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Abstract: 10 
The average power of rhythmic neural responses as captured by MEG/EEG/LFP recordings is a 11 
prevalent index of human brain function. Increasing evidence questions the utility of trial-/group 12 
averaged power estimates however, as seemingly sustained activity patterns may be brought about 13 
by time-varying transient signals in each single trial. Hence, it is crucial to accurately describe the 14 
duration and power of rhythmic and arrhythmic neural responses on the single trial-level. However, 15 
it is less clear how well this can be achieved in empirical MEG/EEG/LFP recordings. Here, we 16 
extend an existing rhythm detection algorithm (extended Better OSCillation detection: “eBOSC”; 17 
cf. Whitten et al., 2011) to systematically investigate boundary conditions for estimating neural 18 
rhythms at the single-trial level. Using simulations as well as resting and task-based EEG recordings 19 
from a micro-longitudinal assessment, we show that alpha rhythms can be successfully captured in 20 
single trials with high specificity, but that the quality of single-trial estimates varies greatly between 21 
subjects. Despite those signal-to-noise-based limitations, we highlight the utility and potential of 22 
rhythm detection with multiple proof-of-concept examples, and discuss implications for single-trial 23 
analyses of neural rhythms in electrophysiological recordings. Using an applied example of 24 
working memory retention, rhythm detection indicated load-related increases in the duration of 25 
frontal theta and posterior alpha rhythms, in addition to a frequency decrease of frontal theta 26 
rhythms that was observed exclusively through amplification of rhythmic amplitudes. 27 
 28 
Highlights: 29 
• Traditional narrow-band rhythm metrics conflate the power and duration of rhythmic and arrhythmic 30 

periods. We extend a state-of-the-art rhythm detection method (eBOSC) to derive rhythmic episodes in 31 
single trials that can disambiguate rhythmic and arrhythmic periods. 32 

• Simulations indicate that this can be done with high specificity given sufficient rhythmic power, but with 33 
strongly impaired sensitivity when rhythmic SNR is low. Empirically, surface EEG recordings exhibit 34 
stable inter-individual differences in α-rhythmicity in ranges where simulations suggest a gradual bias, 35 
leading to high collinearity between narrow-band and rhythm-specific estimates. 36 

• Beyond these limitations, we highlight multiple empirical benefits of characterizing rhythmic episodes 37 
in single trials, such as (a) a principled separation of rhythmic and arrhythmic content, (b) an 38 
amplification of rhythmic amplitudes, and (c) a specific characterization of sustained and transient 39 
events. 40 

• In an exemplary application, rhythm-specific estimates increase sensitivity to working memory load 41 
effects, in addition to indicating a frequency modulation of frontal theta rhythms through the 42 
amplification of rhythmic power. 43 

 44 
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1.1 Towards a single-trial characterization of neural rhythms 46 
 47 

Episodes of rhythmic neural activity in electrophysiological recordings are of prime 48 
interest for research on neural representations and computations across multiple scales of 49 
measurement (e.g. Buzsáki, 2006; Wang, 2010). At the macroscopic level, the study of 50 
rhythmic neural signals has a long heritage, dating back to Hans Berger’s classic investigations 51 
into the Alpha rhythm (Berger, 1938). Since then, advances in recording and processing 52 
techniques have facilitated large-scale spectral analysis schemes (e.g. Gross, 2014) that were 53 
not available to the pioneers of electrophysiological research, who often depended on the 54 
manual analysis of single time series to indicate the presence and magnitude of rhythmic events. 55 
Interestingly, improvements in analytic methods still do not capture all of the information that 56 
can be extracted by manual inspection. For example, current analysis techniques are largely 57 
naïve to the specific temporal presence of rhythms in the continuous recordings, as they often 58 
employ windowing of condition- or group-based averages to extract putative rhythm-related 59 
characteristics (Cohen, 2014). However, the underlying assumption of stationary, sustained 60 
rhythms within the temporal window of interest might not consistently be met (Jones, 2016; 61 
Stokes & Spaak, 2016), thus challenging the appropriateness of the averaging model (i.e., the 62 
ergodicity assumption (Molenaar & Campbell, 2009)). Furthermore, in certain situations, 63 
single-trial characterizations become necessary to derive unbiased individual estimates of 64 
neural rhythms (Cohen, 2017). For example, this issue becomes important when asking whether 65 
rhythms appear in transient or in sustained form (van Ede, Quinn, Woolrich, & Nobre, 2018), 66 
or when only single-shot acquisitions are feasible (i.e., resting state or sleep recordings).  67 

 68 
1.2 Duration as a powerful index of rhythmicity 69 
 70 

The presence of rhythmicity is a necessary prerequisite for the accurate interpretation 71 
of measures of amplitude, power, and phase (Aru et al., 2015; Jones, 2016; 72 
Muthukumaraswamy & Singh, 2011). This is exemplified by the bias that arrhythmic periods 73 
exert on rhythmic power estimates. Most current time-frequency decomposition methods of 74 
neurophysiological signals (such as the electroencephalogram (EEG)) are based on the Fourier 75 
transform (Gross, 2014). Following Parceval’s theorem (e.g. Hansen, 2014), the Fast Fourier 76 
Transform (FFT) decomposes an arbitrary time series into a sum of sinusoids at different 77 
frequencies. Importantly, FFT-derived power estimates do not differentiate between high-78 
amplitude transients and low-amplitude sustained signals. In the case of FFT power, this is a 79 
direct result of the violated assumption of stationarity in the presence of a transient signal. 80 
Short-time FFT and wavelet techniques alleviate (but do not eliminate) this problem by 81 
analyzing shorter epochs, during which stationarity is more likely to be obtained. However, 82 
whenever spectral power is averaged across these episodes, both high-amplitude rhythmic and 83 
low-amplitude arrhythmic signal components may once again become intermixed. In the 84 
presence of arrhythmic content (often referred to as the “signal background,” or “noise”), this 85 
results in a reduced amplitude estimate of the underlying rhythm, the extent of which relates to 86 
the duration of the rhythmic episode relative to the length of the analyzed segment (which we 87 
will refer to as ‘abundance’) (see Figure 1A). Therefore, integration across epochs that contain 88 
a mixture of rhythmic and arrhythmic signals results in an inherent ambiguity between the 89 
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strength of the rhythmic activity (as indexed by power/amplitude) and its duration (as indexed 90 
by the abundance of the rhythmic episode within the segment) (see Figure 2B).  91 

Crucially, the strength and duration of rhythmic activity theoretically differ in their 92 
neurophysiological interpretation. Rhythmic power most readily indexes the magnitude of 93 
synchronized changes in membrane potentials within a network (Buzsáki, Anastassiou, & 94 
Koch, 2012), and is thus related to the size of the participating neural population. The duration 95 
of a rhythmic episode, by contrast, tracks how long population synchrony is upheld. Notably, 96 
measures of rhythm duration have recently gained interest as they may provide additional 97 
information regarding the biophysical mechanisms that give rise to the recorded signals 98 
(Peterson & Voytek, 2017; Sherman et al., 2016), for example, by differentiating between 99 
transient and sustained rhythmic events (van Ede et al., 2018).  100 
 101 
1.3. Single-trial rhythm detection as a methodological challenge 102 
 103 

In general, the accurate estimation of process parameters depends on a sufficiently strong 104 
signal in the neurophysiological recordings under investigation. Especially for scalp-level 105 
M/EEG recordings it remains elusive whether neural rhythms are sufficiently strong to be 106 
clearly detected in single trials. Here, a large neural population has to be synchronously active 107 
to give rise to potentials that are visible at the scalp surface. This problem intensifies further by 108 
signal attenuation through the skull (in the case of EEG) and the superposition of signals from 109 
diverse sources of no interest both in- and outside the brain (Schomer & Lopes da Silva, 2017). 110 
In sum, these considerations lead to the proposal that the signal-to-noise ratio (SNR), here 111 
operationally defined as the ratio of rhythmic to arrhythmic variance, may fundamentally 112 
constrain the accurate characterization of single-trial rhythms.  113 

Following those considerations, we set out to answer the following hypotheses and 114 
questions: (1) A precise differentiation between rhythmic and arrhythmic timepoints can 115 
disambiguate the strength and the duration of rhythmicity. (2) To what extent does the single-116 
trial rhythm representation in empirical data allow for an accurate estimation of rhythmic 117 
strength and duration in the face of variations in the signal-to-noise ratio of rhythmicity? (3) 118 
What are the empirical benefits of separating rhythmic (and arrhythmic) duration and power? 119 

Recently, the Better OSCillation Detection (BOSC; Caplan, Madsen, Raghavachari, & 120 
Kahana, 2001; Whitten, Hughes, Dickson, & Caplan, 2011) method has been proposed to 121 
identify rhythmicity at the single-trial level. BOSC defines rhythmicity based on the presence 122 
of a spectral peak that is superimposed on an arrhythmic 1/f background and that remains 123 
present for a minimum number of cycles. Here, we extend the BOSC method (i.e., extended 124 
BOSC; eBOSC) to derive rhythmic temporal episodes that can be used to further characterize 125 
rhythmicity. Using simulations, we derive rhythm detection benchmarks and probe the 126 
boundary conditions for unbiased rhythm indices. Furthermore, we apply the eBOSC algorithm 127 
to resting- and task-state data from a micro-longitudinal dataset to systematically investigate 128 
the feasibility to derive reliable and valid indices of neural rhythmicity from single-trial scalp 129 
EEG data and to probe their modulation by working memory load.   130 

We focus on alpha rhythms (~8-15 Hz; defined here based on individual FFT-peaks) due to 131 
(a) their high amplitude in human EEG recordings, (b) the previous focus on the alpha band in 132 
the rhythm detection literature (Caplan, Bottomley, Kang, & Dixon, 2015; Fransen et al., 2015; 133 
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Whitten et al., 2011), and (c) their importance for human cognition (Grandy, Werkle-Bergner, 134 
Chicherio, Lövdén, et al., 2013a; Klimesch, 2012; Sadaghiani & Kleinschmidt, 2016). We 135 
present examples beyond the alpha range to highlight the ability to apply eBOSC in multiple, 136 
diverse frequency ranges.  137 

 138 
2. Methods 139 
 140 
2.1 Study design 141 
 142 

Resting state and task data were collected in the context of a larger assessment, 143 
consisting of eight sessions in which an adapted Sternberg short-term memory task (Sternberg, 144 
1966) and three additional cognitive tasks were repeatedly administered. Resting state data are 145 
from the first session, task data are from sessions one, seven and eight, during which EEG data 146 
were acquired. Sessions one through seven were completed on consecutive days (excluding 147 
Sundays) with session seven completed seven days after session one by all but one participant 148 
(eight days due to a two-day break). Session eight was conducted approximately one week after 149 
session seven (M = 7.3 days, SD = 1.4) to estimate the stability of the behavioral practice 150 
effects. The reported EEG sessions lasted approximately three and a half to four hours, 151 
including approximately one and a half hours of EEG preparation. For further details on the 152 
study protocol and results of the behavioural tasks see (Grandy, Lindenberger, & Werkle-153 
Bergner, 2017). 154 

 155 
2.2 Participants 156 
 157 

The sample contained 32 young adults (mean age = 23.3 years, SD = 2.0, range 19.6 to 158 
26.8 years; 17 women; 28 university students) recruited from the participant database of the 159 
Max Planck Institute for Human Development, Berlin, Germany (MPIB). Participants were 160 
right-handed, as assessed with a modified version of the Edinburgh Handedness Inventory 161 
(Oldfield, 1971), and had normal or corrected-to-normal vision, as assessed with the Freiburg 162 
Visual Acuity test (Bach, 1996; 2007). Participants reported to be in good health with no known 163 
history of neurological or psychiatric incidences and were paid for their participation (8.08 € 164 
per hour, 25.00 € for completing the study within 16 days, and a performance-dependent bonus 165 
of 28.00 €; see below). All participants gave written informed consent according to the 166 
institutional guidelines of the ethics committee of the MPIB, which approved the study.  167 
 168 
2.3 Procedure 169 
 170 

Participants were seated at a distance of 80 cm in front of a 60 Hz LCD monitor in an 171 
acoustically and electrically shielded chamber. A resting state assessment was conducted prior 172 
to the initial performance of the adapted Sternberg task. Two resting state periods were used: 173 
the first encompassed a duration of two minutes of continuous eyes open (EO1) and eyes closed 174 
(EC1) periods, respectively; the second resting state was comprised of two 80 second runs, 175 
totalling 16 repetitions of 5 seconds interleaved eyes open (EO2) – eyes closed (EC2) periods. 176 
An auditory beep indicated to the subjects when to open and close their eyes. 177 
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Following the resting assessments, participants performed an adapted version of the 178 
Sternberg task. Digits were presented in white on a black background and subtended ~2.5° of 179 
visual angle in the vertical and ~1.8° of visual angle in the horizontal direction. Stimulus 180 
presentation and recording of behavioral responses were controlled with E-Prime 2.0 181 
(Psychology Software Tools, Inc., Pittsburgh, PA, USA). The task design followed the original 182 
report (Sternberg, 1966). Participants started each trial by pressing the left and right response 183 
key with their respective index fingers to ensure correct finger placement and to enable fast 184 
responding. An instruction to blink was given, followed by the sequential presentation of 2, 4 185 
or 6 digits from zero to nine. On each trial, the memory set size (i.e., load) varied randomly 186 
between trials, and participants were not informed about the upcoming condition. Also, the 187 
single digits constituting a given memory set were randomly selected in each trial. Each 188 
stimulus was presented for 200 ms, followed by a fixed 1000 ms blank inter-stimulus interval 189 
(ISI). The offset of the last stimulus coincided with the onset of a 3000 ms blank retention 190 
interval, which concluded with the presentation of a probe item that was either contained in the 191 
presented stimulus set (positive probe) or not (negative probe). Probe presentation lasted 200 192 
ms, followed by a blank screen for 2000 ms, during which the participant’s response was 193 
recorded. A beep tone indicated the end of the trial. The task lasted about 50 minutes. 194 

For each combination of load x probe type, 31 trials were conducted, cumulating in 186 195 
trials per session. Combinations were randomly distributed across four blocks (block one: 48 196 
trials; blocks two through four: 46 trials). Summary feedback of the overall mean RT and 197 
accuracy within the current session was shown at the end of each block. At the beginning of 198 
session one, 24 practice trials were conducted to familiarize participants with the varying set 199 
sizes and probe types. To sustain high motivation throughout the study, participants were paid 200 
a 28 € bonus if their current session’s mean RT was faster or equal to the overall mean RT 201 
during the preceding session, while sustaining accuracy above 90%. Only correct trials were 202 
included in the analyses.  203 
 204 
2.4 EEG recordings and pre-processing  205 
 206 

