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Abstract:

The average power of rhythmic neural responses as captured by MEG/EEG/LFP recordings is a
prevalent index of human brain function. Increasing evidence questions the utility of trial-/group
averaged power estimates however, as seemingly sustained activity patterns may be brought about
by time-varying transient signals in each single trial. Hence, it is crucial to accurately describe the
duration and power of thythmic and arrhythmic neural responses on the single trial-level. However,
it is less clear how well this can be achieved in empirical MEG/EEG/LFP recordings. Here, we
extend an existing rhythm detection algorithm (extended Better OSCillation detection: “eBOSC”;
cf. Whitten et al., 2011) to systematically investigate boundary conditions for estimating neural
rhythms at the single-trial level. Using simulations as well as resting and task-based EEG recordings
from a micro-longitudinal assessment, we show that alpha rhythms can be successfully captured in
single trials with high specificity, but that the quality of single-trial estimates varies greatly between
subjects. Despite those signal-to-noise-based limitations, we highlight the utility and potential of
rhythm detection with multiple proof-of-concept examples, and discuss implications for single-trial
analyses of neural rhythms in electrophysiological recordings. Using an applied example of
working memory retention, rhythm detection indicated load-related increases in the duration of
frontal theta and posterior alpha rhythms, in addition to a frequency decrease of frontal theta
rhythms that was observed exclusively through amplification of rhythmic amplitudes.

Highlights:

e Traditional narrow-band rhythm metrics conflate the power and duration of rhythmic and arrhythmic
periods. We extend a state-of-the-art rhythm detection method (eBOSC) to derive rhythmic episodes in
single trials that can disambiguate rhythmic and arrhythmic periods.

e Simulations indicate that this can be done with high specificity given sufficient rhythmic power, but with
strongly impaired sensitivity when rhythmic SNR is low. Empirically, surface EEG recordings exhibit
stable inter-individual differences in a-rhythmicity in ranges where simulations suggest a gradual bias,
leading to high collinearity between narrow-band and rhythm-specific estimates.

e Beyond these limitations, we highlight multiple empirical benefits of characterizing rhythmic episodes
in single trials, such as (a) a principled separation of rhythmic and arrhythmic content, (b) an
amplification of rhythmic amplitudes, and (c) a specific characterization of sustained and transient
events.

e In an exemplary application, rhythm-specific estimates increase sensitivity to working memory load
effects, in addition to indicating a frequency modulation of frontal theta rhythms through the
amplification of rhythmic power.

Keywords: rhythm detection; duration; amplitude; inter-individual differences; single-trial estimates
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1.1 Towards a single-trial characterization of neural rhythms

Episodes of rhythmic neural activity in electrophysiological recordings are of prime
interest for research on neural representations and computations across multiple scales of
measurement (e.g. Buzsdki, 2006; Wang, 2010). At the macroscopic level, the study of
rhythmic neural signals has a long heritage, dating back to Hans Berger’s classic investigations
into the Alpha rhythm (Berger, 1938). Since then, advances in recording and processing
techniques have facilitated large-scale spectral analysis schemes (e.g. Gross, 2014) that were
not available to the pioneers of electrophysiological research, who often depended on the
manual analysis of single time series to indicate the presence and magnitude of rhythmic events.
Interestingly, improvements in analytic methods still do not capture all of the information that
can be extracted by manual inspection. For example, current analysis techniques are largely
naive to the specific temporal presence of rhythms in the continuous recordings, as they often
employ windowing of condition- or group-based averages to extract putative rhythm-related
characteristics (Cohen, 2014). However, the underlying assumption of stationary, sustained
rhythms within the temporal window of interest might not consistently be met (Jones, 2016;
Stokes & Spaak, 2016), thus challenging the appropriateness of the averaging model (i.e., the
ergodicity assumption (Molenaar & Campbell, 2009)). Furthermore, in certain situations,
single-trial characterizations become necessary to derive unbiased individual estimates of
neural rhythms (Cohen, 2017). For example, this issue becomes important when asking whether
rhythms appear in transient or in sustained form (van Ede, Quinn, Woolrich, & Nobre, 2018),
or when only single-shot acquisitions are feasible (i.e., resting state or sleep recordings).

1.2 Duration as a powerful index of rhythmicity

The presence of rhythmicity is a necessary prerequisite for the accurate interpretation
of measures of amplitude, power, and phase (Aru et al., 2015; Jones, 2016;
Muthukumaraswamy & Singh, 2011). This is exemplified by the bias that arrhythmic periods
exert on rhythmic power estimates. Most current time-frequency decomposition methods of
neurophysiological signals (such as the electroencephalogram (EEQG)) are based on the Fourier
transform (Gross, 2014). Following Parceval’s theorem (e.g. Hansen, 2014), the Fast Fourier
Transform (FFT) decomposes an arbitrary time series into a sum of sinusoids at different
frequencies. Importantly, FFT-derived power estimates do not differentiate between high-
amplitude transients and low-amplitude sustained signals. In the case of FFT power, this is a
direct result of the violated assumption of stationarity in the presence of a transient signal.
Short-time FFT and wavelet techniques alleviate (but do not eliminate) this problem by
analyzing shorter epochs, during which stationarity is more likely to be obtained. However,
whenever spectral power is averaged across these episodes, both high-amplitude rhythmic and
low-amplitude arrhythmic signal components may once again become intermixed. In the
presence of arrhythmic content (often referred to as the “signal background,” or “noise”), this
results in a reduced amplitude estimate of the underlying rhythm, the extent of which relates to
the duration of the rhythmic episode relative to the length of the analyzed segment (which we
will refer to as ‘abundance’) (see Figure 1A). Therefore, integration across epochs that contain
a mixture of rhythmic and arrhythmic signals results in an inherent ambiguity between the


https://doi.org/10.1101/356089
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/356089; this version posted September 2, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

90  strength of the rhythmic activity (as indexed by power/amplitude) and its duration (as indexed
91 by the abundance of the rhythmic episode within the segment) (see Figure 2B).

92 Crucially, the strength and duration of rhythmic activity theoretically differ in their
93  neurophysiological interpretation. Rhythmic power most readily indexes the magnitude of
94  synchronized changes in membrane potentials within a network (Buzsdki, Anastassiou, &
95  Koch, 2012), and is thus related to the size of the participating neural population. The duration
96  of a rhythmic episode, by contrast, tracks how long population synchrony is upheld. Notably,
97  measures of rhythm duration have recently gained interest as they may provide additional
98 information regarding the biophysical mechanisms that give rise to the recorded signals
99  (Peterson & Voytek, 2017; Sherman et al., 2016), for example, by differentiating between
100  transient and sustained rhythmic events (van Ede et al., 2018).

101

102 1.3. Single-trial rhythm detection as a methodological challenge

103

104 In general, the accurate estimation of process parameters depends on a sufficiently strong

105 signal in the neurophysiological recordings under investigation. Especially for scalp-level
106  M/EEG recordings it remains elusive whether neural rhythms are sufficiently strong to be
107  clearly detected in single trials. Here, a large neural population has to be synchronously active
108  to give rise to potentials that are visible at the scalp surface. This problem intensifies further by
109  signal attenuation through the skull (in the case of EEG) and the superposition of signals from
110  diverse sources of no interest both in- and outside the brain (Schomer & Lopes da Silva, 2017).
111 In sum, these considerations lead to the proposal that the signal-to-noise ratio (SNR), here
112 operationally defined as the ratio of rhythmic to arrhythmic variance, may fundamentally
113 constrain the accurate characterization of single-trial rhythms.

114 Following those considerations, we set out to answer the following hypotheses and
115  questions: (1) A precise differentiation between rhythmic and arrhythmic timepoints can
116  disambiguate the strength and the duration of rhythmicity. (2) To what extent does the single-
117  trial rhythm representation in empirical data allow for an accurate estimation of rhythmic
118  strength and duration in the face of variations in the signal-to-noise ratio of rhythmicity? (3)
119  What are the empirical benefits of separating rhythmic (and arrhythmic) duration and power?
120 Recently, the Better OSCillation Detection (BOSC; Caplan, Madsen, Raghavachari, &
121  Kahana, 2001; Whitten, Hughes, Dickson, & Caplan, 2011) method has been proposed to
122 identify rhythmicity at the single-trial level. BOSC defines rhythmicity based on the presence
123 of a spectral peak that is superimposed on an arrhythmic 1/f background and that remains
124 present for a minimum number of cycles. Here, we extend the BOSC method (i.e., extended
125  BOSC; eBOSC) to derive rhythmic temporal episodes that can be used to further characterize
126  rhythmicity. Using simulations, we derive rhythm detection benchmarks and probe the
127  boundary conditions for unbiased rhythm indices. Furthermore, we apply the e BOSC algorithm
128  to resting- and task-state data from a micro-longitudinal dataset to systematically investigate
129  the feasibility to derive reliable and valid indices of neural rhythmicity from single-trial scalp
130  EEG data and to probe their modulation by working memory load.

131 We focus on alpha rhythms (~8-15 Hz; defined here based on individual FFT-peaks) due to
132 (a) their high amplitude in human EEG recordings, (b) the previous focus on the alpha band in
133 the rhythm detection literature (Caplan, Bottomley, Kang, & Dixon, 2015; Fransen et al., 2015;
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134 Whitten et al., 2011), and (c) their importance for human cognition (Grandy, Werkle-Bergner,
135  Chicherio, Lovdén, et al., 2013a; Klimesch, 2012; Sadaghiani & Kleinschmidt, 2016). We
136  present examples beyond the alpha range to highlight the ability to apply eBOSC in multiple,
137  diverse frequency ranges.

138

139 2. Methods

140

141 2.1 Study design

142

143 Resting state and task data were collected in the context of a larger assessment,

144 consisting of eight sessions in which an adapted Sternberg short-term memory task (Sternberg,
145  1966) and three additional cognitive tasks were repeatedly administered. Resting state data are
146  from the first session, task data are from sessions one, seven and eight, during which EEG data
147  were acquired. Sessions one through seven were completed on consecutive days (excluding
148  Sundays) with session seven completed seven days after session one by all but one participant
149  (eight days due to a two-day break). Session eight was conducted approximately one week after
150  session seven (M = 7.3 days, SD = 1.4) to estimate the stability of the behavioral practice
151  effects. The reported EEG sessions lasted approximately three and a half to four hours,
152  including approximately one and a half hours of EEG preparation. For further details on the
153  study protocol and results of the behavioural tasks see (Grandy, Lindenberger, & Werkle-
154  Bergner, 2017).

155

156 2.2 Participants

157

158 The sample contained 32 young adults (mean age = 23.3 years, SD = 2.0, range 19.6 to

159  26.8 years; 17 women; 28 university students) recruited from the participant database of the
160  Max Planck Institute for Human Development, Berlin, Germany (MPIB). Participants were
161  right-handed, as assessed with a modified version of the Edinburgh Handedness Inventory
162  (Oldfield, 1971), and had normal or corrected-to-normal vision, as assessed with the Freiburg
163 Visual Acuity test (Bach, 1996; 2007). Participants reported to be in good health with no known
164  history of neurological or psychiatric incidences and were paid for their participation (8.08 €
165  per hour, 25.00 € for completing the study within 16 days, and a performance-dependent bonus
166  of 28.00 €; see below). All participants gave written informed consent according to the
167  institutional guidelines of the ethics committee of the MPIB, which approved the study.

168

169 2.3 Procedure

170

171 Participants were seated at a distance of 80 cm in front of a 60 Hz LCD monitor in an
172 acoustically and electrically shielded chamber. A resting state assessment was conducted prior
173 to the initial performance of the adapted Sternberg task. Two resting state periods were used:
174 the first encompassed a duration of two minutes of continuous eyes open (EO1) and eyes closed
175  (EC1) periods, respectively; the second resting state was comprised of two 80 second runs,
176  totalling 16 repetitions of 5 seconds interleaved eyes open (EO2) — eyes closed (EC2) periods.
177  An auditory beep indicated to the subjects when to open and close their eyes.
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178 Following the resting assessments, participants performed an adapted version of the
179  Sternberg task. Digits were presented in white on a black background and subtended ~2.5° of
180  wvisual angle in the vertical and ~1.8° of visual angle in the horizontal direction. Stimulus
181  presentation and recording of behavioral responses were controlled with E-Prime 2.0
182  (Psychology Software Tools, Inc., Pittsburgh, PA, USA). The task design followed the original
183  report (Sternberg, 1966). Participants started each trial by pressing the left and right response
184  key with their respective index fingers to ensure correct finger placement and to enable fast
185  responding. An instruction to blink was given, followed by the sequential presentation of 2, 4
186  or 6 digits from zero to nine. On each trial, the memory set size (i.e., load) varied randomly
187  between trials, and participants were not informed about the upcoming condition. Also, the
188  single digits constituting a given memory set were randomly selected in each trial. Each
189  stimulus was presented for 200 ms, followed by a fixed 1000 ms blank inter-stimulus interval
190  (ISI). The offset of the last stimulus coincided with the onset of a 3000 ms blank retention
191  interval, which concluded with the presentation of a probe item that was either contained in the
192  presented stimulus set (positive probe) or not (negative probe). Probe presentation lasted 200
193  ms, followed by a blank screen for 2000 ms, during which the participant’s response was
194  recorded. A beep tone indicated the end of the trial. The task lasted about 50 minutes.

195 For each combination of load x probe type, 31 trials were conducted, cumulating in 186
196 trials per session. Combinations were randomly distributed across four blocks (block one: 48
197  trials; blocks two through four: 46 trials). Summary feedback of the overall mean RT and
198  accuracy within the current session was shown at the end of each block. At the beginning of
199  session one, 24 practice trials were conducted to familiarize participants with the varying set
200  sizes and probe types. To sustain high motivation throughout the study, participants were paid
201  a 28 € bonus if their current session’s mean RT was faster or equal to the overall mean RT
202  during the preceding session, while sustaining accuracy above 90%. Only correct trials were
203  included in the analyses.

