitions are feasible (i.e., resting state or sleep recordings).

68
69 1.2 Duration as a powerful index of rhythmicity

70
71 The presence of rhythmicity is a necessary prerequisite for the accurate interpretation
72 of measures of amplitude, power, and phase (Aru et al., 2015; Jones, 2016;
73 Muthukumaraswamy & Singh, 2011). This is exemplified by the bias that arrhythmic periods
74 exert on rhythmic power estimates. Most current time-frequency decomposition methods of
75 neurophysiological signals (such as the electroencephalogram (EEG)) are based on the Fourier
76 transform (Gross, 2014). Following Parceval's theorem (e.g. Hansen, 2014), the Fast Fourier
77 Transform (FFT) decomposes an arbitrary time series into a sum of sinusoids at different
78 frequencies. Importantly, FFT-derived power estimates do not differentiate between high-
79 amplitude transients and low-amplitude sustained signals. In the case of FFT power, this is a
80 direct result of the violated assumption of stationarity in the presence of a transient signal.
81 Short-time FFT and wavelet techniques alleviate (but do not eliminate) this problem by
82 analyzing shorter epochs, during which stationarity is more likely to be obtained. However,
83 whenever spectral power is averaged across these episodes, both high-amplitude rhythmic and
84 low-amplitude arrhythmic signal components may once again become intermixed. In the
85 presence of arrhythmic content (often referred to as the "signal background," or "noise"), this
86 results in a reduced amplitude estimate of the underlying rhythm, the extent of which relates to
87 the duration of the rhythmic episode relative to the length of the analyzed segment (which we
88 will refer to as 'abundance') (see Figure 1A). Therefore, integration across epochs that contain
89 a mixture of rhythmic and arrhythmic signals results in an inherent ambiguity between the

90 strength of the rhythmic activity (as indexed by power/amplitude) and its duration (as indexed
91 by the abundance of the rhythmic episode within the segment) (see Figure 2B).

92 Crucially, the strength and duration of rhythmic activity theoretically differ in their
93 neurophysiological interpretation. Rhythmic power most readily indexes the magnitude of
94 synchronized changes in membrane potentials within a network (Buzsáki, Anastassiou, &
95 Koch, 2012), and is thus related to the size of the participating neural population. The duration
96 of a rhythmic episode, by contrast, tracks how long population synchrony is upheld. Notably,
97 measures of rhythm duration have recently gained interest as they may provide additional
98 information regarding the biophysical mechanisms that give rise to the recorded signals
99 (Peterson & Voytek, 2017; Sherman et al., 2016), for example, by differentiating between
100 transient and sustained rhythmic events (van Ede et al., 2018).

101
102 1.3. Single-trial rhythm detection as a methodological challenge
103

104 In general, the accurate estimation of process parameters depends on a sufficiently strong
105 signal in the neurophysiological recordings under investigation. Especially for scalp-level
106 M/EEG recordings it remains elusive whether neural rhythms are sufficiently strong to be
107 clearly detected in single trials. Here, a large neural population has to be synchronously active
108 to give rise to potentials that are visible at the scalp surface. This problem intensifies further by
109 signal attenuation through the skull (in the case of EEG) and the superposition of signals from
110 diverse sources of no interest both in- and outside the brain (Schomer & Lopes da Silva, 2017).
111 In sum, these considerations lead to the proposal that the signal-to-noise ratio (SNR), here
112 operationally defined as the ratio of rhythmic to arrhythmic variance, may fundamentally
113 constrain the accurate characterization of single-trial rhythms.

114 Following those considerations, we set out to answer the following hypotheses and
115 questions: (1) A precise differentiation between rhythmic and arrhythmic timepoints can
116 disambiguate the strength and the duration of rhythmicity. (2) To what extent does the single-
117 trial rhythm representation in empirical data allow for an accurate estimation of rhythmic
118 strength and duration in the face of variations in the signal-to-noise ratio of rhythmicity? (3)
119 What are the empirical benefits of separating rhythmic (and arrhythmic) duration and power?

120 Recently, the Better OSCillation Detection (BOSC; Caplan, Madsen, Raghavachari, &
121 Kahana, 2001; Whitten, Hughes, Dickson, & Caplan, 2011) method has been proposed to
122 identify rhythmicity at the single-trial level. BOSC defines rhythmicity based on the presence
123 of a spectral peak that is superimposed on an arrhythmic 1/f background and that remains
124 present for a minimum number of cycles. Here, we extend the BOSC method (i.e., extended
125 BOSC; eBOSC) to derive rhythmic temporal episodes that can be used to further characterize
126 rhythmicity. Using simulations, we derive rhythm detection benchmarks and probe the
127 boundary conditions for unbiased rhythm indices. Furthermore, we apply the eBOSC algorithm
128 to resting- and task-state data from a micro-longitudinal dataset to systematically investigate
129 the feasibility to derive reliable and valid indices of neural rhythmicity from single-trial scalp
130 EEG data and to probe their modulation by working memory load.

131 We focus on alpha rhythms (~8-15 Hz; defined here based on individual FFT-peaks) due to
132 (a) their high amplitude in human EEG recordings, (b) the previous focus on the alpha band in
133 the rhythm detection literature (Caplan, Bottomley, Kang, & Dixon, 2015; Fransen et al., 2015;

134 Whitten et al., 2011), and (c) their importance for human cognition (Grandy, Werkle-Bergner,
135 Chicherio, Lövdén, et al., 2013a; Klimesch, 2012; Sadaghiani & Kleinschmidt, 2016). We
136 present examples beyond the alpha range to highlight the ability to apply eBOSC in multiple,
137 diverse frequency ranges.

138

139 2. Methods

140

141 2.1 Study design

142

143 Resting state and task data were collected in the context of a larger assessment,
144 consisting of eight sessions in which an adapted Sternberg short-term memory task (Sternberg,
145 1966) and three additional cognitive tasks were repeatedly administered. Resting state data are
146 from the first session, task data are from sessions one, seven and eight, during which EEG data
147 were acquired. Sessions one through seven were completed on consecutive days (excluding
148 Sundays) with session seven completed seven days after session one by all but one participant
149 (eight days due to a two-day break). Session eight was conducted approximately one week after
150 session seven ($M = 7.3$ days, $SD = 1.4$) to estimate the stability of the behavioral practice
151 effects. The reported EEG sessions lasted approximately three and a half to four hours,
152 including approximately one and a half hours of EEG preparation. For further details on the
153 study protocol and results of the behavioural tasks see (Grandy, Lindenberger, & Werkle-
154 Bergner, 2017).

155

156 2.2 Participants

157

158 The sample contained 32 young adults (mean age = 23.3 years, $SD = 2.0$, range 19.6 to
159 26.8 years; 17 women; 28 university students) recruited from the participant database of the
160 Max Planck Institute for Human Development, Berlin, Germany (MPIB). Participants were
161 right-handed, as assessed with a modified version of the Edinburgh Handedness Inventory
162 (Oldfield, 1971), and had normal or corrected-to-normal vision, as assessed with the Freiburg
163 Visual Acuity test (Bach, 1996; 2007). Participants reported to be in good health with no known
164 history of neurological or psychiatric incidences and were paid for their participation (8.08 €
165 per hour, 25.00 € for completing the study within 16 days, and a performance-dependent bonus
166 of 28.00 €; see below). All participants gave written informed consent according to the
167 institutional guidelines of the ethics committee of the MPIB, which approved the study.

168

169 2.3 Procedure

170

171 Participants were seated at a distance of 80 cm in front of a 60 Hz LCD monitor in an
172 acoustically and electrically shielded chamber. A resting state assessment was conducted prior
173 to the initial performance of the adapted Sternberg task. Two resting state periods were used:
174 the first encompassed a duration of two minutes of continuous eyes open (EO1) and eyes closed
175 (EC1) periods, respectively; the second resting state was comprised of two 80 second runs,
176 totalling 16 repetitions of 5 seconds interleaved eyes open (EO2) – eyes closed (EC2) periods.
177 An auditory beep indicated to the subjects when to open and close their eyes.

178 Following the resting assessments, participants performed an adapted version of the
179 Sternberg task. Digits were presented in white on a black background and subtended $\sim 2.5^\circ$ of
180 visual angle in the vertical and $\sim 1.8^\circ$ of visual angle in the horizontal direction. Stimulus
181 presentation and recording of behavioral responses were controlled with E-Prime 2.0
182 (Psychology Software Tools, Inc., Pittsburgh, PA, USA). The task design followed the original
183 report (Sternberg, 1966). Participants started each trial by pressing the left and right response
184 key with their respective index fingers to ensure correct finger placement and to enable fast
185 responding. An instruction to blink was given, followed by the sequential presentation of 2, 4
186 or 6 digits from zero to nine. On each trial, the memory set size (i.e., load) varied randomly
187 between trials, and participants were not informed about the upcoming condition. Also, the
188 single digits constituting a given memory set were randomly selected in each trial. Each
189 stimulus was presented for 200 ms, followed by a fixed 1000 ms blank inter-stimulus interval
190 (ISI). The offset of the last stimulus coincided with the onset of a 3000 ms blank retention
191 interval, which concluded with the presentation of a probe item that was either contained in the
192 presented stimulus set (*positive probe*) or not (*negative probe*). Probe presentation lasted 200
193 ms, followed by a blank screen for 2000 ms, during which the participant's response was
194 recorded. A beep tone indicated the end of the trial. The task lasted about 50 minutes.

195 For each combination of load x probe type, 31 trials were conducted, cumulating in 186
196 trials per session. Combinations were randomly distributed across four blocks (block one: 48
197 trials; blocks two through four: 46 trials). Summary feedback of the overall mean RT and
198 accuracy within the current session was shown at the end of each block. At the beginning of
199 session one, 24 practice trials were conducted to familiarize participants with the varying set
200 sizes and probe types. To sustain high motivation throughout the study, participants were paid
201 a 28 € bonus if their current session's mean RT was faster or equal to the overall mean RT
202 during the preceding session, while sustaining accuracy above 90%. Only correct trials were
203 included in the analyses.

204
205 2.4 EEG recordings and pre-processing

206
207 EEG was continuously recorded from 64 Ag/AgCl electrodes using BrainAmp
208 amplifiers (Brain Products GmbH, Gilching, Germany). Sixty scalp electrodes were arranged
209 within an elastic cap (EASYCAP GmbH, Herrsching, Germany) according to the 10% system
210 (cf. Oostenveld, Fries, Maris, & Schoffelen, 2011) with the ground placed at AFz. To monitor
211 eye movements, two electrodes were placed on the outer canthi (horizontal EOG) and one
212 electrode below the left eye (vertical EOG). During recording, all electrodes were referenced
213 to the right mastoid electrode, while the left mastoid electrode was recorded as an additional
214 channel. Prior to recording, electrode impedances were retained below 5 k Ω . Online, signals
215 were recorded with an analog pass-band of 0.1 to 250 Hz and digitized at a sampling rate of 1
216 kHz.

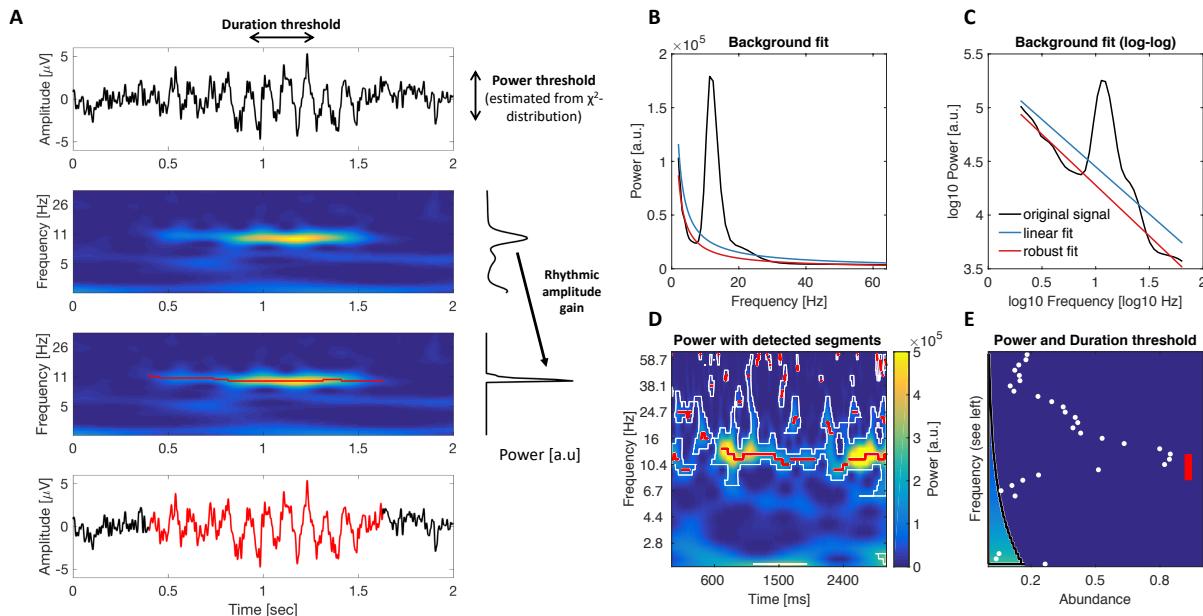
217 Preprocessing and analysis of EEG data were conducted with the FieldTrip toolbox
218 (Oostenveld et al., 2011) and using custom-written MATLAB (The MathWorks Inc., Natick,
219 MA, USA) code. Offline, EEG data were filtered using a 4th order Butterworth filter with a
220 pass-band of 0.5 to 100 Hz, and were linearly detrended. Resting data with interleaved eye
221 closure were epoched relative to the auditory cue to open and close the eyes. An epoch of -2 s

222 to +3 s relative to on- and offsets was chosen to include padding for the analysis. During the
223 eBOSC procedure, three seconds of signal were removed from both edges (see below), resulting
224 in an effective epoch of 4 s duration that excludes evoked components following the cue onset.
225 Continuous eyes open/closed recordings were segmented to the cue on- and offset. For the
226 interleaved data, the first and last trial for each condition were removed, resulting in an effective
227 trial number of 14 trials per condition. For the task data, we analyzed two intervals: an extended
228 interval to assess the overall dynamics of detected rhythmicity and a shorter interval that
229 focused on the retention period. Unless otherwise noted, we refer to the extended interval when
230 presenting task data. For the extended segments, task data were segmented to 21 s epochs
231 ranging from -9 s to +12 s with regard to the onset of the 3 s retention interval for analyses
232 including peri-retention data. For analyses including only the retention phase, data were
233 segmented to -2 s to +3 s around the retention interval. Note that for all analyses, 3 s of signal
234 were removed on each side of the signal during eBOSC detection, effectively removing the
235 evoked cue activity (2 s to account for edge artifacts following wavelet-transformation and 1 s
236 to account for eBOSC's duration threshold, see section 2.6), except during the extended task
237 interval. Hence, detected segments were restricted to occur from 1s after period onset until
238 period offset, thereby excluding evoked signals. Blink, movement and heart-beat artifacts were
239 identified using Independent Component Analysis (ICA; Bell & Sejnowski, 1995) and removed
240 from the signal. Subsequently, data were downsampled to 250 Hz and all channels were re-
241 referenced to mathematically averaged mastoids. Artifact-contaminated channels (determined
242 across epochs) were automatically detected (a) using the FASTER algorithm (Nolan, Whelan,
243 & Reilly, 2010) and (b) by detecting outliers exceeding three standard deviations of the kurtosis
244 of the distribution of power values in each epoch within low (0.2-2 Hz) or high (30-100 Hz)
245 frequency bands, respectively. Rejected channels were interpolated using spherical splines
246 (Perrin, Pernier, Bertrand, & Echallier, 1989). Subsequently, noisy epochs were likewise
247 excluded based on FASTER and recursive outlier detection, resulting in the rejection of
248 approximately 13% of trials. To prevent trial rejection due to artifacts outside the signal of
249 interest, artifact detection was restricted to epochs that included 2.4 s of additional signal around
250 the on- and offset of the retention interval, corresponding to the longest effective segment that
251 was used in the analyses. A further 2.65% of incorrectly answered trials from the task were
252 subsequently excluded.

253
254 2.5 Rhythm-detection using extended BOSC
255

256 We applied an extended version of the Better OSCillation detection method (eBOSC;
257 cf. Caplan et al., 2001; Whitten et al., 2011) to automatically separate rhythmic from arrhythmic
258 episodes. The BOSC method reliably identifies rhythms using data-driven thresholds based on
259 theoretical assumptions of the signal characteristics. Briefly, the method defines rhythms as
260 time points during which wavelet-derived power at a particular frequency exceeds a *power*
261 *threshold* based on an estimate of the arrhythmic signal background. The theoretical *duration*
262 *threshold* defines a minimum duration of cycles this power threshold has to be exceeded to
263 exclude high amplitude transients. Previous applications of the BOSC method focused on the
264 analysis of resting-state data or long data epochs, where reliable detection has been established
265 regardless of specific parameter setups (Caplan et al., 2001; 2015; Whitten et al., 2011). We

266 introduce the following adaptations here (for details see section 2.6, Figure 1 & Figure S1): (1)
 267 we remove the spectral alpha peak and use robust regression to establish power thresholds; (2)
 268 we combine detected time points into continuous rhythmic episodes and (3) we reduce the
 269 impact of wavelet convolution on abundance estimates. We benchmarked the algorithm and
 270 compared it to standard BOSC using simulations (see section 2.8).
 271



272
 273 Figure 1: Schematic illustration of rhythm detection. (A) Average amplitude estimates (right) increase with the
 274 focus on rhythmic episodes within the averaged time interval. The left plots show simulated time series and the
 275 corresponding time-frequency power. Superimposed red traces indicate rhythmic time points. The upper right plot
 276 shows the average power spectrum averaged across the entire epoch, the lower plot presents amplitudes averaged
 277 exclusively across rhythmic time points. An amplitude gain is observed due to the exclusion of arrhythmic low
 278 amplitude time points. (B-E) Comparison of standard and extended BOSC. (B+C) Rhythms were detected based
 279 on a power threshold estimated from the arrhythmic background spectrum. Standard BOSC applies a linear fit in
 280 log-log space to define the background power, which may overestimate the background at the frequencies of
 281 interest in the case of data with large rhythmic peaks. Robust regression following peak removal alleviates this
 282 problem. (D) Example of episode detection. White borders circumfuse time frequency points, at which standard
 283 BOSC indicated rhythmic content. Red traces represent the continuous rhythmic episodes that result from the
 284 extended post-processing. (E) Applied thresholds and detected rhythmic abundance. The black border denotes the
 285 duration threshold at each frequency (corresponding to D), i.e., for how long the power threshold needed to be
 286 exceeded to count as a rhythmic period. Note that this threshold can be set to zero for a post-hoc characterization
 287 of the duration of episodes (see Methods 2.12). The color scaling within the demarcated area indicates the power
 288 threshold at each frequency. Abundance corresponds to the relative length of the segment on the same time scale
 289 as presented in D. White dots correspond to the standard BOSC measure of rhythmic abundance at each frequency
 290 (termed P_{episode}). Red lines indicate the abundance measure used here, which is defined as the proportion of
 291 sample points at which a rhythmic episode between 8-15 Hz was indicated (shown as red traces in D).
 292

293 2.6 Specifics of rhythm-detection using extended BOSC

294
 295 Rhythmic events were detected within subjects for each channel and condition. Time-
 296 frequency transformation of single trials was performed using 6-cycle Morlet wavelets
 297 (Grossmann & Morlet, 1985) with 49 logarithmically-spaced center frequencies ranging from

298 1 to 64 Hz. Following the wavelet transform, 2 s were removed at each segment's borders to
299 exclude edge artefacts. To estimate the background spectrum, the time-frequency spectra from
300 all trials were temporally concatenated within condition and channel and log-transformed,
301 followed by temporal averaging. For eyes-closed and eyes-open resting states, both continuous
302 and interleaved exemplars were included in the background estimation for the respective
303 conditions. The resulting power spectrum was fit linearly in log(frequency)-log(power)
304 coordinates using a robust regression, with the underlying assumption that the EEG background
305 spectrum is characterized by colored noise of the form $A * f^{-\alpha}$ (Buzsáki & Mizuseki, 2014;
306 He, Zempel, Snyder, & Raichle, 2010; Linkenkaer-Hansen, Nikouline, Palva, & Ilmoniemi,
307 2001). A robust regression with bisquare weighting (e.g. Holland & Welsch, 2007) was chosen
308 to improve the linear fit of the background spectrum (cf. Haller et al., 2018), which was
309 characterized by frequency peaks in the alpha range for almost all subjects (Figure S4). In
310 contrast to ordinary least squares regression, robust regression iteratively down-weights outliers
311 (in this case spectral peaks) from the linear background fit. To improve the definition of
312 rhythmic power estimates as outliers during the robust regression, power estimates within the
313 wavelet pass-band around the individual alpha peak frequency were removed prior to fitting¹.
314 The passband of the wavelet (e.g. Linkenkaer-Hansen et al., 2001) was calculated as

$$315 \text{Passband [Hz]} = \text{IAF} \pm 0.5 * \frac{2}{WL} * \text{IAF}$$

316 [Formula 1]

317 in which IAF denotes the individual alpha peak frequency and WL refers to wavelet length
318 (here, six cycles in the main analysis). IAF was determined based on the peak magnitude within
319 the 8-15 Hz average spectrum for each channel and condition (Grandy, Werkle-Bergner,
320 Chicherio, Schmiedek, et al., 2013b). This ensures that the maximum spectral deflection is
321 removed across subjects, even in cases where no or multiple peaks are present². This procedure

¹ This procedure is similar to calculating the background spectrum from conditions with attenuated alpha power (e.g., the eyes open resting state; Caplan, Bottomley, Kang & Dixon (2015)). However, here we ensure that alpha power is sufficiently removed, whereas if conditions with reduced alpha peak magnitudes are selected, alpha power may still remain sufficiently elevated to influence slope or intercept estimates. Furthermore, the reliance on conditions with decreased rhythmicity appears less suitable given inter-individual differences in alpha engagement in e.g., the eyes open condition. This may induce an implicit contrast to eyes open rhythmicity. Note that when the frequency range is chosen so that the alpha peak represents the middle of the chosen interval, the alpha-induced bias would be captured by a linear increment in the intercept of the background fit, which may also be alleviated by choosing a higher percentile for the power threshold. Notably, removing the alpha peak as done here attenuates such bias, even in cases where the alpha peak biases the slope of the background fit, as would happen if the alpha peak is not centered within the range of sampled frequencies.