EEG was continuously recorded from 64 Ag/AgCl electrodes using BrainAmp 207 
amplifiers (Brain Products GmbH, Gilching, Germany). Sixty scalp electrodes were arranged 208 
within an elastic cap (EASYCAP GmbH, Herrsching, Germany) according to the 10% system 209 
(cf. Oostenveld, Fries, Maris, & Schoffelen, 2011) with the ground placed at AFz. To monitor 210 
eye movements, two electrodes were placed on the outer canthi (horizontal EOG) and one 211 
electrode below the left eye (vertical EOG). During recording, all electrodes were referenced 212 
to the right mastoid electrode, while the left mastoid electrode was recorded as an additional 213 
channel. Prior to recording, electrode impedances were retained below 5 kΩ. Online, signals 214 
were recorded with an analog pass-band of 0.1 to 250 Hz and digitized at a sampling rate of 1 215 
kHz. 216 

Preprocessing and analysis of EEG data were conducted with the FieldTrip toolbox 217 
(Oostenveld et al., 2011) and using custom-written MATLAB (The MathWorks Inc., Natick, 218 
MA, USA) code. Offline, EEG data were filtered using a 4th order Butterworth filter with a 219 
pass-band of 0.5 to 100 Hz, and were linearly detrended. Resting data with interleaved eye 220 
closure were epoched relative to the auditory cue to open and close the eyes. An epoch of -2 s 221 
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to +3 s relative to on- and offsets was chosen to include padding for the analysis. During the 222 
eBOSC procedure, three seconds of signal were removed from both edges (see below), resulting 223 
in an effective epoch of 4 s duration that excludes evoked components following the cue onset. 224 
Continuous eyes open/closed recordings were segmented to the cue on- and offset. For the 225 
interleaved data, the first and last trial for each condition were removed, resulting in an effective 226 
trial number of 14 trials per condition. For the task data, we analyzed two intervals: an extended 227 
interval to assess the overall dynamics of detected rhythmicity and a shorter interval that 228 
focused on the retention period. Unless otherwise noted, we refer to the extended interval when 229 
presenting task data. For the extended segments, task data were segmented to 21 s epochs 230 
ranging from -9 s to +12 s with regard to the onset of the 3 s retention interval for analyses 231 
including peri-retention data. For analyses including only the retention phase, data were 232 
segmented to -2 s to +3 s around the retention interval. Note that for all analyses, 3 s of signal 233 
were removed on each side of the signal during eBOSC detection, effectively removing the 234 
evoked cue activity (2 s to account for edge artifacts following wavelet-transformation and 1 s 235 
to account for eBOSC’s duration threshold, see section 2.6), except during the extended task 236 
interval. Hence, detected segments were restricted to occur from 1s after period onset until 237 
period offset, thereby excluding evoked signals. Blink, movement and heart-beat artifacts were 238 
identified using Independent Component Analysis (ICA; Bell & Sejnowski, 1995) and removed 239 
from the signal. Subsequently, data were downsampled to 250 Hz and all channels were re-240 
referenced to mathematically averaged mastoids. Artifact-contaminated channels (determined 241 
across epochs) were automatically detected (a) using the FASTER algorithm (Nolan, Whelan, 242 
& Reilly, 2010) and (b) by detecting outliers exceeding three standard deviations of the kurtosis 243 
of the distribution of power values in each epoch within low (0.2-2 Hz) or high (30-100 Hz) 244 
frequency bands, respectively. Rejected channels were interpolated using spherical splines 245 
(Perrin, Pernier, Bertrand, & Echallier, 1989). Subsequently, noisy epochs were likewise 246 
excluded based on FASTER and recursive outlier detection, resulting in the rejection of 247 
approximately 13% of trials. To prevent trial rejection due to artifacts outside the signal of 248 
interest, artifact detection was restricted to epochs that included 2.4 s of additional signal around 249 
the on- and offset of the retention interval, corresponding to the longest effective segment that 250 
was used in the analyses. A further 2.65% of incorrectly answered trials from the task were 251 
subsequently excluded.  252 
 253 
2.5 Rhythm-detection using extended BOSC 254 
 255 

We applied an extended version of the Better OSCillation detection method (eBOSC; 256 
cf. Caplan et al., 2001; Whitten et al., 2011) to automatically separate rhythmic from arrhythmic 257 
episodes. The BOSC method reliably identifies rhythms using data-driven thresholds based on 258 
theoretical assumptions of the signal characteristics. Briefly, the method defines rhythms as 259 
time points during which wavelet-derived power at a particular frequency exceeds a power 260 
threshold based on an estimate of the arrhythmic signal background. The theoretical duration 261 
threshold defines a minimum duration of cycles this power threshold has to be exceeded to 262 
exclude high amplitude transients. Previous applications of the BOSC method focused on the 263 
analysis of resting-state data or long data epochs, where reliable detection has been established 264 
regardless of specific parameter setups (Caplan et al., 2001; 2015; Whitten et al., 2011). We 265 
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introduce the following adaptations here (for details see section 2.6, Figure 1 & Figure S1): (1) 266 
we remove the spectral alpha peak and use robust regression to establish power thresholds; (2) 267 
we combine detected time points into continuous rhythmic episodes and (3) we reduce the 268 
impact of wavelet convolution on abundance estimates. We benchmarked the algorithm and 269 
compared it to standard BOSC using simulations (see section 2.8). 270 
 271 

 272 
Figure 1: Schematic illustration of rhythm detection. (A) Average amplitude estimates (right) increase with the 273 
focus on rhythmic episodes within the averaged time interval. The left plots show simulated time series and the 274 
corresponding time-frequency power. Superimposed red traces indicate rhythmic time points. The upper right plot 275 
shows the average power spectrum averaged across the entire epoch, the lower plot presents amplitudes averaged 276 
exclusively across rhythmic time points. An amplitude gain is observed due to the exclusion of arrhythmic low 277 
amplitude time points. (B-E) Comparison of standard and extended BOSC. (B+C) Rhythms were detected based 278 
on a power threshold estimated from the arrhythmic background spectrum. Standard BOSC applies a linear fit in 279 
log-log space to define the background power, which may overestimate the background at the frequencies of 280 
interest in the case of data with large rhythmic peaks. Robust regression following peak removal alleviates this 281 
problem. (D) Example of episode detection. White borders circumfuse time frequency points, at which standard 282 
BOSC indicated rhythmic content. Red traces represent the continuous rhythmic episodes that result from the 283 
extended post-processing. (E) Applied thresholds and detected rhythmic abundance. The black border denotes the 284 
duration threshold at each frequency (corresponding to D), i.e., for how long the power threshold needed to be 285 
exceeded to count as a rhythmic period. Note that this threshold can be set to zero for a post-hoc characterization 286 
of the duration of episodes (see Methods 2.12). The color scaling within the demarcated area indicates the power 287 
threshold at each frequency. Abundance corresponds to the relative length of the segment on the same time scale 288 
as presented in D. White dots correspond to the standard BOSC measure of rhythmic abundance at each frequency 289 
(termed Pepisode). Red lines indicate the abundance measure used here, which is defined as the proportion of 290 
sample points at which a rhythmic episode between 8-15 Hz was indicated (shown as red traces in D). 291 
 292 
2.6 Specifics of rhythm-detection using extended BOSC 293 
 294 

Rhythmic events were detected within subjects for each channel and condition. Time-295 
frequency transformation of single trials was performed using 6-cycle Morlet wavelets 296 
(Grossmann & Morlet, 1985) with 49 logarithmically-spaced center frequencies ranging from 297 
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1 to 64 Hz. Following the wavelet transform, 2 s were removed at each segment’s borders to 298 
exclude edge artefacts. To estimate the background spectrum, the time-frequency spectra from 299 
all trials were temporally concatenated within condition and channel and log-transformed, 300 
followed by temporal averaging. For eyes-closed and eyes-open resting states, both continuous 301 
and interleaved exemplars were included in the background estimation for the respective 302 
conditions. The resulting power spectrum was fit linearly in log(frequency)-log(power) 303 
coordinates using a robust regression, with the underlying assumption that the EEG background 304 
spectrum is characterized by colored noise of the form A*f^(−α) (Buzsáki & Mizuseki, 2014; 305 
He, Zempel, Snyder, & Raichle, 2010; Linkenkaer-Hansen, Nikouline, Palva, & Ilmoniemi, 306 
2001). A robust regression with bisquare weighting (e.g. Holland & Welsch, 2007) was chosen 307 
to improve the linear fit of the background spectrum (cf. Haller et al., 2018), which was 308 
characterized by frequency peaks in the alpha range for almost all subjects (Figure S4). In 309 
contrast to ordinary least squares regression, robust regression iteratively down-weights outliers 310 
(in this case spectral peaks) from the linear background fit. To improve the definition of 311 
rhythmic power estimates as outliers during the robust regression, power estimates within the 312 
wavelet pass-band around the individual alpha peak frequency were removed prior to fitting1. 313 
The passband of the wavelet (e.g. Linkenkaer-Hansen et al., 2001) was calculated as  314 

!"##$"%&	[)*] = 	-./	 ± 	0.5 ∗
5

67
∗ -./   315 

[Formula 1] 316 
in which IAF denotes the individual alpha peak frequency and WL refers to wavelet length 317 
(here, six cycles in the main analysis). IAF was determined based on the peak magnitude within 318 
the 8-15 Hz average spectrum for each channel and condition (Grandy, Werkle-Bergner, 319 
Chicherio, Schmiedek, et al., 2013b). This ensures that the maximum spectral deflection is 320 
removed across subjects, even in cases where no or multiple peaks are present2. This procedure 321 

                                                
1  This procedure is similar to calculating the background spectrum from conditions with 
attenuated alpha power (e.g., the eyes open resting state; Caplan, Bottomley, Kang & Dixon 
(2015)). However, here we ensure that alpha power is sufficiently removed, whereas if 
conditions with reduced alpha peak magnitudes are selected, alpha power may still remain 
sufficiently elevated to influence slope or intercept estimates. Furthermore, the reliance on 
conditions with decreased rhythmicity appears less suitable given inter-individual differences 
in alpha engagement in e.g., the eyes open condition. This may induce an implicit contrast to 
eyes open rhythmicity. Note that when the frequency range is chosen so that the alpha peak 
represents the middle of the chosen interval, the alpha-induced bias would be captured by a 
linear increment in the intercept of the background fit, which may also be alleviated by choosing 
a higher percentile for the power threshold. Notably, removing the alpha peak as done here 
attenuates such bias, even in cases where the alpha peak biases the slope of the background fit, 
as would happen if the alpha peak is not centered within the range of sampled frequencies. 
2 When multiple alpha-band peaks are present or the peak has a broader appearance, the spectral 
peak may not be removed entirely, which could result in misfits of the background spectrum. 
For this purpose, we employed robust regression to down-weight potential residuals around the 
alpha peak.  Our current implementation only accounts for a peak in the alpha range, but could 
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effectively removes a bias of the prevalent alpha peak on the arrhythmic background estimate 322 
(see Figure 1B and C & Figure 3C). The power threshold for rhythmicity at each frequency was 323 
set at the 95th percentile of a χ2(2)-distribution of power values, centered on the linearly fitted 324 
estimate of background power at the respective frequency (for details see Whitten et al., 2011). 325 
This essentially implements a significance test of single-trial power against arrhythmic 326 
background power. A three-cycle threshold was used as the duration threshold to exclude 327 
transients, unless indicated otherwise (see section 2.12). The conjunctive power and duration 328 
criteria produce a binary matrix of ‘detected’ rhythmicity for each time-frequency point (see 329 
Figure S1C). To account for the duration criterion, 1000 ms were discarded from each edge of 330 
this ‘detected’ matrix.  331 

The original BOSC algorithm was further extended to define rhythmic events as 332 
continuous temporal episodes that allow for an event-wise assessment of rhythm characteristics 333 
(e.g. duration). The following steps were applied to the binary matrix of ‘detected’ single-trial 334 
rhythmicity to derive such sparse and continuous episodes. First, to account for the spectral 335 
extension of the wavelet, we selected time-frequency points with maximal power within the 336 
wavelet’s spectral smoothing range (i.e. the pass-band of the wavelet; 5

67
*frequency; see 337 

Formula 1). That is, at each time point, we selected the frequency with the highest indicated 338 
rhythmicity within each frequency’s pass-band. This served to exclude super-threshold 339 
timepoints that may be accounted for by spectral smoothing of a rhythm at an adjacent 340 
frequency. Note that this effectively creates a new frequency resolution for the resulting 341 
rhythmic episodes, thus requiring sufficient spectral resolution (defined by the wavelet’s pass-342 
band) to differentiate simultaneous rhythms occurring at close frequencies. Finally, continuous 343 
rhythmic episodes were formed by temporally connecting extracted time points, while allowing 344 
for moment-to-moment frequency transitions (i.e. within-episode frequency non-stationarities; 345 
Atallah & Scanziani, 2009) (for a single-trial illustration see Figures 1D and Figure S1D).  346 

In addition to the spectral extension of the wavelet, the choice of wavelet parameter also 347 
affects the extent of temporal smoothing, which may bias rhythmic duration estimates. To 348 
decrease such temporal bias, we compared observed rhythmic amplitudes at each time point 349 
within each rhythmic episode with those expected by smoothing adjacent amplitudes using the 350 
wavelet (Figure S1E). By retaining only those time points where amplitudes exceeded the 351 
smoothing-based expectations, we removed supra-threshold time points that can be explained 352 
by temporal smoothing of nearby rhythms (e.g., ‘ramping’ up and down signals). In more detail, 353 
we simulated the positive cycle of a sine wave at each frequency, zero-shouldered each edge 354 
and performed (6-cycle) wavelet convolution. The resulting amplitude estimates at the zero-355 
padded time points reflect the temporal smoothing bias of the wavelet on adjacent arrhythmic 356 
time points. This bias is maximal (BiasMax) at the time point immediately adjacent to the 357 
rhythmic on-/offset and decreases with temporal distance to the rhythm. Within each rhythmic 358 
episode, the ‘convolution bias’ of a time-frequency (TF) point’s amplitude on surrounding 359 
points was estimated by scaling the points’ amplitude by the modelled temporal smoothing bias.  360 

                                                
be extended to other frequency ranges using the same logic (see discussion on limitations in 
section 4.6). 
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.89:;<=&>#?,ABCD7:7DA = F(.89:;<=&>A? − !I?) ∗
K;"#L>M<NO?,ABCD7:7DA:

K;"#P"Q?
R +	!I? 361 

[Formula 2] 362 
Subscripts F and T denote frequency and time within each episode, respectively. 363 

BiasVector is a vector with the length of the current episode (L) that is centered around the 364 
current TF-point. It contains the wavelet’s symmetric convolution bias around BiasMax. Note 365 
that both BiasVector and BiasMax respect the possible frequency variations within an episode 366 
(i.e., they reflect the differences in convolution bias between frequencies). The estimated 367 
wavelet bias was then scaled to the amplitude of the rhythmic signal at the current TF-point. 368 
PT refers to the condition- and frequency-specific power threshold applied during rhythm 369 
detection. We subtracted the power threshold to remove arrhythmic contributions. This 370 
effectively sensitizes the algorithm to near-threshold values, rendering them more likely to be 371 
excluded. Finally, time points with lower amplitudes than expected by the convolution model 372 
were removed and new rhythmic episodes were created (Figure S1F). The resulting episodes 373 
were again checked for adhering to the duration threshold. 374 