204

205 2.4 EEG recordings and pre-processing

206

207 EEG was continuously recorded from 64 Ag/AgCl electrodes using BrainAmp

208  amplifiers (Brain Products GmbH, Gilching, Germany). Sixty scalp electrodes were arranged
209  within an elastic cap (EASYCAP GmbH, Herrsching, Germany) according to the 10% system
210  (cf. Oostenveld, Fries, Maris, & Schoffelen, 2011) with the ground placed at AFz. To monitor
211  eye movements, two electrodes were placed on the outer canthi (horizontal EOG) and one
212 electrode below the left eye (vertical EOG). During recording, all electrodes were referenced
213 to the right mastoid electrode, while the left mastoid electrode was recorded as an additional
214  channel. Prior to recording, electrode impedances were retained below 5 k. Online, signals
215  were recorded with an analog pass-band of 0.1 to 250 Hz and digitized at a sampling rate of 1
216  kHz.

217 Preprocessing and analysis of EEG data were conducted with the FieldTrip toolbox
218  (Oostenveld et al., 2011) and using custom-written MATLAB (The MathWorks Inc., Natick,
219  MA, USA) code. Offline, EEG data were filtered using a 4™ order Butterworth filter with a
220  pass-band of 0.5 to 100 Hz, and were linearly detrended. Resting data with interleaved eye
221  closure were epoched relative to the auditory cue to open and close the eyes. An epoch of -2 s
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222 to +3 s relative to on- and offsets was chosen to include padding for the analysis. During the
223 eBOSC procedure, three seconds of signal were removed from both edges (see below), resulting
224  in an effective epoch of 4 s duration that excludes evoked components following the cue onset.
225  Continuous eyes open/closed recordings were segmented to the cue on- and offset. For the
226 interleaved data, the first and last trial for each condition were removed, resulting in an effective
227  trial number of 14 trials per condition. For the task data, we analyzed two intervals: an extended
228  interval to assess the overall dynamics of detected rhythmicity and a shorter interval that
229  focused on the retention period. Unless otherwise noted, we refer to the extended interval when
230 presenting task data. For the extended segments, task data were segmented to 21 s epochs
231  ranging from -9 s to +12 s with regard to the onset of the 3 s retention interval for analyses
232  including peri-retention data. For analyses including only the retention phase, data were
233  segmented to -2 s to +3 s around the retention interval. Note that for all analyses, 3 s of signal
234  were removed on each side of the signal during eBOSC detection, effectively removing the
235  evoked cue activity (2 s to account for edge artifacts following wavelet-transformation and 1 s
236  to account for eBOSC’s duration threshold, see section 2.6), except during the extended task
237  interval. Hence, detected segments were restricted to occur from 1s after period onset until
238  period offset, thereby excluding evoked signals. Blink, movement and heart-beat artifacts were
239  identified using Independent Component Analysis (ICA; Bell & Sejnowski, 1995) and removed
240  from the signal. Subsequently, data were downsampled to 250 Hz and all channels were re-
241  referenced to mathematically averaged mastoids. Artifact-contaminated channels (determined
242 across epochs) were automatically detected (a) using the FASTER algorithm (Nolan, Whelan,
243 & Reilly, 2010) and (b) by detecting outliers exceeding three standard deviations of the kurtosis
244  of the distribution of power values in each epoch within low (0.2-2 Hz) or high (30-100 Hz)
245  frequency bands, respectively. Rejected channels were interpolated using spherical splines
246  (Perrin, Pernier, Bertrand, & Echallier, 1989). Subsequently, noisy epochs were likewise
247  excluded based on FASTER and recursive outlier detection, resulting in the rejection of
248  approximately 13% of trials. To prevent trial rejection due to artifacts outside the signal of
249  interest, artifact detection was restricted to epochs that included 2.4 s of additional signal around
250 the on- and offset of the retention interval, corresponding to the longest effective segment that
251  was used in the analyses. A further 2.65% of incorrectly answered trials from the task were
252  subsequently excluded.

253

254 2.5 Rhythm-detection using extended BOSC

255

256 We applied an extended version of the Better OSCillation detection method (eBOSC;

257  cf. Caplanetal.,2001; Whitten et al., 2011) to automatically separate rhythmic from arrhythmic
258  episodes. The BOSC method reliably identifies rhythms using data-driven thresholds based on
259  theoretical assumptions of the signal characteristics. Briefly, the method defines rhythms as
260 time points during which wavelet-derived power at a particular frequency exceeds a power
261  threshold based on an estimate of the arrhythmic signal background. The theoretical duration
262 threshold defines a minimum duration of cycles this power threshold has to be exceeded to
263  exclude high amplitude transients. Previous applications of the BOSC method focused on the
264  analysis of resting-state data or long data epochs, where reliable detection has been established
265  regardless of specific parameter setups (Caplan et al., 2001; 2015; Whitten et al., 2011). We
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266  introduce the following adaptations here (for details see section 2.6, Figure 1 & Figure S1): (1)
267  we remove the spectral alpha peak and use robust regression to establish power thresholds; (2)
268  we combine detected time points into continuous rhythmic episodes and (3) we reduce the
269  impact of wavelet convolution on abundance estimates. We benchmarked the algorithm and
270  compared it to standard BOSC using simulations (see section 2.8).
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273 Figure 1: Schematic illustration of rhythm detection. (A) Average amplitude estimates (right) increase with the
274 focus on rhythmic episodes within the averaged time interval. The left plots show simulated time series and the
275 corresponding time-frequency power. Superimposed red traces indicate rhythmic time points. The upper right plot
276 shows the average power spectrum averaged across the entire epoch, the lower plot presents amplitudes averaged
277  exclusively across thythmic time points. An amplitude gain is observed due to the exclusion of arrhythmic low
278 amplitude time points. (B-E) Comparison of standard and extended BOSC. (B+C) Rhythms were detected based
279  onapower threshold estimated from the arrhythmic background spectrum. Standard BOSC applies a linear fit in
280 log-log space to define the background power, which may overestimate the background at the frequencies of
281 interest in the case of data with large rhythmic peaks. Robust regression following peak removal alleviates this
282  problem. (D) Example of episode detection. White borders circumfuse time frequency points, at which standard
283 BOSC indicated rhythmic content. Red traces represent the continuous rhythmic episodes that result from the
284  extended post-processing. (E) Applied thresholds and detected rhythmic abundance. The black border denotes the
285 duration threshold at each frequency (corresponding to D), i.e., for how long the power threshold needed to be
286  exceeded to count as a rhythmic period. Note that this threshold can be set to zero for a post-hoc characterization
287  of the duration of episodes (see Methods 2.12). The color scaling within the demarcated area indicates the power
288 threshold at each frequency. Abundance corresponds to the relative length of the segment on the same time scale
289  aspresented in D. White dots correspond to the standard BOSC measure of rhythmic abundance at each frequency
290 (termed Pepisode). Red lines indicate the abundance measure used here, which is defined as the proportion of
291 sample points at which a rhythmic episode between 8-15 Hz was indicated (shown as red traces in D).

292

293 2.6 Specifics of rhythm-detection using extended BOSC

294

295 Rhythmic events were detected within subjects for each channel and condition. Time-
296  frequency transformation of single trials was performed using 6-cycle Morlet wavelets
297  (Grossmann & Morlet, 1985) with 49 logarithmically-spaced center frequencies ranging from
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298 1 to 64 Hz. Following the wavelet transform, 2 s were removed at each segment’s borders to
299  exclude edge artefacts. To estimate the background spectrum, the time-frequency spectra from
300 all trials were temporally concatenated within condition and channel and log-transformed,
301 followed by temporal averaging. For eyes-closed and eyes-open resting states, both continuous
302 and interleaved exemplars were included in the background estimation for the respective
303  conditions. The resulting power spectrum was fit linearly in log(frequency)-log(power)
304  coordinates using a robust regression, with the underlying assumption that the EEG background
305  spectrum is characterized by colored noise of the form A*f*(—a) (Buzsaki & Mizuseki, 2014;
306 He, Zempel, Snyder, & Raichle, 2010; Linkenkaer-Hansen, Nikouline, Palva, & Ilmoniemi,
307  2001). A robust regression with bisquare weighting (e.g. Holland & Welsch, 2007) was chosen
308 to improve the linear fit of the background spectrum (cf. Haller et al., 2018), which was
309  characterized by frequency peaks in the alpha range for almost all subjects (Figure S4). In
310  contrast to ordinary least squares regression, robust regression iteratively down-weights outliers
311  (in this case spectral peaks) from the linear background fit. To improve the definition of
312 rhythmic power estimates as outliers during the robust regression, power estimates within the
313 wavelet pass-band around the individual alpha peak frequency were removed prior to fitting'.
314  The passband of the wavelet (e.g. Linkenkaer-Hansen et al., 2001) was calculated as

315 Passband [Hz] = IAF * 0.5 —« IAF

316 [Formula 1]

317  in which IAF denotes the individual alpha peak frequency and WL refers to wavelet length
318  (here, six cycles in the main analysis). IAF was determined based on the peak magnitude within
319  the 8-15 Hz average spectrum for each channel and condition (Grandy, Werkle-Bergner,
320  Chicherio, Schmiedek, et al., 2013b). This ensures that the maximum spectral deflection is
321  removed across subjects, even in cases where no or multiple peaks are present®. This procedure

' This procedure is similar to calculating the background spectrum from conditions with
attenuated alpha power (e.g., the eyes open resting state; Caplan, Bottomley, Kang & Dixon
(2015)). However, here we ensure that alpha power is sufficiently removed, whereas if
conditions with reduced alpha peak magnitudes are selected, alpha power may still remain
sufficiently elevated to influence slope or intercept estimates. Furthermore, the reliance on
conditions with decreased rhythmicity appears less suitable given inter-individual differences
in alpha engagement in e.g., the eyes open condition. This may induce an implicit contrast to
eyes open rhythmicity. Note that when the frequency range is chosen so that the alpha peak
represents the middle of the chosen interval, the alpha-induced bias would be captured by a
linear increment in the intercept of the background fit, which may also be alleviated by choosing
a higher percentile for the power threshold. Notably, removing the alpha peak as done here
attenuates such bias, even in cases where the alpha peak biases the slope of the background fit,
as would happen if the alpha peak is not centered within the range of sampled frequencies.

2 When multiple alpha-band peaks are present or the peak has a broader appearance, the spectral
peak may not be removed entirely, which could result in misfits of the background spectrum.
For this purpose, we employed robust regression to down-weight potential residuals around the
alpha peak. Our current implementation only accounts for a peak in the alpha range, but could
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322  effectively removes a bias of the prevalent alpha peak on the arrhythmic background estimate
323 (see Figure 1B and C & Figure 3C). The power threshold for rhythmicity at each frequency was
324  set at the 95" percentile of a ¢?(2)-distribution of power values, centered on the linearly fitted
325  estimate of background power at the respective frequency (for details see Whitten et al., 2011).
326  This essentially implements a significance test of single-trial power against arrhythmic
327  background power. A three-cycle threshold was used as the duration threshold to exclude
328 transients, unless indicated otherwise (see section 2.12). The conjunctive power and duration
329  criteria produce a binary matrix of ‘detected’ rhythmicity for each time-frequency point (see
330  Figure S1C). To account for the duration criterion, 1000 ms were discarded from each edge of
331  this ‘detected’ matrix.

332 The original BOSC algorithm was further extended to define rhythmic events as
333  continuous temporal episodes that allow for an event-wise assessment of rhythm characteristics
334  (e.g. duration). The following steps were applied to the binary matrix of ‘detected’ single-trial
335  rhythmicity to derive such sparse and continuous episodes. First, to account for the spectral
336  extension of the wavelet, we selected time-frequency points with maximal power within the

337  wavelet’s spectral smoothing range (i.e. the pass-band of the wavelet; %*frequency; see

338  Formula 1). That is, at each time point, we selected the frequency with the highest indicated
339  rhythmicity within each frequency’s pass-band. This served to exclude super-threshold
340 timepoints that may be accounted for by spectral smoothing of a rhythm at an adjacent
341  frequency. Note that this effectively creates a new frequency resolution for the resulting
342 rhythmic episodes, thus requiring sufficient spectral resolution (defined by the wavelet’s pass-
343 band) to differentiate simultaneous rhythms occurring at close frequencies. Finally, continuous
344  rhythmic episodes were formed by temporally connecting extracted time points, while allowing
345  for moment-to-moment frequency transitions (i.e. within-episode frequency non-stationarities;
346  Atallah & Scanziani, 2009) (for a single-trial illustration see Figures 1D and Figure S1D).

347 In addition to the spectral extension of the wavelet, the choice of wavelet parameter also
348  affects the extent of temporal smoothing, which may bias rhythmic duration estimates. To
349  decrease such temporal bias, we compared observed rhythmic amplitudes at each time point
350  within each rhythmic episode with those expected by smoothing adjacent amplitudes using the
351  wavelet (Figure S1E). By retaining only those time points where amplitudes exceeded the
352  smoothing-based expectations, we removed supra-threshold time points that can be explained
353 by temporal smoothing of nearby rhythms (e.g., ‘ramping’ up and down signals). In more detail,
354  we simulated the positive cycle of a sine wave at each frequency, zero-shouldered each edge
355  and performed (6-cycle) wavelet convolution. The resulting amplitude estimates at the zero-
356  padded time points reflect the temporal smoothing bias of the wavelet on adjacent arrhythmic
357  time points. This bias is maximal (BiasMax) at the time point immediately adjacent to the
358  rhythmic on-/offset and decreases with temporal distance to the rhythm. Within each rhythmic
359  episode, the ‘convolution bias’ of a time-frequency (TF) point’s amplitude on surrounding
360  points was estimated by scaling the points’ amplitude by the modelled temporal smoothing bias.

be extended to other frequency ranges using the same logic (see discussion on limitations in
section 4.6).


https://doi.org/10.1101/356089
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/356089; this version posted September 2, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

BiasVectorgry1_p.1—T:

361 Amplitudesgr11_1. -7 = |(Amplitudery — PTr) * BiasMax; + PTg
362 [Formula 2]
363 Subscripts F and T denote frequency and time within each episode, respectively.

364  BiasVector is a vector with the length of the current episode (L) that is centered around the
365 current TF-point. It contains the wavelet’s symmetric convolution bias around BiasMax. Note
366  that both BiasVector and BiasMax respect the possible frequency variations within an episode
367 (i.e., they reflect the differences in convolution bias between frequencies). The estimated
368  wavelet bias was then scaled to the amplitude of the rhythmic signal at the current TF-point.
369  PT refers to the condition- and frequency-specific power threshold applied during rhythm
370  detection. We subtracted the power threshold to remove arrhythmic contributions. This
371  effectively sensitizes the algorithm to near-threshold values, rendering them more likely to be
372  excluded. Finally, time points with lower amplitudes than expected by the convolution model
373  were removed and new rhythmic episodes were created (Figure S1F). The resulting episodes
374  were again checked for adhering to the duration threshold.