² When multiple alpha-band peaks are present or the peak has a broader appearance, the spectral peak may not be removed entirely, which could result in misfits of the background spectrum. For this purpose, we employed robust regression to down-weight potential residuals around the alpha peak. Our current implementation only accounts for a peak in the alpha range, but could

322 effectively removes a bias of the prevalent alpha peak on the arrhythmic background estimate
323 (see Figure 1B and C & Figure 3C). The power threshold for rhythmicity at each frequency was
324 set at the 95th percentile of a $\chi^2(2)$ -distribution of power values, centered on the linearly fitted
325 estimate of background power at the respective frequency (for details see Whitten et al., 2011).
326 This essentially implements a significance test of single-trial power against arrhythmic
327 background power. A three-cycle threshold was used as the duration threshold to exclude
328 transients, unless indicated otherwise (see section 2.12). The conjunctive power and duration
329 criteria produce a binary matrix of ‘detected’ rhythmicity for each time-frequency point (see
330 Figure S1C). To account for the duration criterion, 1000 ms were discarded from each edge of
331 this ‘detected’ matrix.

332 The original BOSC algorithm was further extended to define rhythmic events as
333 continuous temporal episodes that allow for an event-wise assessment of rhythm characteristics
334 (e.g. duration). The following steps were applied to the binary matrix of ‘detected’ single-trial
335 rhythmicity to derive such sparse and continuous episodes. First, to account for the spectral
336 extension of the wavelet, we selected time-frequency points with maximal power within the
337 wavelet’s spectral smoothing range (i.e. the pass-band of the wavelet; $\frac{2}{WL} * \text{frequency}$; see
338 Formula 1). That is, at each time point, we selected the frequency with the highest indicated
339 rhythmicity within each frequency’s pass-band. This served to exclude super-threshold
340 timepoints that may be accounted for by spectral smoothing of a rhythm at an adjacent
341 frequency. Note that this effectively creates a new frequency resolution for the resulting
342 rhythmic episodes, thus requiring sufficient spectral resolution (defined by the wavelet’s pass-
343 band) to differentiate simultaneous rhythms occurring at close frequencies. Finally, continuous
344 rhythmic episodes were formed by temporally connecting extracted time points, while allowing
345 for moment-to-moment frequency transitions (i.e. within-episode frequency non-stationarities;
346 Atallah & Scanziani, 2009) (for a single-trial illustration see Figures 1D and Figure S1D).

347 In addition to the spectral extension of the wavelet, the choice of wavelet parameter also
348 affects the extent of temporal smoothing, which may bias rhythmic duration estimates. To
349 decrease such temporal bias, we compared observed rhythmic amplitudes at each time point
350 within each rhythmic episode with those expected by smoothing adjacent amplitudes using the
351 wavelet (Figure S1E). By retaining only those time points where amplitudes exceeded the
352 smoothing-based expectations, we removed supra-threshold time points that can be explained
353 by temporal smoothing of nearby rhythms (e.g., ‘ramping’ up and down signals). In more detail,
354 we simulated the positive cycle of a sine wave at each frequency, zero-shouldered each edge
355 and performed (6-cycle) wavelet convolution. The resulting amplitude estimates at the zero-
356 padded time points reflect the temporal smoothing bias of the wavelet on adjacent arrhythmic
357 time points. This bias is maximal (*BiasMax*) at the time point immediately adjacent to the
358 rhythmic on-/offset and decreases with temporal distance to the rhythm. Within each rhythmic
359 episode, the ‘convolution bias’ of a time-frequency (TF) point’s amplitude on surrounding
360 points was estimated by scaling the points’ amplitude by the modelled temporal smoothing bias.

be extended to other frequency ranges using the same logic (see discussion on limitations in section 4.6).

361
$$Amplitudes_{F,T+1-L:L-T} = \left[(Amplitude_{TF} - PT_F) * \frac{BiasVector_{F,T+1-L:L-T}}{BiasMax_F} \right] + PT_F$$

362 [Formula 2]

363 Subscripts F and T denote frequency and time within each episode, respectively.
364 *BiasVector* is a vector with the length of the current episode (L) that is centered around the
365 current TF-point. It contains the wavelet's symmetric convolution bias around *BiasMax*. Note
366 that both *BiasVector* and *BiasMax* respect the possible frequency variations within an episode
367 (i.e., they reflect the differences in convolution bias between frequencies). The estimated
368 wavelet bias was then scaled to the amplitude of the rhythmic signal at the current TF-point.
369 PT refers to the condition- and frequency-specific power threshold applied during rhythm
370 detection. We subtracted the power threshold to remove arrhythmic contributions. This
371 effectively sensitizes the algorithm to near-threshold values, rendering them more likely to be
372 excluded. Finally, time points with lower amplitudes than expected by the convolution model
373 were removed and new rhythmic episodes were created (Figure S1F). The resulting episodes
374 were again checked for adhering to the duration threshold.

375 As an alternative to the temporal wavelet correction based on the wavelet's simulated
376 maximum bias ('MaxBias'; as described above), we investigated the feasibility of using the
377 wavelet's full-width half maximum ('FWHM') as a criterion. Within each continuous episode
378 and for each "rhythmic" sample point, 6-cycle wavelets at the frequency of the neighbouring
379 points were created and scaled to the point's amplitude. We then used the amplitude of these
380 wavelets at the FWHM as a threshold for rhythmic amplitudes. That is, points within a rhythmic
381 episodes that had amplitudes below those of the scaled wavelets were defined as arrhythmic.
382 The resulting continuous episodes were again required to pass the duration threshold. As the
383 FWHM approach indicated decreased specificity of rhythm detection in the simulations (Figure
384 S2) we used the 'MaxBias' method for our analyses.

385 Furthermore, we considered a variant where total amplitude values were used (vs.
386 supra-threshold amplitudes) as the basis for the temporal wavelet correction. Our results
387 suggest that using supra-threshold power values leads to a more specific detection at the cost
388 of sensitivity (Figure S2). Crucially, this eliminated false alarms and abundance
389 overestimation, thus rendering the method highly specific to the occurrence of rhythmicity. As
390 we regard this as a beneficial feature, we used supra-threshold amplitudes as the basis for the
391 temporal wavelet correction throughout the manuscript.

392
393

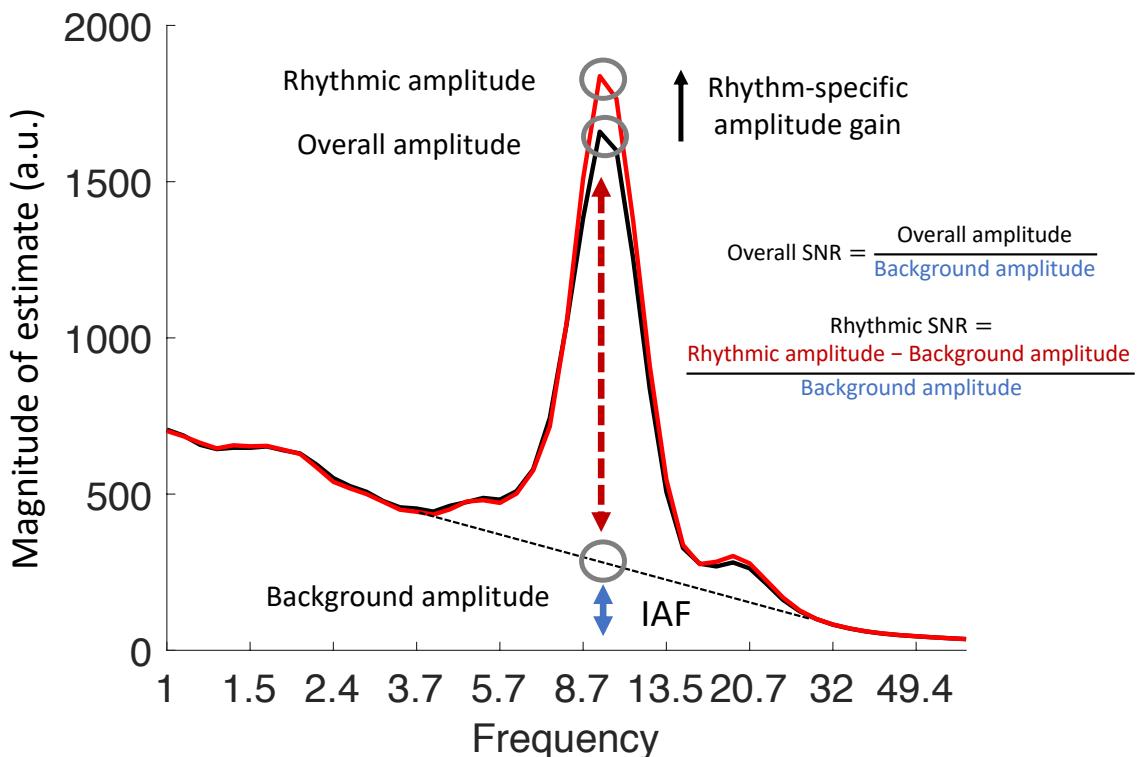
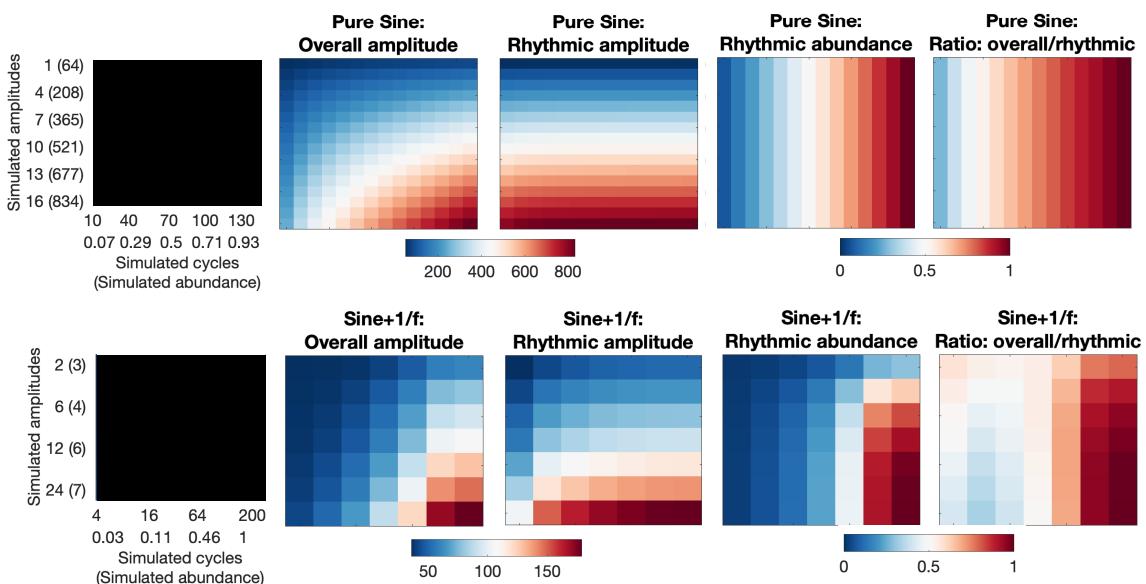
A Schematic of rhythmic amplitude estimates**B eBOSC dissociates rhythmic amplitude and abundance**

Figure 2: eBOSC disambiguates the magnitude and duration of rhythmic episodes. **(A)** Schema of different amplitude metrics. **(B)** Rhythm-detection disambiguates rhythmic amplitude and duration. Overall amplitudes represent a mixture of rhythmic power and duration. In the absence of noise (upper row), eBOSC perfectly orthogonalizes rhythmic amplitude from abundance. Superimposed noise leads to an imperfect separation of the two metrics (lower row). The duration of rhythmicity is similarly indicated by abundance and the overlap between rhythmic and overall amplitudes. This can be seen by comparing the two rightmost plots in each row.

403 A central goal of rhythm detection is to disambiguate rhythmic power and duration
404 (Figure 2). For this purpose, eBOSC provides multiple indices. We describe the different
405 indices for the example case of alpha rhythms. Please note that eBOSC can be applied in a
406 similar fashion to any other frequency range. The **abundance** of alpha rhythms denotes the
407 duration of rhythmic episodes with a mean frequency in the alpha range (8 to 15 Hz), relative
408 to the duration of the analyzed segment. This frequency range was motivated by clear peaks
409 within this range in individual resting state spectra (Figure S4). Note that abundance is closely
410 related to standard BOSC's Pepisode metric (Whitten et al., 2011), with the difference that
411 abundance refers to the duration of the continuous rhythmic episodes and not the 'raw' detected
412 rhythmicity of BOSC (cf. Figure S1C and D). We further define **rhythmic probability** as the
413 *across trials* probability to observe a detected rhythmic episode within the alpha frequency
414 range at a given point in time. It is therefore the within-time, across-trial equivalent of
415 abundance.

416 As a result of rhythm detection, the magnitude of spectral events can be described using
417 multiple metrics (see Figure 2A for a schematic). Amplitudes were calculated as the square-
418 root of wavelet-derived power estimates and are used interchangeably throughout the
419 manuscript. The standard measure of window-averaged amplitudes, **overall amplitudes** were
420 computed by averaging across the entire segment at its alpha peak frequency. In contrast,
421 **rhythmic amplitudes** correspond to the amplitude estimates during detected rhythmic episodes.
422 If no alpha episode was indicated, abundance was set to zero, and amplitude was set to missing.
423 Unless indicated otherwise, both amplitude measures were normalized by subtracting the
424 amplitude estimate of the fitted background spectrum. This step represents a parameterization
425 of rhythmic power (cf. Haller et al., 2018) and is conceptually similar to baseline normalization,
426 without requiring an explicit baseline segment. This highlights a further advantage of rhythm-
427 detection procedures like (e)BOSC. In addition, we calculated an **overall signal-to-noise ratio**
428 (**SNR**) as the ratio of the overall amplitude to the background amplitude: $\frac{\text{Overall}}{\text{Background}}$. In
429 addition, we defined **rhythmic SNR** as the background-normalized rhythmic amplitude as a
430 proxy for the rhythmic representation: $\frac{\text{Rhythmic-Background}}{\text{Background}}$.

431 Unless stated differently, subject-, and condition-specific amplitude and abundance
432 values were averaged within and across trials, and across posterior-occipital channels (P7, P5,
433 P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, O1, Oz, O2), in which alpha power was
434 maximal (Figure 4A, Figure 8).

435 436 2.8 eBOSC validation via alpha rhythm simulations

438 To assess eBOSC's detection performance, we simulated 10 Hz sine waves with varying
439 amplitudes (0, 2, 4, 6, 8, 12, 16, 24 [a.u.]) and durations (2, 4, 8, 16, 32, 64, 128, 200 [cycles])
440 that were symmetrically centred within random 1/f-filtered white noise signals (20 s; 250 Hz
441 sampling rate). Amplitudes were scaled relative to the power of the 8-12 Hz 6th order
442 Butterworth-filtered background signal in each trial to approximate SNRs. To ensure
443 comparability with the empirical analyses, we computed overall SNR analogously to the
444 empirical data, which tended to be lower than the target SNR. We chose the maximum across
445 simulated durations as an upper bound (i.e., conservative estimate) on overall SNR. For each

446 amplitude-duration combination we simulated 500 “trials”. We assessed three different
447 detection pipelines regarding their detection efficacy: the standard BOSC algorithm (i.e., linear
448 background fit incorporating the entire frequency range with no post-editing of the detected
449 matrix); the eBOSC method using wavelet correction by simulating the maximum bias
450 introduced by the wavelet (“MaxBias”); and the eBOSC method using the full-width-at-half-
451 maximum amplitude for convolution correction (“FWHM”). The background was estimated
452 separately for each amplitude-duration combination. 500 edge points were removed bilaterally
453 following wavelet estimation, 250 additional samples were removed bilaterally following
454 BOSC detection to account for the duration threshold, effectively retaining 14 s of simulated
455 signal.

456 Detection efficacy was indexed by signal detection criteria regarding the identification
457 of rhythmic time points between 8 and 12 Hz (i.e., hits = simulated and detected points; false
458 alarms = detected, but not simulated points). These measures are presented as ratios to the full
459 amount of possible points within each category (e.g., hit rate = hits/all simulated time points).
460 For the eBOSC pipelines, abundance was calculated identically to the analyses of empirical
461 data. As no consecutive episodes (cf. Pepisode and abundance) are available in standard BOSC,
462 abundance was defined as the relative amount of time points with detected rhythmicity between
463 8 to 12 Hz.

464 A separate simulation aimed at establishing the ability to accurately recover amplitudes.
465 For this purpose, we simulated a whole-trial alpha signal (i.e., duration = 1) and a quarter-trial
466 alpha signal (duration = .25) with a larger range of amplitudes (1:16 [a.u.]) and performed
467 otherwise identical procedures as described above. To assess eBOSC’s ability to disambiguate
468 power and duration (Figure 2B), we additionally performed simulations in the absence of noise
469 across a larger range of simulated amplitudes and durations.

470 A major change in eBOSC compared to standard BOSC is the exclusion of the rhythmic
471 peak prior to estimating the background. To investigate to what extent the two methods induce
472 a bias between rhythmicity and the estimated background magnitude (for a schematic see Figure
473 1C and D), we calculated Pearson correlations between the overall amplitude and the estimated
474 background amplitude across all levels of simulated amplitudes and durations (Figure 3C).

475 As the empirical data suggested a trial-wise association between amplitude and
476 abundance estimates also at high levels of signal-to-noise ratios (Figure 7), we investigated
477 whether such associations were also present in the simulations. For each pair of simulated
478 amplitude and duration, we calculated Pearson correlations between the overall amplitude and
479 abundance across single trials. Note that due to the stationarity of simulated duration, trial-by-
480 trial fluctuations indicate the bias under fluctuations of the noise background (as amplitudes
481 were scaled to the background in each trial). For each cell, we performed Fisher’s r-to-z
482 transform to account for unequal trial sizes due to missing amplitude/abundance estimates (e.g.
483 when no episodes are detected).

484

485 2.9 Calculation of phase-based lagged coherence

486

487 To investigate the convergence between the power-based duration estimate (abundance)
488 and a phase-based alternative (Fransen et al., 2015), we calculated lagged coherence at 40
489 linearly scaled frequencies in the range of 1 to 40 Hz for each resting-state condition. Lagged

490 coherence assesses the consistency of phase clustering at a single sensor for a chosen cycle lag
491 (see Fransen et al., 2015 for formulas). Instantaneous power and phase were estimated via 3-
492 cycle wavelets. Data were segmented to be identical to eBOSC's effective interval (i.e., same
493 removal of signal shoulders as described above). In reference to the duration threshold for
494 power-based rhythmicity, we calculated the averaged lagged coherence using two adjacent
495 epochs à three cycles. We computed an index of alpha rhythmicity by averaging values across
496 epochs and posterior-occipital channels, finally extracting the value at the maximum lagged
497 coherence peak in the 8 to 15 Hz range.