As an alternative to the temporal wavelet correction based on the wavelet’s simulated 375 
maximum bias (‘MaxBias’; as described above), we investigated the feasibility of using the 376 
wavelet’s full-width half maximum (‘FWHM’) as a criterion. Within each continuous episode 377 
and for each “rhythmic” sample point, 6-cycle wavelets at the frequency of the neighbouring 378 
points were created and scaled to the point’s amplitude. We then used the amplitude of these 379 
wavelets at the FWHM as a threshold for rhythmic amplitudes. That is, points within a rhythmic 380 
episodes that had amplitudes below those of the scaled wavelets were defined as arrhythmic. 381 
The resulting continuous episodes were again required to pass the duration threshold. As the 382 
FWHM approach indicated decreased specificity of rhythm detection in the simulations (Figure 383 
S2) we used the ‘MaxBias’ method for our analyses.   384 

Furthermore, we considered a variant where total amplitude values were used (vs. 385 
supra-threshold amplitudes) as the basis for the temporal wavelet correction. Our results 386 
suggest that using supra-threshold power values leads to a more specific detection at the cost 387 
of sensitivity (Figure S2). Crucially, this eliminated false alarms and abundance 388 
overestimation, thus rendering the method highly specific to the occurrence of rhythmicity. As 389 
we regard this as a beneficial feature, we used supra-threshold amplitudes as the basis for the 390 
temporal wavelet correction throughout the manuscript. 391 
 392 
  393 
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2.7 Definition of abundance, rhythmic probability and amplitude metrics 394 

 395 
Figure 2: eBOSC disambiguates the magnitude and duration of rhythmic episodes. (A) Schema of different 396 
amplitude metrics. (B) Rhythm-detection disambiguates rhythmic amplitude and duration. Overall amplitudes 397 
represent a mixture of rhythmic power and duration. In the absence of noise (upper row), eBOSC perfectly 398 
orthogonalizes rhythmic amplitude from abundance. Superimposed noise leads to an imperfect separation of the 399 
two metrics (lower row). The duration of rhythmicity is similarly indicated by abundance and the overlap between 400 
rhythmic and overall amplitudes. This can be seen by comparing the two rightmost plots in each row.  401 
 402 
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A central goal of rhythm detection is to disambiguate rhythmic power and duration 403 
(Figure 2). For this purpose, eBOSC provides multiple indices. We describe the different 404 
indices for the example case of alpha rhythms. Please note that eBOSC can be applied in a 405 
similar fashion to any other frequency range. The abundance of alpha rhythms denotes the 406 
duration of rhythmic episodes with a mean frequency in the alpha range (8 to 15 Hz), relative 407 
to the duration of the analyzed segment. This frequency range was motivated by clear peaks 408 
within this range in individual resting state spectra (Figure S4). Note that abundance is closely 409 
related to standard BOSC’s Pepisode metric (Whitten et al., 2011), with the difference that 410 
abundance refers to the duration of the continuous rhythmic episodes and not the ‘raw’ detected 411 
rhythmicity of BOSC (cf. Figure S1C and D). We further define rhythmic probability as the 412 
across trials probability to observe a detected rhythmic episode within the alpha frequency 413 
range at a given point in time. It is therefore the within-time, across-trial equivalent of 414 
abundance. 415 

As a result of rhythm detection, the magnitude of spectral events can be described using 416 
multiple metrics (see Figure 2A for a schematic). Amplitudes were calculated as the square-417 
root of wavelet-derived power estimates and are used interchangeably throughout the 418 
manuscript. The standard measure of window-averaged amplitudes, overall amplitudes were 419 
computed by averaging across the entire segment at its alpha peak frequency. In contrast, 420 
rhythmic amplitudes correspond to the amplitude estimates during detected rhythmic episodes. 421 
If no alpha episode was indicated, abundance was set to zero, and amplitude was set to missing. 422 
Unless indicated otherwise, both amplitude measures were normalized by subtracting the 423 
amplitude estimate of the fitted background spectrum. This step represents a parameterization 424 
of rhythmic power (cf. Haller et al., 2018) and is conceptually similar to baseline normalization, 425 
without requiring an explicit baseline segment. This highlights a further advantage of rhythm-426 
detection procedures like (e)BOSC. In addition, we calculated an overall signal-to-noise ratio 427 
(SNR) as the ratio of the overall amplitude to the background amplitude: TUVWXYY

ZX[\]W^_`a
.  In 428 

addition, we defined rhythmic SNR as the background-normalized rhythmic amplitude as a 429 
proxy for the rhythmic representation: bcdecfg[DZX[\]W^_`a

ZX[\]W^_`a
.  430 

Unless stated differently, subject-, and condition-specific amplitude and abundance 431 
values were averaged within and across trials, and across posterior-occipital channels (P7, P5, 432 
P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, O1, Oz, O2), in which alpha power was 433 
maximal (Figure 4A, Figure 8).  434 
 435 
2.8 eBOSC validation via alpha rhythm simulations 436 
 437 

To assess eBOSC’s detection performance, we simulated 10 Hz sine waves with varying 438 
amplitudes (0, 2, 4, 6, 8, 12, 16, 24 [a.u.]) and durations (2, 4, 8, 16, 32, 64, 128, 200 [cycles]) 439 
that were symmetrically centred within random 1/f-filtered white noise signals (20 s; 250 Hz 440 
sampling rate). Amplitudes were scaled relative to the power of the 8-12 Hz 6th order 441 
Butterworth-filtered background signal in each trial to approximate SNRs. To ensure 442 
comparability with the empirical analyses, we computed overall SNR analogously to the 443 
empirical data, which tended to be lower than the target SNR. We chose the maximum across 444 
simulated durations as an upper bound (i.e., conservative estimate) on overall SNR. For each 445 
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amplitude-duration combination we simulated 500 “trials”. We assessed three different 446 
detection pipelines regarding their detection efficacy: the standard BOSC algorithm (i.e., linear 447 
background fit incorporating the entire frequency range with no post-editing of the detected 448 
matrix); the eBOSC method using wavelet correction by simulating the maximum bias 449 
introduced by the wavelet (“MaxBias); and the eBOSC method using the full-width-at-half-450 
maximum amplitude for convolution correction (“FWHM”). The background was estimated 451 
separately for each amplitude-duration combination. 500 edge points were removed bilaterally 452 
following wavelet estimation, 250 additional samples were removed bilaterally following 453 
BOSC detection to account for the duration threshold, effectively retaining 14 s of simulated 454 
signal.  455 

Detection efficacy was indexed by signal detection criteria regarding the identification 456 
of rhythmic time points between 8 and 12 Hz (i.e., hits = simulated and detected points; false 457 
alarms = detected, but not simulated points). These measures are presented as ratios to the full 458 
amount of possible points within each category (e.g., hit rate = hits/all simulated time points). 459 
For the eBOSC pipelines, abundance was calculated identically to the analyses of empirical 460 
data. As no consecutive episodes (cf. Pepisode and abundance) are available in standard BOSC, 461 
abundance was defined as the relative amount of time points with detected rhythmicity between 462 
8 to 12 Hz. 463 

A separate simulation aimed at establishing the ability to accurately recover amplitudes. 464 
For this purpose, we simulated a whole-trial alpha signal (i.e., duration = 1) and a quarter-trial 465 
alpha signal (duration = .25) with a larger range of amplitudes (1:16 [a.u.]) and performed 466 
otherwise identical procedures as described above. To assess eBOSC’s ability to disambiguate 467 
power and duration (Figure 2B), we additionally performed simulations in the absence of noise 468 
across a larger range of simulated amplitudes and durations. 469 

A major change in eBOSC compared to standard BOSC is the exclusion of the rhythmic 470 
peak prior to estimating the background. To investigate to what extent the two methods induce 471 
a bias between rhythmicity and the estimated background magnitude (for a schematic see Figure 472 
1C and D), we calculated Pearson correlations between the overall amplitude and the estimated 473 
background amplitude across all levels of simulated amplitudes and durations (Figure 3C). 474 

 As the empirical data suggested a trial-wise association between amplitude and 475 
abundance estimates also at high levels of signal-to-noise ratios (Figure 7), we investigated 476 
whether such associations were also present in the simulations. For each pair of simulated 477 
amplitude and duration, we calculated Pearson correlations between the overall amplitude and 478 
abundance across single trials. Note that due to the stationarity of simulated duration, trial-by-479 
trial fluctuations indicate the bias under fluctuations of the noise background (as amplitudes 480 
were scaled to the background in each trial). For each cell, we performed Fisher’s r-to-z 481 
transform to account for unequal trial sizes due to missing amplitude/abundance estimates (e.g. 482 
when no episodes are detected).  483 
 484 
2.9 Calculation of phase-based lagged coherence 485 
 486 

To investigate the convergence between the power-based duration estimate (abundance) 487 
and a phase-based alternative (Fransen et al., 2015), we calculated lagged coherence at 40 488 
linearly scaled frequencies in the range of 1 to 40 Hz for each resting-state condition. Lagged 489 
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coherence assesses the consistency of phase clustering at a single sensor for a chosen cycle lag 490 
(see Fransen et al., 2015 for formulas). Instantaneous power and phase were estimated via 3-491 
cycle wavelets. Data were segmented to be identical to eBOSC’s effective interval (i.e., same 492 
removal of signal shoulders as described above). In reference to the duration threshold for 493 
power-based rhythmicity, we calculated the averaged lagged coherence using two adjacent 494 
epochs à three cycles. We computed an index of alpha rhythmicity by averaging values across 495 
epochs and posterior-occipital channels, finally extracting the value at the maximum lagged 496 
coherence peak in the 8 to 15 Hz range. 497 

 498 
2.10 Dynamics of rhythmic probability and rhythmic power during task performance 499 
 500 

To investigate the detection properties in the task data, we analysed the temporal 501 
dynamics of rhythmic probability and power in the alpha band. We created time-frequency 502 
representations as described in section 2.6 and extracted the alpha peak power time series, 503 
separately for each person, condition, channel and trial. At the single-trial level, values were 504 
allocated to rhythmic vs. arrhythmic time points according to whether a rhythmic episode with 505 
mean frequency in the respective range was indicated by eBOSC. These time series were 506 
averaged within subject to create individual averages of rhythm dynamics. Subsequently, we z-507 
scored the power time series to accentuate signal dynamics and attenuate between-subject 508 
power differences. To highlight global dynamics, these time series were further averaged 509 
within- and between-subjects. Figure captions indicate which average was used. 510 
 511 
2.11 Rhythm-conditional spectra and abundance for multiple canonical frequencies 512 
 513 

To assess the general feasibility of rhythm detection outside the alpha range, we 514 
analysed the retention interval of the adapted Sternberg task, where the occurrence of theta, 515 
alpha and beta rhythms has been reported in previous studies (Brookes et al., 2011; Jensen, 516 
Gelfand, Kounios, & Lisman, 2002; Jokisch & Jensen, 2007; Lundqvist et al., 2016; 517 
Raghavachari et al., 2001; Tuladhar et al., 2007). For this purpose, we re-segmented the data to 518 
cover the final 2 s of the retention interval +- 3 s of edge signal that was removed during the 519 
eBOSC procedure. We performed eBOSC rhythm detection with otherwise identical 520 
parameters to those described in section 2.6. We then calculated spectra across those time points 521 
where rhythmic episodes with a mean frequency in the range of interest were indicated, 522 
separately for four frequency ranges: 3-8 Hz (theta), 8-15 Hz (alpha), 15-25 Hz (beta) and 25-523 
64 Hz (gamma). We subtracted spectra across the remaining arrhythmic time-points for each 524 
range from these ‘rhythm-conditional’ spectra to derive the spectra that are unique to those time 525 
points with rhythmic occurrence in the band of interest. For the corresponding topographic 526 
representations, we calculated the abundance metric as described in section 2.7 for the apparent 527 
peak frequency ranges. 528 
 529 
2.12 Post-hoc characterization of sustained rhythms vs. transients 530 
 531 

Instead of exclusively relying on a fixed a priori duration threshold as done in previous 532 
applications, eBOSC’s continuous ‘rhythmic episodes’ also allow for a post-hoc separation of 533 
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rhythms and transients based on the duration of identified rhythmic episodes. This is afforded 534 
by our extended post-processing that results in a more specific identification of rhythmic 535 
episodes (see Figure 3) and an estimated length for each episode. For this analysis (Figure 10), 536 
we set the a priori duration threshold to zero and separated the resulting episodes post-hoc 537 
based on their duration (shorter vs. longer than 3 cycles) at their mean frequency. That is, any 538 
episode crossing the amplitude threshold was retained and episodes were sorted by their 539 
‘transient’ or sustained appearance afterwards. We conducted this analysis in the extended task 540 
data to illustrate the temporal dynamics of rhythmic and transient events. To investigate the 541 
modulation of rhythm- and transient-specific metrics between the retention phase and the probe 542 
phase, we averaged metrics within these two intervals and performed a paired t-test between 543 
the two respective intervals for four indices: episode number, duration, frequency and power. 544 
Cluster-based permutation tests (Maris & Oostenveld, 2007) as implemented in FieldTrip were 545 
performed to control for multiple comparisons. Initially, a clustering algorithm formed clusters 546 
based on significant t-tests of individual data points (p <.05; cluster entry threshold) with the 547 
spatial constraint of min. three adjacent channels. Then, the significance of the observed 548 
cluster-level statistic, based on the summed t-values within the cluster, was assessed by 549 
comparison to the distribution of all permutation-based cluster-level statistics. The final cluster 550 
p-value that we report in Figures was assessed as the proportion of 1000 Monte Carlo iterations 551 
in which the cluster-level statistic was exceeded. Cluster significance was indicated by p-552 
values below .025 (two-sided cluster significance threshold). 553 
 554 
2.13 Time series representations of detected rhythmic events 555 
 556 

To visualize the stereotypic depiction of single-trial rhythmic events, we extracted the 557 
time series during individual rhythmic episodes that exceeded a post-hoc duration threshold of 558 
three cycles. Individual time series were time-locked to the trough of individual rhythmic 559 
episodes and averaged across episodes (Sherman et al., 2016). To avoid unequal sample counts 560 
at the edges of episodes, we included additional data padding around the trough prior to 561 
averaging. The trough was chosen to be the local minimum during the spectral episode that was 562 
closest to the maximum power of the wavelet-transformed signal. To better estimate the local 563 
minimum, the time domain signal was low-pass filtered at 25 Hz for alpha and beta, 10 Hz for 564 
theta and high-pass-filtered at 20 Hz for gamma using a 6th order Butterworth filter. Filters only 565 
served the identification of local minima, whereas unfiltered data were used for plotting. 566 
Averaged event dynamics during the first session were visualized for theta at Fz, alpha at O2, 567 
beta at FCz and gamma at Fz. To visualize single-trial time-domain signals, we computed 568 
moving averages of 150 trials across rhythmic episodes concatenated across all subjects.  569 