375 As an alternative to the temporal wavelet correction based on the wavelet’s simulated
376 ~ maximum bias (‘MaxBias’; as described above), we investigated the feasibility of using the
377  wavelet’s full-width half maximum (‘FWHM?”) as a criterion. Within each continuous episode
378  and for each “rhythmic” sample point, 6-cycle wavelets at the frequency of the neighbouring
379  points were created and scaled to the point’s amplitude. We then used the amplitude of these
380  wavelets at the FWHM as a threshold for rhythmic amplitudes. That is, points within a rhythmic
381  episodes that had amplitudes below those of the scaled wavelets were defined as arrhythmic.
382  The resulting continuous episodes were again required to pass the duration threshold. As the
383  FWHM approach indicated decreased specificity of rhythm detection in the simulations (Figure
384  S2) we used the ‘MaxBias’ method for our analyses.

385 Furthermore, we considered a variant where total amplitude values were used (vs.
386  supra-threshold amplitudes) as the basis for the temporal wavelet correction. Our results
387  suggest that using supra-threshold power values leads to a more specific detection at the cost
388 of sensitivity (Figure S2). Crucially, this eliminated false alarms and abundance
389  overestimation, thus rendering the method highly specific to the occurrence of rhythmicity. As
390  we regard this as a beneficial feature, we used supra-threshold amplitudes as the basis for the
391  temporal wavelet correction throughout the manuscript.

392
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2.7 Definition of abundance, rhythmic probability and amplitude metrics

A Schematic of rhythmic amplitude estimates
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Figure 2: eBOSC disambiguates the magnitude and duration of rhythmic episodes. (A) Schema of different
amplitude metrics. (B) Rhythm-detection disambiguates rhythmic amplitude and duration. Overall amplitudes
represent a mixture of rhythmic power and duration. In the absence of noise (upper row), eBOSC perfectly
orthogonalizes rhythmic amplitude from abundance. Superimposed noise leads to an imperfect separation of the
two metrics (lower row). The duration of rhythmicity is similarly indicated by abundance and the overlap between
rhythmic and overall amplitudes. This can be seen by comparing the two rightmost plots in each row.
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A central goal of rhythm detection is to disambiguate rhythmic power and duration
(Figure 2). For this purpose, eBOSC provides multiple indices. We describe the different
indices for the example case of alpha rhythms. Please note that eBOSC can be applied in a
similar fashion to any other frequency range. The abundance of alpha rhythms denotes the
duration of rhythmic episodes with a mean frequency in the alpha range (8 to 15 Hz), relative
to the duration of the analyzed segment. This frequency range was motivated by clear peaks
within this range in individual resting state spectra (Figure S4). Note that abundance is closely
related to standard BOSC’s Pepisode metric (Whitten et al., 2011), with the difference that
abundance refers to the duration of the continuous rhythmic episodes and not the ‘raw’ detected
rhythmicity of BOSC (cf. Figure S1C and D). We further define rhythmic probability as the
across trials probability to observe a detected rhythmic episode within the alpha frequency
range at a given point in time. It is therefore the within-time, across-trial equivalent of
abundance.

As aresult of rhythm detection, the magnitude of spectral events can be described using
multiple metrics (see Figure 2A for a schematic). Amplitudes were calculated as the square-
root of wavelet-derived power estimates and are used interchangeably throughout the
manuscript. The standard measure of window-averaged amplitudes, overall amplitudes were
computed by averaging across the entire segment at its alpha peak frequency. In contrast,
rhythmic amplitudes correspond to the amplitude estimates during detected rhythmic episodes.
If no alpha episode was indicated, abundance was set to zero, and amplitude was set to missing.
Unless indicated otherwise, both amplitude measures were normalized by subtracting the
amplitude estimate of the fitted background spectrum. This step represents a parameterization
of thythmic power (cf. Haller et al., 2018) and is conceptually similar to baseline normalization,
without requiring an explicit baseline segment. This highlights a further advantage of rhythm-

detection procedures like (e)BOSC. In addition, we calculated an overall signal-to-noise ratio
Overall

(SNR) as the ratio of the overall amplitude to the background amplitude:

Background’

addition, we defined rhythmic SNR as the background-normalized rhythmic amplitude as a
Rhythmic—Background

proxy for the rhythmic representation: Background

Unless stated differently, subject-, and condition-specific amplitude and abundance
values were averaged within and across trials, and across posterior-occipital channels (P7, PS5,
P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, POS, O1, Oz, O2), in which alpha power was
maximal (Figure 4A, Figure 8).

2.8 eBOSC validation via alpha rhythm simulations

To assess e BOSC’s detection performance, we simulated 10 Hz sine waves with varying
amplitudes (0, 2, 4, 6, 8, 12, 16, 24 [a.u.]) and durations (2, 4, 8, 16, 32, 64, 128, 200 [cycles])
that were symmetrically centred within random 1/f-filtered white noise signals (20 s; 250 Hz
sampling rate). Amplitudes were scaled relative to the power of the 8-12 Hz 6™ order
Butterworth-filtered background signal in each trial to approximate SNRs. To ensure
comparability with the empirical analyses, we computed overall SNR analogously to the
empirical data, which tended to be lower than the target SNR. We chose the maximum across
simulated durations as an upper bound (i.e., conservative estimate) on overall SNR. For each
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amplitude-duration combination we simulated 500 “trials”. We assessed three different
detection pipelines regarding their detection efficacy: the standard BOSC algorithm (i.e., linear
background fit incorporating the entire frequency range with no post-editing of the detected
matrix); the eBOSC method using wavelet correction by simulating the maximum bias
introduced by the wavelet (“MaxBias); and the e BOSC method using the full-width-at-half-
maximum amplitude for convolution correction (“FWHM?”). The background was estimated
separately for each amplitude-duration combination. 500 edge points were removed bilaterally
following wavelet estimation, 250 additional samples were removed bilaterally following
BOSC detection to account for the duration threshold, effectively retaining 14 s of simulated
signal.

Detection efficacy was indexed by signal detection criteria regarding the identification
of rthythmic time points between 8 and 12 Hz (i.e., hits = simulated and detected points; false
alarms = detected, but not simulated points). These measures are presented as ratios to the full
amount of possible points within each category (e.g., hit rate = hits/all simulated time points).
For the eBOSC pipelines, abundance was calculated identically to the analyses of empirical
data. As no consecutive episodes (cf. Pepisode and abundance) are available in standard BOSC,
abundance was defined as the relative amount of time points with detected rhythmicity between
8 to 12 Hz.

A separate simulation aimed at establishing the ability to accurately recover amplitudes.
For this purpose, we simulated a whole-trial alpha signal (i.e., duration = 1) and a quarter-trial
alpha signal (duration = .25) with a larger range of amplitudes (1:16 [a.u.]) and performed
otherwise identical procedures as described above. To assess eBOSC’s ability to disambiguate
power and duration (Figure 2B), we additionally performed simulations in the absence of noise
across a larger range of simulated amplitudes and durations.

A major change in eBOSC compared to standard BOSC is the exclusion of the rhythmic
peak prior to estimating the background. To investigate to what extent the two methods induce
a bias between rhythmicity and the estimated background magnitude (for a schematic see Figure
1C and D), we calculated Pearson correlations between the overall amplitude and the estimated
background amplitude across all levels of simulated amplitudes and durations (Figure 3C).

As the empirical data suggested a trial-wise association between amplitude and
abundance estimates also at high levels of signal-to-noise ratios (Figure 7), we investigated
whether such associations were also present in the simulations. For each pair of simulated
amplitude and duration, we calculated Pearson correlations between the overall amplitude and
abundance across single trials. Note that due to the stationarity of simulated duration, trial-by-
trial fluctuations indicate the bias under fluctuations of the noise background (as amplitudes
were scaled to the background in each trial). For each cell, we performed Fisher’s r-to-z
transform to account for unequal trial sizes due to missing amplitude/abundance estimates (e.g.
when no episodes are detected).

2.9 Calculation of phase-based lagged coherence
To investigate the convergence between the power-based duration estimate (abundance)

and a phase-based alternative (Fransen et al., 2015), we calculated lagged coherence at 40
linearly scaled frequencies in the range of 1 to 40 Hz for each resting-state condition. Lagged

13



490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

coherence assesses the consistency of phase clustering at a single sensor for a chosen cycle lag
(see Fransen et al., 2015 for formulas). Instantaneous power and phase were estimated via 3-
cycle wavelets. Data were segmented to be identical to eBOSC’s effective interval (i.e., same
removal of signal shoulders as described above). In reference to the duration threshold for
power-based rhythmicity, we calculated the averaged lagged coherence using two adjacent
epochs a three cycles. We computed an index of alpha rhythmicity by averaging values across
epochs and posterior-occipital channels, finally extracting the value at the maximum lagged
coherence peak in the 8 to 15 Hz range.

2.10 Dynamics of rhythmic probability and rhythmic power during task performance

To investigate the detection properties in the task data, we analysed the temporal
dynamics of rhythmic probability and power in the alpha band. We created time-frequency
representations as described in section 2.6 and extracted the alpha peak power time series,
separately for each person, condition, channel and trial. At the single-trial level, values were
allocated to rhythmic vs. arrhythmic time points according to whether a rhythmic episode with
mean frequency in the respective range was indicated by eBOSC. These time series were
averaged within subject to create individual averages of rhythm dynamics. Subsequently, we z-
scored the power time series to accentuate signal dynamics and attenuate between-subject
power differences. To highlight global dynamics, these time series were further averaged
within- and between-subjects. Figure captions indicate which average was used.

2.11 Rhythm-conditional spectra and abundance for multiple canonical frequencies

To assess the general feasibility of rhythm detection outside the alpha range, we
analysed the retention interval of the adapted Sternberg task, where the occurrence of theta,
alpha and beta rhythms has been reported in previous studies (Brookes et al., 2011; Jensen,
Gelfand, Kounios, & Lisman, 2002; Jokisch & Jensen, 2007; Lundqvist et al., 2016;
Raghavachari et al., 2001; Tuladhar et al., 2007). For this purpose, we re-segmented the data to
cover the final 2 s of the retention interval +- 3 s of edge signal that was removed during the
eBOSC procedure. We performed eBOSC rhythm detection with otherwise identical
parameters to those described in section 2.6. We then calculated spectra across those time points
where rhythmic episodes with a mean frequency in the range of interest were indicated,
separately for four frequency ranges: 3-8 Hz (theta), 8-15 Hz (alpha), 15-25 Hz (beta) and 25-
64 Hz (gamma). We subtracted spectra across the remaining arrhythmic time-points for each
range from these ‘rhythm-conditional’ spectra to derive the spectra that are unique to those time
points with rhythmic occurrence in the band of interest. For the corresponding topographic
representations, we calculated the abundance metric as described in section 2.7 for the apparent
peak frequency ranges.

2.12 Post-hoc characterization of sustained rhythms vs. transients

Instead of exclusively relying on a fixed a priori duration threshold as done in previous
applications, eBOSC’s continuous ‘rhythmic episodes’ also allow for a post-hoc separation of
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rhythms and transients based on the duration of identified rhythmic episodes. This is afforded
by our extended post-processing that results in a more specific identification of rhythmic
episodes (see Figure 3) and an estimated length for each episode. For this analysis (Figure 10),
we set the a priori duration threshold to zero and separated the resulting episodes post-hoc
based on their duration (shorter vs. longer than 3 cycles) at their mean frequency. That is, any
episode crossing the amplitude threshold was retained and episodes were sorted by their
‘transient’ or sustained appearance afterwards. We conducted this analysis in the extended task
data to illustrate the temporal dynamics of rhythmic and transient events. To investigate the
modulation of rhythm- and transient-specific metrics between the retention phase and the probe
phase, we averaged metrics within these two intervals and performed a paired t-test between
the two respective intervals for four indices: episode number, duration, frequency and power.
Cluster-based permutation tests (Maris & Oostenveld, 2007) as implemented in FieldTrip were
performed to control for multiple comparisons. Initially, a clustering algorithm formed clusters
based on significant t-tests of individual data points (p <.05; cluster entry threshold) with the
spatial constraint of min. three adjacent channels. Then, the significance of the observed
cluster-level statistic, based on the summed t-values within the cluster, was assessed by
comparison to the distribution of all permutation-based cluster-level statistics. The final cluster
p-value that we report in Figures was assessed as the proportion of 1000 Monte Carlo iterations
in which the cluster-level statistic was exceeded. Cluster significance was indicated by p-
values below .025 (two-sided cluster significance threshold).

2.13 Time series representations of detected rhythmic events

To visualize the stereotypic depiction of single-trial rhythmic events, we extracted the
time series during individual rhythmic episodes that exceeded a post-hoc duration threshold of
three cycles. Individual time series were time-locked to the trough of individual rhythmic
episodes and averaged across episodes (Sherman et al., 2016). To avoid unequal sample counts
at the edges of episodes, we included additional data padding around the trough prior to
averaging. The trough was chosen to be the local minimum during the spectral episode that was
closest to the maximum power of the wavelet-transformed signal. To better estimate the local
minimum, the time domain signal was low-pass filtered at 25 Hz for alpha and beta, 10 Hz for
theta and high-pass-filtered at 20 Hz for gamma using a 6" order Butterworth filter. Filters only
served the identification of local minima, whereas unfiltered data were used for plotting.
Averaged event dynamics during the first session were visualized for theta at Fz, alpha at O2,
beta at FCz and gamma at Fz. To visualize single-trial time-domain signals, we computed
moving averages of 150 trials across rhythmic episodes concatenated across all subjects.