498

499 2.10 Dynamics of rhythmic probability and rhythmic power during task performance

500

501 To investigate the detection properties in the task data, we analysed the temporal
502 dynamics of rhythmic probability and power in the alpha band. We created time-frequency
503 representations as described in section 2.6 and extracted the alpha peak power time series,
504 separately for each person, condition, channel and trial. At the single-trial level, values were
505 allocated to rhythmic vs. arrhythmic time points according to whether a rhythmic episode with
506 mean frequency in the respective range was indicated by eBOSC. These time series were
507 averaged within subject to create individual averages of rhythm dynamics. Subsequently, we z-
508 scored the power time series to accentuate signal dynamics and attenuate between-subject
509 power differences. To highlight global dynamics, these time series were further averaged
510 within- and between-subjects. Figure captions indicate which average was used.

511

512 2.11 Rhythm-conditional spectra and abundance for multiple canonical frequencies

513

514 To assess the general feasibility of rhythm detection outside the alpha range, we
515 analysed the retention interval of the adapted Sternberg task, where the occurrence of theta,
516 alpha and beta rhythms has been reported in previous studies (Brookes et al., 2011; Jensen,
517 Gelfand, Kounios, & Lisman, 2002; Jokisch & Jensen, 2007; Lundqvist et al., 2016;
518 Raghavachari et al., 2001; Tuladhar et al., 2007). For this purpose, we re-segmented the data to
519 cover the final 2 s of the retention interval +- 3 s of edge signal that was removed during the
520 eBOSC procedure. We performed eBOSC rhythm detection with otherwise identical
521 parameters to those described in section 2.6. We then calculated spectra across those time points
522 where rhythmic episodes with a mean frequency in the range of interest were indicated,
523 separately for four frequency ranges: 3-8 Hz (theta), 8-15 Hz (alpha), 15-25 Hz (beta) and 25-
524 64 Hz (gamma). We subtracted spectra across the remaining arrhythmic time-points for each
525 range from these 'rhythm-conditional' spectra to derive the spectra that are unique to those time
526 points with rhythmic occurrence in the band of interest. For the corresponding topographic
527 representations, we calculated the abundance metric as described in section 2.7 for the apparent
528 peak frequency ranges.

529

530 2.12 Post-hoc characterization of sustained rhythms vs. transients

531

532 Instead of exclusively relying on a fixed *a priori* duration threshold as done in previous
533 applications, eBOSC's continuous 'rhythmic episodes' also allow for a post-hoc separation of

534 rhythms and transients based on the duration of identified rhythmic episodes. This is afforded
535 by our extended post-processing that results in a more specific identification of rhythmic
536 episodes (see Figure 3) and an estimated length for each episode. For this analysis (Figure 10),
537 we set the *a priori* duration threshold to zero and separated the resulting episodes post-hoc
538 based on their duration (shorter vs. longer than 3 cycles) at their mean frequency. That is, any
539 episode crossing the amplitude threshold was retained and episodes were sorted by their
540 ‘transient’ or sustained appearance afterwards. We conducted this analysis in the extended task
541 data to illustrate the temporal dynamics of rhythmic and transient events. To investigate the
542 modulation of rhythm- and transient-specific metrics between the retention phase and the probe
543 phase, we averaged metrics within these two intervals and performed a paired t-test between
544 the two respective intervals for four indices: episode number, duration, frequency and power.
545 Cluster-based permutation tests (Maris & Oostenveld, 2007) as implemented in FieldTrip were
546 performed to control for multiple comparisons. Initially, a clustering algorithm formed clusters
547 based on significant t-tests of individual data points ($p < .05$; cluster entry threshold) with the
548 spatial constraint of min. three adjacent channels. Then, the significance of the observed
549 cluster-level statistic, based on the summed t-values within the cluster, was assessed by
550 comparison to the distribution of all permutation-based cluster-level statistics. The final cluster
551 p-value that we report in Figures was assessed as the proportion of 1000 Monte Carlo iterations
552 in which the cluster-level statistic was exceeded. Cluster significance was indicated by p-
553 values below .025 (two-sided cluster significance threshold).

554

555 2.13 Time series representations of detected rhythmic events

556

557 To visualize the stereotypic depiction of single-trial rhythmic events, we extracted the
558 time series during individual rhythmic episodes that exceeded a post-hoc duration threshold of
559 three cycles. Individual time series were time-locked to the trough of individual rhythmic
560 episodes and averaged across episodes (Sherman et al., 2016). To avoid unequal sample counts
561 at the edges of episodes, we included additional data padding around the trough prior to
562 averaging. The trough was chosen to be the local minimum during the spectral episode that was
563 closest to the maximum power of the wavelet-transformed signal. To better estimate the local
564 minimum, the time domain signal was low-pass filtered at 25 Hz for alpha and beta, 10 Hz for
565 theta and high-pass-filtered at 20 Hz for gamma using a 6th order Butterworth filter. Filters only
566 served the identification of local minima, whereas unfiltered data were used for plotting.
567 Averaged event dynamics during the first session were visualized for theta at Fz, alpha at O2,
568 beta at FCz and gamma at Fz. To visualize single-trial time-domain signals, we computed
569 moving averages of 150 trials across rhythmic episodes concatenated across all subjects.

570 We further assessed a potential load-modulation of the rate of rhythmic events during
571 working memory retention by counting the number of individual rhythmic episodes with a
572 mean frequency that fell in a moving window of 3 adjacent center frequencies. This produced
573 a channel-by-frequency representation of spectral event rates, which were the basis for
574 subsequent significance testing using dependent sample regression t-tests and implemented in
575 permutation tests as described in section 2.12.

576
577

578 2.14 Modulation of rhythm estimates by working memory load and eye closure
579580 To assess the sensitivity of rhythm-derived indices to experimental manipulations, we
581 compared (1) the effect of eye closure (“Berger effect”) and (2) the effect of working memory
582 load between select rhythm indices. To compare rhythm-specific results with traditional
583 approaches, traditional wavelet estimates were derived using identical parameters as used for
584 eBOSC. We performed confirmatory tests of a parametric increase in posterior alpha power
585 and frontal theta power with memory load based on previous reports in the literature (Jensen et
586 al., 2002; Jensen & Tesche, 2002; Jokisch & Jensen, 2007; Meltzer et al., 2008; Michels,
587 Moazami-Goudarzi, Jeanmonod, & Sarnthein, 2008; Onton, Delorme, & Makeig, 2005;
588 Scheeringa et al., 2009; Tuladhar et al., 2007). In addition, we explored a decrease in frontal
589 theta frequency with load. To reduce the amount of statistical contrasts, we averaged all metrics
590 across sessions before submitting them to statistical tests. Load effects for within-subject trial
591 averages between load conditions were assessed by means of a dependent sample regression t-
592 test, implemented within permutation tests (see section 2.12 for details). Similar cluster-based
593 permutation tests were performed for the effect of eye closure on rhythmic and arrhythmic
594 amplitudes and abundance using a paired samples t-test.595 Beyond probing effects on each estimate individually, we probed whether rhythm-
596 specific estimates of duration and magnitude uniquely captured task effects over and above
597 traditional indices. For this purpose, we performed post-hoc linear mixed effects analyses,
598 averaging within the abundance effects clusters. Prior to modelling, values were z-scored across
599 subjects and conditions. In each model, a rhythm-specific index (e.g. abundance) served as the
600 dependent variable, while traditional amplitudes served as a fixed dependent variable. Load or
601 eye closure were modelled as fixed effects with random subject intercepts, assuming compound
602 symmetry. For the load effect, we assessed uniquely explained variance with a post-hoc
603 ANOVA, using marginal sums-of-squares (‘Type III’). Linear mixed effects modelling was
604 performed in R 3.6.1(R, 2019) with the nlme package (Pinheiro et al., 2019).605 In addition, we explored effects on theta frequency with cluster-based permutations. To
606 visualize frequency modulations, we performed a post-hoc Fast Fourier Transform (FFT) to
607 specifically characterize rhythmic episodes, while normalizing for their duration. To retain an
608 identical frequency resolution across episodes, we zero-padded episodes of variable duration to
609 a fixed duration of two seconds. We then computed a discrete-time Fourier Transform of
610 individual rhythmic episodes: $Y(k) = \sum_{j=1}^n X(j)W_n^{(j-1)(k-1)}$, where n is the length of the zero-
611 padded time series X and $W_n = e^{(-2\pi i)/n}$, normalized the resulting absolute spectral values by
612 the length of the rhythmic episode $N_{rhythmic}$ and calculated the single-sided amplitude
613 spectrum. This resulted in rhythm-specific amplitude values with an identical frequency
614 resolution across episodes. In contrast, to derive rhythm-unspecific FFT amplitude estimates,
615 we included the entire two-second retention period in the estimation and used the respective
616 length for normalization, thus resulting in traditional ‘overall’ FFT amplitude estimates that
617 were unspecific to rhythmic occurrence. To assess, whether a theta frequency modulation
618 would be observed with traditional FFT spectra, we detected condition-dependent theta
619 frequency peaks. Peaks were defined as frequencies at which the first derivative of the spectrum
620 changed from positive to negative (Grandy et al., 2013b). In case no peak was identified, the

621 frequency with peak amplitude was selected. Finally, we performed paired-t-tests to estimate
622 potential load effects.

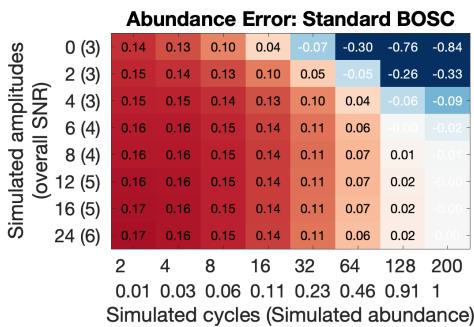
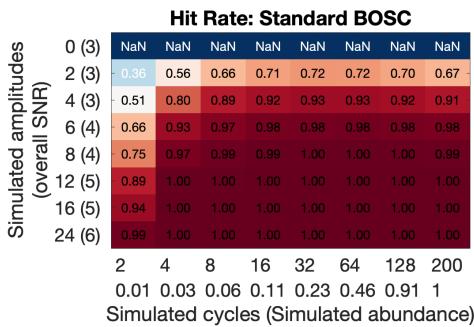
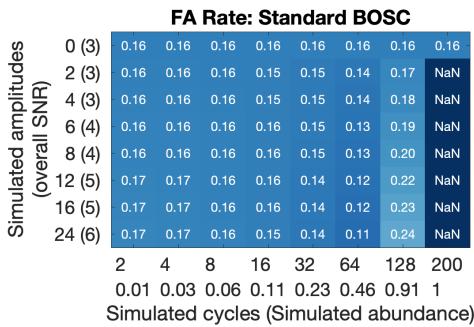
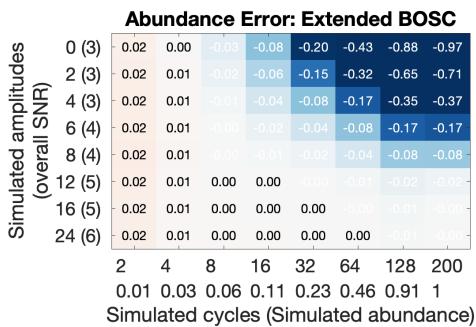
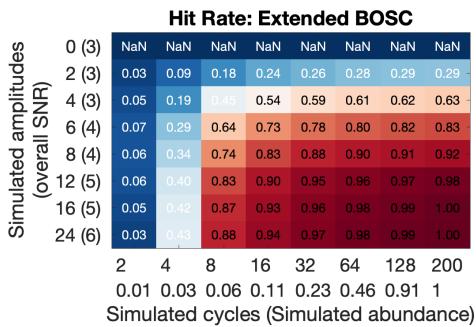
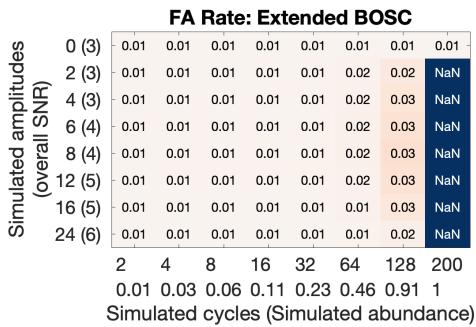
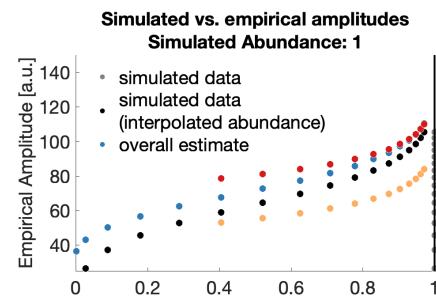
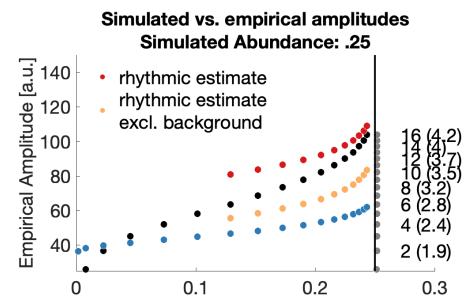
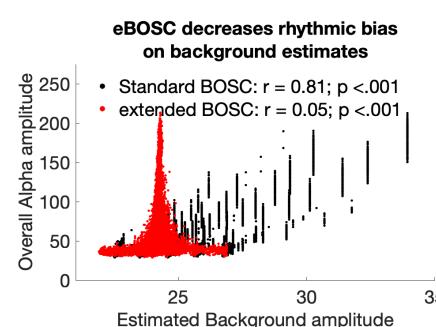
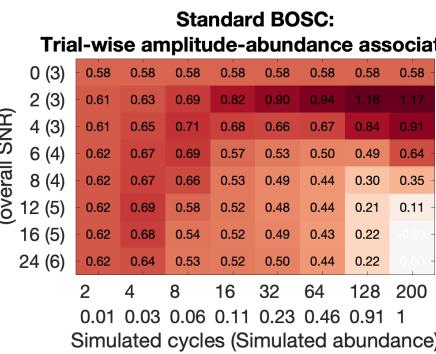
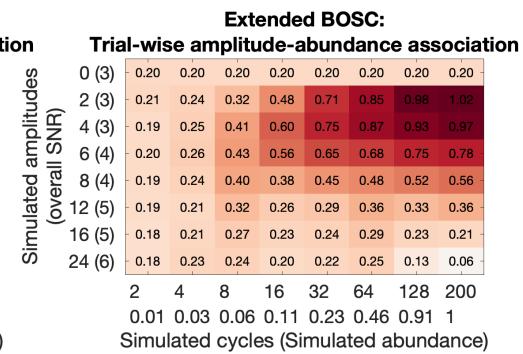
623 In figures, we display within-subject standard errors (Cousineau, 2005) to highlight
624 condition differences. For these, individual data were centered by subtracting the subject
625 condition average and adding the grand condition average to individual within-condition
626 values.

627

628 **3. Results**

629

630 3.1. Extended BOSC (eBOSC) increases specificity of rhythm detection



633 Figure 3: Rhythm detection performance of standard and extended BOSC in simulations. **(A)** Signal detection properties of the two algorithms. For short simulated rhythmicity,
634 abundance is overestimated by standard BOSC, but not eBOSC, whereas eBOSC underestimates the duration of prolonged rhythmicity at low SNRs (A1). Extended BOSC has
635 decreased sensitivity (A2), but higher specificity (A3) compared with extended BOSC. Note that for simulated zero alpha amplitude, all sample points constitute potential false
636 alarms, while by definition no sample point constitutes a potential hit. **(B)** Amplitude and abundance estimate for signals with sustained (left) and short rhythmicity (right).
637 Black dots indicate reference estimates for a pure sine wave without noise, coloured dots indicate the respective estimates for data with the 1/f background. [Note that the
638 reference estimates were interpolated at the empirical abundance of the 1/f data. Grey dots indicate the perfect abundance estimates in the absence of background noise.] When
639 rhythms are sustained (left), impaired rhythm detection at low SNRs causes an overestimation of the rhythmic amplitude. At low rhythmic duration (right), this deficit is
640 outweighed by the severe bias of arrhythmic duration on overall amplitude estimates (e.g., Figure 9). Simulated amplitudes (and corresponding empirical SNRs in brackets) are
641 shown on the right. Vertical lines indicate the simulated rhythmic duration. **(C)** eBOSC successfully reduces the bias of the rhythmic peak on the estimation of the background
642 amplitude. In comparison, standard BOSC induces a strong coupling between the peak magnitude and the background estimate. **(D)** eBOSC indicates abundance more accurately
643 than standard BOSC at high amplitudes (i.e., high SNR; see also A1). The leftward shift indicates a decrease in sensitivity. Horizontal lines indicate different levels of simulated
644 duration. Dots are single-trial estimates across levels of simulated amplitude and duration. **(E)** Standard BOSC and eBOSC induce trial-wise correlations between amplitude
645 and abundance. eBOSC exhibits reduced trial-by-trial coupling at higher SNR compared to standard BOSC. Values are r-to-z-transformed correlation coefficients.
646

647 We extended the BOSC rhythm detection method to characterize rhythmicity at the
648 single-trial level by creating continuous ‘rhythmic episodes’ (see Figure 1 & Figure S1). A
649 central goal of this approach is the disambiguation of rhythmic power and duration, which can
650 be achieved perfectly in data without background noise (upper row in Figure 2B). However,
651 the addition of 1/f noise reintroduces a partial coupling of the two parameters (lower row in
652 Figure 2B). To better understand the boundary conditions to derive specific amplitude and
653 duration estimates, we compared the detection properties of the standard and the extended
654 (eBOSC) pipeline by simulating varying levels of rhythm magnitude and duration. Considering
655 the sensitivity and specificity of detection, both pipelines performed adequately at high levels
656 of SNR with high hit and low false alarm rates (Figure 3A). However, whereas standard BOSC
657 showed perfect sensitivity above SNRs of ~4, specificity was lower than for eBOSC as
658 indicated by higher false alarm rates (grand averages: .160 for standard BOSC; .015 for
659 eBOSC). This specificity increase was observed across simulation parameters, suggesting a
660 general abundance overestimation by standard BOSC (see also Figure 3D). In addition,
661 standard BOSC did not show a reduced detection of transient rhythms below the duration
662 threshold of three cycles, whereas hit rates for those transients were clearly reduced with
663 eBOSC (Figure 3A2). This suggests that wavelet convolution extended the effective duration
664 of transient rhythmic episodes, resulting in an exceedance of the temporal threshold. In contrast,
665 by creating explicit rhythmic episodes and reducing convolution effects, eBOSC more strictly
666 adhered to the specified target duration. However, there was also a notable reduction in
667 sensitivity for rhythms just above the duration threshold, suggesting a sensitivity-specificity
668 trade-off (Figure 3A2). In addition to decreasing false alarms, eBOSC also more accurately
669 estimated the duration of rhythmicity (Figure 3A1), although an underestimation of abundance
670 persisted (and was increased) at low SNRs. In sum, while eBOSC improved the specificity of
671 identifying rhythmic content, there were also noticeable decrements in sensitivity (grand
672 averages: .909 for standard BOSC; .614 for eBOSC), especially at low SNRs. Comparable
673 results were obtained with a 3-cycle wavelet (Figure S3). Notably, while sensitivity remains an
674 issue, the high specificity of detection suggests that the estimated rhythmic abundance serves
675 as a lower bound on the actual duration of rhythmicity.

676 In a second set of simulations, we considered eBOSC’s potential to accurately estimate
677 rhythmic amplitudes. As expected, in signals with stationary rhythms (duration = 1), the time-
678 invariant ‘overall’ amplitude estimate most accurately represented simulated amplitudes
679 (Figure 3B left), as any methods-induced underestimation biased rhythm-specific amplitudes.
680 Specifically, at low SNRs, underestimation of rhythmic content resulted in an overestimation
681 of rhythmic amplitudes, as some low-amplitude time points were incorrectly excluded prior to
682 averaging. At those low SNRs, subtraction of the background estimate (cf. baseline
683 normalization) alleviated this overestimation. The general impairment at low SNRs was
684 however outweighed by the advantage of rhythm-specific amplitude estimates in time series
685 where rhythmic duration was low and thus arrhythmicity was prevalent (Figure 3B right). Here,
686 rhythm-specific estimates accurately tracked simulated amplitudes, whereas a strong
687 underestimation was observed for unspecific power indices. In both scenarios, we observed an
688 underestimation of rhythmic abundance with decreasing amplitudes (cf. Figure 3A1).

689 An adaptation of the eBOSC method is the exclusion of the rhythmic alpha peak prior
690 to fitting the arrhythmic background. This serves to reduce a potential bias of rhythmic content

691 on the estimation of the arrhythmic content (see Figure 1C for a schematic). Our simulations
692 indeed indicated a bias of the spectral peak amplitude on the background estimate in the
693 standard BOSC algorithm, which was substantially reduced in eBOSC's estimates (Figure 3C).

694 To gain a visual representation of duration estimation performance, we plotted
695 abundance against amplitude estimates across all simulated trials, regardless of simulation
696 parameters (Figure 3D). This revealed multiple modes of abundance at high amplitude levels,
697 which in the eBOSC case more closely tracked the simulated duration. This further visualizes
698 the decreased error in abundance estimates, especially at high SNRs (e.g., Figure 3A), while an
699 observed rightward shift towards higher amplitudes indicated the more pronounced
700 underestimation of rhythmicity at low SNRs.