We further assessed a potential load-modulation of the rate of rhythmic events during 570 
working memory retention by counting the number of individual rhythmic episodes with a 571 
mean frequency that fell in a moving window of 3 adjacent center frequencies. This produced 572 
a channel-by-frequency representation of spectral event rates, which were the basis for 573 
subsequent significance testing using dependent sample regression t-tests and implemented in 574 
permutation tests as described in section 2.12.  575 

 576 
  577 
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2.14 Modulation of rhythm estimates by working memory load and eye closure 578 
 579 

To assess the sensitivity of rhythm-derived indices to experimental manipulations, we 580 
compared (1) the effect of eye closure (“Berger effect”) and (2) the effect of working memory 581 
load between select rhythm indices. To compare rhythm-specific results with traditional 582 
approaches, traditional wavelet estimates were derived using identical parameters as used for 583 
eBOSC. We performed confirmatory tests of a parametric increase in posterior alpha power 584 
and frontal theta power with memory load based on previous reports in the literature (Jensen et 585 
al., 2002; Jensen & Tesche, 2002; Jokisch & Jensen, 2007; Meltzer et al., 2008; Michels, 586 
Moazami-Goudarzi, Jeanmonod, & Sarnthein, 2008; Onton, Delorme, & Makeig, 2005; 587 
Scheeringa et al., 2009; Tuladhar et al., 2007). In addition, we explored a decrease in frontal 588 
theta frequency with load. To reduce the amount of statistical contrasts, we averaged all metrics 589 
across sessions before submitting them to statistical tests. Load effects for within-subject trial 590 
averages between load conditions were assessed by means of a dependent sample regression t-591 
test, implemented within permutation tests (see section 2.12 for details). Similar cluster-based 592 
permutation tests were performed for the effect of eye closure on rhythmic and arrhythmic 593 
amplitudes and abundance using a paired samples t-test.  594 

Beyond probing effects on each estimate individually, we probed whether rhythm-595 
specific estimates of duration and magnitude uniquely captured task effects over and above 596 
traditional indices. For this purpose, we performed post-hoc linear mixed effects analyses, 597 
averaging within the abundance effects clusters. Prior to modelling, values were z-scored across 598 
subjects and conditions. In each model, a rhythm-specific index (e.g. abundance) served as the 599 
dependent variable, while traditional amplitudes served as a fixed dependent variable. Load or 600 
eye closure were modelled as fixed effects with random subject intercepts, assuming compound 601 
symmetry. For the load effect, we assessed uniquely explained variance with a post-hoc 602 
ANOVA, using marginal sums-of-squares (‘Type III’). Linear mixed effects modelling was 603 
performed in R 3.6.1(R, 2019) with the nlme package (Pinheiro et al., 2019). 604 

In addition, we explored effects on theta frequency with cluster-based permutations. To 605 
visualize frequency modulations, we performed a post-hoc Fast Fourier Transform (FFT) to 606 
specifically characterize rhythmic episodes, while normalizing for their duration. To retain an 607 
identical frequency resolution across episodes, we zero-padded episodes of variable duration to 608 
a fixed duration of two seconds. We then computed a discrete-time Fourier Transform of 609 
individual rhythmic episodes: h(i) = 	∑ k(l)m̀

(nDC)(\DC)`
noC , where n is the length of the zero-610 

padded time series X and m̀ = >(D5pg)/`, normalized the resulting absolute spectral values by 611 
the length of the rhythmic episode rWcdecfg[  and calculated the single-sided amplitude 612 
spectrum. This resulted in rhythm-specific amplitude values with an identical frequency 613 
resolution across episodes. In contrast, to derive rhythm-unspecific FFT amplitude estimates, 614 
we included the entire two-second retention period in the estimation and used the respective 615 
length for normalization, thus resulting in traditional ‘overall’ FFT amplitude estimates that 616 
were unspecific to rhythmic occurrence. To assess, whether a theta frequency modulation 617 
would be observed with traditional FFT spectra, we detected condition-dependent theta 618 
frequency peaks. Peaks were defined as frequencies at which the first derivative of the spectrum 619 
changed from positive to negative (Grandy et al., 2013b). In case no peak was identified, the 620 
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frequency with peak amplitude was selected. Finally, we performed paired-t-tests to estimate 621 
potential load effects.  622 

In figures, we display within-subject standard errors (Cousineau, 2005) to highlight 623 
condition differences. For these, individual data were centered by subtracting the subject 624 
condition average and adding the grand condition average to individual within-condition 625 
values. 626 
 627 
3. Results 628 
 629 
3.1. Extended BOSC (eBOSC) increases specificity of rhythm detection 630 



 631 
  632 
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Figure 3: Rhythm detection performance of standard and extended BOSC in simulations. (A) Signal detection properties of the two algorithms. For short simulated rhythmicity, 633 
abundance is overestimated by standard BOSC, but not eBOSC, whereas eBOSC underestimates the duration of prolonged rhythmicity at low SNRs (A1). Extended BOSC has 634 
decreased sensitivity (A2), but higher specificity (A3) compared with extended BOSC. Note that for simulated zero alpha amplitude, all sample points constitute potential false 635 
alarms, while by definition no sample point constitutes a potential hit. (B) Amplitude and abundance estimate for signals with sustained (left) and short rhythmicity (right). 636 
Black dots indicate reference estimates for a pure sine wave without noise, coloured dots indicate the respective estimates for data with the 1/f background. [Note that the 637 
reference estimates were interpolated at the empirical abundance of the 1/f data. Grey dots indicate the perfect abundance estimates in the absence of background noise.] When 638 
rhythms are sustained (left), impaired rhythm detection at low SNRs causes an overestimation of the rhythmic amplitude. At low rhythmic duration (right), this deficit is 639 
outweighed by the severe bias of arrhythmic duration on overall amplitude estimates (e.g., Figure 9). Simulated amplitudes (and corresponding empirical SNRs in brackets) are 640 
shown on the right. Vertical lines indicate the simulated rhythmic duration. (C) eBOSC successfully reduces the bias of the rhythmic peak on the estimation of the background 641 
amplitude. In comparison, standard BOSC induces a strong coupling between the peak magnitude and the background estimate. (D) eBOSC indicates abundance more accurately 642 
than standard BOSC at high amplitudes (i.e., high SNR; see also A1). The leftward shift indicates a decrease in sensitivity. Horizontal lines indicate different levels of simulated 643 
duration. Dots are single-trial estimates across levels of simulated amplitude and duration. (E) Standard BOSC and eBOSC induce trial-wise correlations between amplitude 644 
and abundance. eBOSC exhibits reduced trial-by-trial coupling at higher SNR compared to standard BOSC. Values are r-to-z-transformed correlation coefficients. 645 
 646 



We extended the BOSC rhythm detection method to characterize rhythmicity at the 647 
single-trial level by creating continuous ‘rhythmic episodes’ (see Figure 1 & Figure S1). A 648 
central goal of this approach is the disambiguation of rhythmic power and duration, which can 649 
be achieved perfectly in data without background noise (upper row in Figure 2B). However, 650 
the addition of 1/f noise reintroduces a partial coupling of the two parameters (lower row in 651 
Figure 2B). To better understand the boundary conditions to derive specific amplitude and 652 
duration estimates, we compared the detection properties of the standard and the extended 653 
(eBOSC) pipeline by simulating varying levels of rhythm magnitude and duration. Considering 654 
the sensitivity and specificity of detection, both pipelines performed adequately at high levels 655 
of SNR with high hit and low false alarm rates (Figure 3A). However, whereas standard BOSC 656 
showed perfect sensitivity above SNRs of ~4, specificity was lower than for eBOSC as 657 
indicated by higher false alarm rates (grand averages: .160 for standard BOSC; .015 for 658 
eBOSC). This specificity increase was observed across simulation parameters, suggesting a 659 
general abundance overestimation by standard BOSC (see also Figure 3D). In addition, 660 
standard BOSC did not show a reduced detection of transient rhythms below the duration 661 
threshold of three cycles, whereas hit rates for those transients were clearly reduced with 662 
eBOSC (Figure 3A2). This suggests that wavelet convolution extended the effective duration 663 
of transient rhythmic episodes, resulting in an exceedance of the temporal threshold. In contrast, 664 
by creating explicit rhythmic episodes and reducing convolution effects, eBOSC more strictly 665 
adhered to the specified target duration. However, there was also a notable reduction in 666 
sensitivity for rhythms just above the duration threshold, suggesting a sensitivity-specificity 667 
trade-off (Figure 3A2). In addition to decreasing false alarms, eBOSC also more accurately 668 
estimated the duration of rhythmicity (Figure 3A1), although an underestimation of abundance 669 
persisted (and was increased) at low SNRs. In sum, while eBOSC improved the specificity of 670 
identifying rhythmic content, there were also noticeable decrements in sensitivity (grand 671 
averages: .909 for standard BOSC; .614 for eBOSC), especially at low SNRs. Comparable 672 
results were obtained with a 3-cycle wavelet (Figure S3). Notably, while sensitivity remains an 673 
issue, the high specificity of detection suggests that the estimated rhythmic abundance serves 674 
as a lower bound on the actual duration of rhythmicity.  675 

In a second set of simulations, we considered eBOSC’s potential to accurately estimate 676 
rhythmic amplitudes. As expected, in signals with stationary rhythms (duration = 1), the time-677 
invariant ‘overall’ amplitude estimate most accurately represented simulated amplitudes 678 
(Figure 3B left), as any methods-induced underestimation biased rhythm-specific amplitudes. 679 
Specifically, at low SNRs, underestimation of rhythmic content resulted in an overestimation 680 
of rhythmic amplitudes, as some low-amplitude time points were incorrectly excluded prior to 681 
averaging. At those low SNRs, subtraction of the background estimate (cf. baseline 682 
normalization) alleviated this overestimation. The general impairment at low SNRs was 683 
however outweighed by the advantage of rhythm-specific amplitude estimates in time series 684 
where rhythmic duration was low and thus arrhythmicity was prevalent (Figure 3B right). Here, 685 
rhythm-specific estimates accurately tracked simulated amplitudes, whereas a strong 686 
underestimation was observed for unspecific power indices. In both scenarios, we observed an 687 
underestimation of rhythmic abundance with decreasing amplitudes (cf. Figure 3A1). 688 

An adaptation of the eBOSC method is the exclusion of the rhythmic alpha peak prior 689 
to fitting the arrhythmic background. This serves to reduce a potential bias of rhythmic content 690 
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on the estimation of the arrhythmic content (see Figure 1C for a schematic). Our simulations 691 
indeed indicated a bias of the spectral peak amplitude on the background estimate in the 692 
standard BOSC algorithm, which was substantially reduced in eBOSC’s estimates (Figure 3C). 693 

To gain a visual representation of duration estimation performance, we plotted 694 
abundance against amplitude estimates across all simulated trials, regardless of simulation 695 
parameters (Figure 3D). This revealed multiple modes of abundance at high amplitude levels, 696 
which in the eBOSC case more closely tracked the simulated duration. This further visualizes 697 
the decreased error in abundance estimates, especially at high SNRs (e.g., Figure 3A), while an 698 
observed rightward shift towards higher amplitudes indicated the more pronounced 699 
underestimation of rhythmicity at low SNRs.   700 

Finally, we investigated the trial-wise association between amplitude and duration 701 
estimate based on the observed coupling in empirical data (see Figure 7). Our simulations 702 
suggest that both standard BOSC and eBOSC can induce spurious positive correlations between 703 
amplitude and abundance estimates, which are most pronounced at low levels of SNR (Figure 704 
3E). Notably, these associations are strongly reduced in eBOSC, especially when rhythmic 705 
power is high. This indicates that eBOSC provides a better separation between the two (here 706 
independent) parameters, although a spurious association remains. 707 

In sum, our simulations suggest that eBOSC specifically separates rhythmic and 708 
arrhythmic time points in simulated data at the expense of decreased sensitivity, especially 709 
when SNR is low. However, the increase in specificity is accompanied by an increased accuracy 710 
of duration estimates at high SNR, theoretically allowing a more precise investigation of 711 
rhythmic duration. 712 
 713 
  714 
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3.2 eBOSC detects single-trial alpha rhythms during rest and task states 715 
 716 

 717 
Figure 4: Rhythmic alpha abundance and amplitude during rest. (A) eBOSC identifies high occipital alpha 718 
abundance and rhythmic amplitude especially during the Eyes Closed resting state. White asterisks indicate 719 
significant decreases for arrhythmic from rhythmic amplitudes (cluster is identical between conditions). Black 720 
asterisks indicate significant increases upon eye closure. (B) Rhythmic amplitude and abundance are inter-721 
individually related during rest (C) The modulation of eye closure has similar effects on amplitude and abundance. 722 
Estimates were extracted from posterior-occipital channels. 723 
 724 

While the simulations provide a gold standard to assess detection performance, we 725 
further probed eBOSC’s detection performance in empirical data from resting and task states 726 
to investigate the practical feasibility and utility of rhythm detection. As the ground truth in real 727 
data is unknown, we evaluated detection performance by contrasting metrics from detected and 728 
undetected timepoints regarding their topography and time course. 729 

Individual power spectra showed clear rhythmic alpha peaks for every participant 730 
during eyes closed rest and for most subjects during eyes open rest and the task retention period, 731 
indicating the general presence of alpha rhythms during the analysed states (Figure S4). In line 732 
with a putative source in visual cortex, alpha abundance was highest over parieto-occipital 733 
channels during the resting state (Figure 4A) and during the WM retention period (Figure 8), 734 
with high collinearity between abundance and rhythmic amplitudes within resting conditions 735 
(Figure 4B). As expected, rhythmic time-points exhibited increased alpha power compared with 736 
arrhythmic time points (Figure 4A; white cluster). As one of the earliest findings in cognitive 737 
electrophysiology (Berger, 1938), alpha amplitudes increase in magnitude upon eye closure. 738 
Here, eye closure was reflected by a joint shift towards higher amplitudes and durations for 739 
almost all participants (Figure 4C). To assess unique contributions of the Berger effect on 740 
rhythm indices while controlling for the high collinearity between indicators, we performed 741 
linear mixed modelling within the common effects cluster (see Supplementary Table 1). We 742 
focussed on the continuous condition here, due to the similarity of the effects in the interleaved 743 
case. Notably, rhythmic abundance was modulated by eye closure while statistically controlling 744 
for either rhythmic or arrhythmic amplitudes. In contrast, rhythmic alpha amplitudes were not 745 
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modulated by eye closure when controlling for alpha abundance. This suggests that rhythmic 746 
duration may be a more sensitive marker of task modulations than amplitude. Finally, 747 
arrhythmic amplitudes did not exhibit the Berger effect in either the interleaved or the 748 
continuous acquisition when statistically controlling for the collinearity with rhythmic 749 
amplitude or rhythmic abundance. Taken together, these results suggest a high, joint sensitivity 750 
of rhythm-specific indices to eye closure, which exceeded the residual modulation of 751 
arrhythmic backgrounds that may have resulted from specificity impairments during the 752 
original detection procedure.  753 