We further assessed a potential load-modulation of the rate of rhythmic events during
working memory retention by counting the number of individual rhythmic episodes with a
mean frequency that fell in a moving window of 3 adjacent center frequencies. This produced
a channel-by-frequency representation of spectral event rates, which were the basis for
subsequent significance testing using dependent sample regression t-tests and implemented in
permutation tests as described in section 2.12.
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2.14 Modulation of rhythm estimates by working memory load and eye closure

To assess the sensitivity of rhythm-derived indices to experimental manipulations, we
compared (1) the effect of eye closure (“Berger effect”) and (2) the effect of working memory
load between select rhythm indices. To compare rhythm-specific results with traditional
approaches, traditional wavelet estimates were derived using identical parameters as used for
eBOSC. We performed confirmatory tests of a parametric increase in posterior alpha power
and frontal theta power with memory load based on previous reports in the literature (Jensen et
al., 2002; Jensen & Tesche, 2002; Jokisch & Jensen, 2007; Meltzer et al., 2008; Michels,
Moazami-Goudarzi, Jeanmonod, & Sarnthein, 2008; Onton, Delorme, & Makeig, 2005;
Scheeringa et al., 2009; Tuladhar et al., 2007). In addition, we explored a decrease in frontal
theta frequency with load. To reduce the amount of statistical contrasts, we averaged all metrics
across sessions before submitting them to statistical tests. Load effects for within-subject trial
averages between load conditions were assessed by means of a dependent sample regression t-
test, implemented within permutation tests (see section 2.12 for details). Similar cluster-based
permutation tests were performed for the effect of eye closure on rhythmic and arrhythmic
amplitudes and abundance using a paired samples t-test.

Beyond probing effects on each estimate individually, we probed whether rhythm-
specific estimates of duration and magnitude uniquely captured task effects over and above
traditional indices. For this purpose, we performed post-hoc linear mixed effects analyses,
averaging within the abundance effects clusters. Prior to modelling, values were z-scored across
subjects and conditions. In each model, a rhythm-specific index (e.g. abundance) served as the
dependent variable, while traditional amplitudes served as a fixed dependent variable. Load or
eye closure were modelled as fixed effects with random subject intercepts, assuming compound
symmetry. For the load effect, we assessed uniquely explained variance with a post-hoc
ANOVA, using marginal sums-of-squares (‘Type III’). Linear mixed effects modelling was
performed in R 3.6.1(R, 2019) with the nlme package (Pinheiro et al., 2019).

In addition, we explored effects on theta frequency with cluster-based permutations. To
visualize frequency modulations, we performed a post-hoc Fast Fourier Transform (FFT) to
specifically characterize rhythmic episodes, while normalizing for their duration. To retain an
identical frequency resolution across episodes, we zero-padded episodes of variable duration to
a fixed duration of two seconds. We then computed a discrete-time Fourier Transform of
individual rhythmic episodes: Y (k) = T=1X() Wn(j ~Dk-) , where n is the length of the zero-
padded time series X and W, = e(=2™)/" normalized the resulting absolute spectral values by
the length of the rhythmic episode Nypyinmic and calculated the single-sided amplitude
spectrum. This resulted in rhythm-specific amplitude values with an identical frequency
resolution across episodes. In contrast, to derive thythm-unspecific FFT amplitude estimates,
we included the entire two-second retention period in the estimation and used the respective
length for normalization, thus resulting in traditional ‘overall’ FFT amplitude estimates that
were unspecific to rhythmic occurrence. To assess, whether a theta frequency modulation
would be observed with traditional FFT spectra, we detected condition-dependent theta
frequency peaks. Peaks were defined as frequencies at which the first derivative of the spectrum
changed from positive to negative (Grandy et al., 2013b). In case no peak was identified, the
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frequency with peak amplitude was selected. Finally, we performed paired-t-tests to estimate
potential load effects.

In figures, we display within-subject standard errors (Cousineau, 2005) to highlight
condition differences. For these, individual data were centered by subtracting the subject
condition average and adding the grand condition average to individual within-condition
values.

3. Results

3.1. Extended BOSC (eBOSC) increases specificity of rhythm detection

17



631

632

Simulated amplitudes Simulated amplitudes

Simulated amplitudes

(overall SNR)

(overall SNR)

Abundance Error: Standard BOSC

-0.30

-0.76 -0.84

-0.26 -0.33

2 4 8
0.01 0.03 0.06 0.11 0.23 0.46
Simulated cycles (Simulated abundance)

16 32 64 128 200

0.91 1

Hit Rate: Standard BOSC

NaN  NaN

NaN

NaN NaN NaN NaN NaN

056 066 071 072 072 070 0.67

2 4 8 16 32 64 128 200
0.01 0.03 0.06 0.11 0.23 0.46 0.91 1

Simulated cycles (Simulated abundance)

FA Rate: Standard BOSC

2 4 8

16
0.06 0.11

32
0.23

64 128 200

0.01 0.03 0.46 0.91 1

Simulated cycles (Simulated abundance)

03
2(3)
4(3)
6(4)
8(4)
3125

16 (5)

24 (6)

erall SNR)

Simulated amplitudes
(0

0@
2(3)
4(3)
6(4)
8(4)

(overall SNR)

.

¥
a
g

16 (5)
24 (8)

Simulated amplitudes

Simulated amplitudes
(overall SNR)

Abundance Error: Extended BOSC

-0.20 -0.43 -0.88

-0.15

-0.32 -0.65 -

-0.17 -0.35 -

-0.17

0.02 001 0.00 0.00

0.02 001 000 000 0.00

0.02 0.01 0.00 0.0 0.00 0.00

2 4 8 16
0.01 0.03 0.06 0.11

32 64 128 200
0.23 0.46 0.91 1

Simulated cycles (Simulated abundance)

Hit Rate: Extended BOSC

NaN  NaN NaN NaN NaN NaN

0.09 = 0.18

0.19

2 4 8 16 32 64 128 200
0.01 0.03 0.06 0.11 0.23 0.46 0.91 1

Simulated cycles (Simulated abundance)

FA Rate: Extended BOSC

0.01 0.01 0.01 0.1 001 0.1 0.01

0.01 0.01 0.1 0.01 0.01 002 0.02

0.01 0.01 0.1 0.01 0.01 002 0.03

0.01 0.01 0.1 0.01 0.01 002 0.03

0.01 0.01 0.1 0.01 0.01 002 0.03

0.01 0.01 0.1 0.01 0.01 002 0.03

0.01 0.01 0.1 001 0.01 001 003

0.01 0.01 0.1 0.01 0.01 001 0.02

2 4 8 16
0.01 0.03 0.06 0.11

32 64 128
0.23 0.46 0.91 1

Simulated cycles (Simulated abundance)

Simulated amplitudes

(overall SNR)

u]

5 140
120

-
D O O
o O o

Empirical Amplitude [a.
I
o

—_ a NN
o ua o u
o O O o

Overall Alpha amplitude
[4)]
o

o

Trial-wise amplitude-abundance association

©)
203
403
6(4)
8(4)
12 (5)
16 (5)
24 (8)

Simulated vs. empirical amplitudes
Simulated Abundance: 1

* simulated data

. simulated data
(interpolated abundance)

« overall estimate

.
L4 .

0.2 0.4 0.6

Empirical Abundance

0.8 1

eBOSC decreases rhythmic bias
on background estimates

¢ Standard BOSC: r = 0.81; p <.001
* extended BOSC: r = 0.05; p <.001

2

25 30
Estimated Background amplitude

35

Standard BOSC:

4 8 16 32

64
0.01 0.03 0.06 0.11 0.23 0.46
Simulated cycles (Simulated abundance)

128 200
0.91 1

u]

5 140
120

-
o
o

80
60
40

Empirical Amplitude [a.

Estimated Abundance
o o o o
N D o ®

o

J©)
203
403
6(4)
8(4)
12 (5)
16 (5)
24 (8)

Simulated amplitudes
(overall SNR)

Simulated vs. empirical amplitudes

Simulated Abundance: .25

* rhythmic estimate
rhythmic estimate
excl. background
° <F g)z)
. ° o® 4
o ° . 10 .5;
.« * SE .2;
.« ° R 6 (2.8
. . e o °° °° b 4(2.4)
oo 8 P 2(1.9
0.1 0.2 0.3

Empirical Abundance

eBOSC more accurately captures

50

simulated durations

100 150
Overall Alpha amplitude

200

Extended BOSC:

Trial-wise amplitude-abundance association

U.éO O.éO 0.20 O.éO 020 020 0.20 0.20 -
021 024 032 048

0.19 025 041

0.20 0.26 043

0.19 0.24 040 0.38

019 021 032 026 029 036 033 0.36
0.18 021 027 023 024 029 023 021
0.18 023 024 020 0.22 025 0.13 0.06 5
2 4 8 16 32 64 128 200
0.01 0.03 0.06 0.11 0.23 0.46 0.91 1

Simulated cycles (Simulated abundance)



633
634
635
636
637
638
639
640
641
642
643
644
645
646

Figure 3: Rhythm detection performance of standard and extended BOSC in simulations. (A) Signal detection properties of the two algorithms. For short simulated rhythmicity,
abundance is overestimated by standard BOSC, but not eBOSC, whereas eBOSC underestimates the duration of prolonged rhythmicity at low SNRs (A1). Extended BOSC has
decreased sensitivity (A2), but higher specificity (A3) compared with extended BOSC. Note that for simulated zero alpha amplitude, all sample points constitute potential false
alarms, while by definition no sample point constitutes a potential hit. (B) Amplitude and abundance estimate for signals with sustained (left) and short rhythmicity (right).
Black dots indicate reference estimates for a pure sine wave without noise, coloured dots indicate the respective estimates for data with the 1/f background. [Note that the
reference estimates were interpolated at the empirical abundance of the 1/f data. Grey dots indicate the perfect abundance estimates in the absence of background noise.] When
rhythms are sustained (left), impaired rhythm detection at low SNRs causes an overestimation of the rhythmic amplitude. At low rhythmic duration (right), this deficit is
outweighed by the severe bias of arrhythmic duration on overall amplitude estimates (e.g., Figure 9). Simulated amplitudes (and corresponding empirical SNRs in brackets) are
shown on the right. Vertical lines indicate the simulated rhythmic duration. (C) eBOSC successfully reduces the bias of the rhythmic peak on the estimation of the background
amplitude. In comparison, standard BOSC induces a strong coupling between the peak magnitude and the background estimate. (D) eBOSC indicates abundance more accurately
than standard BOSC at high amplitudes (i.e., high SNR; see also A1). The leftward shift indicates a decrease in sensitivity. Horizontal lines indicate different levels of simulated
duration. Dots are single-trial estimates across levels of simulated amplitude and duration. (E) Standard BOSC and eBOSC induce trial-wise correlations between amplitude
and abundance. eBOSC exhibits reduced trial-by-trial coupling at higher SNR compared to standard BOSC. Values are r-to-z-transformed correlation coefficients.
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We extended the BOSC rhythm detection method to characterize rhythmicity at the
single-trial level by creating continuous ‘rhythmic episodes’ (see Figure 1 & Figure S1). A
central goal of this approach is the disambiguation of rhythmic power and duration, which can
be achieved perfectly in data without background noise (upper row in Figure 2B). However,
the addition of 1/f noise reintroduces a partial coupling of the two parameters (lower row in
Figure 2B). To better understand the boundary conditions to derive specific amplitude and
duration estimates, we compared the detection properties of the standard and the extended
(eBOSC) pipeline by simulating varying levels of thythm magnitude and duration. Considering
the sensitivity and specificity of detection, both pipelines performed adequately at high levels
of SNR with high hit and low false alarm rates (Figure 3A). However, whereas standard BOSC
showed perfect sensitivity above SNRs of ~4, specificity was lower than for eBOSC as
indicated by higher false alarm rates (grand averages: .160 for standard BOSC; .015 for
eBOSC). This specificity increase was observed across simulation parameters, suggesting a
general abundance overestimation by standard BOSC (see also Figure 3D). In addition,
standard BOSC did not show a reduced detection of transient rhythms below the duration
threshold of three cycles, whereas hit rates for those transients were clearly reduced with
eBOSC (Figure 3A2). This suggests that wavelet convolution extended the effective duration
of transient rhythmic episodes, resulting in an exceedance of the temporal threshold. In contrast,
by creating explicit rhythmic episodes and reducing convolution effects, eBOSC more strictly
adhered to the specified target duration. However, there was also a notable reduction in
sensitivity for rhythms just above the duration threshold, suggesting a sensitivity-specificity
trade-off (Figure 3A2). In addition to decreasing false alarms, eBOSC also more accurately
estimated the duration of rhythmicity (Figure 3A1), although an underestimation of abundance
persisted (and was increased) at low SNRs. In sum, while eBOSC improved the specificity of
identifying rhythmic content, there were also noticeable decrements in sensitivity (grand
averages: .909 for standard BOSC; .614 for eBOSC), especially at low SNRs. Comparable
results were obtained with a 3-cycle wavelet (Figure S3). Notably, while sensitivity remains an
issue, the high specificity of detection suggests that the estimated rhythmic abundance serves
as a lower bound on the actual duration of rhythmicity.

In a second set of simulations, we considered eBOSC’s potential to accurately estimate
rhythmic amplitudes. As expected, in signals with stationary rhythms (duration = 1), the time-
invariant ‘overall’ amplitude estimate most accurately represented simulated amplitudes
(Figure 3B left), as any methods-induced underestimation biased rhythm-specific amplitudes.
Specifically, at low SNRs, underestimation of rhythmic content resulted in an overestimation
of rhythmic amplitudes, as some low-amplitude time points were incorrectly excluded prior to
averaging. At those low SNRs, subtraction of the background estimate (cf. baseline
normalization) alleviated this overestimation. The general impairment at low SNRs was
however outweighed by the advantage of rhythm-specific amplitude estimates in time series
where rhythmic duration was low and thus arrhythmicity was prevalent (Figure 3B right). Here,
rhythm-specific estimates accurately tracked simulated amplitudes, whereas a strong
underestimation was observed for unspecific power indices. In both scenarios, we observed an
underestimation of rhythmic abundance with decreasing amplitudes (cf. Figure 3A1).

An adaptation of the eBOSC method is the exclusion of the rhythmic alpha peak prior
to fitting the arrhythmic background. This serves to reduce a potential bias of rhythmic content
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on the estimation of the arrhythmic content (see Figure 1C for a schematic). Our simulations
indeed indicated a bias of the spectral peak amplitude on the background estimate in the
standard BOSC algorithm, which was substantially reduced in eBOSC’s estimates (Figure 3C).