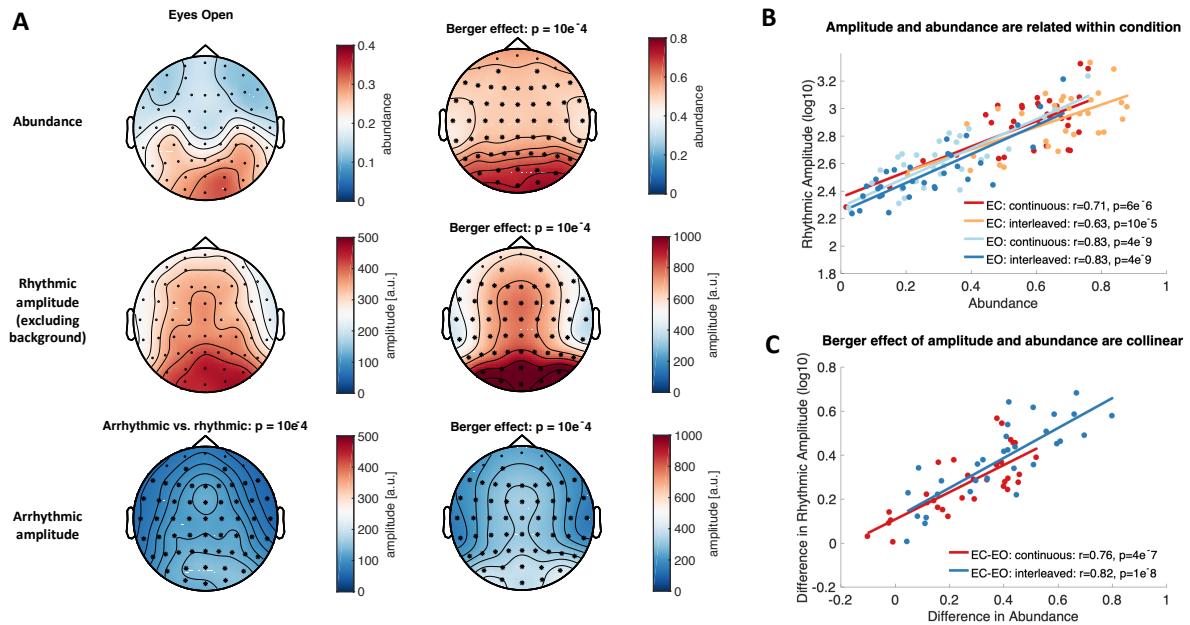
701 Finally, we investigated the trial-wise association between amplitude and duration
702 estimate based on the observed coupling in empirical data (see Figure 7). Our simulations
703 suggest that both standard BOSC and eBOSC can induce spurious positive correlations between
704 amplitude and abundance estimates, which are most pronounced at low levels of SNR (Figure
705 3E). Notably, these associations are strongly reduced in eBOSC, especially when rhythmic
706 power is high. This indicates that eBOSC provides a better separation between the two (here
707 independent) parameters, although a spurious association remains.

708 In sum, our simulations suggest that eBOSC specifically separates rhythmic and
709 arrhythmic time points in simulated data at the expense of decreased sensitivity, especially
710 when SNR is low. However, the increase in specificity is accompanied by an increased accuracy
711 of duration estimates at high SNR, theoretically allowing a more precise investigation of
712 rhythmic duration.

713
714

715 3.2 eBOSC detects single-trial alpha rhythms during rest and task states

716

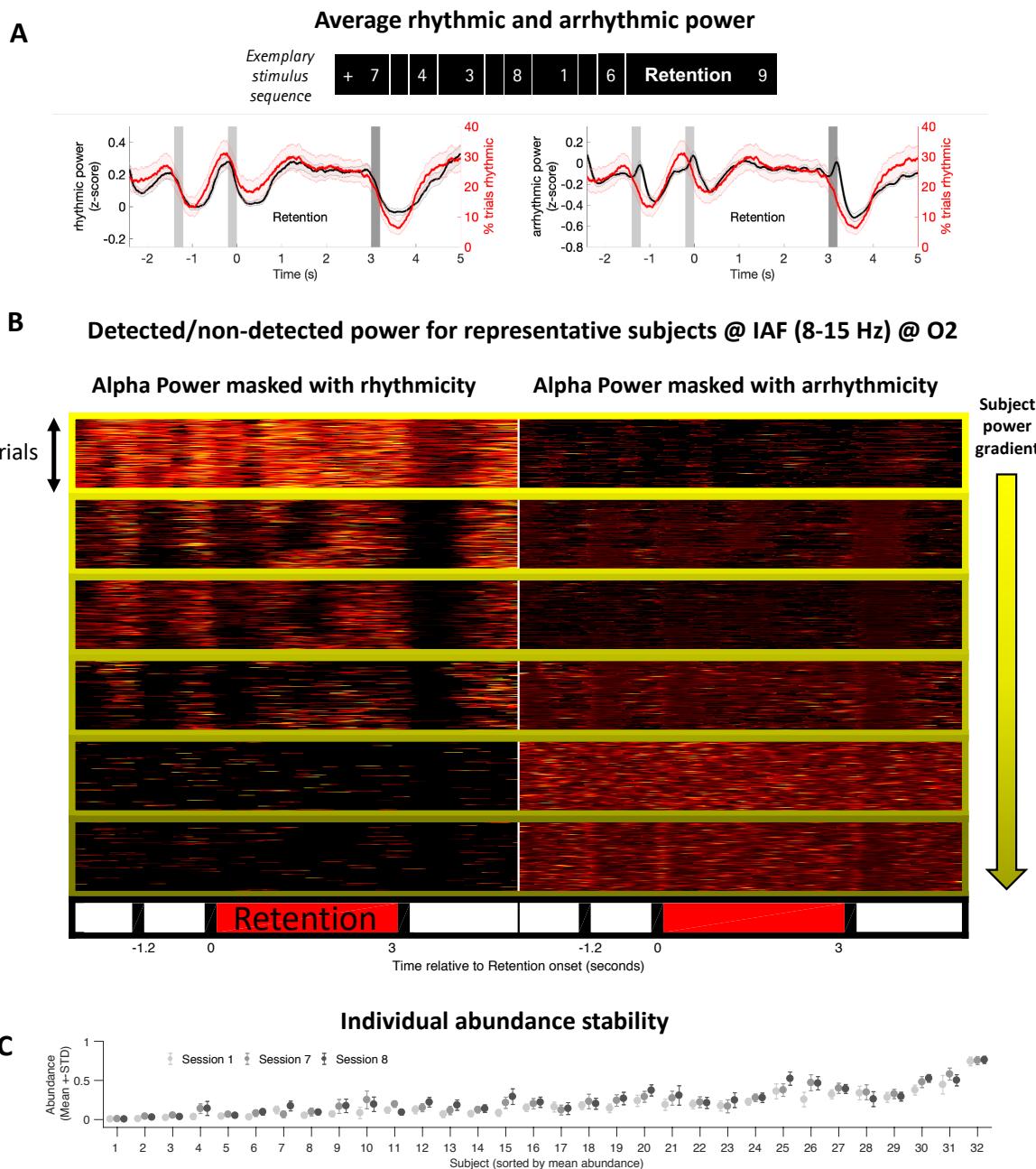


717
718 Figure 4: Rhythmic alpha abundance and amplitude during rest. (A) eBOSC identifies high occipital alpha
719 abundance and rhythmic amplitude especially during the Eyes Closed resting state. White asterisks indicate
720 significant decreases for arrhythmic from rhythmic amplitudes (cluster is identical between conditions). Black
721 asterisks indicate significant increases upon eye closure. (B) Rhythmic amplitude and abundance are inter-
722 individually related during rest (C) The modulation of eye closure has similar effects on amplitude and abundance.
723 Estimates were extracted from posterior-occipital channels.

724
725 While the simulations provide a gold standard to assess detection performance, we
726 further probed eBOSC's detection performance in empirical data from resting and task states
727 to investigate the practical feasibility and utility of rhythm detection. As the ground truth in real
728 data is unknown, we evaluated detection performance by contrasting metrics from detected and
729 undetected timepoints regarding their topography and time course.

730 Individual power spectra showed clear rhythmic alpha peaks for every participant
731 during eyes closed rest and for most subjects during eyes open rest and the task retention period,
732 indicating the general presence of alpha rhythms during the analysed states (Figure S4). In line
733 with a putative source in visual cortex, alpha abundance was highest over parieto-occipital
734 channels during the resting state (Figure 4A) and during the WM retention period (Figure 8),
735 with high collinearity between abundance and rhythmic amplitudes within resting conditions
736 (Figure 4B). As expected, rhythmic time-points exhibited increased alpha power compared with
737 arrhythmic time points (Figure 4A; white cluster). As one of the earliest findings in cognitive
738 electrophysiology (Berger, 1938), alpha amplitudes increase in magnitude upon eye closure.
739 Here, eye closure was reflected by a joint shift towards higher amplitudes and durations for
740 almost all participants (Figure 4C). To assess unique contributions of the Berger effect on
741 rhythm indices while controlling for the high collinearity between indicators, we performed
742 linear mixed modelling within the common effects cluster (see Supplementary Table 1). We
743 focussed on the continuous condition here, due to the similarity of the effects in the interleaved
744 case. Notably, rhythmic abundance was modulated by eye closure while statistically controlling
745 for either rhythmic or arrhythmic amplitudes. In contrast, rhythmic alpha amplitudes were not

746 modulated by eye closure when controlling for alpha abundance. This suggests that rhythmic
 747 duration may be a more sensitive marker of task modulations than amplitude. Finally,
 748 arrhythmic amplitudes did not exhibit the Berger effect in either the interleaved or the
 749 continuous acquisition when statistically controlling for the collinearity with rhythmic
 750 amplitude or rhythmic abundance. Taken together, these results suggest a high, joint sensitivity
 751 of rhythm-specific indices to eye closure, which exceeded the residual modulation of
 752 arrhythmic backgrounds that may have resulted from specificity impairments during the
 753 original detection procedure.



754
 755 Figure 5: Detected rhythmicity follows the task structure, with stable inter-individual differences in single trial
 756 detection. (A) Average alpha power (black), split by rhythmic vs. arrhythmic designation, and rhythmic probability
 757 (red) at posterior-occipital channels exhibit stereotypical temporal dynamics during encoding (gray bars), retention
 758 (0 to 3 s) and retrieval (black bars). Compared to rhythmic power, arrhythmic power exhibits similar temporal
 759 dynamics, but is strongly reduced in power (see y-scales). The arrhythmic power dynamics are characterized by

760 additional transient increases following stimulus presentations. Data are from the first session and the high load
 761 condition. Shading indicates standard errors across subjects. **(B)** Task-related alpha dynamics are captured by
 762 eBOSC at the single-trial level. Each box displays individual trial-wise z-standardized alpha power at the
 763 individual peak frequency, separately for rhythmic (left) and non-rhythmic (right) time points. While rhythmic
 764 time points (left) exhibit clear single-trial power increases that are locked to the task design, arrhythmic time points
 765 (right) do not show evoked task dynamics that separate them from the background, hence suggesting an accurate
 766 rejection of rhythmicity. The subplots' frame colour indicates the subjects' raw power maximum (i.e., the data
 767 scaling). Data are from channel O2 during the first session across load conditions. **(C)** Individual abundance
 768 estimates are stable across sessions. Data were averaged across posterior-occipital channels and high (i.e., 6) item
 769 load trials.

770

The temporal dynamics of indicated rhythmicity are another characteristic of interest to indicate successful rhythm detection. While such an investigation is difficult for induced rhythmicity during rest, evoked rhythmicity offers an optimal test case due to its systematic temporal deployment. For this reason, we analysed task recordings with stereotypic design-locked alpha power dynamics at encoding, retention and probe presentation (Figure 5AB). Rhythmic probability closely tracked power dynamics (Figure 5A) and time points designated as rhythmic exhibited pronounced alpha power compared with those labelled arrhythmic (Figure 5A left vs. Figure 5A right). While rhythm-specific dynamics closely captured standard power trajectories, we observed a dissociation concerning arrhythmic power. Here, we observed transient increases during stimulus onsets that were absent from either abundance or rhythmic power (Figure 5A right). This suggests an increase in high-power transients that were excluded due to the 3 cycle duration threshold. Indeed, a significant increase in transient events was observed without an *a priori* duration threshold (see Figure 10).

784

At the single-trial level, rhythmicity was indicated for periods with visibly elevated alpha power with strong task-locking (Figure 5B left). Conversely, arrhythmicity was indicated for time points with low alpha power and little structured dynamics (Figure 5B right). However, strong inter-individual differences were apparent, with little detected rhythmicity when global alpha power was low (Figure 5B bottom; plots are sorted by descending power as indicated by the frame colour of the depicted subjects and scaled using z-scores to account for global power differences). Crucially, those subjects' single-trial power dynamics did not present a clear temporal structure, suggesting a prevalence of noise and therefore a correct rejection of rhythmicity. Notably, those individual rhythmicity estimates were stable across multiple sessions (Figure 5C), suggesting that they are indicative of trait-like characteristics rather than idiosyncratic measurement noise (Grandy et al., 2013).

795

In sum, these results suggest that eBOSC successfully separates rhythmic and arrhythmic episodes in empirical data, both at the group and individual level. However, they also indicate prevalent and stable differences in single-trial rhythmicity in the alpha band that may impair an accurate detection of rhythmic episodes.

799

199

3.3 Rhythmic SNR constrains empirical duration estimates and rhythm-related metrics

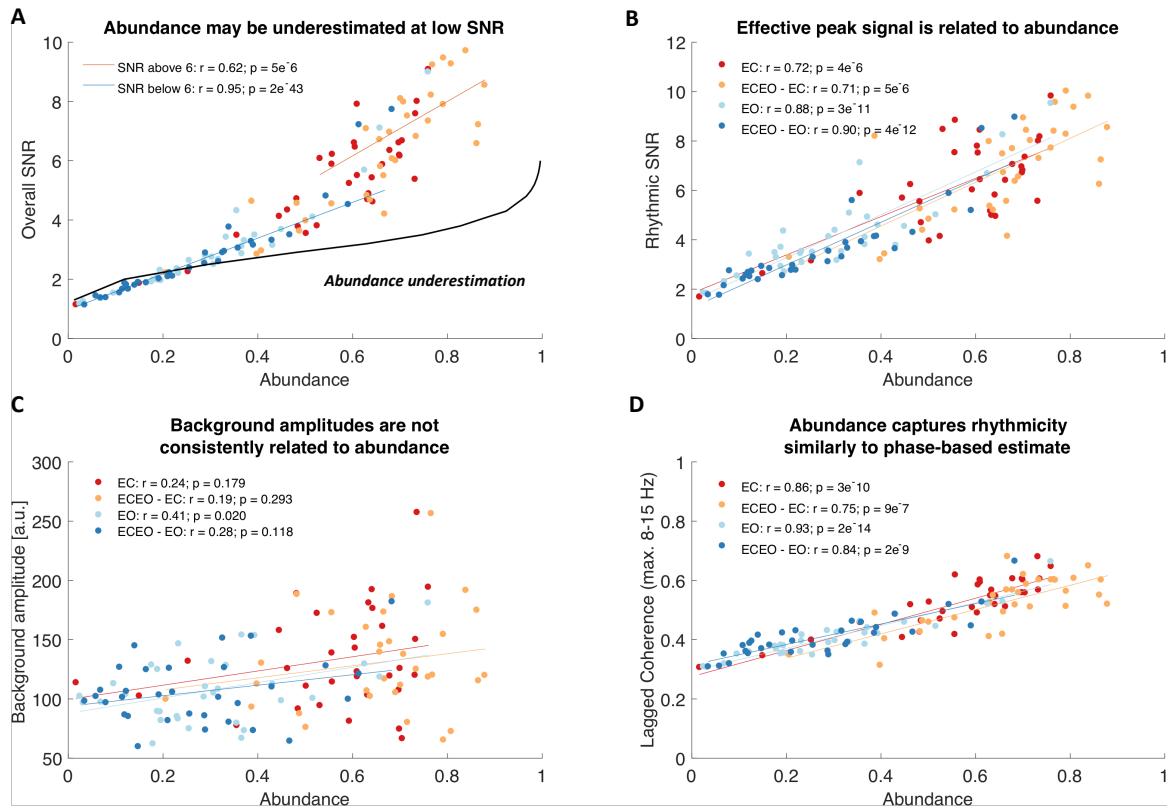
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818

Figure 6: Inter-individual alpha abundance is strongly associated with rhythmic, but not arrhythmic power and may be underestimated at low rhythmic SNR. **(A)** Individual abundance estimates are strongly related to the overall SNR of the spectral alpha peak. This relationship is also observed when only considering individual data within the SNR range for which simulation analyses indicated an unbiased abundance estimation. The black line indicates interpolated estimates from simulation analyses with a sustained rhythm (i.e., duration = 1; see Figure 3B left). Hence, it indicates a lower bound for the abundance underestimation that occurs at low SNRs, with notable overlap with the empirical estimates in the same SNR range. **(B)** The effective rhythmic signal can be conceptualized as the background-normalized rhythmic amplitude above the background estimate (rhythmic SNR). This proxy for signal clarity is inter-individually linked to abundance estimates. **(C)** Background estimates are not consistently related to abundance. This implies that the relationship between amplitude and abundance is mainly driven by the signal, but not background amplitude (i.e., the effective signal ‘clarity’) and that associations do not arise from a misfit of the background. **(D)** Rhythmicity estimates translate between power- and phase-based definition of rhythmicity. This indicates that the BOSC-detected rhythmic spectral peak above the 1/f spectrum contains the rhythmic information that is captured by phase-based duration estimates. All data are from the resting state.

819
820
821
822
823
824
825
826
827

While the empirical results suggest a successful separation of rhythmic and arrhythmic content at the single-trial level, we also observed strong (and stable) inter-individual differences in alpha-abundance. This may imply actual differences in the duration of rhythmic engagement (as indicated in Figure 5B). However, we also observed a severe underestimation of abundance as a function of the overall signal-to-noise ratio (SNR) in simulations (Figure 3), thus leading to the question whether empirical data fell into similar ranges where an underestimation was likely. During the resting state, we indeed observed that many overall SNRs were in the range, where simulations with a stationary alpha rhythm suggested an underestimation of abundance (cf. black and blue lines in Figure 6A). The black line indicates simulation-based estimates for

stationary alpha rhythms at different overall SNR levels; see section 2.8). Moreover, the coupling of individual SNR and abundance values took on a deterministic shape in this range, whereas the association was reduced in ranges where simulations suggest sufficient SNR for unbiased abundance estimates (orange line in Figure 6A). As overall SNR is influenced by the duration of arrhythmic signal, rhythmic SNR may serve as an even better predictor of abundance due to its specific relation to rhythmic episodes (Figure 2). In line with this consideration, rhythmic SNR exhibited a strong linear relationship to abundance (Figure 6B). Importantly, the background estimate was not consistently related to abundance (Figure 6C), emphasizing that it is the ‘signal’ and not the ‘noise’ component of SNR that determines detection. Similar observations were made in the task data during the retention phase (Figure S5), suggesting that this association reflects a general link between the magnitude of the spectral peak and duration estimates. The joint analysis of simulated and empirical data thus questions the accuracy of individual duration estimates, especially at low SNRs, due to the dependence of unbiased estimates on sufficient rhythmic power.

As eBOSC defines single-trial power deviations from a stationary power threshold as a criterion for rhythmicity, it remains unclear whether this association is exclusive to such a ‘power thresholding’-approach or whether it constitutes a more general feature of single-trial rhythmicity. To probe this question, we calculated a phase-based measure of rhythmicity, termed ‘lagged coherence’ (Fransen et al., 2015), which assesses the stability of phase clustering at a single sensor for a chosen cycle lag. Here, 3 cycles were chosen for comparability with eBOSC’s duration threshold. Crucially, this definition of rhythmicity led to highly concordant estimates with eBOSC’s abundance measure³ (Figure 6D), suggesting that power-based rhythm detection above the scale-free background overlaps to a large extent with the rhythmic information captured in the phase-based lagged-coherence measure. Moreover, it suggests that duration estimates are more generally coupled to rhythmic amplitudes, especially when overall SNR is low.