 754 
Figure 5: Detected rhythmicity follows the task structure, with stable inter-individual differences in single trial 755 
detection. (A) Average alpha power (black), split by rhythmic vs. arrhythmic designation, and rhythmic probability 756 
(red) at posterior-occipital channels exhibit stereotypic temporal dynamics during encoding (gray bars), retention 757 
(0 to 3 s) and retrieval (black bars). Compared to rhythmic power, arrhythmic power exhibits similar temporal 758 
dynamics, but is strongly reduced in power (see y-scales). The arrhythmic power dynamics are characterized by 759 
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additional transient increases following stimulus presentations. Data are from the first session and the high load 760 
condition. Shading indicates standard errors across subjects. (B) Task-related alpha dynamics are captured by 761 
eBOSC at the single-trial level. Each box displays individual trial-wise z-standardized alpha power at the 762 
individual peak frequency, separately for rhythmic (left) and non-rhythmic (right) time points. While rhythmic 763 
time points (left) exhibit clear single-trial power increases that are locked to the task design, arrhythmic time points 764 
(right) do not show evoked task dynamics that separate them from the background, hence suggesting an accurate 765 
rejection of rhythmicity. The subplots’ frame colour indicates the subjects’ raw power maximum (i.e., the data 766 
scaling). Data are from channel O2 during the first session across load conditions. (C) Individual abundance 767 
estimates are stable across sessions. Data were averaged across posterior-occipital channels and high (i.e., 6) item 768 
load trials. 769 
 770 

The temporal dynamics of indicated rhythmicity are another characteristic of interest to 771 
indicate successful rhythm detection. While such an investigation is difficult for induced 772 
rhythmicity during rest, evoked rhythmicity offers an optimal test case due to its systematic 773 
temporal deployment. For this reason, we analysed task recordings with stereotypic design-774 
locked alpha power dynamics at encoding, retention and probe presentation (Figure 5AB). 775 
Rhythmic probability closely tracked power dynamics (Figure 5A) and time points designated 776 
as rhythmic exhibited pronounced alpha power compared with those labelled arrhythmic 777 
(Figure 5A left vs. Figure 5A right). While rhythm-specific dynamics closely captured standard 778 
power trajectories, we observed a dissociation concerning arrhythmic power. Here, we 779 
observed transient increases during stimulus onsets that were absent from either abundance or 780 
rhythmic power (Figure 5A right). This suggests an increase in high-power transients that were 781 
excluded due to the 3 cycle duration threshold. Indeed, a significant increase in transient events 782 
was observed without an a priori duration threshold (see Figure 10).  783 

 At the single-trial level, rhythmicity was indicated for periods with visibly elevated 784 
alpha power with strong task-locking (Figure 5B left). Conversely, arrhythmicity was indicated 785 
for time points with low alpha power and little structured dynamics (Figure 5B right). However, 786 
strong inter-individual differences were apparent, with little detected rhythmicity when global 787 
alpha power was low (Figure 5B bottom; plots are sorted by descending power as indicated by 788 
the frame colour of the depicted subjects and scaled using z-scores to account for global power 789 
differences). Crucially, those subjects’ single-trial power dynamics did not present a clear 790 
temporal structure, suggesting a prevalence of noise and therefore a correct rejection of 791 
rhythmicity. Notably, those individual rhythmicity estimates were stable across multiple 792 
sessions (Figure 5C), suggesting that they are indicative of trait-like characteristics rather than 793 
idiosyncratic measurement noise (Grandy et al., 2013). 794 

In sum, these results suggest that eBOSC successfully separates rhythmic and 795 
arrhythmic episodes in empirical data, both at the group and individual level. However, they 796 
also indicate prevalent and stable differences in single-trial rhythmicity in the alpha band that 797 
may impair an accurate detection of rhythmic episodes. 798 
 799 
  800 
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3.3 Rhythmic SNR constrains empirical duration estimates and rhythm-related metrics 801 
 802 

 803 
Figure 6: Inter-individual alpha abundance is strongly associated with rhythmic, but not arrhythmic power and 804 
may be underestimated at low rhythmic SNR. (A) Individual abundance estimates are strongly related to the overall 805 
SNR of the spectral alpha peak. This relationship is also observed when only considering individual data within 806 
the SNR range for which simulation analyses indicated an unbiased abundance estimation. The black line indicates 807 
interpolated estimates from simulation analyses with a sustained rhythm (i.e., duration = 1; see Figure 3B left). 808 
Hence, it indicates a lower bound for the abundance underestimation that occurs at low SNRs, with notable overlap 809 
with the empirical estimates in the same SNR range. (B) The effective rhythmic signal can be conceptualized as 810 
the background-normalized rhythmic amplitude above the background estimate (rhythmic SNR). This proxy for 811 
signal clarity is inter-individually linked to abundance estimates. (C) Background estimates are not consistently 812 
related to abundance. This implies that the relationship between amplitude and abundance is mainly driven by the 813 
signal, but not background amplitude (i.e., the effective signal ‘clarity’) and that associations do not arise from a 814 
misfit of the background. (D) Rhythmicity estimates translate between power- and phase-based definition of 815 
rhythmicity. This indicates that the BOSC-detected rhythmic spectral peak above the 1/f spectrum contains the 816 
rhythmic information that is captured by phase-based duration estimates. All data are from the resting state. 817 
 818 

While the empirical results suggest a successful separation of rhythmic and arrhythmic 819 
content at the single-trial level, we also observed strong (and stable) inter-individual differences 820 
in alpha-abundance. This may imply actual differences in the duration of rhythmic engagement 821 
(as indicated in Figure 5B). However, we also observed a severe underestimation of abundance 822 
as a function of the overall signal-to-noise ratio (SNR) in simulations (Figure 3), thus leading 823 
to the question whether empirical data fell into similar ranges where an underestimation was 824 
likely. During the resting state, we indeed observed that many overall SNRs were in the range, 825 
where simulations with a stationary alpha rhythm suggested an underestimation of abundance 826 
(cf. black and blue lines in Figure 6A. The black line indicates simulation-based estimates for 827 
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stationary alpha rhythms at different overall SNR levels; see section 2.8). Moreover, the 828 
coupling of individual SNR and abundance values took on a deterministic shape in this range, 829 
whereas the association was reduced in ranges where simulations suggest sufficient SNR for 830 
unbiased abundance estimates (orange line in Figure 6A). As overall SNR is influenced by the 831 
duration of arrhythmic signal, rhythmic SNR may serve as an even better predictor of 832 
abundance due to its specific relation to rhythmic episodes (Figure 2). In line with this 833 
consideration, rhythmic SNR exhibited a strong linear relationship to abundance (Figure 6B). 834 
Importantly, the background estimate was not consistently related to abundance (Figure 6C), 835 
emphasizing that it is the ‘signal’ and not the ‘noise’ component of SNR that determines 836 
detection. Similar observations were made in the task data during the retention phase (Figure 837 
S5), suggesting that this association reflects a general link between the magnitude of the spectral 838 
peak and duration estimates. The joint analysis of simulated and empirical data thus questions 839 
the accuracy of individual duration estimates, especially at low SNRs, due to the dependence 840 
of unbiased estimates on sufficient rhythmic power. 841 

As eBOSC defines single-trial power deviations from a stationary power threshold as a 842 
criterion for rhythmicity, it remains unclear whether this association is exclusive to such a 843 
‘power thresholding’-approach or whether it constitutes a more general feature of single-trial 844 
rhythmicity. To probe this question, we calculated a phase-based measure of rhythmicity, 845 
termed ‘lagged coherence’ (Fransen et al., 2015), which assesses the stability of phase 846 
clustering at a single sensor for a chosen cycle lag. Here, 3 cycles were chosen for comparability 847 
with eBOSC’s duration threshold. Crucially, this definition of rhythmicity led to highly 848 
concordant estimates with eBOSC’s abundance measure3 (Figure 6D), suggesting that power-849 
based rhythm detection above the scale-free background overlaps to a large extent with the 850 
rhythmic information captured in the phase-based lagged-coherence measure. Moreover, it 851 
suggests that duration estimates are more generally coupled to rhythmic amplitudes, especially 852 
when overall SNR is low. 853 
 854 

 855 
Figure 7: The magnitude and duration of single-trial rhythmicity are intra-individually associated. Amplitude-856 
abundance association within subjects in the Sternberg task (1st session, all trials). Dots represent single trial 857 

                                                
3 The eBOSC duration measure was further strongly correlated with the traditional Pepisode measure 

(estimated at the trial-wise IAF) that results from the standard BOSC algorithm (EC: r = .96, p = 2e-18; 

EC2: r = .94, p = 2e-15; EO: r = .97, p = 3e-20; EO2: r = .97, p = 2e-20), suggesting that both measures 

are similarly sensitive in our empirical data and reflect to a large extent overlapping information. 
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estimates, color-coded by subject. Subject means are presented via diamonds. (Inlay) Histogram of within-subject 858 
Fisher’s z-coefficients of within-subject associations. Relationships are exclusively positive. (B) Background 859 
estimates are inter-individually uncorrelated with single-trial abundance fluctuations, excluding the outlier 860 
indicated by white edges. (C) Schematic of the potential interdependence of rhythmic SNR and abundance. Low 861 
SNR may cause the detection of shorter supra-threshold power periods with constrained amplitude ranges, whereas 862 
prolonged periods may exceed the stationary threshold when the rhythmic signal is clearly separated from the 863 
background. 864 
 865 

While the previous observations were made at the between-subjects level, we further 866 
investigated whether such coupling also persists between trials in the absence of between-867 
person differences. In the present data, we indeed observed a positive coupling of trial-wise 868 
fluctuations of rhythmic SNR and abundance (mean Fisher’s z: .60; p < 6.5e-19) (Figure 7A), 869 
whereas the estimate of the scale-free background was less consistently, though significantly 870 
(mean Fisher’s z: .20; p = 2.6e-6), related to the estimated duration of rhythmicity (Figure 7B). 871 
This suggests that the level of estimated abundance primarily relates to the magnitude of 872 
ongoing power fluctuations around the stationary power threshold. Figure 7C schematically 873 
shows how such an amplitude-abundance coupling may be reflected in single trials as a function 874 
of rhythmic SNR. These relationships were also observed in our simulations and in other 875 
frequency bands, although they were reduced in magnitude at higher levels of simulated 876 
empirical SNR (Figure 3E) and for other frequencies (Figure S6), suggesting that partial 877 
dissociations of the two parameters are feasible. 878 

In sum, these results strongly caution against the interpretation of duration measures as 879 
a ‘pure’ duration metric that is independent from rhythmic power, especially at low levels of 880 
SNR. The strong within-subject coupling may however also indicate an intrinsic coupling 881 
between the strength and duration of neural synchrony as joint representations of a rhythmic 882 
mode. Notably, covariations were not constrained to amplitude and abundance, but were 883 
widespread, including covariations between ‘SNR’ and the instability (or variability) of the 884 
individual alpha peak frequency (see Supplementary Materials; Figure S7). Combined, these 885 
results suggest that the efficacy of an accurate single-trial characterization of neural rhythms 886 
relies on sufficient individual rhythmicity and can not only constrain the validity of duration 887 
estimates, but broadly affect a range of rhythm characteristics that can be inferred from single 888 
trials. 889 
 890 
3.4 Rhythm detection improves amplitude estimates by removing arrhythmic episodes 891 
 892 

From the joint assessment of detection performance in simulated and empirical data, it 893 
follows that low SNR constitutes a severe challenge for single-trial rhythm characterization. 894 
However, while the magnitude of rhythmicity at the single trial level constrains the detectability 895 
of rhythms, abundance represents a lower bound on rhythmic duration due to eBOSC’s high 896 
specificity. This allows the interpretation of rhythm-related metrics for those time points where 897 
rhythmicity is indicated, leading to tangible benefits over standard analyses. In this section, we 898 
highlight multiple proof-of-concept cases of such benefits. 899 

 900 
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 901 
Figure 8: eBOSC differentiates spatially varying topographies of rhythmic and arrhythmic power during working 902 
memory retention. Asterisks mark the channels that were selected for the spectra on the right. The graph shading 903 
depicts standard errors. The topographies are grand averages from the retention phase of the Sternberg task across 904 
all sessions. 905 
 906 

A considerable problem in standard narrowband power analyses is the superposition of 907 
rhythmicity on top of a scale-free 1/f background, effectively mixing the two components in 908 
traditional power estimates (e.g. Haller et al., 2018). In contrast, eBOSC uncouples the two 909 
signals via explicit modelling of the arrhythmic background. Figure 8 presents a comparison 910 
between the standard narrowband estimate and eBOSC’s background and rhythmicity metrics 911 
for the alpha band during working memory retention. While high narrowband power is 912 
observed in frontal and parietal clusters, eBOSC differentiated a frontally-dominated 1/f 913 
component and a posterior-occipital rhythm cluster. Identical comparisons within multiple low-914 
frequency ranges suggest the separation of a stationary 1/f topography and spatially varying 915 
superpositions of rhythmicity (Figure S8). This highlights a successful separation of the scale-916 
free slope magnitude from rhythmicity across multiple frequencies, even when topographies 917 
are partially overlapping as in the case of theta. 918 
  919 
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 920 
Figure 9: Time-wise indication of rhythmicity improves rhythmic amplitude estimates and produces rhythm-921 
conditional spectra. (A) Comparison of rhythm-conditional spectra with the standard overall spectrum during the 922 
memory retention phase. Rhythm-conditional spectra are created by comparing spectra from time-points where a 923 
rhythm in the respective frequency range has been indicated with those where no rhythm was present. Notably, 924 
this indicates rhythmic peaks at the frequencies of interest that are not observed in the overall spectrum (e.g. theta, 925 
beta) due to the prevalence of non-rhythmic events. Simultaneous peaks beyond the target frequencies indicate 926 
cross-spectral coupling. Note that these spectra also suggest sub-clusters of frequencies (e.g. an apparent split of 927 
the ‘theta-conditional’ spectrum into a putative delta and theta component). Data are averaged across sessions, 928 
loads, subjects and channels. (B) Abundance topographies of the observed rhythm-conditional spectral peaks. (C) 929 
Arrhythmic duration linearly biases traditional power estimates during both rest and task states. The relative gain 930 
in alpha amplitudes from global intervals to eBOSC’s rhythmic periods (see schematic in Figure 1A and Figure 931 
2A) increases with the arrhythmic duration in the investigated period. That is, if high arrhythmic duration was 932 
indicated, a focus on rhythmic periods strongly increased amplitudes by excluding the pervasive low-amplitude 933 
arrhythmic periods. In contrast, amplitude estimates were similar when arrhythmicity was low and hence rhythm-934 
unspecific metrics contained little arrhythmic bias. Dots represent individual condition averages during the resting 935 
state. Amplitude gain is calculated as the relative change in rhythmic amplitude from the unspecific ‘overall’ 936 
amplitude (i.e., (rhythmic amplitude-overall amplitude)/rhythmic amplitude). (D) Rhythmic amplitudes reflect 937 
variations in time series amplitude, here visualized via a triadic split. The inset shows the statistical comparison of 938 
squared amplitudes in a 200 ms peri-peak window. Estimates are from Session 1 with data from all channels. *** 939 
= p < .001. 940 
 941 