To gain a visual representation of duration estimation performance, we plotted
abundance against amplitude estimates across all simulated trials, regardless of simulation
parameters (Figure 3D). This revealed multiple modes of abundance at high amplitude levels,
which in the eBOSC case more closely tracked the simulated duration. This further visualizes
the decreased error in abundance estimates, especially at high SNRs (e.g., Figure 3A), while an
observed rightward shift towards higher amplitudes indicated the more pronounced
underestimation of rhythmicity at low SNRs.

Finally, we investigated the trial-wise association between amplitude and duration
estimate based on the observed coupling in empirical data (see Figure 7). Our simulations
suggest that both standard BOSC and eBOSC can induce spurious positive correlations between
amplitude and abundance estimates, which are most pronounced at low levels of SNR (Figure
3E). Notably, these associations are strongly reduced in eBOSC, especially when rhythmic
power is high. This indicates that e BOSC provides a better separation between the two (here
independent) parameters, although a spurious association remains.

In sum, our simulations suggest that eBOSC specifically separates rhythmic and
arrhythmic time points in simulated data at the expense of decreased sensitivity, especially
when SNR is low. However, the increase in specificity is accompanied by an increased accuracy
of duration estimates at high SNR, theoretically allowing a more precise investigation of
rhythmic duration.
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3.2 eBOSC detects single-trial alpha rhythms during rest and task states
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Figure 4: Rhythmic alpha abundance and amplitude during rest. (A) eBOSC identifies high occipital alpha
abundance and rhythmic amplitude especially during the Eyes Closed resting state. White asterisks indicate
significant decreases for arrhythmic from rhythmic amplitudes (cluster is identical between conditions). Black
asterisks indicate significant increases upon eye closure. (B) Rhythmic amplitude and abundance are inter-
individually related during rest (C) The modulation of eye closure has similar effects on amplitude and abundance.
Estimates were extracted from posterior-occipital channels.

While the simulations provide a gold standard to assess detection performance, we
further probed eBOSC’s detection performance in empirical data from resting and task states
to investigate the practical feasibility and utility of rhythm detection. As the ground truth in real
data is unknown, we evaluated detection performance by contrasting metrics from detected and
undetected timepoints regarding their topography and time course.

Individual power spectra showed clear rhythmic alpha peaks for every participant
during eyes closed rest and for most subjects during eyes open rest and the task retention period,
indicating the general presence of alpha rhythms during the analysed states (Figure S4). In line
with a putative source in visual cortex, alpha abundance was highest over parieto-occipital
channels during the resting state (Figure 4A) and during the WM retention period (Figure 8),
with high collinearity between abundance and rhythmic amplitudes within resting conditions
(Figure 4B). As expected, rhythmic time-points exhibited increased alpha power compared with
arrhythmic time points (Figure 4A; white cluster). As one of the earliest findings in cognitive
electrophysiology (Berger, 1938), alpha amplitudes increase in magnitude upon eye closure.
Here, eye closure was reflected by a joint shift towards higher amplitudes and durations for
almost all participants (Figure 4C). To assess unique contributions of the Berger effect on
rhythm indices while controlling for the high collinearity between indicators, we performed
linear mixed modelling within the common effects cluster (see Supplementary Table 1). We
focussed on the continuous condition here, due to the similarity of the effects in the interleaved
case. Notably, rhythmic abundance was modulated by eye closure while statistically controlling
for either rhythmic or arrhythmic amplitudes. In contrast, rhythmic alpha amplitudes were not
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modulated by eye closure when controlling for alpha abundance. This suggests that rhythmic
duration may be a more sensitive marker of task modulations than amplitude. Finally,
arrhythmic amplitudes did not exhibit the Berger effect in either the interleaved or the
continuous acquisition when statistically controlling for the collinearity with rhythmic
amplitude or rhythmic abundance. Taken together, these results suggest a high, joint sensitivity
of rhythm-specific indices to eye closure, which exceeded the residual modulation of
arrhythmic backgrounds that may have resulted from specificity impairments during the
original detection procedure.
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Figure 5: Detected rhythmicity follows the task structure, with stable inter-individual differences in single trial
detection. (A) Average alpha power (black), split by rhythmic vs. arrhythmic designation, and rhythmic probability
(red) at posterior-occipital channels exhibit stereotypic temporal dynamics during encoding (gray bars), retention
(0 to 3 s) and retrieval (black bars). Compared to rhythmic power, arrhythmic power exhibits similar temporal
dynamics, but is strongly reduced in power (see y-scales). The arrhythmic power dynamics are characterized by
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additional transient increases following stimulus presentations. Data are from the first session and the high load
condition. Shading indicates standard errors across subjects. (B) Task-related alpha dynamics are captured by
eBOSC at the single-trial level. Each box displays individual trial-wise z-standardized alpha power at the
individual peak frequency, separately for rhythmic (left) and non-rhythmic (right) time points. While rhythmic
time points (left) exhibit clear single-trial power increases that are locked to the task design, arrhythmic time points
(right) do not show evoked task dynamics that separate them from the background, hence suggesting an accurate
rejection of rhythmicity. The subplots’ frame colour indicates the subjects’ raw power maximum (i.e., the data
scaling). Data are from channel O2 during the first session across load conditions. (C) Individual abundance
estimates are stable across sessions. Data were averaged across posterior-occipital channels and high (i.e., 6) item
load trials.

The temporal dynamics of indicated rhythmicity are another characteristic of interest to
indicate successful rhythm detection. While such an investigation is difficult for induced
rhythmicity during rest, evoked rhythmicity offers an optimal test case due to its systematic
temporal deployment. For this reason, we analysed task recordings with stereotypic design-
locked alpha power dynamics at encoding, retention and probe presentation (Figure SAB).
Rhythmic probability closely tracked power dynamics (Figure 5A) and time points designated
as rhythmic exhibited pronounced alpha power compared with those labelled arrhythmic
(Figure 5A left vs. Figure 5A right). While rhythm-specific dynamics closely captured standard
power trajectories, we observed a dissociation concerning arrhythmic power. Here, we
observed transient increases during stimulus onsets that were absent from either abundance or
rhythmic power (Figure 5A right). This suggests an increase in high-power transients that were
excluded due to the 3 cycle duration threshold. Indeed, a significant increase in transient events
was observed without an a priori duration threshold (see Figure 10).

At the single-trial level, rhythmicity was indicated for periods with visibly elevated
alpha power with strong task-locking (Figure 5B left). Conversely, arrhythmicity was indicated
for time points with low alpha power and little structured dynamics (Figure 5B right). However,
strong inter-individual differences were apparent, with little detected rhythmicity when global
alpha power was low (Figure 5B bottom; plots are sorted by descending power as indicated by
the frame colour of the depicted subjects and scaled using z-scores to account for global power
differences). Crucially, those subjects’ single-trial power dynamics did not present a clear
temporal structure, suggesting a prevalence of noise and therefore a correct rejection of
rhythmicity. Notably, those individual rhythmicity estimates were stable across multiple
sessions (Figure 5C), suggesting that they are indicative of trait-like characteristics rather than
idiosyncratic measurement noise (Grandy et al., 2013).

In sum, these results suggest that eBOSC successfully separates rhythmic and
arrhythmic episodes in empirical data, both at the group and individual level. However, they
also indicate prevalent and stable differences in single-trial rhythmicity in the alpha band that
may impair an accurate detection of rhythmic episodes.
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3.3 Rhythmic SNR constrains empirical duration estimates and rhythm-related metrics
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Figure 6: Inter-individual alpha abundance is strongly associated with rhythmic, but not arrhythmic power and
may be underestimated at low rhythmic SNR. (A) Individual abundance estimates are strongly related to the overall
SNR of the spectral alpha peak. This relationship is also observed when only considering individual data within
the SNR range for which simulation analyses indicated an unbiased abundance estimation. The black line indicates
interpolated estimates from simulation analyses with a sustained rhythm (i.e., duration = 1; see Figure 3B left).
Hence, it indicates a lower bound for the abundance underestimation that occurs at low SNRs, with notable overlap
with the empirical estimates in the same SNR range. (B) The effective rhythmic signal can be conceptualized as
the background-normalized rhythmic amplitude above the background estimate (rhythmic SNR). This proxy for
signal clarity is inter-individually linked to abundance estimates. (C) Background estimates are not consistently
related to abundance. This implies that the relationship between amplitude and abundance is mainly driven by the
signal, but not background amplitude (i.e., the effective signal ‘clarity’) and that associations do not arise from a
misfit of the background. (D) Rhythmicity estimates translate between power- and phase-based definition of
rhythmicity. This indicates that the BOSC-detected rhythmic spectral peak above the 1/f spectrum contains the
rhythmic information that is captured by phase-based duration estimates. All data are from the resting state.

While the empirical results suggest a successful separation of rhythmic and arrhythmic
content at the single-trial level, we also observed strong (and stable) inter-individual differences
in alpha-abundance. This may imply actual differences in the duration of rhythmic engagement
(as indicated in Figure 5B). However, we also observed a severe underestimation of abundance
as a function of the overall signal-to-noise ratio (SNR) in simulations (Figure 3), thus leading
to the question whether empirical data fell into similar ranges where an underestimation was
likely. During the resting state, we indeed observed that many overall SNRs were in the range,
where simulations with a stationary alpha rhythm suggested an underestimation of abundance
(cf. black and blue lines in Figure 6A. The black line indicates simulation-based estimates for
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stationary alpha rhythms at different overall SNR levels; see section 2.8). Moreover, the
coupling of individual SNR and abundance values took on a deterministic shape in this range,
whereas the association was reduced in ranges where simulations suggest sufficient SNR for
unbiased abundance estimates (orange line in Figure 6A). As overall SNR is influenced by the
duration of arrhythmic signal, rhythmic SNR may serve as an even better predictor of
abundance due to its specific relation to rhythmic episodes (Figure 2). In line with this
consideration, thythmic SNR exhibited a strong linear relationship to abundance (Figure 6B).
Importantly, the background estimate was not consistently related to abundance (Figure 6C),
emphasizing that it is the ‘signal’ and not the ‘noise’ component of SNR that determines
detection. Similar observations were made in the task data during the retention phase (Figure
S5), suggesting that this association reflects a general link between the magnitude of the spectral
peak and duration estimates. The joint analysis of simulated and empirical data thus questions
the accuracy of individual duration estimates, especially at low SNRs, due to the dependence
of unbiased estimates on sufficient rhythmic power.

As eBOSC defines single-trial power deviations from a stationary power threshold as a
criterion for rhythmicity, it remains unclear whether this association is exclusive to such a
‘power thresholding’-approach or whether it constitutes a more general feature of single-trial
rhythmicity. To probe this question, we calculated a phase-based measure of rhythmicity,
termed ‘lagged coherence’ (Fransen et al., 2015), which assesses the stability of phase
clustering at a single sensor for a chosen cycle lag. Here, 3 cycles were chosen for comparability
with eBOSC’s duration threshold. Crucially, this definition of rhythmicity led to highly
concordant estimates with eBOSC’s abundance measure® (Figure 6D), suggesting that power-
based rhythm detection above the scale-free background overlaps to a large extent with the
rhythmic information captured in the phase-based lagged-coherence measure. Moreover, it
suggests that duration estimates are more generally coupled to rhythmic amplitudes, especially
when overall SNR is low.
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Figure 7: The magnitude and duration of single-trial rhythmicity are intra-individually associated. Amplitude-
abundance association within subjects in the Sternberg task (1% session, all trials). Dots represent single trial

3 The eBOSC duration measure was further strongly correlated with the traditional Pepisode measure
(estimated at the trial-wise IAF) that results from the standard BOSC algorithm (EC: r=.96, p = 2e-18;
EC2:r=.94, p=2e-15; EO: r= .97, p = 3e-20; EO2: r= .97, p = 2e-20), suggesting that both measures

are similarly sensitive in our empirical data and reflect to a large extent overlapping information.
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estimates, color-coded by subject. Subject means are presented via diamonds. (Inlay) Histogram of within-subject
Fisher’s z-coefficients of within-subject associations. Relationships are exclusively positive. (B) Background
estimates are inter-individually uncorrelated with single-trial abundance fluctuations, excluding the outlier
indicated by white edges. (C) Schematic of the potential interdependence of rhythmic SNR and abundance. Low
SNR may cause the detection of shorter supra-threshold power periods with constrained amplitude ranges, whereas
prolonged periods may exceed the stationary threshold when the rhythmic signal is clearly separated from the
background.

While the previous observations were made at the between-subjects level, we further
investigated whether such coupling also persists between trials in the absence of between-
person differences. In the present data, we indeed observed a positive coupling of trial-wise
fluctuations of rhythmic SNR and abundance (mean Fisher’s z: .60; p < 6.5e-19) (Figure 7A),
whereas the estimate of the scale-free background was less consistently, though significantly
(mean Fisher’s z: .20; p = 2.6e-6), related to the estimated duration of rhythmicity (Figure 7B).
This suggests that the level of estimated abundance primarily relates to the magnitude of
ongoing power fluctuations around the stationary power threshold. Figure 7C schematically
shows how such an amplitude-abundance coupling may be reflected in single trials as a function
of rhythmic SNR. These relationships were also observed in our simulations and in other
frequency bands, although they were reduced in magnitude at higher levels of simulated
empirical SNR (Figure 3E) and for other frequencies (Figure S6), suggesting that partial
dissociations of the two parameters are feasible.

In sum, these results strongly caution against the interpretation of duration measures as
a ‘pure’ duration metric that is independent from rhythmic power, especially at low levels of
SNR. The strong within-subject coupling may however also indicate an intrinsic coupling
between the strength and duration of neural synchrony as joint representations of a rhythmic
mode. Notably, covariations were not constrained to amplitude and abundance, but were
widespread, including covariations between ‘SNR’ and the instability (or variability) of the
individual alpha peak frequency (see Supplementary Materials; Figure S7). Combined, these
results suggest that the efficacy of an accurate single-trial characterization of neural rhythms
relies on sufficient individual rhythmicity and can not only constrain the validity of duration
estimates, but broadly affect a range of rhythm characteristics that can be inferred from single
trials.

3.4 Rhythm detection improves amplitude estimates by removing arrhythmic episodes

From the joint assessment of detection performance in simulated and empirical data, it
follows that low SNR constitutes a severe challenge for single-trial rhythm characterization.
However, while the magnitude of rhythmicity at the single trial level constrains the detectability
of rhythms, abundance represents a lower bound on rhythmic duration due to eBOSC’s high
specificity. This allows the interpretation of rhythm-related metrics for those time points where
rhythmicity is indicated, leading to tangible benefits over standard analyses. In this section, we
highlight multiple proof-of-concept cases of such benefits.
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Figure 8: eBOSC differentiates spatially varying topographies of rhythmic and arrhythmic power during working
memory retention. Asterisks mark the channels that were selected for the spectra on the right. The graph shading
depicts standard errors. The topographies are grand averages from the retention phase of the Sternberg task across
all sessions.