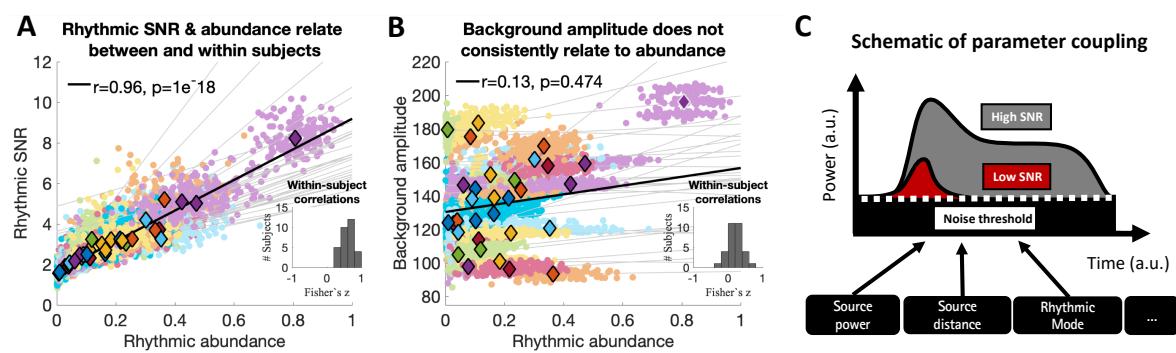


Figure 7: The magnitude and duration of single-trial rhythmicity are intra-individually associated. Amplitude-abundance association within subjects in the Sternberg task (1st session, all trials). Dots represent single trial

³ The eBOSC duration measure was further strongly correlated with the traditional Pepisode measure (estimated at the trial-wise IAF) that results from the standard BOSC algorithm (EC: $r = .96$, $p = 2e-18$; EC2: $r = .94$, $p = 2e-15$; EO: $r = .97$, $p = 3e-20$; EO2: $r = .97$, $p = 2e-20$), suggesting that both measures are similarly sensitive in our empirical data and reflect to a large extent overlapping information.

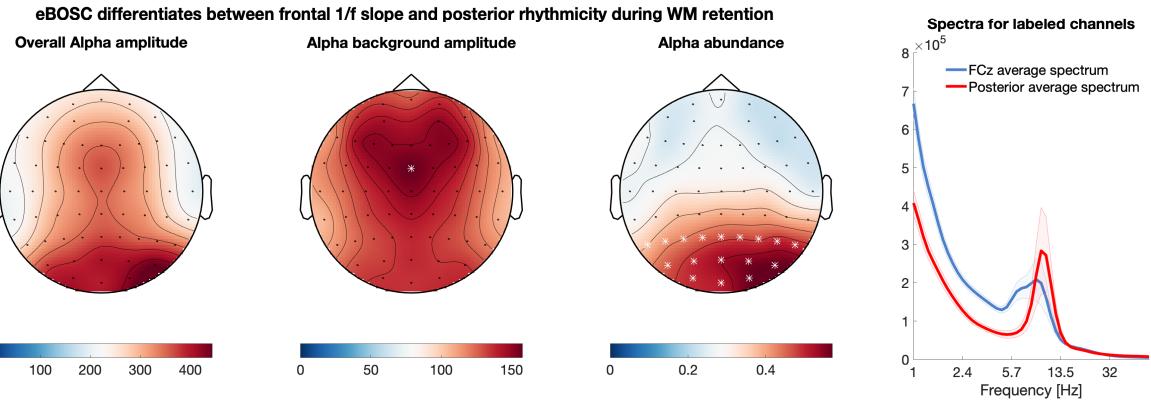
estimates, color-coded by subject. Subject means are presented via diamonds. (Inlay) Histogram of within-subject Fisher's z-coefficients of within-subject associations. Relationships are exclusively positive. (B) Background estimates are inter-individually uncorrelated with single-trial abundance fluctuations, excluding the outlier indicated by white edges. (C) Schematic of the potential interdependence of rhythmic SNR and abundance. Low SNR may cause the detection of shorter supra-threshold power periods with constrained amplitude ranges, whereas prolonged periods may exceed the stationary threshold when the rhythmic signal is clearly separated from the background.

While the previous observations were made at the between-subjects level, we further investigated whether such coupling also persists between trials in the absence of between-person differences. In the present data, we indeed observed a positive coupling of trial-wise fluctuations of rhythmic SNR and abundance (mean Fisher's z : .60; $p < 6.5\text{e-}19$) (Figure 7A), whereas the estimate of the scale-free background was less consistently, though significantly (mean Fisher's z : .20; $p = 2.6\text{e-}6$), related to the estimated duration of rhythmicity (Figure 7B). This suggests that the level of estimated abundance primarily relates to the magnitude of ongoing power fluctuations around the stationary power threshold. Figure 7C schematically shows how such an amplitude-abundance coupling may be reflected in single trials as a function of rhythmic SNR. These relationships were also observed in our simulations and in other frequency bands, although they were reduced in magnitude at higher levels of simulated empirical SNR (Figure 3E) and for other frequencies (Figure S6), suggesting that partial dissociations of the two parameters are feasible.

In sum, these results strongly caution against the interpretation of duration measures as a 'pure' duration metric that is independent from rhythmic power, especially at low levels of SNR. The strong within-subject coupling may however also indicate an intrinsic coupling between the strength and duration of neural synchrony as joint representations of a rhythmic mode. Notably, covariations were not constrained to amplitude and abundance, but were widespread, including covariations between 'SNR' and the instability (or variability) of the individual alpha peak frequency (see Supplementary Materials; Figure S7). Combined, these results suggest that the efficacy of an accurate single-trial characterization of neural rhythms relies on sufficient individual rhythmicity and can not only constrain the validity of duration estimates, but broadly affect a range of rhythm characteristics that can be inferred from single trials.

3.4 Rhythm detection improves amplitude estimates by removing arrhythmic episodes

From the joint assessment of detection performance in simulated and empirical data, it follows that low SNR constitutes a severe challenge for single-trial rhythm characterization. However, while the magnitude of rhythmicity at the single trial level constrains the detectability of rhythms, abundance represents a lower bound on rhythmic duration due to eBOSC's high specificity. This allows the interpretation of rhythm-related metrics for those time points where rhythmicity is indicated, leading to tangible benefits over standard analyses. In this section, we highlight multiple proof-of-concept cases of such benefits.



901
902 Figure 8: eBOSC differentiates spatially varying topographies of rhythmic and arrhythmic power during working
903 memory retention. Asterisks mark the channels that were selected for the spectra on the right. The graph shading
904 depicts standard errors. The topographies are grand averages from the retention phase of the Sternberg task across
905 all sessions.

906
907 A considerable problem in standard narrowband power analyses is the superposition of
908 rhythmicity on top of a scale-free 1/f background, effectively mixing the two components in
909 traditional power estimates (e.g. Haller et al., 2018). In contrast, eBOSC uncouples the two
910 signals via explicit modelling of the arrhythmic background. Figure 8 presents a comparison
911 between the standard narrowband estimate and eBOSC's background and rhythmicity metrics
912 for the alpha band during working memory retention. While high narrowband power is
913 observed in frontal and parietal clusters, eBOSC differentiated a frontally-dominated 1/f
914 component and a posterior-occipital rhythm cluster. Identical comparisons within multiple low-
915 frequency ranges suggest the separation of a stationary 1/f topography and spatially varying
916 superpositions of rhythmicity (Figure S8). This highlights a successful separation of the scale-
917 free slope magnitude from rhythmicity across multiple frequencies, even when topographies
918 are partially overlapping as in the case of theta.

919

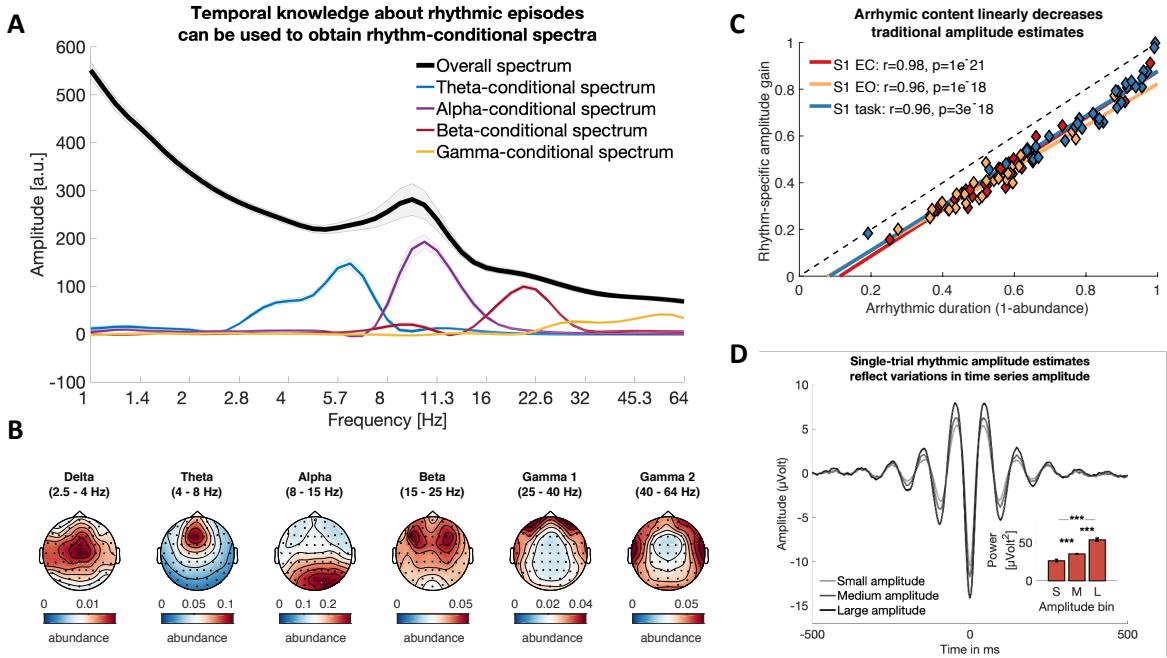


Figure 9: Time-wise indication of rhythmicity improves rhythmic amplitude estimates and produces rhythm-conditional spectra. (A) Comparison of rhythm-conditional spectra with the standard overall spectrum during the memory retention phase. Rhythm-conditional spectra are created by comparing spectra from time-points where a rhythm in the respective frequency range has been indicated with those where no rhythm was present. Notably, this indicates rhythmic peaks at the frequencies of interest that are not observed in the overall spectrum (e.g. theta, beta) due to the prevalence of non-rhythmic events. Simultaneous peaks beyond the target frequencies indicate cross-spectral coupling. Note that these spectra also suggest sub-clusters of frequencies (e.g. an apparent split of the 'theta-conditional' spectrum into a putative delta and theta component). Data are averaged across sessions, loads, subjects and channels. (B) Abundance topographies of the observed rhythm-conditional spectral peaks. (C) Arrhythmic duration linearly biases traditional power estimates during both rest and task states. The relative gain in alpha amplitudes from global intervals to eBOSC's rhythmic periods (see schematic in Figure 1A and Figure 2A) increases with the arrhythmic duration in the investigated period. That is, if high arrhythmic duration was indicated, a focus on rhythmic periods strongly increased amplitudes by excluding the pervasive low-amplitude arrhythmic periods. In contrast, amplitude estimates were similar when arrhythmicity was low and hence rhythm-unspecific metrics contained little arrhythmic bias. Dots represent individual condition averages during the resting state. Amplitude gain is calculated as the relative change in rhythmic amplitude from the unspecific 'overall' amplitude (i.e., (rhythmic amplitude-overall amplitude)/rhythmic amplitude). (D) Rhythmic amplitudes reflect variations in time series amplitude, here visualized via a triadic split. The inset shows the statistical comparison of squared amplitudes in a 200 ms peri-peak window. Estimates are from Session 1 with data from all channels. *** $p < .001$.

Furthermore, the presence of a rhythm is a fundamental assumption for the interpretation of rhythm-related metrics, e.g., phase (Aru et al., 2015). This is often verified by observing a spectral peak at the frequency of interest. However, sparse single-trial rhythmicity may not produce an overt peak in the average spectrum due to the high prevalence of low-power arrhythmic content. Crucially, knowledge about the temporal occurrence of rhythms in the ongoing signal can be used to investigate the spectral content that is specific to those time points, thereby creating 'rhythm-conditional spectra'. Figure 9A highlights that such rhythm-conditional spectra can recover spectral peaks for multiple canonical frequency bands, even when no clear peak is observed in the grand average spectrum. This showcases that a focus on detected rhythmic time points allows the interpretation of rhythm-related parameters.

952 Abundance topographies for the different peaks observed in the rhythm-conditional spectra,
953 were in line with the canonical separation of these frequencies in the literature (Figure 9B).
954 Notably, while some rhythmicity was identified in higher frequency ranges, the associated
955 abundance topographies suggests a muscular generator rather than a neural origin for these
956 events.

957 Related to the recovery of spectral amplitudes from ‘overall amplitudes’, a central
958 prediction of the present work was that the change from overall to rhythmic amplitudes (i.e.,
959 rhythm-specific gain; see Figure 2 for a schematic) scales with the presence of arrhythmic
960 signal. Stated differently, if most of the overall signal is rhythmic, the difference between
961 overall and rhythm-specific amplitude estimates should be minimal. Conversely, if the overall
962 signal consists largely of arrhythmic periods, rhythm-specific amplitude estimates should
963 strongly increase from their unspecific counterparts. In line with these expectations, we
964 observed a positive, highly linear, relationship between a subject’s estimated duration of
965 arrhythmicity and the rhythm-specific amplitude gain (Figure 9C). Thus, for subjects with
966 sparse rhythmicity, rhythm-specific amplitudes were strongly increased from overall
967 amplitudes, whereas differences were minute for subjects with prolonged rhythmicity. Note
968 however that in the case of inter-individual collinearity of amplitude and abundance (as
969 observed in the present data) the rhythm-specific gains are unlikely to change the rank-order of
970 subjects as the relative gain will not only be proportional to the abundance, but due to the
971 collinearity also to the original amplitude. While such collinearity was high in the alpha band,
972 decreased amplitude-abundance relationships were observed for other canonical frequency
973 bands (Figure S6), where such ‘amplitude recovery’ may have the most immediate benefits.

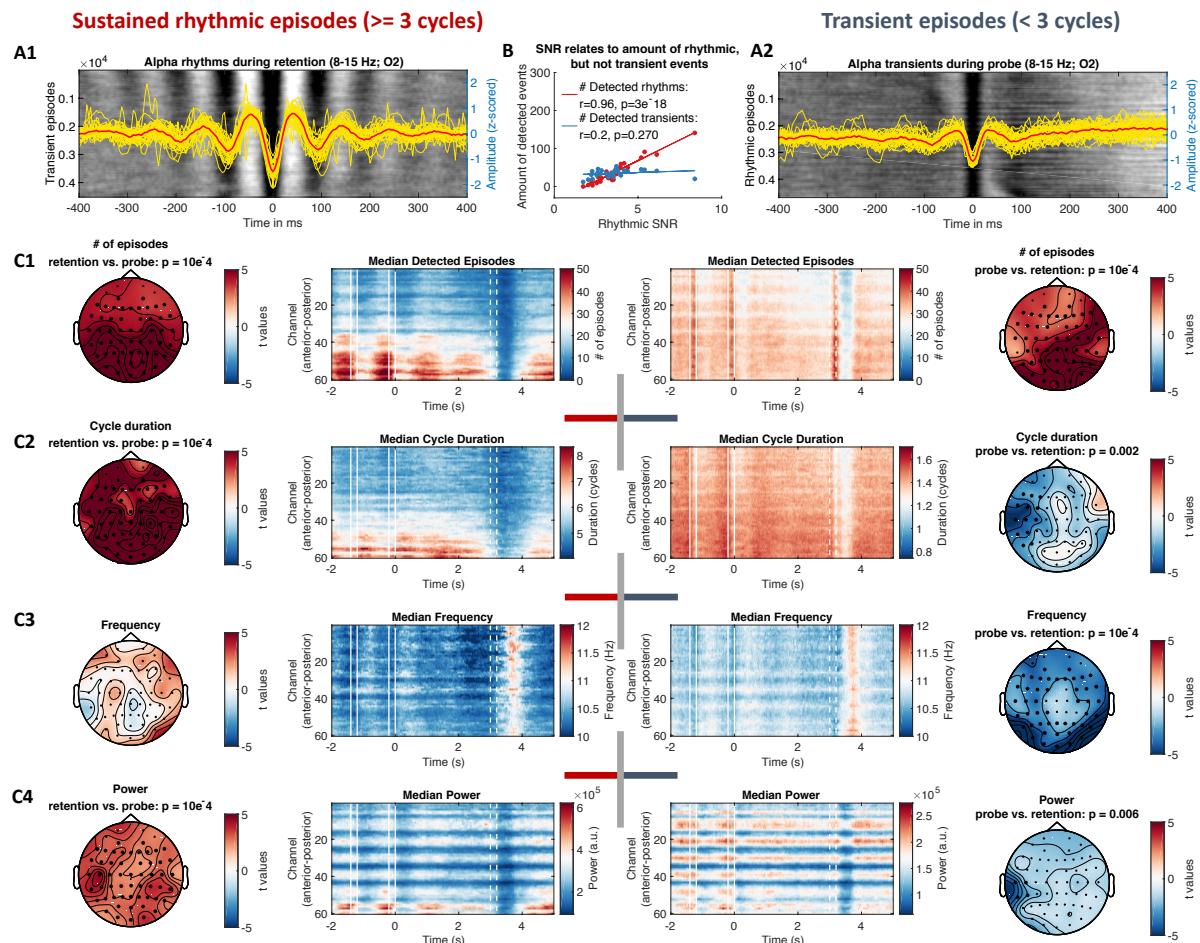
974 To assess whether these single-trial amplitude estimates validly reflected fluctuations
975 in time series magnitude, we performed a triadic split based on single-trial amplitude estimates
976 across all detected episodes (across channels and sessions) in the alpha band. We aligned time-
977 series representations of rhythmicity to the maximal negative peak and compared power in a
978 window of 200 ms around this peak. Notably, rhythm-specific amplitude estimates reflected
979 time series amplitudes during rhythmic periods (Figure 9D) with a larger effect size (medium
980 vs. small: $p = 4e-7$, Cohen’s $d = 1.13$, large vs. medium: $p = 4e-9$; Cohen’s $d = 1.42$) than overall
981 amplitudes (medium vs. small: $p = .002$, Cohen’s $d = .58$, large vs. medium: $p = 9e-7$; Cohen’s
982 $d = 1.08$). Interestingly, despite collinearity between amplitude and abundance at the within-
983 subject level (Figure 7A), a triadic split based on single-trial abundance estimates did not
984 differentiate rhythmic amplitudes (medium vs. small: $p = .34$, Cohen’s $d = .17$, large vs.
985 medium: $p = .45$; Cohen’s $d = -.14$). Hence, rhythm-specific amplitude estimates were better
986 predictors of time series amplitudes than traditional averages that included arrhythmic episodes
987 or estimates of rhythmic duration.

988 In sum, eBOSC provides sensible single-trial amplitude estimates of narrow-band
989 rhythmicity that are boosted in magnitude due to the removal of arrhythmic episodes.

990
991

992 3.5 eBOSC separates sustained and transient spectral events

993



994

995 Figure 10: eBOSC provides a varied characterization of duration-specific frequency content, separating sustained
 996 rhythmicity from transients. Episodes with a mean frequency between 8 and 15 Hz were post-hoc sorted by falling
 997 below or above a 3-cycle duration threshold. For each index, estimates were averaged across all episodes at any
 998 time point, followed by averaging across subjects and sessions. All indices are based on episodes that fulfil the
 999 power threshold for rhythmicity. (A) Time-domain representation of alpha rhythms (A1) and transients (A2)
 1000 during retention and probe respectively. Backgrounds display moving averages of 150 raw rhythmic episode time
 1001 series across all subjects. Events are aligned to the closest trough to the TFR maximum of the identified event.
 1002 Episodes are sorted by episode onset relative to the identified trough. Individual (yellow) and grand data averages
 1003 (red) are superimposed. (B) Rhythmic SNR linearly relates to the number of rhythmic events during retention, but
 1004 not transient events during probe presentation. (C) Rhythm- and transient-specific estimates of episode prevalence
 1005 (C1), duration (C2), frequency (C3) and power (C4). Central panels show time-channel representations of group
 1006 indices for rhythmic (left) and transient episodes (right). Lateral topographies indicate the corresponding statistical
 1007 comparisons of paired t-tests comparing the retention and the probe period. Asterisks signify significant electrode
 1008 clusters. Unbroken white lines indicate stimulus presentations, broken white lines indicate probe presentation.