Furthermore, the presence of a rhythm is a fundamental assumption for the 942 
interpretation of rhythm-related metrics, e.g., phase (Aru et al., 2015). This is often verified by 943 
observing a spectral peak at the frequency of interest. However, sparse single-trial rhythmicity 944 
may not produce an overt peak in the average spectrum due to the high prevalence of low-power 945 
arrhythmic content. Crucially, knowledge about the temporal occurrence of rhythms in the 946 
ongoing signal can be used to investigate the spectral content that is specific to those time 947 
points, thereby creating ‘rhythm-conditional spectra’. Figure 9A highlights that such rhythm-948 
conditional spectra can recover spectral peaks for multiple canonical frequency bands, even 949 
when no clear peak is observed in the grand average spectrum. This showcases that a focus on 950 
detected rhythmic time points allows the interpretation of rhythm-related parameters. 951 
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Abundance topographies for the different peaks observed in the rhythm-conditional spectra, 952 
were in line with the canonical separation of these frequencies in the literature (Figure 9B). 953 
Notably, while some rhythmicity was identified in higher frequency ranges, the associated 954 
abundance topographies suggests a muscular generator rather than a neural origin for these 955 
events. 956 

Related to the recovery of spectral amplitudes from ‘overall amplitudes’, a central 957 
prediction of the present work was that the change from overall to rhythmic amplitudes (i.e., 958 
rhythm-specific gain; see Figure 2 for a schematic) scales with the presence of arrhythmic 959 
signal. Stated differently, if most of the overall signal is rhythmic, the difference between 960 
overall and rhythm-specific amplitude estimates should be minimal. Conversely, if the overall 961 
signal consists largely of arrhythmic periods, rhythm-specific amplitude estimates should 962 
strongly increase from their unspecific counterparts. In line with these expectations, we 963 
observed a positive, highly linear, relationship between a subject’s estimated duration of 964 
arrhythmicity and the rhythm-specific amplitude gain (Figure 9C). Thus, for subjects with 965 
sparse rhythmicity, rhythm-specific amplitudes were strongly increased from overall 966 
amplitudes, whereas differences were minute for subjects with prolonged rhythmicity. Note 967 
however that in the case of inter-individual collinearity of amplitude and abundance (as 968 
observed in the present data) the rhythm-specific gains are unlikely to change the rank-order of 969 
subjects as the relative gain will not only be proportional to the abundance, but due to the 970 
collinearity also to the original amplitude. While such collinearity was high in the alpha band, 971 
decreased amplitude-abundance relationships were observed for other canonical frequency 972 
bands (Figure S6), where such ‘amplitude recovery’ may have the most immediate benefits. 973 

To assess whether these single-trial amplitude estimates validly reflected fluctuations 974 
in time series magnitude, we performed a triadic split based on single-trial amplitude estimates 975 
across all detected episodes (across channels and sessions) in the alpha band. We aligned time-976 
series representations of rhythmicity to the maximal negative peak and compared power in a 977 
window of 200 ms around this peak. Notably, rhythm-specific amplitude estimates reflected 978 
time series amplitudes during rhythmic periods (Figure 9D) with a larger effect size (medium 979 
vs. small: p =4e-7, Cohen’s d = 1.13, large vs. medium: p = 4e-9; Cohen’s d = 1.42) than overall 980 
amplitudes (medium vs. small: p =.002, Cohen’s d = .58, large vs. medium: p = 9e-7; Cohen’s 981 
d = 1.08). Interestingly, despite collinearity between amplitude and abundance at the within-982 
subject level (Figure 7A), a triadic split based on single-trial abundance estimates did not 983 
differentiate rhythmic amplitudes (medium vs. small: p =.34, Cohen’s d = .17, large vs. 984 
medium: p = .45; Cohen’s d = -.14). Hence, rhythm-specific amplitude estimates were better 985 
predictors of time series amplitudes than traditional averages that included arrhythmic episodes 986 
or estimates of rhythmic duration. 987 

In sum, eBOSC provides sensible single-trial amplitude estimates of narrow-band 988 
rhythmicity that are boosted in magnitude due to the removal of arrhythmic episodes. 989 
 990 
  991 
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3.5 eBOSC separates sustained and transient spectral events 992 
 993 

 994 
Figure 10: eBOSC provides a varied characterization of duration-specific frequency content, separating sustained 995 
rhythmicity from transients. Episodes with a mean frequency between 8 and 15 Hz were post-hoc sorted by falling 996 
below or above a 3-cycle duration threshold. For each index, estimates were averaged across all episodes at any 997 
time point, followed by averaging across subjects and sessions. All indices are based on episodes that fulfil the 998 
power threshold for rhythmicity. (A) Time-domain representation of alpha rhythms (A1) and transients (A2) 999 
during retention and probe respectively. Backgrounds display moving averages of 150 raw rhythmic episode time 1000 
series across all subjects. Events are aligned to the closest trough to the TFR maximum of the identified event. 1001 
Episodes are sorted by episode onset relative to the identified trough. Individual (yellow) and grand data averages 1002 
(red) are superimposed.  (B) Rhythmic SNR linearly relates to the number of rhythmic events during retention, but 1003 
not transient events during probe presentation. (C) Rhythm- and transient-specific estimates of episode prevalence 1004 
(C1), duration (C2), frequency (C3) and power (C4). Central panels show time-channel representations of group 1005 
indices for rhythmic (left) and transient episodes (right). Lateral topographies indicate the corresponding statistical 1006 
comparisons of paired t-tests comparing the retention and the probe period. Asterisks signify significant electrode 1007 
clusters. Unbroken white lines indicate stimulus presentations, broken white lines indicate probe presentation.  1008 
 1009 

In addition to specificity gains for rhythmic indices, eBOSC’s creation of temporally 1010 
contiguous rhythmic ’episodes’ affords a characterization of rhythmic and transient episodes 1011 
with significant spectral power in the absence of an a priori duration requirement. Using the 1012 
traditional 3-cycle threshold as a post-hoc criterion for detected episodes, we separated 1013 
rhythmic and transient spectral events with clear differences in their time-domain 1014 
representations (Figure 10A). Notably, while rhythmic SNR related to the number of detected 1015 
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rhythmic events, the same was not observed for the number of transient episodes (Figure 10B2), 1016 
thus indicating that rhythms and transients may arise from different mechanisms. In line with 1017 
the observations made for rhythmic vs. arrhythmic power (cf. Figure 5A), we observed 1018 
differences in the temporal prevalence of transient events and sustained rhythms. Specifically, 1019 
stimulus onsets increased the number of transient events (Figure 10A1), whereas sustained 1020 
rhythms were increased during the retention phase. These episodes can be further characterized 1021 
in terms of their duration in cycles (Figure 10A2), their mean frequency (Figure 10A3) and 1022 
event-specific power (Figure 10A4). During the retention phase, we observed an increased 1023 
number of larger and longer rhythms compared with the probe period with no apparent 1024 
differences in frequency. In contrast, we observed a global increase in the number of transients 1025 
during probe presentation, with those transients being of higher frequency compared to 1026 
transients during the retention phase. The magnitude and duration of transients did not differ 1027 
globally between these two task periods. Taken together, these analyses suggest a principled 1028 
separation of sustained and transient spectral events on the bases of temporal post-hoc 1029 
thresholds. 1030 

Finally, the temporal specificity of spectral episodes also enables a characterization of 1031 
rhythm-‘evoked’ events (see Supplementary Materials). Whereas an assessment of evoked 1032 
effects has thus far only been possible with regard to external event markers, the indication of 1033 
rhythm on- and offsets allows an investigation of concurrent changes that are time-locked to 1034 
rhythmic events (Figure S9A). Here, we exemplarily show that the on- and offsets of rhythmic 1035 
episodes are associated with concurrent power increases and decreases respectively (Figure 1036 
S9B), adding further evidence for the high temporal specificity of indicated on- and offsets of 1037 
rhythmic episodes. 1038 

In sum, these proof-of-concept applications suggest that explicit rhythm detection may 1039 
provide tangible benefits over traditional narrowband analyses due to the specific separation of 1040 
rhythmic and arrhythmic periods, despite the high collinearity of abundance and power that we 1041 
observed in the alpha band.  1042 

 1043 
  1044 
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3.5 Rhythm-specific indices exhibit improved sensitivity to working memory load 1045 

 1046 
Figure 11: Memory load-modulation of traditional wavelet power, rhythmic abundance and rhythmic amplitude. 1047 
Traditional wavelet estimates indicated no significant parametric load of either frontal theta or posterior alpha 1048 
power (A), whereas a load-related increase was indicated for both theta and alpha abundance (B). In contrast to 1049 
abundance, no significant relationship with load was indicated for rhythm-specific amplitudes (C).  1050 
 1051 

So far, we investigated the potential to derive rhythm-specific estimates and highlighted 1052 
resulting benefits. It remains unclear however, to what extent these estimates are experimentally 1053 
modulated in cognitive tasks and whether they add complementary information to extant 1054 
measures. To attend this question, we probed the effect of working memory load on traditional, 1055 
rhythm-unspecific power averages and eBOSC’s duration and amplitude in the alpha and theta 1056 
band4. Standard power estimates indicated load-related increases in frontal theta and right 1057 
posterior alpha power that did not reach statistical significance however (Figure 11A; see also 1058 
Figure S10 for different normalization procedures). In contrast, significant increases were 1059 
observed for rhythmic abundance (Figure 11B), but not for rhythm-specific power, despite 1060 
similar statistical topographies (Figure 11C). To investigate whether rhythmic abundance 1061 
captured additional variance of memory load compared to amplitude, we performed linear 1062 
mixed effects modeling of data averages within the (topographically-similar) abundance 1063 
clusters. The results are presented in Supplementary Table 2. As expected, we observed high 1064 
collinearity between different measures, expressed as significant pairwise relations between 1065 
traditional and rhythm-specific indices. Controlling for this high collinearity however, memory 1066 
load predicted increases in theta and alpha abundance over and above overall, and rhythmic-1067 
specific, amplitudes. In contrast, rhythm-specific amplitudes did not capture unique variance in 1068 
load level when controlling for overall amplitude, in line with the absence of an indicated effect 1069 
by the permutation test. Jointly, these analyses suggest that rhythmic abundance, despite high 1070 
collinearity with overall and rhythmic amplitudes, is more sensitive to working memory load 1071 
than (traditional) amplitude estimates. 1072 

                                                
4  Regarding traditional metrics, we assessed three normalization procedures: raw signals, 
single-trial log10-transformation and baseline correction with average power 700 to 500 ms 
prior to retention onset. In contrast with temporal baselining, eBOSC performs spectral 
normalization by explicitly modelling the 1/f slope. 

A1

A2

B1

B2

C1

C2
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 1073 
Figure 12: Descriptors of single-trial rhythmic events relate to working memory load. (A, B) Rhythmic event rates 1074 
are a relevant parameter for describing band-specific task modulations. (A) Different frequency bands vary in their 1075 
sustained vs. transient time domain appearance. Conventions are the same as in Figure 10B. X-axes are scaled to 1076 
cover approx. 6 cycles at each frequency. (B) Rhythmic event rates are modulated by working memory load except 1077 
in the alpha band, where events appear the most sustained. Alpha rate was averaged from 8-12 Hz here to exclude 1078 
beta rate decreases. (C) Rhythmic frontal theta frequency decreases with working memory load. (Top) Rhythm-1079 
specific spectra indicate a parametric shift in theta frequencies with load. Statistics are based on a cluster-based 1080 
permutation test. The inset shows the cluster for which a significant relation between load and the average 1081 
frequency of rhythmic theta episodes is indicated. Spectra are averaged across significant cluster channels. Error 1082 
bars indicate within-subject standard errors. (Lower) The overall spectrum does not show a clear spectral peak in 1083 
the theta range or a shift in theta frequency. Note that amplitude values are increased in the rhythm-specific version 1084 
compared to the rhythm-unspecific estimates.  1085 
 1086 

The previous analyses focused on the total rhythmic abundance and power during the 1087 
retention phase. However, rhythmicity can also be characterized with regard to individual 1088 
spectral events, such as their rate of occurrence. In line with our observation of high abundance, 1089 
rhythmic events in the alpha band were characterized by enduring rhythmicity, whereas events 1090 
in other frequency bands had a more transient signature (Figure 12A). This poses the question 1091 
whether the rate of these transient events may be a critical parameter, as has been previously 1092 
suggested for the beta and gamma band (Lundqvist et al., 2016; Shin, Law, Tsutsui, Moore, & 1093 
Jones, 2017). To attend this question, we created rate spectra based on the occurrence of 1094 
rhythmic episodes in sliding frequency windows. These spectra were then subjected to a cluster-1095 
based permutation test to assess their relation with memory load. We observed increased rates 1096 
of frontal theta and posterior gamma events as well as decreased rates of central beta events 1097 
with load, whereas no differences were indicated for the alpha band (Figure 12B). Hence, 1098 
whereas the sustained appearance of alpha rhythms may render other parameters such as 1099 
duration and power critical, in other frequency bands, modulation may also affect the number 1100 
of relatively sparse events.  1101 
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In turn, focusing on these sparse rhythmic events can drastically increase their amplitude 1102 
estimates and may thus improve dependent metrics (e.g., see Figure 9C). During our exploration 1103 
of rhythmic parameters, we observed a parametric load-related decrease of frontal theta 1104 
frequency (Figure 12C) that spatially aligned with the frontal topography of theta rate and 1105 
abundance increases (see Figure 12B & 11B). Individual rhythmic frequency decreases 1106 
between low and high loads were not related to individual abundance (r = .33, p = .06) or 1107 
amplitude (r = .06, p =.73) changes, suggesting that differences in rhythmic SNR cannot solely 1108 
account for individual frequency shifts. To visualize the shift in theta frequency, we computed 1109 
FFT spectra with a high spectral resolution (.33 Hz), separately for rhythmic episodes, and – as 1110 
traditionally done – for the entire retention period. Critically, frequency-modulated theta peaks 1111 
at frontal channels were only observed for rhythmic, but not for overall spectra (Figure 12C) 1112 
due to a threefold increase in the magnitude of single-trial events across the entire segment. 1113 
Moreover, in line with the results of eBOSC’s wavelet-based frequency estimates, significant 1114 
negative load-related slopes were indicated for rhythm specific FFT frequency estimates 1115 
(mean= -.16, SE = .05, p = .005) but not rhythm-unspecific global estimates (mean = -.05, SE 1116 
= .06, p = .36). Hence, a focus on rhythmic episodes was necessary to reveal memory-load 1117 
related frequency decreases of frontal theta rhythms, which would have been missed with 1118 
traditional analyses.  1119 

In sum, these results highlight the potential of single-trial-based rhythm estimates to 1120 
boost signal of interest to advance analyses regarding the role of rhythmicity in cognition. 1121 
 1122 
4. Discussion 1123 
 1124 