A considerable problem in standard narrowband power analyses is the superposition of
rhythmicity on top of a scale-free 1/f background, effectively mixing the two components in
traditional power estimates (e.g. Haller et al., 2018). In contrast, eBOSC uncouples the two
signals via explicit modelling of the arrhythmic background. Figure 8 presents a comparison
between the standard narrowband estimate and eBOSC’s background and rhythmicity metrics
for the alpha band during working memory retention. While high narrowband power is
observed in frontal and parietal clusters, eBOSC differentiated a frontally-dominated 1/f
component and a posterior-occipital rhythm cluster. Identical comparisons within multiple low-
frequency ranges suggest the separation of a stationary 1/f topography and spatially varying
superpositions of rhythmicity (Figure S8). This highlights a successful separation of the scale-
free slope magnitude from rhythmicity across multiple frequencies, even when topographies
are partially overlapping as in the case of theta.
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Figure 9: Time-wise indication of rhythmicity improves rhythmic amplitude estimates and produces rhythm-
conditional spectra. (A) Comparison of rhythm-conditional spectra with the standard overall spectrum during the
memory retention phase. Rhythm-conditional spectra are created by comparing spectra from time-points where a
rhythm in the respective frequency range has been indicated with those where no rhythm was present. Notably,
this indicates rhythmic peaks at the frequencies of interest that are not observed in the overall spectrum (e.g. theta,
beta) due to the prevalence of non-rhythmic events. Simultaneous peaks beyond the target frequencies indicate
cross-spectral coupling. Note that these spectra also suggest sub-clusters of frequencies (e.g. an apparent split of
the ‘theta-conditional’ spectrum into a putative delta and theta component). Data are averaged across sessions,
loads, subjects and channels. (B) Abundance topographies of the observed rhythm-conditional spectral peaks. (C)
Arrhythmic duration linearly biases traditional power estimates during both rest and task states. The relative gain
in alpha amplitudes from global intervals to eBOSC’s rhythmic periods (see schematic in Figure 1A and Figure
2A) increases with the arrhythmic duration in the investigated period. That is, if high arrhythmic duration was
indicated, a focus on rhythmic periods strongly increased amplitudes by excluding the pervasive low-amplitude
arrhythmic periods. In contrast, amplitude estimates were similar when arrhythmicity was low and hence rhythm-
unspecific metrics contained little arrhythmic bias. Dots represent individual condition averages during the resting
state. Amplitude gain is calculated as the relative change in rhythmic amplitude from the unspecific ‘overall’
amplitude (i.e., (rthythmic amplitude-overall amplitude)/rthythmic amplitude). (D) Rhythmic amplitudes reflect
variations in time series amplitude, here visualized via a triadic split. The inset shows the statistical comparison of
squared amplitudes in a 200 ms peri-peak window. Estimates are from Session 1 with data from all channels. ***
=p<.001.

Furthermore, the presence of a rhythm is a fundamental assumption for the
interpretation of rhythm-related metrics, e.g., phase (Aru et al., 2015). This is often verified by
observing a spectral peak at the frequency of interest. However, sparse single-trial rhythmicity
may not produce an overt peak in the average spectrum due to the high prevalence of low-power
arrhythmic content. Crucially, knowledge about the temporal occurrence of rhythms in the
ongoing signal can be used to investigate the spectral content that is specific to those time
points, thereby creating ‘rhythm-conditional spectra’. Figure 9A highlights that such rhythm-
conditional spectra can recover spectral peaks for multiple canonical frequency bands, even
when no clear peak is observed in the grand average spectrum. This showcases that a focus on
detected rhythmic time points allows the interpretation of rhythm-related parameters.
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Abundance topographies for the different peaks observed in the rhythm-conditional spectra,
were in line with the canonical separation of these frequencies in the literature (Figure 9B).
Notably, while some rhythmicity was identified in higher frequency ranges, the associated
abundance topographies suggests a muscular generator rather than a neural origin for these
events.

Related to the recovery of spectral amplitudes from ‘overall amplitudes’, a central
prediction of the present work was that the change from overall to rhythmic amplitudes (i.e.,
rhythm-specific gain; see Figure 2 for a schematic) scales with the presence of arrhythmic
signal. Stated differently, if most of the overall signal is rhythmic, the difference between
overall and rhythm-specific amplitude estimates should be minimal. Conversely, if the overall
signal consists largely of arrhythmic periods, rhythm-specific amplitude estimates should
strongly increase from their unspecific counterparts. In line with these expectations, we
observed a positive, highly linear, relationship between a subject’s estimated duration of
arrhythmicity and the rhythm-specific amplitude gain (Figure 9C). Thus, for subjects with
sparse rhythmicity, rhythm-specific amplitudes were strongly increased from overall
amplitudes, whereas differences were minute for subjects with prolonged rhythmicity. Note
however that in the case of inter-individual collinearity of amplitude and abundance (as
observed in the present data) the rhythm-specific gains are unlikely to change the rank-order of
subjects as the relative gain will not only be proportional to the abundance, but due to the
collinearity also to the original amplitude. While such collinearity was high in the alpha band,
decreased amplitude-abundance relationships were observed for other canonical frequency
bands (Figure S6), where such ‘amplitude recovery’ may have the most immediate benefits.

To assess whether these single-trial amplitude estimates validly reflected fluctuations
in time series magnitude, we performed a triadic split based on single-trial amplitude estimates
across all detected episodes (across channels and sessions) in the alpha band. We aligned time-
series representations of rhythmicity to the maximal negative peak and compared power in a
window of 200 ms around this peak. Notably, rhythm-specific amplitude estimates reflected
time series amplitudes during rhythmic periods (Figure 9D) with a larger effect size (medium
vs. small: p =4e-7, Cohen’s d =1.13, large vs. medium: p =4e-9; Cohen’s d = 1.42) than overall
amplitudes (medium vs. small: p =.002, Cohen’s d = .58, large vs. medium: p = 9e-7; Cohen’s
d = 1.08). Interestingly, despite collinearity between amplitude and abundance at the within-
subject level (Figure 7A), a triadic split based on single-trial abundance estimates did not
differentiate rhythmic amplitudes (medium vs. small: p =34, Cohen’s d = .17, large vs.
medium: p = .45; Cohen’s d = -.14). Hence, rhythm-specific amplitude estimates were better
predictors of time series amplitudes than traditional averages that included arrhythmic episodes
or estimates of rhythmic duration.

In sum, eBOSC provides sensible single-trial amplitude estimates of narrow-band
rhythmicity that are boosted in magnitude due to the removal of arrhythmic episodes.
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3.5 eBOSC separates sustained and transient spectral events
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Figure 10: eBOSC provides a varied characterization of duration-specific frequency content, separating sustained
rhythmicity from transients. Episodes with a mean frequency between 8 and 15 Hz were post-hoc sorted by falling
below or above a 3-cycle duration threshold. For each index, estimates were averaged across all episodes at any
time point, followed by averaging across subjects and sessions. All indices are based on episodes that fulfil the
power threshold for rhythmicity. (A) Time-domain representation of alpha rhythms (A1) and transients (A2)
during retention and probe respectively. Backgrounds display moving averages of 150 raw rhythmic episode time
series across all subjects. Events are aligned to the closest trough to the TFR maximum of the identified event.
Episodes are sorted by episode onset relative to the identified trough. Individual (yellow) and grand data averages
(red) are superimposed. (B) Rhythmic SNR linearly relates to the number of rhythmic events during retention, but
not transient events during probe presentation. (C) Rhythm- and transient-specific estimates of episode prevalence
(C1), duration (C2), frequency (C3) and power (C4). Central panels show time-channel representations of group
indices for rhythmic (left) and transient episodes (right). Lateral topographies indicate the corresponding statistical
comparisons of paired t-tests comparing the retention and the probe period. Asterisks signify significant electrode
clusters. Unbroken white lines indicate stimulus presentations, broken white lines indicate probe presentation.

In addition to specificity gains for rhythmic indices, eBOSC’s creation of temporally
contiguous rhythmic ’episodes’ affords a characterization of rhythmic and transient episodes
with significant spectral power in the absence of an a priori duration requirement. Using the
traditional 3-cycle threshold as a post-hoc criterion for detected episodes, we separated
rhythmic and transient spectral events with clear differences in their time-domain
representations (Figure 10A). Notably, while rhythmic SNR related to the number of detected
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rhythmic events, the same was not observed for the number of transient episodes (Figure 10B2),
thus indicating that rhythms and transients may arise from different mechanisms. In line with
the observations made for rhythmic vs. arrthythmic power (cf. Figure 5A), we observed
differences in the temporal prevalence of transient events and sustained rhythms. Specifically,
stimulus onsets increased the number of transient events (Figure 10A1), whereas sustained
rhythms were increased during the retention phase. These episodes can be further characterized
in terms of their duration in cycles (Figure 10A2), their mean frequency (Figure 10A3) and
event-specific power (Figure 10A4). During the retention phase, we observed an increased
number of larger and longer rhythms compared with the probe period with no apparent
differences in frequency. In contrast, we observed a global increase in the number of transients
during probe presentation, with those transients being of higher frequency compared to
transients during the retention phase. The magnitude and duration of transients did not differ
globally between these two task periods. Taken together, these analyses suggest a principled
separation of sustained and transient spectral events on the bases of temporal post-hoc
thresholds.

Finally, the temporal specificity of spectral episodes also enables a characterization of
rhythm-‘evoked’ events (see Supplementary Materials). Whereas an assessment of evoked
effects has thus far only been possible with regard to external event markers, the indication of
rhythm on- and offsets allows an investigation of concurrent changes that are time-locked to
rhythmic events (Figure S9A). Here, we exemplarily show that the on- and offsets of rhythmic
episodes are associated with concurrent power increases and decreases respectively (Figure
S9B), adding further evidence for the high temporal specificity of indicated on- and offsets of
rhythmic episodes.

In sum, these proof-of-concept applications suggest that explicit rhythm detection may
provide tangible benefits over traditional narrowband analyses due to the specific separation of
rhythmic and arrhythmic periods, despite the high collinearity of abundance and power that we
observed in the alpha band.
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3.5 Rhythm-specific indices exhibit improved sensitivity to working memory load
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Figure 11: Memory load-modulation of traditional wavelet power, rhythmic abundance and rhythmic amplitude.
Traditional wavelet estimates indicated no significant parametric load of either frontal theta or posterior alpha
power (A), whereas a load-related increase was indicated for both theta and alpha abundance (B). In contrast to
abundance, no significant relationship with load was indicated for rhythm-specific amplitudes (C).

So far, we investigated the potential to derive rhythm-specific estimates and highlighted
resulting benefits. It remains unclear however, to what extent these estimates are experimentally
modulated in cognitive tasks and whether they add complementary information to extant
measures. To attend this question, we probed the effect of working memory load on traditional,
rhythm-unspecific power averages and eBOSC’s duration and amplitude in the alpha and theta
band*. Standard power estimates indicated load-related increases in frontal theta and right
posterior alpha power that did not reach statistical significance however (Figure 11A; see also
Figure S10 for different normalization procedures). In contrast, significant increases were
observed for rhythmic abundance (Figure 11B), but not for rhythm-specific power, despite
similar statistical topographies (Figure 11C). To investigate whether rhythmic abundance
captured additional variance of memory load compared to amplitude, we performed linear
mixed effects modeling of data averages within the (topographically-similar) abundance
clusters. The results are presented in Supplementary Table 2. As expected, we observed high
collinearity between different measures, expressed as significant pairwise relations between
traditional and rhythm-specific indices. Controlling for this high collinearity however, memory
load predicted increases in theta and alpha abundance over and above overall, and rhythmic-
specific, amplitudes. In contrast, rhythm-specific amplitudes did not capture unique variance in
load level when controlling for overall amplitude, in line with the absence of an indicated effect
by the permutation test. Jointly, these analyses suggest that rhythmic abundance, despite high
collinearity with overall and rhythmic amplitudes, is more sensitive to working memory load
than (traditional) amplitude estimates.

4 Regarding traditional metrics, we assessed three normalization procedures: raw signals,
single-trial logl0-transformation and baseline correction with average power 700 to 500 ms
prior to retention onset. In contrast with temporal baselining, eBOSC performs spectral
normalization by explicitly modelling the 1/f slope.
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Figure 12: Descriptors of single-trial rhythmic events relate to working memory load. (A, B) Rhythmic event rates
are a relevant parameter for describing band-specific task modulations. (A) Different frequency bands vary in their
sustained vs. transient time domain appearance. Conventions are the same as in Figure 10B. X-axes are scaled to
cover approx. 6 cycles at each frequency. (B) Rhythmic event rates are modulated by working memory load except
in the alpha band, where events appear the most sustained. Alpha rate was averaged from 8-12 Hz here to exclude
beta rate decreases. (C) Rhythmic frontal theta frequency decreases with working memory load. (Top) Rhythm-
specific spectra indicate a parametric shift in theta frequencies with load. Statistics are based on a cluster-based
permutation test. The inset shows the cluster for which a significant relation between load and the average
frequency of rhythmic theta episodes is indicated. Spectra are averaged across significant cluster channels. Error
bars indicate within-subject standard errors. (Lower) The overall spectrum does not show a clear spectral peak in
the theta range or a shift in theta frequency. Note that amplitude values are increased in the rhythm-specific version
compared to the rhythm-unspecific estimates.