1009

1010 In addition to specificity gains for rhythmic indices, eBOSC's creation of temporally
 1011 contiguous rhythmic 'episodes' affords a characterization of rhythmic and transient episodes
 1012 with significant spectral power in the absence of an *a priori* duration requirement. Using the
 1013 traditional 3-cycle threshold as a post-hoc criterion for detected episodes, we separated
 1014 rhythmic and transient spectral events with clear differences in their time-domain
 1015 representations (Figure 10A). Notably, while rhythmic SNR related to the number of detected

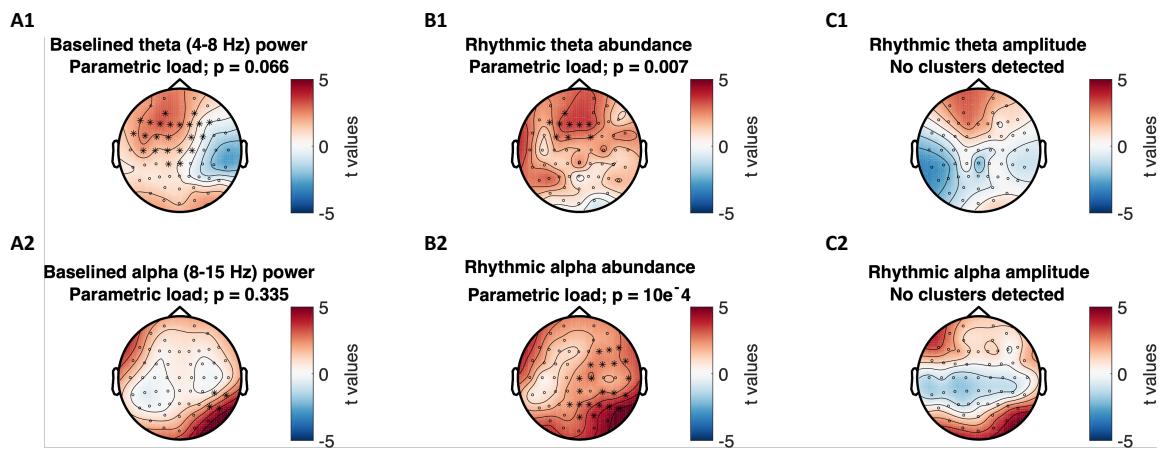
1016 rhythmic events, the same was not observed for the number of transient episodes (Figure 10B2),
1017 thus indicating that rhythms and transients may arise from different mechanisms. In line with
1018 the observations made for rhythmic vs. arrhythmic power (cf. Figure 5A), we observed
1019 differences in the temporal prevalence of transient events and sustained rhythms. Specifically,
1020 stimulus onsets increased the number of transient events (Figure 10A1), whereas sustained
1021 rhythms were increased during the retention phase. These episodes can be further characterized
1022 in terms of their duration in cycles (Figure 10A2), their mean frequency (Figure 10A3) and
1023 event-specific power (Figure 10A4). During the retention phase, we observed an increased
1024 number of larger and longer rhythms compared with the probe period with no apparent
1025 differences in frequency. In contrast, we observed a global increase in the number of transients
1026 during probe presentation, with those transients being of higher frequency compared to
1027 transients during the retention phase. The magnitude and duration of transients did not differ
1028 globally between these two task periods. Taken together, these analyses suggest a principled
1029 separation of sustained and transient spectral events on the bases of temporal post-hoc
1030 thresholds.

1031 Finally, the temporal specificity of spectral episodes also enables a characterization of
1032 rhythm-‘evoked’ events (see Supplementary Materials). Whereas an assessment of evoked
1033 effects has thus far only been possible with regard to external event markers, the indication of
1034 rhythm on- and offsets allows an investigation of concurrent changes that are time-locked to
1035 rhythmic events (Figure S9A). Here, we exemplarily show that the on- and offsets of rhythmic
1036 episodes are associated with concurrent power increases and decreases respectively (Figure
1037 S9B), adding further evidence for the high temporal specificity of indicated on- and offsets of
1038 rhythmic episodes.

1039 In sum, these proof-of-concept applications suggest that explicit rhythm detection may
1040 provide tangible benefits over traditional narrowband analyses due to the specific separation of
1041 rhythmic and arrhythmic periods, despite the high collinearity of abundance and power that we
1042 observed in the alpha band.

1043
1044

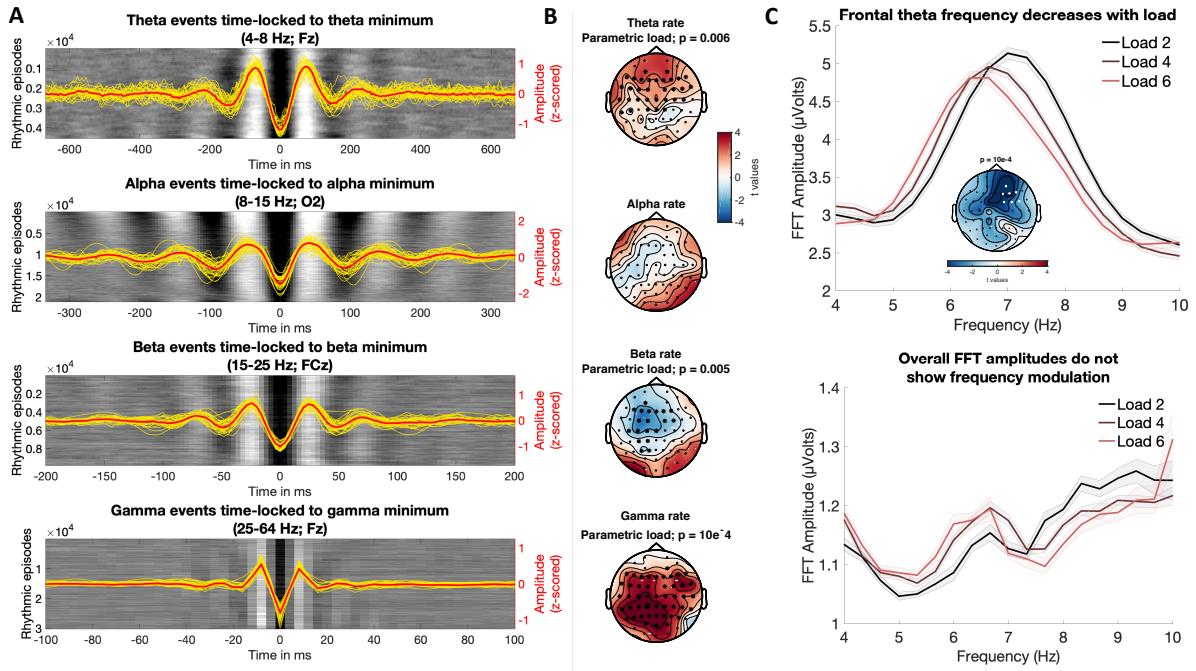
1045 3.5 Rhythm-specific indices exhibit improved sensitivity to working memory load



1046
1047 Figure 11: Memory load-modulation of traditional wavelet power, rhythmic abundance and rhythmic amplitude.
1048 Traditional wavelet estimates indicated no significant parametric load of either frontal theta or posterior alpha
1049 power (A), whereas a load-related increase was indicated for both theta and alpha abundance (B). In contrast to
1050 abundance, no significant relationship with load was indicated for rhythm-specific amplitudes (C).

1051
1052 So far, we investigated the potential to derive rhythm-specific estimates and highlighted
1053 resulting benefits. It remains unclear however, to what extent these estimates are experimentally
1054 modulated in cognitive tasks and whether they add complementary information to extant
1055 measures. To attend this question, we probed the effect of working memory load on traditional,
1056 rhythm-unspecific power averages and eBOSC's duration and amplitude in the alpha and theta
1057 band⁴. Standard power estimates indicated load-related increases in frontal theta and right
1058 posterior alpha power that did not reach statistical significance however (Figure 11A; see also
1059 Figure S10 for different normalization procedures). In contrast, significant increases were
1060 observed for rhythmic abundance (Figure 11B), but not for rhythm-specific power, despite
1061 similar statistical topographies (Figure 11C). To investigate whether rhythmic abundance
1062 captured additional variance of memory load compared to amplitude, we performed linear
1063 mixed effects modeling of data averages within the (topographically-similar) abundance
1064 clusters. The results are presented in Supplementary Table 2. As expected, we observed high
1065 collinearity between different measures, expressed as significant pairwise relations between
1066 traditional and rhythm-specific indices. Controlling for this high collinearity however, memory
1067 load predicted increases in theta and alpha abundance over and above overall, and rhythmic-
1068 specific, amplitudes. In contrast, rhythm-specific amplitudes did not capture unique variance in
1069 load level when controlling for overall amplitude, in line with the absence of an indicated effect
1070 by the permutation test. Jointly, these analyses suggest that rhythmic abundance, despite high
1071 collinearity with overall and rhythmic amplitudes, is more sensitive to working memory load
1072 than (traditional) amplitude estimates.

⁴ Regarding traditional metrics, we assessed three normalization procedures: raw signals, single-trial log10-transformation and baseline correction with average power 700 to 500 ms prior to retention onset. In contrast with temporal baselining, eBOSC performs spectral normalization by explicitly modelling the 1/f slope.



1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

Figure 12: Descriptors of single-trial rhythmic events relate to working memory load. (A, B) Rhythmic event rates are a relevant parameter for describing band-specific task modulations. (A) Different frequency bands vary in their sustained vs. transient time domain appearance. Conventions are the same as in Figure 10B. X-axes are scaled to cover approx. 6 cycles at each frequency. (B) Rhythmic event rates are modulated by working memory load except in the alpha band, where events appear the most sustained. Alpha rate was averaged from 8-12 Hz here to exclude beta rate decreases. (C) Rhythmic frontal theta frequency decreases with working memory load. (Top) Rhythm-specific spectra indicate a parametric shift in theta frequencies with load. Statistics are based on a cluster-based permutation test. The inset shows the cluster for which a significant relation between load and the average frequency of rhythmic theta episodes is indicated. Spectra are averaged across significant cluster channels. Error bars indicate within-subject standard errors. (Lower) The overall spectrum does not show a clear spectral peak in the theta range or a shift in theta frequency. Note that amplitude values are increased in the rhythm-specific version compared to the rhythm-unspecific estimates.

1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

The previous analyses focused on the total rhythmic abundance and power during the retention phase. However, rhythmicity can also be characterized with regard to individual spectral events, such as their rate of occurrence. In line with our observation of high abundance, rhythmic events in the alpha band were characterized by enduring rhythmicity, whereas events in other frequency bands had a more transient signature (Figure 12A). This poses the question whether the rate of these transient events may be a critical parameter, as has been previously suggested for the beta and gamma band (Lundqvist et al., 2016; Shin, Law, Tsutsui, Moore, & Jones, 2017). To attend this question, we created rate spectra based on the occurrence of rhythmic episodes in sliding frequency windows. These spectra were then subjected to a cluster-based permutation test to assess their relation with memory load. We observed increased rates of frontal theta and posterior gamma events as well as decreased rates of central beta events with load, whereas no differences were indicated for the alpha band (Figure 12B). Hence, whereas the sustained appearance of alpha rhythms may render other parameters such as duration and power critical, in other frequency bands, modulation may also affect the number of relatively sparse events.

1102 In turn, focusing on these sparse rhythmic events can drastically increase their amplitude
1103 estimates and may thus improve dependent metrics (e.g., see Figure 9C). During our exploration
1104 of rhythmic parameters, we observed a parametric load-related decrease of frontal theta
1105 frequency (Figure 12C) that spatially aligned with the frontal topography of theta rate and
1106 abundance increases (see Figure 12B & 11B). Individual rhythmic frequency decreases
1107 between low and high loads were not related to individual abundance ($r = .33$, $p = .06$) or
1108 amplitude ($r = .06$, $p = .73$) changes, suggesting that differences in rhythmic SNR cannot solely
1109 account for individual frequency shifts. To visualize the shift in theta frequency, we computed
1110 FFT spectra with a high spectral resolution (.33 Hz), separately for rhythmic episodes, and – as
1111 traditionally done – for the entire retention period. Critically, frequency-modulated theta peaks
1112 at frontal channels were only observed for rhythmic, but not for overall spectra (Figure 12C)
1113 due to a threefold increase in the magnitude of single-trial events across the entire segment.
1114 Moreover, in line with the results of eBOSC’s wavelet-based frequency estimates, significant
1115 negative load-related slopes were indicated for rhythm specific FFT frequency estimates
1116 (mean= -.16, SE = .05, $p = .005$) but not rhythm-unspecific global estimates (mean = -.05, SE
1117 = .06, $p = .36$). Hence, a focus on rhythmic episodes was necessary to reveal memory-load
1118 related frequency decreases of frontal theta rhythms, which would have been missed with
1119 traditional analyses.

1120 In sum, these results highlight the potential of single-trial-based rhythm estimates to
1121 boost signal of interest to advance analyses regarding the role of rhythmicity in cognition.
1122

1123 4. Discussion

1124 In the present manuscript, we explored the feasibility of characterizing neural rhythms
1125 at the level of single trials. To achieve this goal, we extended a previously published rhythm
1126 detection method, BOSC (Whitten et al., 2011). Based on simulations we demonstrate that our
1127 extended BOSC (eBOSC) algorithm performs well and increases detection specificity.
1128 Crucially, the reliance on robust regression in conjunction with removal of the rhythmic power
1129 band effectively decoupled estimation of the noise background from the rhythmic signal
1130 component (as reflected in the divergent associations with rhythmicity estimates). In real data,
1131 we can successfully separate rhythmic and arrhythmic, sometimes transient components, and
1132 further characterize e.g., their amplitude, duration and frequency. In total, single-trial
1133 characterization of neural rhythms appears promising for improving a mechanistic
1134 understanding of rhythmic processing modes during rest and task.

1135 However, the simulations also reveal challenges for accurate rhythm characterization in
1136 that the abundance estimates clearly depend on rhythmic power. The comparison to a phase-
1137 based rhythm detection further suggests that this a general limitation independent of the chosen
1138 detection algorithm. Below, we will discuss the potential and challenges of single-trial rhythm
1139 detection in more detail.

1140 1141 4.1 The utility and potential of rhythm detection

1142 Single-trial analyses are rapidly gaining importance (Jones, 2016; Stokes & Spaak,
1143 2016), in part due to a debate regarding the sustained vs. transient nature of neural rhythms that

1146 cannot be resolved at the level of data averages (Jones, 2016; van Ede et al., 2018). In short,
1147 due to the non-negative nature of power estimates, time-varying transient power increases may
1148 be represented as sustained power upon averaging, indicating an ambiguity between the
1149 duration and power of rhythmic events (cf., Figure 2B). Importantly, sustained and transient
1150 events may differ in their neurobiological origin (Sherman et al., 2016), indicating high
1151 theoretical relevance for their differentiation. Moreover, many analysis procedures, such as
1152 phase-based functional connectivity, assume that estimates are directly linked to the presence
1153 of rhythmicity, therefore leading to interpretational difficulties when it is unclear whether this
1154 condition is met (Aru et al., 2015; Muthukumaraswamy & Singh, 2011). Clear identification of
1155 rhythmic time periods in single trials is necessary to resolve these issues. In the current study,
1156 we extended a state-of-the-art rhythm detection algorithm, and systematically investigated its
1157 ability to characterize the power and duration of neural alpha rhythms at the single-trial level
1158 in scalp EEG recordings.

1159 While the standard BOSC method provides a sensible detection of rhythmic activity in
1160 empirical data (Caplan et al., 2015; Whitten et al., 2011), its' ability to detect rhythmicity and
1161 disambiguate rhythmic power and duration has not yet been investigated systematically.
1162 Furthermore, we introduced multiple changes that aimed to create rhythmic episodes with a
1163 time-point-wise indication of rhythmicity. For these reasons, we assessed the performance of
1164 both algorithms in simulations. We observed that both algorithms were able to approximate the
1165 duration of rhythmicity across a large range of simulated amplitudes and durations. However,
1166 standard BOSC systematically overestimated rhythmic duration (Figure 3A). Furthermore, we
1167 observed a bias of rhythmicity on the estimated background (Figure 3C) as also noted by Haller
1168 et al. (2018). In contrast, eBOSC accounts for these problems by introducing multiple changes:
1169 First, by excluding the rhythmic peak prior to fitting the arrhythmic background, eBOSC
1170 decreased the bias of narrow-band rhythmicity on the background fit (Figure 3C), thereby
1171 effectively uncoupling the estimated background amplitude from the indicated rhythmicity.
1172 Second, the post-processing of detected segments provided a more specific characterization of
1173 neural rhythms compared to standard BOSC. In particular, accounting for the temporal
1174 extension of the wavelet increased the temporal specificity of rhythm detection as indicated by
1175 a better adherence to the *a priori* duration threshold along with more precise duration estimates
1176 (Figures 3). In contrast to the high specificity, the algorithm did trade off sensitivity, leading to
1177 sensitivity losses that were most pronounced at low signal-to-noise ratios (SNR). In sum, the
1178 simulations highlight that eBOSC provides a sensible differentiation of rhythmic and
1179 arrhythmic time points as well as accurate duration estimates, but also highlight challenges for
1180 empirically disentangling rhythmic power and duration that arise from sensitivity problems
1181 when the magnitude of rhythms is low. We discuss this further in section 4.2. In empirical data,
1182 eBOSC likewise led to a sensible separation of rhythmic from arrhythmic topographies (Figure
1183 4A, Figure 8, Figure S8) and time courses, both at the average (Figure 5A) and the single-trial
1184 level (Figure 5B). This suggests a sensible separation of rhythmic and arrhythmic time points
1185 also in empirical scenarios.

1186 The specific separation of rhythmic and arrhythmic time points has multiple immediate
1187 benefits that we validated using empirical data from resting and task states. First, eBOSC
1188 separates the scale-free background from superimposed rhythmicity in a principled manner.
1189 The theoretical importance of such separation has previously been highlighted (Haller et al.,

1190 2018), as narrow-band estimates traditionally confound the two signals. Here, we show that
1191 such a separation empirically produces different topographies for the arrhythmic background
1192 and the superimposed rhythmicity (Figure 8 and Figure S8). In line with these findings, Caplan
1193 et al. (2015) described a rhythmic occipital alpha topography, whereas overall power included
1194 an additional anterior component across multiple lower frequencies. While that study did not
1195 plot topographies for the background estimates, our study suggests that this frontal component
1196 is captured by the background magnitude. This provides convergent evidence for a principled
1197 separation of rhythmic and arrhythmic spectral content which may be treated as a signal of
1198 interest in itself (Buzsáki & Mizuseki, 2014; He et al., 2010).

1199 The separation of these signal sources at single time points can further be used to
1200 summarize the rhythmic single-trial content via rhythm-conditional spectra (Figure 9).
1201 Crucially, such a focus on rhythmic periods resolves biases from arrhythmic periods in the
1202 segments of interest. In line with our hypotheses, simulations (Figure 2B) and empirical data
1203 (Figure 9C) indicate that arrhythmic episodes in the analysed segment bias overall power
1204 estimates relative to the extent of their duration. Conversely, a focus on rhythmic periods
1205 induces the most pronounced amplitude gains when rhythmic periods are sparse. This is in line
1206 with previous observations by Cole & Voytek (2018), showing dissociations between power
1207 and frequency estimates when considering ‘rhythmic’ vs. unspecific periods and extend those
1208 observations by showing a strong linear dependence between the rhythm-specific change in
1209 estimates and the duration of arrhythmic bias (Figure 9C).

1210 Moreover, by allowing a post-hoc duration threshold, eBOSC can disentangle transient
1211 and sustained events in a principled manner (Figure 10). This may provide new insights into
1212 the contribution of different biophysical signal generators (Sherman et al., 2016) to observed
1213 neural dynamics and aid the characterization of these processes. Such characterization includes
1214 multiple parameters, such as the frequency of rhythmic episodes, their duration, their amplitude
1215 and other indices that we did not consider here (e.g., instantaneous phase, time domain shape).
1216 Here, we observed an increased number of alpha transients following stimulus onsets, and more
1217 sustained rhythms when no stimulus was presented (Figure 5A, Figure 10). In line with these
1218 observations, Peterson & Voytek (2017) recently proposed alpha ‘bursts’ to increase visual gain
1219 during stimulus onsets and contrasted this role with decreased cortical processing during
1220 sustained alpha rhythms. Our data supports such a distinction between sustained and transient
1221 events, although it should be noted that the present transients resemble single time-domain
1222 deflections that are resolved at alpha frequency (Figure 10A2) and may therefore not directly
1223 relate to the ‘rhythmic bursts’ proposed by Peterson & Voytek (2017). Note that the reported
1224 duration of ‘burst’ events in the literature is still diverse, often exceeding the 3-cycle threshold
1225 used here (Peterson & Voytek, 2017). In contrast to eBOSC however, previous work has not
1226 accounted for the impact of wavelet duration. It is thus conceivable that power transients that
1227 were previously characterized as 3 cycles or longer are actually shorter after correcting for the
1228 impact of wavelet convolution, as is done in the current eBOSC implementation (Figure S1).
1229 This temporal specificity also allows an indication of rhythm-evoked changes, here exemplified
1230 with respect to rhythm-evoked power changes (Figure S9). We observed a precise and
1231 systematic time-locking of power changes to the on- and offset of detected rhythmic episodes.
1232 This further validates the detection assumptions of the eBOSC method (i.e. significant power

1233 increases from the background), and highlights the temporal specificity of eBOSC's rhythmic
1234 episodes.