In the present manuscript, we explored the feasibility of characterizing neural rhythms 1125 
at the level of single trials. To achieve this goal, we extended a previously published rhythm 1126 
detection method, BOSC (Whitten et al., 2011). Based on simulations we demonstrate that our 1127 
extended BOSC (eBOSC) algorithm performs well and increases detection specificity. 1128 
Crucially, the reliance on robust regression in conjunction with removal of the rhythmic power 1129 
band effectively decoupled estimation of the noise background from the rhythmic signal 1130 
component (as reflected in the divergent associations with rhythmicity estimates). In real data, 1131 
we can successfully separate rhythmic and arrhythmic, sometimes transient components, and 1132 
further characterize e.g., their amplitude, duration and frequency. In total, single-trial 1133 
characterization of neural rhythms appears promising for improving a mechanistic 1134 
understanding of rhythmic processing modes during rest and task.  1135 

However, the simulations also reveal challenges for accurate rhythm characterization in 1136 
that the abundance estimates clearly depend on rhythmic power. The comparison to a phase-1137 
based rhythm detection further suggests that this a general limitation independent of the chosen 1138 
detection algorithm. Below, we will discuss the potential and challenges of single-trial rhythm 1139 
detection in more detail. 1140 
 1141 
4.1 The utility and potential of rhythm detection 1142 
 1143 
 Single-trial analyses are rapidly gaining importance (Jones, 2016; Stokes & Spaak, 1144 
2016), in part due to a debate regarding the sustained vs. transient nature of neural rhythms that 1145 
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cannot be resolved at the level of data averages (Jones, 2016; van Ede et al., 2018). In short, 1146 
due to the non-negative nature of power estimates, time-varying transient power increases may 1147 
be represented as sustained power upon averaging, indicating an ambiguity between the 1148 
duration and power of rhythmic events (cf., Figure 2B). Importantly, sustained and transient 1149 
events may differ in their neurobiological origin (Sherman et al., 2016), indicating high 1150 
theoretical relevance for their differentiation. Moreover, many analysis procedures, such as 1151 
phase-based functional connectivity, assume that estimates are directly linked to the presence 1152 
of rhythmicity, therefore leading to interpretational difficulties when it is unclear whether this 1153 
condition is met (Aru et al., 2015; Muthukumaraswamy & Singh, 2011). Clear identification of 1154 
rhythmic time periods in single trials is necessary to resolve these issues. In the current study, 1155 
we extended a state-of-the-art rhythm detection algorithm, and systematically investigated its 1156 
ability to characterize the power and duration of neural alpha rhythms at the single-trial level 1157 
in scalp EEG recordings. 1158 

While the standard BOSC method provides a sensible detection of rhythmic activity in 1159 
empirical data (Caplan et al., 2015; Whitten et al., 2011), its’ ability to detect rhythmicity and 1160 
disambiguate rhythmic power and duration has not yet been investigated systematically. 1161 
Furthermore, we introduced multiple changes that aimed to create rhythmic episodes with a 1162 
time-point-wise indication of rhythmicity. For these reasons, we assessed the performance of 1163 
both algorithms in simulations. We observed that both algorithms were able to approximate the 1164 
duration of rhythmicity across a large range of simulated amplitudes and durations. However, 1165 
standard BOSC systematically overestimated rhythmic duration (Figure 3A). Furthermore, we 1166 
observed a bias of rhythmicity on the estimated background (Figure 3C) as also noted by Haller 1167 
et al. (2018). In contrast, eBOSC accounts for these problems by introducing multiple changes: 1168 
First, by excluding the rhythmic peak prior to fitting the arrhythmic background, eBOSC 1169 
decreased the bias of narrow-band rhythmicity on the background fit (Figure 3C), thereby 1170 
effectively uncoupling the estimated background amplitude from the indicated rhythmicity. 1171 
Second, the post-processing of detected segments provided a more specific characterization of 1172 
neural rhythms compared to standard BOSC. In particular, accounting for the temporal 1173 
extension of the wavelet increased the temporal specificity of rhythm detection as indicated by 1174 
a better adherence to the a priori duration threshold along with more precise duration estimates 1175 
(Figures 3). In contrast to the high specificity, the algorithm did trade off sensitivity, leading to 1176 
sensitivity losses that were most pronounced at low signal-to-noise ratios (SNR). In sum, the 1177 
simulations highlight that eBOSC provides a sensible differentiation of rhythmic and 1178 
arrhythmic time points as well as accurate duration estimates, but also highlight challenges for 1179 
empirically disentangling rhythmic power and duration that arise from sensitivity problems 1180 
when the magnitude of rhythms is low. We discuss this further in section 4.2. In empirical data, 1181 
eBOSC likewise led to a sensible separation of rhythmic from arrhythmic topographies (Figure 1182 
4A, Figure 8, Figure S8) and time courses, both at the average (Figure 5A) and the single-trial 1183 
level (Figure 5B). This suggests a sensible separation of rhythmic and arrhythmic time points 1184 
also in empirical scenarios. 1185 

The specific separation of rhythmic and arrhythmic time points has multiple immediate 1186 
benefits that we validated using empirical data from resting and task states. First, eBOSC 1187 
separates the scale-free background from superimposed rhythmicity in a principled manner. 1188 
The theoretical importance of such separation has previously been highlighted (Haller et al., 1189 
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2018), as narrow-band estimates traditionally confound the two signals. Here, we show that 1190 
such a separation empirically produces different topographies for the arrhythmic background 1191 
and the superimposed rhythmicity (Figure 8 and Figure S8). In line with these findings, Caplan 1192 
et al. (2015) described a rhythmic occipital alpha topography, whereas overall power included 1193 
an additional anterior component across multiple lower frequencies. While that study did not 1194 
plot topographies for the background estimates, our study suggests that this frontal component 1195 
is captured by the background magnitude. This provides convergent evidence for a principled 1196 
separation of rhythmic and arrhythmic spectral content which may be treated as a signal of 1197 
interest in itself (Buzsáki & Mizuseki, 2014; He et al., 2010). 1198 

The separation of these signal sources at single time points can further be used to 1199 
summarize the rhythmic single-trial content via rhythm-conditional spectra (Figure 9). 1200 
Crucially, such a focus on rhythmic periods resolves biases from arrhythmic periods in the 1201 
segments of interest. In line with our hypotheses, simulations (Figure 2B) and empirical data 1202 
(Figure 9C) indicate that arrhythmic episodes in the analysed segment bias overall power 1203 
estimates relative to the extent of their duration. Conversely, a focus on rhythmic periods 1204 
induces the most pronounced amplitude gains when rhythmic periods are sparse. This is in line 1205 
with previous observations by Cole & Voytek (2018), showing dissociations between power 1206 
and frequency estimates when considering ‘rhythmic’ vs. unspecific periods and extend those 1207 
observations by showing a strong linear dependence between the rhythm-specific change in 1208 
estimates and the duration of arrhythmic bias (Figure 9C). 1209 

Moreover, by allowing a post-hoc duration threshold, eBOSC can disentangle transient 1210 
and sustained events in a principled manner (Figure 10). This may provide new insights into 1211 
the contribution of different biophysical signal generators (Sherman et al., 2016) to observed 1212 
neural dynamics and aid the characterization of these processes. Such characterization includes 1213 
multiple parameters, such as the frequency of rhythmic episodes, their duration, their amplitude 1214 
and other indices that we did not consider here (e.g., instantaneous phase, time domain shape). 1215 
Here, we observed an increased number of alpha transients following stimulus onsets, and more 1216 
sustained rhythms when no stimulus was presented (Figure 5A, Figure 10). In line with these 1217 
observations, Peterson & Voytek (2017) recently proposed alpha ‘bursts’ to increase visual gain 1218 
during stimulus onsets and contrasted this role with decreased cortical processing during 1219 
sustained alpha rhythms. Our data supports such a distinction between sustained and transient 1220 
events, although it should be noted that the present transients resemble single time-domain 1221 
deflections that are resolved at alpha frequency (Figure 10A2) and may therefore not directly 1222 
relate to the ‘rhythmic bursts’ proposed by Peterson & Voytek (2017). Note that the reported 1223 
duration of ‘burst’ events in the literature is still diverse, often exceeding the 3-cycle threshold 1224 
used here (Peterson & Voytek, 2017). In contrast to eBOSC however, previous work has not 1225 
accounted for the impact of wavelet duration. It is thus conceivable that power transients that 1226 
were previously characterized as 3 cycles or longer are actually shorter after correcting for the 1227 
impact of wavelet convolution, as is done in the current eBOSC implementation (Figure S1). 1228 
This temporal specificity also allows an indication of rhythm-evoked changes, here exemplified 1229 
with respect to rhythm-evoked power changes (Figure S9). We observed a precise and 1230 
systematic time-locking of power changes to the on- and offset of detected rhythmic episodes. 1231 
This further validates the detection assumptions of the eBOSC method (i.e. significant power 1232 
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increases from the background), and highlights the temporal specificity of eBOSC’s rhythmic 1233 
episodes.  1234 

In total, eBOSC’s single-trial characterization of neural rhythms provides multiple 1235 
immediate benefits over traditional average-based analyses temporally precise indication of 1236 
rhythmic and arrhythmic periods. It thus appears promising for improving a mechanistic 1237 
understanding of rhythmic processing modes during rest and task.  1238 
 1239 
4.2 Single-trial detection of rhythms: rhythmic SNR as a central challenge 1240 

 1241 
The aforementioned examples highlight the utility of differentiating rhythmic and 1242 

arrhythmic periods in the ongoing signal. However, the simulations also indicated problems to 1243 
accurately do so when rhythmic power is low. That is, the recognition of rhythms was more 1244 
difficult at low levels of SNR, leading to problems with their further characterization. In 1245 
particular, our simulations suggest that estimates of the duration (Figure 6A) and frequency 1246 
stationarity (Figure S7) increasingly deviate from the simulated parameters as the SNR 1247 
decreases. Changes in instantaneous alpha frequency as a function of cognitive demands have 1248 
been theorized and reported in the literature (Haegens, Cousijn, Wallis, Harrison, & Nobre, 1249 
2014; Herrmann, Murray, Ionta, Hutt, & Lefebvre, 2016; Mierau, Klimesch, & Lefebvre, 2017; 1250 
Samaha & Postle, 2015; Wutz, Melcher, & Samaha, 2018), with varying degrees of control for 1251 
power differences between conditions and individuals. Our empirical analyses suggest an 1252 
increased trial-by-trial variability of individual alpha frequency estimates as SNR decreases 1253 
(Figure S7). Meanwhile, simulations suggest that such increased variance - both estimated 1254 
within indicated rhythmic periods and across whole trials – may result from lower SNR. While 1255 
our results do not negate the possibility of real frequency variations of the alpha rhythm with 1256 
changes in task load, they emphasize the importance of controlling for the presence of rhythms, 1257 
mirroring considerations for the interpretation of phase estimates (Muthukumaraswamy & 1258 
Singh, 2011) and amplitudes. This exemplifies how stable inter-individual differences in 1259 
rhythmicity (whether due to a real absence of rhythms or prevalent measurement noise; e.g., 1260 
distance between source and sensor; head shape; skull thickness) can affect a variety of ‘meta‘-1261 
indices (like phase, frequency, duration) whose estimation accuracy relies on apparent 1262 
rhythmicity.  1263 

The challenges for characterizing rhythms with low rhythmic power also apply to the 1264 
estimated rhythmic duration, where the issue is particularly challenging in the face of legitimate 1265 
interest regarding the relationship between the power and duration of rhythmic events. In 1266 
particular, sensitivity problems at low rhythmic magnitudes challenge the ability to empirically 1267 
disambiguate rhythmic duration and power, as it makes the former dependent on the latter in 1268 
the presence of noise (e.g., Figure 2B). Crucially, a tight link between these parameters was 1269 
also observed in the empirical data. During both rest and task states, we observed gradual and 1270 
stable inter-individual differences in the estimated extent of rhythmicity that were most strongly 1271 
related to the overall SNR in ranges with a pronounced sensitivity loss in simulations (see 1272 
Figure 4A black line). Given the observed detection problems in our simulations, this 1273 
ambiguates whether low empirical duration estimates indicate temporally constrained rhythms 1274 
or estimation problems. Conceptually, this relates to the difference between lower SNR subjects 1275 
having (A) low power, transient alpha engagement or (B) low power, sustained alpha 1276 
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engagement that was too faint to be detected (i.e., sensitivity problems). While the second was 1277 
the case in the simulations, the absence of a ground truth does not allow us to resolve this 1278 
ambiguity in empirical data. 1279 

Empirically, multiple results suggest that the low duration estimates at low SNRs did 1280 
not exclusively arise from idiosyncrasies of our algorithm. Notably, inter-individual differences 1281 
in eBOSC’s abundance measure were strongly correlated with standard BOSC’s Pepisode 1282 
measure (Whitten et al., 2011) as well as the phase-based lagged coherence index (Fransen et 1283 
al., 2015), thus showing high convergence with different state-of-the-art techniques (Figure 1284 
6D). Furthermore, detection performance was visually satisfying in single trials given 1285 
observable task-locked rhythm dynamics for rhythmic, but not arrhythmic periods (Figure 5B). 1286 
Moreover, the observed relationship between amplitude gain and abundance suggests a 1287 
successful exclusion of (low-power) arrhythmic episodes at the individual level (Figure 9C). 1288 
These observations indicate that low SNR conditions present a fundamental challenge to single-1289 
trial characterization across different methods. The convergence between power- and phase-1290 
based definitions of rhythmicity also indicates that rhythmicity can exhaustively be described 1291 
by the spectral peak above the background, in line with our observations regarding rhythm-1292 
conditional spectra (Figure 9A). 1293 

The observation of strong between-person coupling as a function of SNR suggests that 1294 
such sensitivity limitations may account for the inter-individual amplitude-abundance 1295 
associations. However, we also observed a positive association between subjects with high 1296 
alpha SNR. Likewise, we observed positive associations between abundance and rhythmic SNR 1297 
at the within-subject level (Figure 5). While trial-wise coupling was also present in our 1298 
simulations, the magnitude of these relationships was lower at high SNR (Figure 3E). 1299 
Conversely, in empirical data, the within-subject association did not vary in magnitude as a 1300 
function of the individual SNR. Hence, separate sources may contribute to a coupling of 1301 
rhythmic amplitude and abundance: a methods-induced association in low SNR ranges and an 1302 
intrinsic coupling between rhythmic strength and duration as a joint representation of rhythmic 1303 
synchrony. Notably, empirical within-subject coupling between rhythmic amplitude and 1304 
duration was previously described for LFP beta bursts in the subthalamic nucleus (Tinkhauser 1305 
et al., 2017), with both parameters being sensitive to a drug manipulation. This association was 1306 
interpreted as a “progressive synchronization of inputs over time” (Tinkhauser et al., 2017; p. 1307 
2978). Due to the absence of a dissociation of these parameters, it remains unclear whether the 1308 
two measures make independent contributions or whether they can be conceptualized as a single 1309 
underlying latent ‘rhythmicity’ index. To resolve this ambiguity, clear dissociations of 1310 
amplitude and duration estimates in data with high rhythmic SNR are necessary. Notably, 1311 
potential dissociations between the individual power and duration of beta events has been 1312 
suggested by Shin et al. (2017), who described differential relationships between event number, 1313 
power and duration to mean power and behaviour.  1314 