The previous analyses focused on the total rhythmic abundance and power during the
retention phase. However, rhythmicity can also be characterized with regard to individual
spectral events, such as their rate of occurrence. In line with our observation of high abundance,
rhythmic events in the alpha band were characterized by enduring rhythmicity, whereas events
in other frequency bands had a more transient signature (Figure 12A). This poses the question
whether the rate of these transient events may be a critical parameter, as has been previously
suggested for the beta and gamma band (Lundqvist et al., 2016; Shin, Law, Tsutsui, Moore, &
Jones, 2017). To attend this question, we created rate spectra based on the occurrence of
rhythmic episodes in sliding frequency windows. These spectra were then subjected to a cluster-
based permutation test to assess their relation with memory load. We observed increased rates
of frontal theta and posterior gamma events as well as decreased rates of central beta events
with load, whereas no differences were indicated for the alpha band (Figure 12B). Hence,
whereas the sustained appearance of alpha rhythms may render other parameters such as
duration and power critical, in other frequency bands, modulation may also affect the number
of relatively sparse events.
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In turn, focusing on these sparse rhythmic events can drastically increase their amplitude
estimates and may thus improve dependent metrics (e.g., see Figure 9C). During our exploration
of rhythmic parameters, we observed a parametric load-related decrease of frontal theta
frequency (Figure 12C) that spatially aligned with the frontal topography of theta rate and
abundance increases (see Figure 12B & 11B). Individual rhythmic frequency decreases
between low and high loads were not related to individual abundance (r = .33, p = .06) or
amplitude (r = .06, p =.73) changes, suggesting that differences in rhythmic SNR cannot solely
account for individual frequency shifts. To visualize the shift in theta frequency, we computed
FFT spectra with a high spectral resolution (.33 Hz), separately for rhythmic episodes, and — as
traditionally done — for the entire retention period. Critically, frequency-modulated theta peaks
at frontal channels were only observed for rhythmic, but not for overall spectra (Figure 12C)
due to a threefold increase in the magnitude of single-trial events across the entire segment.
Moreover, in line with the results of eBOSC’s wavelet-based frequency estimates, significant
negative load-related slopes were indicated for rhythm specific FFT frequency estimates
(mean= -.16, SE = .05, p = .005) but not rhythm-unspecific global estimates (mean = -.05, SE
= .06, p = .36). Hence, a focus on rhythmic episodes was necessary to reveal memory-load
related frequency decreases of frontal theta rhythms, which would have been missed with
traditional analyses.

In sum, these results highlight the potential of single-trial-based rhythm estimates to
boost signal of interest to advance analyses regarding the role of rhythmicity in cognition.

4. Discussion

In the present manuscript, we explored the feasibility of characterizing neural rhythms
at the level of single trials. To achieve this goal, we extended a previously published rhythm
detection method, BOSC (Whitten et al., 2011). Based on simulations we demonstrate that our
extended BOSC (eBOSC) algorithm performs well and increases detection specificity.
Crucially, the reliance on robust regression in conjunction with removal of the rhythmic power
band effectively decoupled estimation of the noise background from the rhythmic signal
component (as reflected in the divergent associations with rhythmicity estimates). In real data,
we can successfully separate rhythmic and arrhythmic, sometimes transient components, and
further characterize e.g., their amplitude, duration and frequency. In total, single-trial
characterization of neural rhythms appears promising for improving a mechanistic
understanding of rhythmic processing modes during rest and task.

However, the simulations also reveal challenges for accurate rhythm characterization in
that the abundance estimates clearly depend on rhythmic power. The comparison to a phase-
based rhythm detection further suggests that this a general limitation independent of the chosen
detection algorithm. Below, we will discuss the potential and challenges of single-trial rhythm
detection in more detail.

4.1 The utility and potential of rhythm detection

Single-trial analyses are rapidly gaining importance (Jones, 2016; Stokes & Spaak,
2016), in part due to a debate regarding the sustained vs. transient nature of neural rhythms that
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cannot be resolved at the level of data averages (Jones, 2016; van Ede et al., 2018). In short,
due to the non-negative nature of power estimates, time-varying transient power increases may
be represented as sustained power upon averaging, indicating an ambiguity between the
duration and power of rhythmic events (cf., Figure 2B). Importantly, sustained and transient
events may differ in their neurobiological origin (Sherman et al., 2016), indicating high
theoretical relevance for their differentiation. Moreover, many analysis procedures, such as
phase-based functional connectivity, assume that estimates are directly linked to the presence
of rhythmicity, therefore leading to interpretational difficulties when it is unclear whether this
condition is met (Aru et al., 2015; Muthukumaraswamy & Singh, 2011). Clear identification of
rhythmic time periods in single trials is necessary to resolve these issues. In the current study,
we extended a state-of-the-art rhythm detection algorithm, and systematically investigated its
ability to characterize the power and duration of neural alpha rhythms at the single-trial level
in scalp EEG recordings.

While the standard BOSC method provides a sensible detection of rhythmic activity in
empirical data (Caplan et al., 2015; Whitten et al., 2011), its’ ability to detect rhythmicity and
disambiguate rhythmic power and duration has not yet been investigated systematically.
Furthermore, we introduced multiple changes that aimed to create rhythmic episodes with a
time-point-wise indication of rhythmicity. For these reasons, we assessed the performance of
both algorithms in simulations. We observed that both algorithms were able to approximate the
duration of rhythmicity across a large range of simulated amplitudes and durations. However,
standard BOSC systematically overestimated rhythmic duration (Figure 3A). Furthermore, we
observed a bias of rhythmicity on the estimated background (Figure 3C) as also noted by Haller
et al. (2018). In contrast, eBOSC accounts for these problems by introducing multiple changes:
First, by excluding the rhythmic peak prior to fitting the arrhythmic background, eBOSC
decreased the bias of narrow-band rhythmicity on the background fit (Figure 3C), thereby
effectively uncoupling the estimated background amplitude from the indicated rhythmicity.
Second, the post-processing of detected segments provided a more specific characterization of
neural rhythms compared to standard BOSC. In particular, accounting for the temporal
extension of the wavelet increased the temporal specificity of rhythm detection as indicated by
a better adherence to the a priori duration threshold along with more precise duration estimates
(Figures 3). In contrast to the high specificity, the algorithm did trade off sensitivity, leading to
sensitivity losses that were most pronounced at low signal-to-noise ratios (SNR). In sum, the
simulations highlight that eBOSC provides a sensible differentiation of rhythmic and
arrhythmic time points as well as accurate duration estimates, but also highlight challenges for
empirically disentangling rhythmic power and duration that arise from sensitivity problems
when the magnitude of rhythms is low. We discuss this further in section 4.2. In empirical data,
eBOSC likewise led to a sensible separation of rhythmic from arrhythmic topographies (Figure
4A, Figure 8, Figure S8) and time courses, both at the average (Figure 5A) and the single-trial
level (Figure 5B). This suggests a sensible separation of rhythmic and arrhythmic time points
also in empirical scenarios.

The specific separation of rhythmic and arrhythmic time points has multiple immediate
benefits that we validated using empirical data from resting and task states. First, eBOSC
separates the scale-free background from superimposed rhythmicity in a principled manner.
The theoretical importance of such separation has previously been highlighted (Haller et al.,
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2018), as narrow-band estimates traditionally confound the two signals. Here, we show that
such a separation empirically produces different topographies for the arrhythmic background
and the superimposed rhythmicity (Figure 8 and Figure S8). In line with these findings, Caplan
et al. (2015) described a rhythmic occipital alpha topography, whereas overall power included
an additional anterior component across multiple lower frequencies. While that study did not
plot topographies for the background estimates, our study suggests that this frontal component
is captured by the background magnitude. This provides convergent evidence for a principled
separation of rhythmic and arrhythmic spectral content which may be treated as a signal of
interest in itself (Buzsaki & Mizuseki, 2014; He et al., 2010).

The separation of these signal sources at single time points can further be used to
summarize the rhythmic single-trial content via rhythm-conditional spectra (Figure 9).
Crucially, such a focus on rhythmic periods resolves biases from arrhythmic periods in the
segments of interest. In line with our hypotheses, simulations (Figure 2B) and empirical data
(Figure 9C) indicate that arrhythmic episodes in the analysed segment bias overall power
estimates relative to the extent of their duration. Conversely, a focus on rhythmic periods
induces the most pronounced amplitude gains when rhythmic periods are sparse. This is in line
with previous observations by Cole & Voytek (2018), showing dissociations between power
and frequency estimates when considering ‘rhythmic’ vs. unspecific periods and extend those
observations by showing a strong linear dependence between the rhythm-specific change in
estimates and the duration of arrhythmic bias (Figure 9C).

Moreover, by allowing a post-hoc duration threshold, eBOSC can disentangle transient
and sustained events in a principled manner (Figure 10). This may provide new insights into
the contribution of different biophysical signal generators (Sherman et al., 2016) to observed
neural dynamics and aid the characterization of these processes. Such characterization includes
multiple parameters, such as the frequency of rhythmic episodes, their duration, their amplitude
and other indices that we did not consider here (e.g., instantaneous phase, time domain shape).
Here, we observed an increased number of alpha transients following stimulus onsets, and more
sustained rhythms when no stimulus was presented (Figure 5A, Figure 10). In line with these
observations, Peterson & Voytek (2017) recently proposed alpha ‘bursts’ to increase visual gain
during stimulus onsets and contrasted this role with decreased cortical processing during
sustained alpha rhythms. Our data supports such a distinction between sustained and transient
events, although it should be noted that the present transients resemble single time-domain
deflections that are resolved at alpha frequency (Figure 10A2) and may therefore not directly
relate to the ‘rhythmic bursts’ proposed by Peterson & Voytek (2017). Note that the reported
duration of ‘burst’ events in the literature is still diverse, often exceeding the 3-cycle threshold
used here (Peterson & Voytek, 2017). In contrast to eBOSC however, previous work has not
accounted for the impact of wavelet duration. It is thus conceivable that power transients that
were previously characterized as 3 cycles or longer are actually shorter after correcting for the
impact of wavelet convolution, as is done in the current eBOSC implementation (Figure S1).
This temporal specificity also allows an indication of rhythm-evoked changes, here exemplified
with respect to rhythm-evoked power changes (Figure S9). We observed a precise and
systematic time-locking of power changes to the on- and offset of detected rhythmic episodes.
This further validates the detection assumptions of the eBOSC method (i.e. significant power
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increases from the background), and highlights the temporal specificity of e BOSC’s rhythmic
episodes.

In total, eBOSC’s single-trial characterization of neural rhythms provides multiple
immediate benefits over traditional average-based analyses temporally precise indication of
rhythmic and arrhythmic periods. It thus appears promising for improving a mechanistic
understanding of rhythmic processing modes during rest and task.

4.2 Single-trial detection of rhythms: rhythmic SNR as a central challenge

The aforementioned examples highlight the utility of differentiating rhythmic and
arrhythmic periods in the ongoing signal. However, the simulations also indicated problems to
accurately do so when rhythmic power is low. That is, the recognition of rhythms was more
difficult at low levels of SNR, leading to problems with their further characterization. In
particular, our simulations suggest that estimates of the duration (Figure 6A) and frequency
stationarity (Figure S7) increasingly deviate from the simulated parameters as the SNR
decreases. Changes in instantaneous alpha frequency as a function of cognitive demands have
been theorized and reported in the literature (Haegens, Cousijn, Wallis, Harrison, & Nobre,
2014; Herrmann, Murray, Ionta, Hutt, & Lefebvre, 2016; Mierau, Klimesch, & Lefebvre, 2017;
Samaha & Postle, 2015; Wutz, Melcher, & Samaha, 2018), with varying degrees of control for
power differences between conditions and individuals. Our empirical analyses suggest an
increased trial-by-trial variability of individual alpha frequency estimates as SNR decreases
(Figure S7). Meanwhile, simulations suggest that such increased variance - both estimated
within indicated rhythmic periods and across whole trials — may result from lower SNR. While
our results do not negate the possibility of real frequency variations of the alpha rhythm with
changes in task load, they emphasize the importance of controlling for the presence of rhythms,
mirroring considerations for the interpretation of phase estimates (Muthukumaraswamy &
Singh, 2011) and amplitudes. This exemplifies how stable inter-individual differences in
rhythmicity (whether due to a real absence of rhythms or prevalent measurement noise; e.g.,
distance between source and sensor; head shape; skull thickness) can affect a variety of ‘meta‘-
indices (like phase, frequency, duration) whose estimation accuracy relies on apparent
rhythmicity.

The challenges for characterizing rhythms with low rhythmic power also apply to the
estimated rhythmic duration, where the issue is particularly challenging in the face of legitimate
interest regarding the relationship between the power and duration of rhythmic events. In
particular, sensitivity problems at low rhythmic magnitudes challenge the ability to empirically
disambiguate rhythmic duration and power, as it makes the former dependent on the latter in
the presence of noise (e.g., Figure 2B). Crucially, a tight link between these parameters was
also observed in the empirical data. During both rest and task states, we observed gradual and
stable inter-individual differences in the estimated extent of thythmicity that were most strongly
related to the overall SNR in ranges with a pronounced sensitivity loss in simulations (see
Figure 4A black line). Given the observed detection problems in our simulations, this
ambiguates whether low empirical duration estimates indicate temporally constrained rhythms
or estimation problems. Conceptually, this relates to the difference between lower SNR subjects
having (A) low power, transient alpha engagement or (B) low power, sustained alpha
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engagement that was too faint to be detected (i.e., sensitivity problems). While the second was
the case in the simulations, the absence of a ground truth does not allow us to resolve this
ambiguity in empirical data.

Empirically, multiple results suggest that the low duration estimates at low SNRs did
not exclusively arise from idiosyncrasies of our algorithm. Notably, inter-individual differences
in eBOSC’s abundance measure were strongly correlated with standard BOSC’s Pepisode
measure (Whitten et al., 2011) as well as the phase-based lagged coherence index (Fransen et
al., 2015), thus showing high convergence with different state-of-the-art techniques (Figure
6D). Furthermore, detection performance was visually satisfying in single trials given
observable task-locked rhythm dynamics for rhythmic, but not arrhythmic periods (Figure 5B).
Moreover, the observed relationship between amplitude gain and abundance suggests a
successful exclusion of (low-power) arrhythmic episodes at the individual level (Figure 9C).
These observations indicate that low SNR conditions present a fundamental challenge to single-
trial characterization across different methods. The convergence between power- and phase-
based definitions of rhythmicity also indicates that rhythmicity can exhaustively be described
by the spectral peak above the background, in line with our observations regarding rhythm-
conditional spectra (Figure 9A).