1235 In total, eBOSC's single-trial characterization of neural rhythms provides multiple
1236 immediate benefits over traditional average-based analyses temporally precise indication of
1237 rhythmic and arrhythmic periods. It thus appears promising for improving a mechanistic
1238 understanding of rhythmic processing modes during rest and task.

1239

1240 4.2 Single-trial detection of rhythms: rhythmic SNR as a central challenge

1241

1242 The aforementioned examples highlight the utility of differentiating rhythmic and
1243 arrhythmic periods in the ongoing signal. However, the simulations also indicated problems to
1244 accurately do so when rhythmic power is low. That is, the recognition of rhythms was more
1245 difficult at low levels of SNR, leading to problems with their further characterization. In
1246 particular, our simulations suggest that estimates of the duration (Figure 6A) and frequency
1247 stationarity (Figure S7) increasingly deviate from the simulated parameters as the SNR
1248 decreases. Changes in instantaneous alpha frequency as a function of cognitive demands have
1249 been theorized and reported in the literature (Haegens, Cousijn, Wallis, Harrison, & Nobre,
1250 2014; Herrmann, Murray, Ionta, Hutt, & Lefebvre, 2016; Mierau, Klimesch, & Lefebvre, 2017;
1251 Samaha & Postle, 2015; Wutz, Melcher, & Samaha, 2018), with varying degrees of control for
1252 power differences between conditions and individuals. Our empirical analyses suggest an
1253 increased trial-by-trial variability of individual alpha frequency estimates as SNR decreases
1254 (Figure S7). Meanwhile, simulations suggest that such increased variance - both estimated
1255 within indicated rhythmic periods and across whole trials – may result from lower SNR. While
1256 our results do not negate the possibility of real frequency variations of the alpha rhythm with
1257 changes in task load, they emphasize the importance of controlling for the presence of rhythms,
1258 mirroring considerations for the interpretation of phase estimates (Muthukumaraswamy &
1259 Singh, 2011) and amplitudes. This exemplifies how stable inter-individual differences in
1260 rhythmicity (whether due to a real absence of rhythms or prevalent measurement noise; e.g.,
1261 distance between source and sensor; head shape; skull thickness) can affect a variety of ‘meta’-
1262 indices (like phase, frequency, duration) whose estimation accuracy relies on apparent
1263 rhythmicity.

1264 The challenges for characterizing rhythms with low rhythmic power also apply to the
1265 estimated rhythmic duration, where the issue is particularly challenging in the face of legitimate
1266 interest regarding the relationship between the power and duration of rhythmic events. In
1267 particular, sensitivity problems at low rhythmic magnitudes challenge the ability to empirically
1268 disambiguate rhythmic duration and power, as it makes the former dependent on the latter in
1269 the presence of noise (e.g., Figure 2B). Crucially, a tight link between these parameters was
1270 also observed in the empirical data. During both rest and task states, we observed gradual and
1271 stable inter-individual differences in the estimated extent of rhythmicity that were most strongly
1272 related to the overall SNR in ranges with a pronounced sensitivity loss in simulations (see
1273 Figure 4A black line). Given the observed detection problems in our simulations, this
1274 ambiguates whether low empirical duration estimates indicate temporally constrained rhythms
1275 or estimation problems. Conceptually, this relates to the difference between lower SNR subjects
1276 having (A) low power, transient alpha engagement or (B) low power, sustained alpha

1277 engagement that was too faint to be detected (i.e., sensitivity problems). While the second was
1278 the case in the simulations, the absence of a ground truth does not allow us to resolve this
1279 ambiguity in empirical data.

1280 Empirically, multiple results suggest that the low duration estimates at low SNRs did
1281 not exclusively arise from idiosyncrasies of our algorithm. Notably, inter-individual differences
1282 in eBOSC's abundance measure were strongly correlated with standard BOSC's Pepisode
1283 measure (Whitten et al., 2011) as well as the phase-based lagged coherence index (Fransen et
1284 al., 2015), thus showing high convergence with different state-of-the-art techniques (Figure
1285 6D). Furthermore, detection performance was visually satisfying in single trials given
1286 observable task-locked rhythm dynamics for rhythmic, but not arrhythmic periods (Figure 5B).
1287 Moreover, the observed relationship between amplitude gain and abundance suggests a
1288 successful exclusion of (low-power) arrhythmic episodes at the individual level (Figure 9C).
1289 These observations indicate that low SNR conditions present a fundamental challenge to single-
1290 trial characterization across different methods. The convergence between power- and phase-
1291 based definitions of rhythmicity also indicates that rhythmicity can exhaustively be described
1292 by the spectral peak above the background, in line with our observations regarding rhythm-
1293 conditional spectra (Figure 9A).

1294 The observation of strong between-person coupling as a function of SNR suggests that
1295 such sensitivity limitations may account for the inter-individual amplitude-abundance
1296 associations. However, we also observed a positive association between subjects with high
1297 alpha SNR. Likewise, we observed positive associations between abundance and rhythmic SNR
1298 at the within-subject level (Figure 5). While trial-wise coupling was also present in our
1299 simulations, the magnitude of these relationships was lower at high SNR (Figure 3E).
1300 Conversely, in empirical data, the within-subject association did not vary in magnitude as a
1301 function of the individual SNR. Hence, separate sources may contribute to a coupling of
1302 rhythmic amplitude and abundance: a methods-induced association in low SNR ranges and an
1303 intrinsic coupling between rhythmic strength and duration as a joint representation of rhythmic
1304 synchrony. Notably, empirical within-subject coupling between rhythmic amplitude and
1305 duration was previously described for LFP beta bursts in the subthalamic nucleus (Tinkhauser
1306 et al., 2017), with both parameters being sensitive to a drug manipulation. This association was
1307 interpreted as a “progressive synchronization of inputs over time” (Tinkhauser et al., 2017; p.
1308 2978). Due to the absence of a dissociation of these parameters, it remains unclear whether the
1309 two measures make independent contributions or whether they can be conceptualized as a single
1310 underlying latent ‘rhythmicity’ index. To resolve this ambiguity, clear dissociations of
1311 amplitude and duration estimates in data with high rhythmic SNR are necessary. Notably,
1312 potential dissociations between the individual power and duration of beta events has been
1313 suggested by Shin et al. (2017), who described differential relationships between event number,
1314 power and duration to mean power and behaviour.

1315 The high collinearity between overall amplitude and abundance may be surprising given
1316 evidence of their potential dissociation in the case of beta bursts (where overall abundance is
1317 low, but burst amplitudes are high) (Lundqvist et al., 2016; Sherman et al., 2016; Shin et al.,
1318 2017). In line with this notion, Fransen et al. (2015) reported an increased sensitivity for central
1319 beta rhythmicity using the lagged coherence duration index compared with overall power. It
1320 may thus be that the alpha range is an outlier in this regard due to the presence of relatively

1321 sustained rhythmicity (Figure 12A). A frequency-wise comparison of the between- and within-
1322 subject collinearity between amplitude and abundance collinearity indicated a particularly high
1323 overlap for the alpha range (Figure S6) with relatively lower coupling for delta, theta and beta.
1324 In addition, we observed load modulations on rhythm event rate in many bands but alpha
1325 (Figure 12B). Whether these band-specific differences primarily relate to their lower
1326 rhythmicity in the current data or reflect systematic differences between frequencies remains
1327 an open question and requires data with more prominent rhythmicity in these bands.

1328 The strong collinearity of amplitude and duration estimates also questions the successful
1329 disambiguation of the two indices in empirical data and more generally the interpretation of
1330 duration as an independent index. In cases where such metrics only serve as a sensitive and/or
1331 specific replacement for power (Caplan et al., 2015; Fransen et al., 2015) this may not be
1332 problematic, but care has to be taken in interpreting available duration indices as power-
1333 independent characteristics of rhythmic episodes. An independent duration index becomes
1334 increasingly important however to assess whether rhythms are stationary or transient. For this
1335 purpose, both amplitude thresholding and phase-progression criteria have been proposed (Cole
1336 & Voytek, 2018; Peterson & Voytek, 2017; Sherman et al., 2016; van Ede et al., 2018; Vidaurre,
1337 Myers, Stokes, Nobre, & Woolrich, 2018). Here, we show that both methods arrive at similar
1338 conclusions regarding individual rhythmic duration and that the mentioned challenges are
1339 therefore applicable to both approaches. As an alternative to threshold-based methods, Van Ede
1340 et al. (2018) propose methods based on e.g., Hidden Markov Models (Vidaurre et al., 2018;
1341 2016) for the estimation of rhythmic duration. These approaches are interesting as the definition
1342 of states to be inferred in single trials is based on individual (or group) averages, while the
1343 multivariate nature of the signals across channels is also considered. It is a viable question for
1344 future investigations whether such approaches can adequately characterize the duration of
1345 rhythmic states in scenarios where the present methods fail.

1346 1347 4.3 Experimental manipulation of rhythm-specific indices

1348 To establish the practical utility of rhythm detection, we probed the experimental
1349 modulation of rhythm-specific indices during working memory retention. We focused on this
1350 phase as it has received large interest for distinguishing between transient and sustained
1351 retention codes (Lundqvist et al., 2016; Lundqvist, Herman, Warden, Brincat, & Miller, 2018),
1352 with both theoretical models (Jensen & Lisman, 1998; Lisman & Jensen, 2013; Lundqvist,
1353 Herman, & Lansner, 2011) and empirical evidence (Jensen et al., 2002; Jensen & Tesche, 2002;
1354 Jokisch & Jensen, 2007; Meltzer et al., 2008; Michels et al., 2008; Onton et al., 2005;
1355 Scheeringa et al., 2009; Tuladhar et al., 2007) suggesting that low-frequency rhythmicity
1356 increases with load. In line with this evidence, we observed load-related increases in the total
1357 duration of frontal theta and right parietal alpha rhythms during visual working memory
1358 retention, despite traditional power estimates not reaching statistical significance. Reinforcing
1359 these results, mixed modelling indicated a high sensitivity of rhythmic abundance to both eye
1360 closure and working memory load while controlling for its collinearity with traditional
1361 estimates. This may be due to multiple advantages: eBOSC's estimates are spectrally
1362 normalized and individually specific e.g. to individual peak frequencies, while not assuming
1363 stationarity across time. Furthermore, rhythm-specific measures are theoretically agnostic to

1365 the magnitude of desynchronization, as they only characterize rhythmicity when it is present.
1366 Interestingly, abundance was also more sensitive to the load effect than rhythm-specific
1367 amplitudes, suggesting that duration may be a critical parameter to describe cognitive effects
1368 despite high collinearity with amplitude.

1369 In addition to our confirmatory analyses in the theta and alpha band, we also explored
1370 the load modulation of individual spectral events. Here, we observed that the rate of spectral
1371 events during the retention phase was modulated in the theta, beta and gamma, but not the alpha
1372 band. This is interesting given that alpha events had a more continuously ‘rhythmic’ appearance
1373 overall, whereas the relative rate of spectral events may be relevant for frequency bands with
1374 sparse events, as has been suggested for the beta band (Shin et al., 2017). While we confirm the
1375 feasibility of such analyses across multiple frequency bands here, we note that further work on
1376 the complementary value of such event rates is required to establish their functional
1377 significance.

1378 During our analyses we also observed frequency decreases of rhythmic episodes in the
1379 theta band at frontal channels. Decreases in rhythmic theta frequency have previously been
1380 hypothesized in the framework of theta-gamma multiplexing serving working memory storage
1381 (Bahramisharif, Jensen, Jacobs, & Lisman, 2018; Jensen & Lisman, 1998). In particular, a
1382 version of this computational model anticipates that the frequency of theta rhythms determines
1383 the amount of gamma cycles that can be multiplexed within a single theta cycle. As the number
1384 of targets to be held in memory increases, the theory predicts a slowing of theta with increasing
1385 load. Such a load-related decrease in gamma-modulating theta frequencies has been observed
1386 in human hippocampus (Axmacher et al., 2010). However, this has been difficult to show
1387 outside of invasive recordings. Here we observed that overall power did not exhibit a clear
1388 spectral peak in the theta range, but that such peak became apparent only when estimates were
1389 constrained to rhythmic periods. Furthermore, a parametric decrease in the frequency of single-
1390 trial rhythmic episodes was indicated. This suggests that the observed frontal theta signature
1391 may support the multiplexing of individual items during the retention period and may even have
1392 a hippocampal origin. However, as we observed this effect by exploration, further work should
1393 confirm these hypotheses.

1394 Taken together, our results highlight that a variety of rhythm-specific characteristics are
1395 sensitive to experimental modulations, such as working memory load. Despite the observed
1396 high collinearity between estimates, modulations suggest sensitivity differences between
1397 different rhythm estimates. Their automatic single-trial estimation using tools such as eBOSC
1398 may thus further our understanding of the role of rhythmicity in cognition, without necessitating
1399 the (often unchecked) assumptions of data averages.

1400
1401 4.4 Comparison to other single-trial detection algorithms & limitations
1402

1403 The BOSC-family of methods is conceptually similar to other methods that are currently
1404 used to identify and describe spectral events in single trials. These methods share the underlying
1405 principle of identifying rhythmic events based on momentary power increases relative to an
1406 average baseline. Such detection is most common regarding transient beta bursts, for which a
1407 beta-specific power threshold is often defined. For example, Sherman et al. (2016) identified
1408 transient beta events based on the highest power within the beta range, i.e., without an explicit

1409 threshold. Shin et al. (2017) introduced a beta-specific power threshold based on average pre-
1410 stimulus power. Similarly, Feingold et al. (2015) defined beta events as exceeding 1.5/3 times
1411 the median beta power of that channel, while Tinkhauser et al. (2017) applied a 75th percentile
1412 threshold to beta amplitudes. These approaches therefore use a spectrally local power criterion,
1413 but no duration threshold. Most closely related to the BOSC-family is the MODAL method by
1414 Watrous et al. (2018), which similarly uses a robust fit of the 1/f spectrum to detect rhythmic
1415 events in continuous data and then further derives frequency and phase estimates for those
1416 rhythmic periods. This is conceptually similar to eBOSC's definition as 'statistically
1417 significant' deviations in power from the 1/f background spectrum, except for the absence of a
1418 dedicated power or duration threshold. However, all of the above methods share the
1419 fundamental assumption of a momentary power deviation from a frequency-specific
1420 'background', with varying implementations of a 1/f model assumption. Such assumption can
1421 be useful to avoid a bias of rhythmic content on the power threshold (as a spectrally local power
1422 threshold depends on the average magnitude of band-limited rhythmicity, i.e., arrhythmic +
1423 rhythmic power). Removing the rhythmic peak prior to background modelling helps to avoid
1424 such bias (Figure 3C). The eBOSC method thereby provides a principled approach for the
1425 detection of single-trial events across frequencies (as shown in Figure 9).

1426 A systematic and general removal of spectral peaks remains a challenge for adequate
1427 background estimates. In the current application, we exclusively removed alpha-band power
1428 prior to performing the background fit. While the alpha rhythm produced the largest spectral
1429 peak in our data (see Figure S4), this should not be understood as a fixed parameter of the
1430 eBOSC approach, as other rhythmic peaks may bias the estimation of the background spectrum
1431 depending on the recording's specifics (e.g., type, location etc.). We perceive the need to
1432 remove rhythmic peaks prior to background fitting as a general one⁵, as residual spectral peaks
1433 bias detection efficacy across the entire spectrum via misfits of the background intercept and/or
1434 slope. In particular, rhythmic peaks at higher frequencies disproportionately increase the
1435 background estimate at lower frequencies due to the fitting in logarithmic space. Thus, a
1436 principled removal of *any* spectral peaks in the average spectrum is necessary. Recently, Haller
1437 et al. (2018) proposed a principled approach for the removal of rhythmic spectral peaks, which
1438 may afford rhythm-unbiased background estimates without requiring priors regarding the
1439 location of spectral peaks. It may thus represent a useful pre-processing step for further
1440 applications. Regarding the present data, we anticipate no qualitative changes compared to our
1441 alpha exclusion approach as (a) we did not consistently observe an association between
1442 background and rhythmicity estimates (Figure 6), and the signal was dominated by an alpha
1443 frequency peak, which consistently exceeded eBOSC's power threshold.

1444 Our results further question the adequacy of a stationary power threshold (as
1445 traditionally employed and used here) for assessing the amplitude-duration relationship
1446 between individual rhythmic episodes. In our empirical analyses, the rhythmic SNR, reflecting
1447 the deviation of amplitudes during rhythmic periods from the stationary background, was
1448 consistently most strongly associated with the estimated duration (Figures 6 & 7). While

⁵ A potential bias is less likely in the case of sporadic rhythmicity that does not produce a peak in the average spectrum. In this case, the power of the single-trial events would exceed the background estimate that is decreased due to the prevalence of arrhythmic periods.

1449 keeping the background (and thus the power threshold) stable conforms with the common
1450 assumption of rhythmicity being captured within a spectral peak deviating from a stationary
1451 background (Figure 9), it may also exacerbate an amplitude-abundance coupling on a trial-by-
1452 trial basis (see Figure 7C for a schematic of the assumed association) as ongoing power
1453 fluctuations can only be explained by changes in the rhythmic and not the arrhythmic power
1454 term. Further research on dynamic thresholds may shed further light on this issue.

1455 Another point worth highlighting is that eBOSC operates on wavelet-derived power
1456 estimates. The specific need for wavelet estimates results from model-based assumptions about
1457 the time-frequency extension of the wavelet that are used for refining detected rhythmic time
1458 points (see Figure 2 and section 2.6). Naturally, the choice of wavelet parameters, specifically
1459 their center frequency and duration, influences the time-frequency representations upon which
1460 eBOSC operates. Here, we used 6 cycles as the duration parameter, in line with previous work
1461 with standard BOSC (Caplan et al., 2015; Whitten et al., 2011). In a supplementary analysis,
1462 we compared detection performance using a 3 cycle wavelet and found increased accuracy only
1463 for short rhythmicity, whereas the sensitivity to longer rhythmicity was decreased (Figure S3).
1464 This is consistent with the assumption that wavelet duration regulates the trade-off between
1465 temporal and spectral specificity, with longer wavelets allowing for a finer separation of nearby
1466 frequencies at the cost of temporal specificity. Another free parameter concerns the choice of
1467 center frequencies. In the post-processing procedures, we perform a sort of spectral filtering
1468 based on the pass-band of the wavelet (Figure S1), which is determined by its duration.
1469 Resolving rhythms at nearby frequencies thus requires the use of wavelets with sufficient
1470 frequency resolution, not only with regard to the sampled frequencies, but also a sufficient
1471 duration of the wavelet. This highlights the dependence of eBOSC outputs on the specifics of
1472 the wavelet-based transformation from the time into the frequency domain.

1473 An alternative, parallel approach to characterize ongoing rhythmicity is based on
1474 characterizing the waveform shape in the time domain, thereby circumventing power analyses
1475 entirely (Cole & Voytek, 2018). While such an approach is intriguing, further work is needed
1476 to show which analysis sequence is more fruitful: (a) identifying events in the frequency domain
1477 and then describing the associated waveform shape in the time domain (e.g., eBOSC) or (b)
1478 identifying events and characterizing them based on time domain features (e.g., cycle-by-cycle
1479 analysis). As both procedures operate on the basis of single trials, similar challenges (i.e.,
1480 especially rhythmic SNR) are likely to apply to both approaches.

1481

1482 5. Conclusion

1483

1484 We extended a state-of-the-art rhythm detection method and characterized alpha
1485 rhythms in simulated, resting and task data at the single trial level. By using simulations, we
1486 show that rhythm detection can be employed to derive specific estimates of rhythmicity, with
1487 fine-grained control over its definition, and to reduce the bias of rhythm duration on amplitude
1488 estimates that commonly exists in standard analysis procedures. However, we also observe
1489 striking inter-individual differences in the indicated duration of rhythmicity, which for subjects
1490 with low alpha power may be due to insufficient single-trial rhythmicity. We further show that
1491 low rhythmicity can lead to biased estimates, in particular underestimated duration and
1492 increased variability of rhythmic frequency. Given these constraints, we have provided

1493 examples of eBOSC's efficacy to characterize rhythms that may prove useful for investigating
1494 the origin and functional role of neural rhythms in health and disease, and in turn, the current
1495 study works to establish the foundation for ideographic analyses of neural rhythms.

1496

1497 *Data availability*

1498

1499 The scripts implementing the eBOSC pipelines are available at github.com/jkosciesza/eBOSC
1500 alongside the simulation scripts that were used to assess eBOSC's detection properties. Data
1501 will be made available upon reasonable request.