The high collinearity between overall amplitude and abundance may be surprising given 1315 
evidence of their potential dissociation in the case of beta bursts (where overall abundance is 1316 
low, but burst amplitudes are high) (Lundqvist et al., 2016; Sherman et al., 2016; Shin et al., 1317 
2017). In line with this notion, Fransen et al. (2015) reported an increased sensitivity for central 1318 
beta rhythmicity using the lagged coherence duration index compared with overall power. It 1319 
may thus be that the alpha range is an outlier in this regard due to the presence of relatively 1320 
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sustained rhythmicity (Figure 12A). A frequency-wise comparison of the between- and within-1321 
subject collinearity between amplitude and abundance collinearity indicated a particularly high 1322 
overlap for the alpha range (Figure S6) with relatively lower coupling for delta, theta and beta. 1323 
In addition, we observed load modulations on rhythm event rate in many bands but alpha 1324 
(Figure 12B). Whether these band-specific differences primarily relate to their lower 1325 
rhythmicity in the current data or reflect systematic differences between frequencies remains 1326 
an open question and requires data with more prominent rhythmicity in these bands. 1327 

The strong collinearity of amplitude and duration estimates also questions the successful 1328 
disambiguation of the two indices in empirical data and more generally the interpretation of 1329 
duration as an independent index. In cases where such metrics only serve as a sensitive and/or 1330 
specific replacement for power (Caplan et al., 2015; Fransen et al., 2015) this may not be 1331 
problematic, but care has to be taken in interpreting available duration indices as power-1332 
independent characteristics of rhythmic episodes. An independent duration index becomes 1333 
increasingly important however to assess whether rhythms are stationary or transient. For this 1334 
purpose, both amplitude thresholding and phase-progression criteria have been proposed (Cole 1335 
& Voytek, 2018; Peterson & Voytek, 2017; Sherman et al., 2016; van Ede et al., 2018; Vidaurre, 1336 
Myers, Stokes, Nobre, & Woolrich, 2018). Here, we show that both methods arrive at similar 1337 
conclusions regarding individual rhythmic duration and that the mentioned challenges are 1338 
therefore applicable to both approaches. As an alternative to threshold-based methods, Van Ede 1339 
et al. (2018) propose methods based on e.g., Hidden Markov Models (Vidaurre et al., 2018; 1340 
2016) for the estimation of rhythmic duration. These approaches are interesting as the definition 1341 
of states to be inferred in single trials is based on individual (or group) averages, while the 1342 
multivariate nature of the signals across channels is also considered. It is a viable question for 1343 
future investigations whether such approaches can adequately characterize the duration of 1344 
rhythmic states in scenarios where the present methods fail.  1345 
 1346 
4.3 Experimental manipulation of rhythm-specific indices 1347 
 1348 

To establish the practical utility of rhythm detection, we probed the experimental 1349 
modulation of rhythm-specific indices during working memory retention. We focused on this 1350 
phase as it has received large interest for distinguishing between transient and sustained 1351 
retention codes (Lundqvist et al., 2016; Lundqvist, Herman, Warden, Brincat, & Miller, 2018), 1352 
with both theoretical models (Jensen & Lisman, 1998; Lisman & Jensen, 2013; Lundqvist, 1353 
Herman, & Lansner, 2011) and empirical evidence (Jensen et al., 2002; Jensen & Tesche, 2002; 1354 
Jokisch & Jensen, 2007; Meltzer et al., 2008; Michels et al., 2008; Onton et al., 2005; 1355 
Scheeringa et al., 2009; Tuladhar et al., 2007) suggesting that low-frequency rhythmicity 1356 
increases with load. In line with this evidence, we observed load-related increases in the total 1357 
duration of frontal theta and right parietal alpha rhythms during visual working memory 1358 
retention, despite traditional power estimates not reaching statistical significance. Reinforcing 1359 
these results, mixed modelling indicated a high sensitivity of rhythmic abundance to both eye 1360 
closure and working memory load while controlling for its collinearity with traditional 1361 
estimates. This may be due to multiple advantages: eBOSC’s estimates are spectrally 1362 
normalized and individually specific e.g. to individual peak frequencies, while not assuming 1363 
stationarity across time. Furthermore, rhythm-specific measures are theoretically agnostic to 1364 
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the magnitude of desynchronization, as they only characterize rhythmicity when it is present. 1365 
Interestingly, abundance was also more sensitive to the load effect than rhythm-specific 1366 
amplitudes, suggesting that duration may be a critical parameter to describe cognitive effects 1367 
despite high collinearity with amplitude. 1368 

In addition to our confirmatory analyses in the theta and alpha band, we also explored 1369 
the load modulation of individual spectral events. Here, we observed that the rate of spectral 1370 
events during the retention phase was modulated in the theta, beta and gamma, but not the alpha 1371 
band. This is interesting given that alpha events had a more continuously ‘rhythmic’ appearance 1372 
overall, whereas the relative rate of spectral events may be relevant for frequency bands with 1373 
sparse events, as has been suggested for the beta band (Shin et al., 2017). While we confirm the 1374 
feasibility of such analyses across multiple frequency bands here, we note that further work on 1375 
the complementary value of such event rates is required to establish their functional 1376 
significance.  1377 

During our analyses we also observed frequency decreases of rhythmic episodes in the 1378 
theta band at frontal channels. Decreases in rhythmic theta frequency have previously been 1379 
hypothesized in the framework of theta-gamma multiplexing serving working memory storage 1380 
(Bahramisharif, Jensen, Jacobs, & Lisman, 2018; Jensen & Lisman, 1998). In particular, a 1381 
version of this computational model anticipates that the frequency of theta rhythms determines 1382 
the amount of gamma cycles that can be multiplexed within a single theta cycle. As the number 1383 
of targets to be held in memory increases, the theory predicts a slowing of theta with increasing 1384 
load. Such a load-related decrease in gamma-modulating theta frequencies has been observed 1385 
in human hippocampus (Axmacher et al., 2010). However, this has been difficult to show 1386 
outside of invasive recordings. Here we observed that overall power did not exhibit a clear 1387 
spectral peak in the theta range, but that such peak became apparent only when estimates were 1388 
constrained to rhythmic periods. Furthermore, a parametric decrease in the frequency of single-1389 
trial rhythmic episodes was indicated. This suggests that the observed frontal theta signature 1390 
may support the multiplexing of individual items during the retention period and may even have 1391 
a hippocampal origin. However, as we observed this effect by exploration, further work should 1392 
confirm these hypotheses. 1393 

Taken together, our results highlight that a variety of rhythm-specific characteristics are 1394 
sensitive to experimental modulations, such as working memory load. Despite the observed 1395 
high collinearity between estimates, modulations suggest sensitivity differences between 1396 
different rhythm estimates. Their automatic single-trial estimation using tools such as eBOSC 1397 
may thus further our understanding of the role of rhythmicity in cognition, without necessitating 1398 
the (often unchecked) assumptions of data averages. 1399 
 1400 
4.4 Comparison to other single-trial detection algorithms & limitations 1401 
 1402 

The BOSC-family of methods is conceptually similar to other methods that are currently 1403 
used to identify and describe spectral events in single trials. These methods share the underlying 1404 
principle of identifying rhythmic events based on momentary power increases relative to an 1405 
average baseline. Such detection is most common regarding transient beta bursts, for which a 1406 
beta-specific power threshold is often defined. For example, Sherman et al. (2016) identified 1407 
transient beta events based on the highest power within the beta range, i.e., without an explicit 1408 
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threshold. Shin et al. (2017) introduced a beta-specific power threshold based on average pre-1409 
stimulus power. Similarly, Feingold et al. (2015) defined beta events as exceeding 1.5/3 times 1410 
the median beta power of that channel, while Tinkhauser et al. (2017) applied a 75th percentile 1411 
threshold to beta amplitudes. These approaches therefore use a spectrally local power criterion, 1412 
but no duration threshold. Most closely related to the BOSC-family is the MODAL method by 1413 
Watrous et al. (2018), which similarly uses a robust fit of the 1/f spectrum to detect rhythmic 1414 
events in continuous data and then further derives frequency and phase estimates for those 1415 
rhythmic periods. This is conceptually similar to eBOSC’s definition as ‘statistically 1416 
significant’ deviations in power from the 1/f background spectrum, except for the absence of a 1417 
dedicated power or duration threshold. However, all of the above methods share the 1418 
fundamental assumption of a momentary power deviation from a frequency-specific 1419 
‘background’, with varying implementations of a 1/f model assumption. Such assumption can 1420 
be useful to avoid a bias of rhythmic content on the power threshold (as a spectrally local power 1421 
threshold depends on the average magnitude of band-limited rhythmicity, i.e., arrhythmic + 1422 
rhythmic power). Removing the rhythmic peak prior to background modelling helps to avoid 1423 
such bias (Figure 3C). The eBOSC method thereby provides a principled approach for the 1424 
detection of single-trial events across frequencies (as shown in Figure 9). 1425 

A systematic and general removal of spectral peaks remains a challenge for adequate 1426 
background estimates. In the current application, we exclusively removed alpha-band power 1427 
prior to performing the background fit. While the alpha rhythm produced the largest spectral 1428 
peak in our data (see Figure S4), this should not be understood as a fixed parameter of the 1429 
eBOSC approach, as other rhythmic peaks may bias the estimation of the background spectrum 1430 
depending on the recording’s specifics (e.g., type, location etc.). We perceive the need to 1431 
remove rhythmic peaks prior to background fitting as a general one5, as residual spectral peaks 1432 
bias detection efficacy across the entire spectrum via misfits of the background intercept and/or 1433 
slope. In particular, rhythmic peaks at higher frequencies disproportionally increase the 1434 
background estimate at lower frequencies due to the fitting in logarithmic space. Thus, a 1435 
principled removal of any spectral peaks in the average spectrum is necessary. Recently, Haller 1436 
et al. (2018) proposed a principled approach for the removal of rhythmic spectral peaks, which 1437 
may afford rhythm-unbiased background estimates without requiring priors regarding the 1438 
location of spectral peaks. It may thus represent a useful pre-processing step for further 1439 
applications. Regarding the present data, we anticipate no qualitative changes compared to our 1440 
alpha exclusion approach as (a) we did not consistently observe an association between 1441 
background and rhythmicity estimates (Figure 6), and the signal was dominated by an alpha 1442 
frequency peak, which consistently exceeded eBOSC’s power threshold. 1443 

Our results further question the adequacy of a stationary power threshold (as 1444 
traditionally employed and used here) for assessing the amplitude-duration relationship 1445 
between individual rhythmic episodes. In our empirical analyses, the rhythmic SNR, reflecting 1446 
the deviation of amplitudes during rhythmic periods from the stationary background, was 1447 
consistently most strongly associated with the estimated duration (Figures 6 & 7). While 1448 

                                                
5 A potential bias is less likely in the case of sporadic rhythmicity that does not produce a 
peak in the average spectrum. In this case, the power of the single-trial events would exceed 
the background estimate that is decreased due to the prevalence of arrhythmic periods. 
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keeping the background (and thus the power threshold) stable conforms with the common 1449 
assumption of rhythmicity being captured within a spectral peak deviating from a stationary 1450 
background (Figure 9), it may also exacerbate an amplitude-abundance coupling on a trial-by-1451 
trial basis (see Figure 7C for a schematic of the assumed association) as ongoing power 1452 
fluctuations can only be explained by changes in the rhythmic and not the arrhythmic power 1453 
term. Further research on dynamic thresholds may shed further light on this issue.  1454 

Another point worth highlighting is that eBOSC operates on wavelet-derived power 1455 
estimates. The specific need for wavelet estimates results from model-based assumptions about 1456 
the time-frequency extension of the wavelet that are used for refining detected rhythmic time 1457 
points (see Figure 2 and section 2.6). Naturally, the choice of wavelet parameters, specifically 1458 
their center frequency and duration, influences the time-frequency representations upon which 1459 
eBOSC operates. Here, we used 6 cycles as the duration parameter, in line with previous work 1460 
with standard BOSC (Caplan et al., 2015; Whitten et al., 2011). In a supplementary analysis, 1461 
we compared detection performance using a 3 cycle wavelet and found increased accuracy only 1462 
for short rhythmicity, whereas the sensitivity to longer rhythmicity was decreased (Figure S3). 1463 
This is consistent with the assumption that wavelet duration regulates the trade-off between 1464 
temporal and spectral specificity, with longer wavelets allowing for a finer separation of nearby 1465 
frequencies at the cost of temporal specificity. Another free parameter concerns the choice of 1466 
center frequencies. In the post-processing procedures, we perform a sort of spectral filtering 1467 
based on the pass-band of the wavelet (Figure S1), which is determined by its duration. 1468 
Resolving rhythms at nearby frequencies thus requires the use of wavelets with sufficient 1469 
frequency resolution, not only with regard to the sampled frequencies, but also a sufficient 1470 
duration of the wavelet. This highlights the dependence of eBOSC outputs on the specifics of 1471 
the wavelet-based transformation from the time into the frequency domain. 1472 

An alternative, parallel approach to characterize ongoing rhythmicity is based on 1473 
characterizing the waveform shape in the time domain, thereby circumventing power analyses 1474 
entirely (Cole & Voytek, 2018). While such an approach is intriguing, further work is needed 1475 
to show which analysis sequence is more fruitful: (a) identifying events in the frequency domain 1476 
and then describing the associated waveform shape in the time domain (e.g., eBOSC) or (b) 1477 
identifying events and characterizing them based on time domain features (e.g., cycle-by-cycle 1478 
analysis). As both procedures operate on the basis of single trials, similar challenges (i.e., 1479 
especially rhythmic SNR) are likely to apply to both approaches. 1480 

 1481 
5. Conclusion 1482 
 1483 

We extended a state-of-the-art rhythm detection method and characterized alpha 1484 
rhythms in simulated, resting and task data at the single trial level. By using simulations, we 1485 
show that rhythm detection can be employed to derive specific estimates of rhythmicity, with 1486 
fine-grained control over its definition, and to reduce the bias of rhythm duration on amplitude 1487 
estimates that commonly exists in standard analysis procedures. However, we also observe 1488 
striking inter-individual differences in the indicated duration of rhythmicity, which for subjects 1489 
with low alpha power may be due to insufficient single-trial rhythmicity. We further show that 1490 
low rhythmicity can lead to biased estimates, in particular underestimated duration and 1491 
increased variability of rhythmic frequency. Given these constraints, we have provided 1492 
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examples of eBOSC’s efficacy to characterize rhythms that may prove useful for investigating 1493 
the origin and functional role of neural rhythms in health and disease, and in turn, the current 1494 
study works to establish the foundation for ideographic analyses of neural rhythms. 1495 
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