The observation of strong between-person coupling as a function of SNR suggests that
such sensitivity limitations may account for the inter-individual amplitude-abundance
associations. However, we also observed a positive association between subjects with high
alpha SNR. Likewise, we observed positive associations between abundance and rhythmic SNR
at the within-subject level (Figure 5). While trial-wise coupling was also present in our
simulations, the magnitude of these relationships was lower at high SNR (Figure 3E).
Conversely, in empirical data, the within-subject association did not vary in magnitude as a
function of the individual SNR. Hence, separate sources may contribute to a coupling of
rhythmic amplitude and abundance: a methods-induced association in low SNR ranges and an
intrinsic coupling between rhythmic strength and duration as a joint representation of rhythmic
synchrony. Notably, empirical within-subject coupling between rhythmic amplitude and
duration was previously described for LFP beta bursts in the subthalamic nucleus (Tinkhauser
et al., 2017), with both parameters being sensitive to a drug manipulation. This association was
interpreted as a “progressive synchronization of inputs over time” (Tinkhauser et al., 2017; p.
2978). Due to the absence of a dissociation of these parameters, it remains unclear whether the
two measures make independent contributions or whether they can be conceptualized as a single
underlying latent ‘rhythmicity’ index. To resolve this ambiguity, clear dissociations of
amplitude and duration estimates in data with high rhythmic SNR are necessary. Notably,
potential dissociations between the individual power and duration of beta events has been
suggested by Shin et al. (2017), who described differential relationships between event number,
power and duration to mean power and behaviour.

The high collinearity between overall amplitude and abundance may be surprising given
evidence of their potential dissociation in the case of beta bursts (where overall abundance is
low, but burst amplitudes are high) (Lundqvist et al., 2016; Sherman et al., 2016; Shin et al.,
2017). In line with this notion, Fransen et al. (2015) reported an increased sensitivity for central
beta rhythmicity using the lagged coherence duration index compared with overall power. It
may thus be that the alpha range is an outlier in this regard due to the presence of relatively
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sustained rhythmicity (Figure 12A). A frequency-wise comparison of the between- and within-
subject collinearity between amplitude and abundance collinearity indicated a particularly high
overlap for the alpha range (Figure S6) with relatively lower coupling for delta, theta and beta.
In addition, we observed load modulations on rhythm event rate in many bands but alpha
(Figure 12B). Whether these band-specific differences primarily relate to their lower
rhythmicity in the current data or reflect systematic differences between frequencies remains
an open question and requires data with more prominent rhythmicity in these bands.

The strong collinearity of amplitude and duration estimates also questions the successful
disambiguation of the two indices in empirical data and more generally the interpretation of
duration as an independent index. In cases where such metrics only serve as a sensitive and/or
specific replacement for power (Caplan et al., 2015; Fransen et al., 2015) this may not be
problematic, but care has to be taken in interpreting available duration indices as power-
independent characteristics of rhythmic episodes. An independent duration index becomes
increasingly important however to assess whether rhythms are stationary or transient. For this
purpose, both amplitude thresholding and phase-progression criteria have been proposed (Cole
& Voytek, 2018; Peterson & Voytek, 2017; Sherman et al., 2016; van Ede et al., 2018; Vidaurre,
Myers, Stokes, Nobre, & Woolrich, 2018). Here, we show that both methods arrive at similar
conclusions regarding individual rhythmic duration and that the mentioned challenges are
therefore applicable to both approaches. As an alternative to threshold-based methods, Van Ede
et al. (2018) propose methods based on e.g., Hidden Markov Models (Vidaurre et al., 2018;
2016) for the estimation of rhythmic duration. These approaches are interesting as the definition
of states to be inferred in single trials is based on individual (or group) averages, while the
multivariate nature of the signals across channels is also considered. It is a viable question for
future investigations whether such approaches can adequately characterize the duration of
rhythmic states in scenarios where the present methods fail.

4.3 Experimental manipulation of rhythm-specific indices

To establish the practical utility of rhythm detection, we probed the experimental
modulation of rhythm-specific indices during working memory retention. We focused on this
phase as it has received large interest for distinguishing between transient and sustained
retention codes (Lundqvist et al., 2016; Lundqvist, Herman, Warden, Brincat, & Miller, 2018),
with both theoretical models (Jensen & Lisman, 1998; Lisman & Jensen, 2013; Lundqvist,
Herman, & Lansner, 2011) and empirical evidence (Jensen et al., 2002; Jensen & Tesche, 2002;
Jokisch & Jensen, 2007; Meltzer et al.,, 2008; Michels et al., 2008; Onton et al., 2005;
Scheeringa et al., 2009; Tuladhar et al., 2007) suggesting that low-frequency rhythmicity
increases with load. In line with this evidence, we observed load-related increases in the total
duration of frontal theta and right parietal alpha rhythms during visual working memory
retention, despite traditional power estimates not reaching statistical significance. Reinforcing
these results, mixed modelling indicated a high sensitivity of rhythmic abundance to both eye
closure and working memory load while controlling for its collinearity with traditional
estimates. This may be due to multiple advantages: eBOSC’s estimates are spectrally
normalized and individually specific e.g. to individual peak frequencies, while not assuming
stationarity across time. Furthermore, rhythm-specific measures are theoretically agnostic to
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the magnitude of desynchronization, as they only characterize rhythmicity when it is present.
Interestingly, abundance was also more sensitive to the load effect than rhythm-specific
amplitudes, suggesting that duration may be a critical parameter to describe cognitive effects
despite high collinearity with amplitude.

In addition to our confirmatory analyses in the theta and alpha band, we also explored
the load modulation of individual spectral events. Here, we observed that the rate of spectral
events during the retention phase was modulated in the theta, beta and gamma, but not the alpha
band. This is interesting given that alpha events had a more continuously ‘rhythmic’ appearance
overall, whereas the relative rate of spectral events may be relevant for frequency bands with
sparse events, as has been suggested for the beta band (Shin et al., 2017). While we confirm the
feasibility of such analyses across multiple frequency bands here, we note that further work on
the complementary value of such event rates is required to establish their functional
significance.

During our analyses we also observed frequency decreases of rhythmic episodes in the
theta band at frontal channels. Decreases in rhythmic theta frequency have previously been
hypothesized in the framework of theta-gamma multiplexing serving working memory storage
(Bahramisharif, Jensen, Jacobs, & Lisman, 2018; Jensen & Lisman, 1998). In particular, a
version of this computational model anticipates that the frequency of theta rhythms determines
the amount of gamma cycles that can be multiplexed within a single theta cycle. As the number
of targets to be held in memory increases, the theory predicts a slowing of theta with increasing
load. Such a load-related decrease in gamma-modulating theta frequencies has been observed
in human hippocampus (Axmacher et al., 2010). However, this has been difficult to show
outside of invasive recordings. Here we observed that overall power did not exhibit a clear
spectral peak in the theta range, but that such peak became apparent only when estimates were
constrained to rhythmic periods. Furthermore, a parametric decrease in the frequency of single-
trial rthythmic episodes was indicated. This suggests that the observed frontal theta signature
may support the multiplexing of individual items during the retention period and may even have
a hippocampal origin. However, as we observed this effect by exploration, further work should
confirm these hypotheses.

Taken together, our results highlight that a variety of rhythm-specific characteristics are
sensitive to experimental modulations, such as working memory load. Despite the observed
high collinearity between estimates, modulations suggest sensitivity differences between
different rhythm estimates. Their automatic single-trial estimation using tools such as eBOSC
may thus further our understanding of the role of rhythmicity in cognition, without necessitating
the (often unchecked) assumptions of data averages.

4.4 Comparison to other single-trial detection algorithms & limitations

The BOSC-family of methods is conceptually similar to other methods that are currently
used to identify and describe spectral events in single trials. These methods share the underlying
principle of identifying rhythmic events based on momentary power increases relative to an
average baseline. Such detection is most common regarding transient beta bursts, for which a
beta-specific power threshold is often defined. For example, Sherman et al. (2016) identified
transient beta events based on the highest power within the beta range, i.e., without an explicit
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threshold. Shin et al. (2017) introduced a beta-specific power threshold based on average pre-
stimulus power. Similarly, Feingold et al. (2015) defined beta events as exceeding 1.5/3 times
the median beta power of that channel, while Tinkhauser et al. (2017) applied a 75" percentile
threshold to beta amplitudes. These approaches therefore use a spectrally local power criterion,
but no duration threshold. Most closely related to the BOSC-family is the MODAL method by
Watrous et al. (2018), which similarly uses a robust fit of the 1/f spectrum to detect rhythmic
events in continuous data and then further derives frequency and phase estimates for those
rhythmic periods. This is conceptually similar to eBOSC’s definition as ‘statistically
significant’ deviations in power from the 1/f background spectrum, except for the absence of a
dedicated power or duration threshold. However, all of the above methods share the
fundamental assumption of a momentary power deviation from a frequency-specific
‘background’, with varying implementations of a 1/f model assumption. Such assumption can
be useful to avoid a bias of rhythmic content on the power threshold (as a spectrally local power
threshold depends on the average magnitude of band-limited rhythmicity, i.e., arrhythmic +
rhythmic power). Removing the rhythmic peak prior to background modelling helps to avoid
such bias (Figure 3C). The eBOSC method thereby provides a principled approach for the
detection of single-trial events across frequencies (as shown in Figure 9).

A systematic and general removal of spectral peaks remains a challenge for adequate
background estimates. In the current application, we exclusively removed alpha-band power
prior to performing the background fit. While the alpha rhythm produced the largest spectral
peak in our data (see Figure S4), this should not be understood as a fixed parameter of the
eBOSC approach, as other rhythmic peaks may bias the estimation of the background spectrum
depending on the recording’s specifics (e.g., type, location etc.). We perceive the need to
remove rhythmic peaks prior to background fitting as a general one’, as residual spectral peaks
bias detection efficacy across the entire spectrum via misfits of the background intercept and/or
slope. In particular, rhythmic peaks at higher frequencies disproportionally increase the
background estimate at lower frequencies due to the fitting in logarithmic space. Thus, a
principled removal of any spectral peaks in the average spectrum is necessary. Recently, Haller
et al. (2018) proposed a principled approach for the removal of rhythmic spectral peaks, which
may afford rhythm-unbiased background estimates without requiring priors regarding the
location of spectral peaks. It may thus represent a useful pre-processing step for further
applications. Regarding the present data, we anticipate no qualitative changes compared to our
alpha exclusion approach as (a) we did not consistently observe an association between
background and rhythmicity estimates (Figure 6), and the signal was dominated by an alpha
frequency peak, which consistently exceeded eBOSC’s power threshold.

Our results further question the adequacy of a stationary power threshold (as
traditionally employed and used here) for assessing the amplitude-duration relationship
between individual rhythmic episodes. In our empirical analyses, the rhythmic SNR, reflecting
the deviation of amplitudes during rhythmic periods from the stationary background, was
consistently most strongly associated with the estimated duration (Figures 6 & 7). While

> A potential bias is less likely in the case of sporadic rhythmicity that does not produce a
peak in the average spectrum. In this case, the power of the single-trial events would exceed
the background estimate that is decreased due to the prevalence of arrhythmic periods.
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keeping the background (and thus the power threshold) stable conforms with the common
assumption of rhythmicity being captured within a spectral peak deviating from a stationary
background (Figure 9), it may also exacerbate an amplitude-abundance coupling on a trial-by-
trial basis (see Figure 7C for a schematic of the assumed association) as ongoing power
fluctuations can only be explained by changes in the rhythmic and not the arrhythmic power
term. Further research on dynamic thresholds may shed further light on this issue.

Another point worth highlighting is that e BOSC operates on wavelet-derived power
estimates. The specific need for wavelet estimates results from model-based assumptions about
the time-frequency extension of the wavelet that are used for refining detected rhythmic time
points (see Figure 2 and section 2.6). Naturally, the choice of wavelet parameters, specifically
their center frequency and duration, influences the time-frequency representations upon which
eBOSC operates. Here, we used 6 cycles as the duration parameter, in line with previous work
with standard BOSC (Caplan et al., 2015; Whitten et al., 2011). In a supplementary analysis,
we compared detection performance using a 3 cycle wavelet and found increased accuracy only
for short rhythmicity, whereas the sensitivity to longer rhythmicity was decreased (Figure S3).
This is consistent with the assumption that wavelet duration regulates the trade-off between
temporal and spectral specificity, with longer wavelets allowing for a finer separation of nearby
frequencies at the cost of temporal specificity. Another free parameter concerns the choice of
center frequencies. In the post-processing procedures, we perform a sort of spectral filtering
based on the pass-band of the wavelet (Figure S1), which is determined by its duration.
Resolving rhythms at nearby frequencies thus requires the use of wavelets with sufficient
frequency resolution, not only with regard to the sampled frequencies, but also a sufficient
duration of the wavelet. This highlights the dependence of eBOSC outputs on the specifics of
the wavelet-based transformation from the time into the frequency domain.

An alternative, parallel approach to characterize ongoing rhythmicity is based on
characterizing the waveform shape in the time domain, thereby circumventing power analyses
entirely (Cole & Voytek, 2018). While such an approach is intriguing, further work is needed
to show which analysis sequence is more fruitful: (a) identifying events in the frequency domain
and then describing the associated waveform shape in the time domain (e.g., e BOSC) or (b)
identifying events and characterizing them based on time domain features (e.g., cycle-by-cycle
analysis). As both procedures operate on the basis of single trials, similar challenges (i.e.,
especially rhythmic SNR) are likely to apply to both approaches.

5. Conclusion

We extended a state-of-the-art rhythm detection method and characterized alpha
rhythms in simulated, resting and task data at the single trial level. By using simulations, we
show that rhythm detection can be employed to derive specific estimates of rhythmicity, with
fine-grained control over its definition, and to reduce the bias of rhythm duration on amplitude
estimates that commonly exists in standard analysis procedures. However, we also observe
striking inter-individual differences in the indicated duration of rhythmicity, which for subjects
with low alpha power may be due to insufficient single-trial rhythmicity. We further show that
low rhythmicity can lead to biased estimates, in particular underestimated duration and
increased variability of rhythmic frequency. Given these constraints, we have provided
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examples of eBOSC’s efficacy to characterize rhythms that may prove useful for investigating
the origin and functional role of neural rhythms in health and disease, and in turn, the current
study works to establish the foundation for ideographic analyses of neural rhythms.

Data availability

The scripts implementing the eBOSC pipelines are available at github.com/jkosciessa/eBOSC
alongside the simulation scripts that were used to assess eBOSC’s detection properties. Data
will be made available upon reasonable request.
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