1502

1503 *Funding*

1504 This study was conducted within the project 'Cognitive and Neuronal Dynamics of Memory
1505 across the Lifespan (CONMEM)' at the Center for Lifespan Psychology, Max Planck Institute
1506 for Human Development (MPIB). MW-B's work was supported by grants from the German
1507 Research Foundation (DFG, WE 4269/3-1 and WE 4269/5-1) as well as an Early Career
1508 Research Fellowship 2017 – 2019 awarded by the Jacobs Foundation. JQK is a pre-doctoral
1509 fellow of the International Max Planck Research School on Computational Methods in
1510 Psychiatry and Ageing Research (IMPRS COMP2PSYCH). The participating institutions are
1511 the Max Planck Institute for Human Development, Berlin, Germany, and University College
1512 London, London, UK. For more information, see [https://www.mps-ucl-](https://www.mps-ucl-centre.mpg.de/en/comp2psych)
1513 [centre.mpg.de/en/comp2psych](https://www.mps-ucl-centre.mpg.de/en/comp2psych)

1514

1515 *Acknowledgements*

1516 We thank our research assistants and participants for their contributions to the present work.
1517 We thank our anonymous reviewers and Scott R. Cole for their helpful comments on earlier
1518 versions of this manuscript.

1519 **References**

1520

1521 Aru, J., Aru, J., Priesemann, V., Wibral, M., Lana, L., Pipa, G., et al. (2015). Untangling
1522 cross-frequency coupling in neuroscience., *31*, 51–61.
1523 <http://doi.org/10.1016/j.conb.2014.08.002>

1524 Atallah, B. V., & Scanziani, M. (2009). Instantaneous Modulation of Gamma Oscillation
1525 Frequency by Balancing Excitation with Inhibition. *Neuron*, *62*(4), 566–577.
1526 <http://doi.org/10.1016/j.neuron.2009.04.027>

1527 Axmacher, N., Henseler, M. M., Jensen, O., Weinreich, I., Elger, C. E., & Fell, J. (2010).
1528 Cross-frequency coupling supports multi-item working memory in the human
1529 hippocampus. *Proceedings of the National Academy of Sciences of the United States of
1530 America*, *107*(7), 3228–3233. <http://doi.org/10.1073/pnas.0911531107>

1531 Bach, M. (1996). The Freiburg Visual Acuity test--automatic measurement of visual acuity.
1532 *Optometry & Vision Science*, *73*(1), 49–53.

1533 Bach, M. (2007). The Freiburg Visual Acuity Test-variability unchanged by post-hoc re-
1534 analysis, *245*(7), 965–971. <http://doi.org/10.1007/s00417-006-0474-4>

1535 Bahramisharif, A., Jensen, O., Jacobs, J., & Lisman, J. (2018). Serial representation of items
1536 during working memory maintenance at letter-selective cortical sites. *PLoS Biology*,
1537 *16*(8), e2003805–21. <http://doi.org/10.1371/journal.pbio.2003805>

1538 Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind
1539 separation and blind deconvolution. *Neural Computation*, *7*(6), 1129–1159.

1540 Berger, H. (1938). Über das Elektrenkephalogramm des Menschen. *Archiv Für Psychiatrie
1541 Und Nervenkrankheiten*, *108*(3), 407–431. <http://doi.org/10.1007/BF01824101>

1542 Brookes, M. J., Wood, J. R., Stevenson, C. M., Zumer, J. M., White, T. P., Liddle, P. F., &
1543 Morris, P. G. (2011). Changes in brain network activity during working memory tasks: A
1544 magnetoencephalography study. *NeuroImage*, *55*(4), 1804–1815.
1545 <http://doi.org/10.1016/j.neuroimage.2010.10.074>

1546 Buzsáki, G. (2006). Rhythms of the Brain. New York: Oxford University Press.

1547 Buzsáki, G., & Mizuseki, K. (2014). The log-dynamic brain: how skewed distributions affect
1548 network operations. *Nature Publishing Group*, *15*(4), 264–278.
1549 <http://doi.org/10.1038/nrn3687>

1550 Buzsáki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields and
1551 currents — EEG, ECoG, LFP and spikes. *Nature Reviews Neuroscience*, *13*(6), 1–14.
1552 <http://doi.org/10.1038/nrn3241>

1553 Caplan, J. B., Bottomley, M., Kang, P., & Dixon, R. A. (2015). Distinguishing rhythmic from
1554 non-rhythmic brain activity during rest in healthy neurocognitive aging. *NeuroImage*,
1555 *112*, 341–352. <http://doi.org/10.1016/j.neuroimage.2015.03.001>

1556 Caplan, J. B., Madsen, J. R., Raghavachari, S., & Kahana, M. J. (2001). Distinct patterns of
1557 brain oscillations underlie two basic parameters of human maze learning. *Journal of
1558 Neurophysiology*, *86*(1), 368–380.

1559 Cohen, M. X. (2014). Analyzing neural time series data: theory and practice.

1560 Cohen, M. X. (2017). Where Does EEG Come From and What Does It Mean? *Trends in
1561 Neurosciences*, *40*(4), 208–218. <http://doi.org/10.1016/j.tins.2017.02.004>

1562 Cole, S. R., & Voytek, B. (2018). Cycle-by-cycle analysis of neural oscillations. *bioRxiv*,
1563 302000. <http://doi.org/10.1101/302000>

1564 Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to
1565 Loftus and Masson's method. *Tutorials in Quantitative Methods for Psychology*, 1(1), 42–
1566 45.

1567 Feingold, J., Gibson, D. J., DePasquale, B., & Graybiel, A. M. (2015). Bursts of beta
1568 oscillation differentiate postperformance activity in the striatum and motor cortex of
1569 monkeys performing movement tasks. *Proceedings of the National Academy of Sciences*,
1570 112(44), 13687–13692. <http://doi.org/10.1073/pnas.1517629112>

1571 Fransen, A. M. M., van Ede, F., & Maris, E. (2015). Identifying neuronal oscillations using
1572 rhythmicity. *NeuroImage*, 118(C), 256–267.
1573 <http://doi.org/10.1016/j.neuroimage.2015.06.003>

1574 Grandy, T. H., Werkle-Bergner, M., Chicherio, C., Lövdén, M., Schmiedek, F., &
1575 Lindenberger, U. (2013a). Individual alpha peak frequency is related to latent factors of
1576 general cognitive abilities. *NeuroImage*, 79(C), 10–18.
1577 <http://doi.org/10.1016/j.neuroimage.2013.04.059>

1578 Grandy, T. H., Werkle-Bergner, M., Chicherio, C., Schmiedek, F., Lövdén, M., &
1579 Lindenberger, U. (2013b). Peak individual alpha frequency qualifies as a stable
1580 neurophysiological trait marker in healthy younger and older adults. *Psychophysiology*,
1581 50(6), 570–582. <http://doi.org/10.1111/psyp.12043>

1582 Grandy, T., Lindenberger, U., & Werkle-Bergner, M. (2017). When group means fail: Can
1583 one size fit all? *bioRxiv*. <http://doi.org/10.1101/126490>

1584 Gross, J. (2014). Analytical methods and experimental approaches for electrophysiological
1585 studies of brain oscillations. *Journal of Neuroscience Methods*, 228, 57–66.
1586 <http://doi.org/10.1016/j.jneumeth.2014.03.007>

1587 Grossmann, A., & Morlet, J. (1985). Decomposition of functions into wavelets of constant
1588 shape, and related transforms. In L. Streit (Ed.), *Mathematics 1 Physic* (pp. 135–165).
1589 Singapore: World Scientific.

1590 Haegens, S., Cousijn, H., Wallis, G., Harrison, P. J., & Nobre, A. C. (2014). Inter- and intra-
1591 individual variability in alpha peak frequency. *NeuroImage*, 92(C), 46–55.
1592 <http://doi.org/10.1016/j.neuroimage.2014.01.049>

1593 Haller, M., Donoghue, T., Peterson, E., Varma, P., Sebastian, P., Gao, R., et al. (2018).
1594 Parameterizing neural power spectra. *bioRxiv*, 1–16. <http://doi.org/10.1101/299859>

1595 Hansen, E. W. (2014). DFT Properties and Theorems. In *Fourier transforms. Principles and*
1596 *applications* (p. 128). Hoboken, New Jersey: John Wiley & Sons.

1597 He, B. J., Zempel, J. M., Snyder, A. Z., & Raichle, M. E. (2010). The temporal structures and
1598 functional significance of scale-free brain activity. *Neuron*, 66(3), 353–369.
1599 <http://doi.org/10.1016/j.neuron.2010.04.020>

1600 Herrmann, C. S., Murray, M. M., Ionta, S., Hutt, A., & Lefebvre, J. (2016). Shaping Intrinsic
1601 Neural Oscillations with Periodic Stimulation. *The Journal of Neuroscience : the Official*
1602 *Journal of the Society for Neuroscience*, 36(19), 5328–5337.
1603 <http://doi.org/10.1523/JNEUROSCI.0236-16.2016>

1604 Holland, P. W., & Welsch, R. E. (2007). Robust regression using iteratively reweighted least-
1605 squares. *Communications in Statistics - Theory and Methods*, 6(9), 813–827.
1606 <http://doi.org/10.1080/03610927708827533>

1607 Jensen, O., & Lisman, J. E. (1998). An oscillatory short-term memory buffer model can
1608 account for data on the Sternberg task. *Journal of Neuroscience*, 18(24), 10688–10699.

1609 Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory
1610 load in a working memory task. *European Journal of Neuroscience*, 15(8), 1395–1399.

1611 Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E. (2002). Oscillations in the alpha band (9–
1612 12 Hz) increase with memory load during retention in a short-term memory task.
1613 *Cerebral Cortex*, 12(8), 877–882.

1614 Jokisch, D., & Jensen, O. (2007). Modulation of gamma and alpha activity during a working
1615 memory task engaging the dorsal or ventral stream. *The Journal of Neuroscience : the
1616 Official Journal of the Society for Neuroscience*, 27(12), 3244–3251.
1617 <http://doi.org/10.1523/JNEUROSCI.5399-06.2007>

1618 Jones, S. R. (2016). When brain rhythms aren't 'rhythmic': implication for their mechanisms
1619 and meaning. *Current Opinion in Neurobiology*, 40, 72–80.
1620 <http://doi.org/10.1016/j.conb.2016.06.010>

1621 Klimesch, W. (2012). alpha-band oscillations, attention, and controlled access to stored
1622 information. *Trends in Cognitive Sciences*, 16(12), 606–617.
1623 <http://doi.org/10.1016/j.tics.2012.10.007>

1624 Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M., & Ilmoniemi, R. J. (2001). Long-
1625 range temporal correlations and scaling behavior in human brain oscillations. *Journal of
1626 Neuroscience*, 21(4), 1370–1377.

1627 Lisman, J. E., & Jensen, O. (2013). The theta-gamma neural code. *Neuron*, 77(6), 1002–1016.
1628 <http://doi.org/10.1016/j.neuron.2013.03.007>

1629 Lundqvist, M., Herman, P., & Lansner, A. (2011). Theta and gamma power increases and
1630 alpha/beta power decreases with memory load in an attractor network model. *Journal of
1631 Cognitive Neuroscience*, 23(10), 3008–3020. http://doi.org/10.1162/jocn_a_00029

1632 Lundqvist, M., Herman, P., Warden, M. R., Brincat, S. L., & Miller, E. K. (2018). Gamma
1633 and beta bursts during working memory readout suggest roles in its volitional control.
1634 *Nature Communications*, 9(1), 1–12. <http://doi.org/10.1038/s41467-017-02791-8>

1635 Lundqvist, M., Rose, J., Herman, P., Brincat, S. L., Buschman, T. J., & Miller, E. K. (2016).
1636 Gamma and Beta Bursts Underlie Working Memory. *Neuron*, 90(1), 152–164.
1637 <http://doi.org/10.1016/j.neuron.2016.02.028>

1638 Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data.
1639 *Journal of Neuroscience Methods*, 164(1), 177–190.
1640 <http://doi.org/10.1016/j.jneumeth.2007.03.024>

1641 Meltzer, J. A., Zaveri, H. P., Goncharova, I. I., Distasio, M. M., Papademetris, X., Spencer, S.
1642 S., et al. (2008). Effects of working memory load on oscillatory power in human
1643 intracranial EEG. *Cerebral Cortex (New York, N.Y. : 1991)*, 18(8), 1843–1855.
1644 <http://doi.org/10.1093/cercor/bhm213>

1645 Michels, L., Moazami-Goudarzi, M., Jeanmonod, D., & Sarnthein, J. (2008). EEG alpha
1646 distinguishes between cuneal and precuneal activation in working memory. *NeuroImage*,
1647 40(3), 1296–1310. <http://doi.org/10.1016/j.neuroimage.2007.12.048>

1648 Mierau, A., Klimesch, W., & Lefebvre, J. (2017). State-dependent alpha peak frequency
1649 shifts: Experimental evidence, potential mechanisms and functional implications.
1650 *Neuroscience*, 360, 146–154. <http://doi.org/10.1016/j.neuroscience.2017.07.037>

1651 Molenaar, P. C. M., & Campbell, C. G. (2009). The new person-specific paradigm in
1652 psychology. *Current Directions in Psychological Science*, 18(2), 112–117.
1653 <http://doi.org/10.1111/j.1467-8721.2009.01619.x>

1654 Muthukumaraswamy, S. D., & Singh, K. D. (2011). A cautionary note on the interpretation of
1655 phase-locking estimates with concurrent changes in power. *Clinical Neurophysiology*,
1656 122(11), 2324–2325. <http://doi.org/10.1016/j.clinph.2011.04.003>

1657 Nolan, H., Whelan, R., & Reilly, R. B. (2010). FASTER: Fully Automated Statistical
1658 Thresholding for EEG artifact Rejection. *Journal of Neuroscience Methods*, 192(1), 152–
1659 162. <http://doi.org/10.1016/j.jneumeth.2010.07.015>

1660 Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory.
1661 *Neuropsychologia*, 9(1), 97–113. [http://doi.org/10.1016/0028-3932\(71\)90067-4](http://doi.org/10.1016/0028-3932(71)90067-4)

1662 Onton, J., Delorme, A., & Makeig, S. (2005). Frontal midline EEG dynamics during working
1663 memory. *NeuroImage*, 27(2), 341–356. <http://doi.org/10.1016/j.neuroimage.2005.04.014>

1664 Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source
1665 software for advanced analysis of MEG, EEG, and invasive electrophysiological data.
1666 *Computational Intelligence and Neuroscience*, 2011(1), 156869–9.
1667 <http://doi.org/10.1155/2011/156869>

1668 Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for scalp
1669 potential and current density mapping. *Electroencephalography and Clinical
1670 Neurophysiology*, 72(2), 184–187.

1671 Peterson, E. J., & Voytek, B. (2017). Alpha oscillations control cortical gain by modulating
1672 excitatory-inhibitory background activity. *bioRxiv*, 185074.
1673 <http://doi.org/10.1101/185074>

1674 Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2019). *nlme: Linear and Nonlinear
1675 Mixed Effects Models*. R package version 3.1-141, [https://CRAN.R-
1676 project.org/package=nlme](https://CRAN.R-project.org/package=nlme).

1677 R Core Team (2019). R: A language and environment for statistical computing. R Foundation
1678 for Statistical Computing, Vienna, Austria. URL. <https://www.R-project.org/>.

1679 Raghavachari, S., Kahana, M. J., Rizzuto, D. S., Caplan, J. B., Kirschen, M. P., Bourgeois, B.,
1680 et al. (2001). Gating of human theta oscillations by a working memory task. *Journal of
1681 Neuroscience*, 21(9), 3175–3183. <http://doi.org/10.1523/JNEUROSCI.21-09-03175.2001>

1682 Sadaghiani, S., & Kleinschmidt, A. (2016). Brain Networks and α -Oscillations: Structural and
1683 Functional Foundations of Cognitive Control. *Trends in Cognitive Sciences*, 20(11), 805–
1684 817. <http://doi.org/10.1016/j.tics.2016.09.004>

1685 Samaha, J., & Postle, B. R. (2015). The Speed of Alpha-Band Oscillations Predicts the
1686 Temporal Resolution of Visual Perception. *Current Biology*, 25(22), 2985–2990.
1687 <http://doi.org/10.1016/j.cub.2015.10.007>

1688 Scheeringa, R., Petersson, K. M., Oostenveld, R., Norris, D. G., Hagoort, P., & Bastiaansen,
1689 M. C. (2009). Trial-by-trial coupling between EEG and BOLD identifies networks related
1690 to alpha and theta EEG power increases during working memory maintenance.
1691 *NeuroImage*, 44(3), 1224–1238. <http://doi.org/10.1016/j.neuroimage.2008.08.041>

1692 Schomer, D. L., & Lopes da Silva, F. H. (Eds.). (2017). Niedermeyer's
1693 Electroencephalography. *Oxford Medicine Online* (Vol. 1). Oxford University Press.
1694 <http://doi.org/10.1093/med/9780190228484.001.0001>

1695 Sherman, M. A., Lee, S., Law, R., Haegens, S., Thorn, C. A., Hämäläinen, M. S., et al.
1696 (2016). Neural mechanisms of transient neocortical beta rhythms: Converging evidence
1697 from humans, computational modeling, monkeys, and mice. *Proceedings of the National
1698 Academy of Sciences*, 113(33), E4885–E4894. <http://doi.org/10.1073/pnas.1604135113>

1699 Shin, H., Law, R., Tsutsui, S., Moore, C. I., & Jones, S. R. (2017). The rate of transient beta
1700 frequency events predicts behavior across tasks and species. *eLife*, 6.
1701 <http://doi.org/10.7554/eLife.29086>

1702 Sternberg, S. (1966). High-speed scanning in human memory. *Science*, 153(3736), 652–654.

1703 Stokes, M., & Spaak, E. (2016). The Importance of Single-Trial Analyses in Cognitive
1704 Neuroscience. *Trends in Cognitive Sciences*, 20(7), 483–486.
1705 <http://doi.org/10.1016/j.tics.2016.05.008>

1706 Tinkhauser, G., Pogosyan, A., Tan, H., Herz, D. M., Kühn, A. A., & Brown, P. (2017). Beta
1707 burst dynamics in Parkinson's disease OFF and ON dopaminergic medication. *Brain*,
1708 140(11), 2968–2981. <http://doi.org/10.1093/brain/awx252>

1709 Tuladhar, A. M., Huurne, ter, N., Schoffelen, J. M., Maris, E., Oostenveld, R., & Jensen, O.
1710 (2007). Parieto-occipital sources account for the increase in alpha activity with working
1711 memory load. *Human Brain Mapping*, 28(8), 785–792. <http://doi.org/10.1002/hbm.20306>

1712 van Ede, F., Quinn, A. J., Woolrich, M. W., & Nobre, A. C. (2018). Neural Oscillations:
1713 Sustained Rhythms or Transient Burst- Events? *Trends in Neurosciences*, 1–3.
1714 <http://doi.org/10.1016/j.tins.2018.04.004>

1715 Vidaurre, D., Myers, N., Stokes, M., Nobre, A. C., & Woolrich, M. W. (2018). Temporally
1716 unconstrained decoding reveals consistent but time-varying stages of stimulus processing,
1717 1–23. <http://doi.org/10.1101/260943>

1718 Vidaurre, D., Quinn, A. J., Baker, A. P., Dupret, D., Tejero-Cantero, A., & Woolrich, M. W.
1719 (2016). Spectrally resolved fast transient brain states in electrophysiological data.
1720 *NeuroImage*, 126(C), 81–95. <http://doi.org/10.1016/j.neuroimage.2015.11.047>

1721 Wang, X. J. (2010). Neurophysiological and Computational Principles of Cortical Rhythms in
1722 Cognition. *Physiological Reviews*, 90(3), 1195–1268.
1723 <http://doi.org/10.1152/physrev.00035.2008>

1724 Watrous, A. J., Miller, J., Qasim, S. E., Fried, I., & Jacobs, J. (2018). Phase-tuned neuronal
1725 firing encodes human contextual representations for navigational goals. *eLife*, 7.
1726 <http://doi.org/10.7554/eLife.32554>

1727 Westner, B. U., Dalal, S. S., Hanslmayr, S., & Staudigl, T. (2018). Across-subjects
1728 classification of stimulus modality from human MEG high frequency activity. *PLoS
1729 Computational Biology*, 14(3), e1005938. <http://doi.org/10.1371/journal.pcbi.1005938>

1730 Whitten, T. A., Hughes, A. M., Dickson, C. T., & Caplan, J. B. (2011). A better oscillation
1731 detection method robustly extracts EEG rhythms across brain state changes: The human
1732 alpha rhythm as a test case. *NeuroImage*, 54(2), 860–874.
1733 <http://doi.org/10.1016/j.neuroimage.2010.08.064>

1734 Wutz, A., Melcher, D., & Samaha, J. (2018). Frequency modulation of neural oscillations
1735 according to visual task demands. *Proceedings of the National Academy of Sciences*,
1736 115(6), 1346–1351. <http://doi.org/10.1073/pnas.1713318115>
1737