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Abbreviations: AUROC: Area under the receiver operating curve, GO: Gene annotation, 

OS: Overall survival, PCOSP: Pancreatic cancer overall survival predictor, PDAC: 

Pancreatic ductal adenocarcinoma, TSP: Top scoring pairs. 
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ABSTRACT 

Background 
  
With a dismal 8% median 5-year overall survival (OS), pancreatic ductal adenocarcinoma 

(PDAC) is highly lethal. Only 10-20% of patients are eligible for surgery, and over 50% of 

these will die within a year of surgery. Identify molecular predictors of early death would 

enable the selection of PDAC patients at high risk. 

Methods 

We developed the Pancreatic Cancer Overall Survival Predictor (PCOSP), a prognostic 

model built from a unique set of 89 PDAC tumors where gene expression was profiled using 

both microarray and sequencing platforms. We used a meta-analysis framework based on 

the binary gene pair method to create gene expression barcodes robust to biases arising 

from heterogeneous profiling platforms and batch effects. Leveraging the largest 

compendium of PDAC transcriptomic datasets to date, we show that PCOSP is a robust 

single-sample predictor of early death (≤1 yr) after surgery in a subset of 823 samples with 

available transcriptomics and survival data. 

Results 

The PCOSP model was strongly and significantly prognostic with a meta-estimate of the 

area under the receiver operating curve (AUROC) of 0.70 (P=1.9e-18) and hazard ratio (HR) 

of 1.95(1.6-2.3) (P=2.6e-16) for binary and survival predictions, respectively. The prognostic 

value of PCOSP was independent of clinicopathological parameters and molecular 

subtypes. Over-representation analysis of the PCOSP 2619 gene-pairs (1070 unique genes) 

unveiled pathways associated with Hedgehog signalling, epithelial mesenchymal transition 

(EMT) and extracellular matrix (ECM) signalling. 

Conclusion 

PCOSP could improve treatment decision by identifying patients who will not benefit from 

standard surgery/chemotherapy and may benefit from alternate approaches. 
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INTRODUCTION 

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with 5-year overall 

survival rate less than 8%1. The majority of patients (> 80%) are inoperable due to locally 

advanced or metastatic disease at time of diagnosis. While surgical resection is the key to 

curative treatment, it rarely results in long-term survival2. Hence, completion of multimodality 

treatment - surgery combined with adjuvant or neoadjuvant chemotherapy - is the standard 

of care for treatment of PDAC. However, even after surgical resection with curative intent, 

median survival does not exceed 28 months and half of those who undergo surgery develop 

recurrent disease, and die within a year after surgery3,4. Therefore, there is a need for a 

robust prognostic model to identify patients with high risk of early death based on molecular 

profiles of their tumors. Such a prognostic model would assist clinicians in identifying 

patients who might not benefit from surgery and standard adjuvant chemotherapy and may 

benefit from alternative treatment strategies. 

Various clinical factors are prognostic following PDAC surgery such as lymph node 

metastasis status5, tumor grade6, margins7, degree of differentiation8 and protein biomarker 

CA-19-99. However, the prognostic value of these clinical variables are insufficient to 

accurately stratify patients based on risk of disease recurrence10,11. With the advent of high-

throughput next-generation molecular profiling technologies, multiple studies have released 

transcriptomic profiles of PDAC to the public domain. These gene expression profiles have 

been leveraged to identify molecular subtypes of PDACs12–16. While overlap between these 

subtypes15 supports the biological relevance of these published classification schemes15, 

they have not been designed to optimize prognostic value. 

Previously published prognostic models were developed from small number of 

samples lacking proper validation in multiple datasets17–21. Attempts have been made 

recently to build a prognostic gene signature using pooled samples from multiple cohorts to 

identify patients at high risk of short-term survival post surgery22–24. However, they used 

samples profiled using either array or sequencing based method as the learning cohort, 
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therefore the classifiers may perform better for subjects whose samples were profiled using 

only one of the two platforms. 

To address these issues, we took advantage of a unique set of 89 PDAC profiled 

using both microarray and sequencing technologies to develop the Pancreatic Cancer 

Overall Survival Predictor (PCOSP) model. Using an independent set of PDAC 

transcriptomic profiles from 823 primary resected patients, we show that PCOSP is a robust 

single-sample predictor of early death (≤1 yr) after surgery with a meta-estimate of the area 

under the receiver operating characteristics curve of 0.70 (p=1.9e-18).  We also show that 

PCOSP is significantly prognostic (meta-estimate of hazard ratio of 1.95; p=2.6e-16). 

Furthermore, we show that PCOSP performs significantly better than published prognostic 

models across microarray and sequencing datasets (Superiority test, P < 0.01). Our results 

support PCOSP as a potential tool to assist clinicians in decision making. 

  

MATERIALS AND METHODS 

The meta-analysis pipeline used to develop the PCOSP model and evaluate its prognostic 

value is provided in Figure 1. 

  

Datasets 

We surveyed the literature and curated 17 datasets including 1,236 PDAC patients from 

public domain for which transcriptome data of PDAC are available (Supplementary Table 

S1). We further filtered samples based on the availability of overall survival (OS) and sample 

size (>10) after dichotomization into high and low survival groups based on an OS cut-off of 

1-year (Figure 2). This resulted in a total of four sequencing studies and seven array-based 

studies providing transcriptomic and clinical data for 1,001 PDAC patients. A total of 12,430 

protein-coding genes commonly assessed across all the cohorts were used for further 

analysis. Clinicopathological features of all the cohorts are presented in Supplementary 

Table S2. The different cohorts had similar clinical presentation, and were treated with 
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curative surgery followed by adjuvant chemotherapy. Two third of the patients completed 

multimodal treatment (i.e., surgery and adjuvant chemotherapy; Supplementary Table S2). 

 

Prognostic model 

To develop a robust predictor for early death, we used the gene expression profiles of 89 

PDAC patient samples whose tumors have been profiled using both microarray and 

sequencing platforms within the International Cancer Genome Consortium (ICGC) cohort. 

Approximately half of the patients of the training cohort which where eligible for surgery 

relapsed within 1 year, we used this threshold to predict PDAC patients with high risk of 

early death (≤1 yr) post surgery. We excluded 7 samples from the training cohort as these 

patients were censored before one year of follow-up. 

To make gene expression profiles comparable between the training and validation 

sets, we transformed the original gene expression profiles into binary gene pair barcodes. 

The advantages of considering pairs of genes with a binary value (“1” if expression of gene i 

> gene j, “0” otherwise) are; (i) it transforms the feature space in a way that mitigates 

platform biases and potential batch effects; (ii) it makes the model robust to any data 

processing that preserves the gene order25,26. We implemented k-Top Scoring disjoint Pairs 

(k-TSP) classifier predictor27 using the Wilcoxon rank sum method as filtering function in the 

SwitchBox package (version 1.12.0)28. 

The decision rules are based on the relative ordering of gene expression values 

within the same sample, where the k top scoring gene pairs are used to build the classifier. 

The samples were resampled 1000 times, where 40 samples from each group were selected 

in each run to build a k-TSP model and the model was further tested on the 49 out-of-bag 

samples. The models were selected if the balanced accuracy was above 0.6 else the model 

was rejected. We then froze the parameters of the predictive model and validated it in the 

remaining compendium of independent datasets. The class probability of the sample was 
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calculated as the frequency of sample predicted as one class divided by the total number of 

models. 

  

Random classifiers 

To test whether the prognostic value of the PCOSP model could be achieved by random 

chance alone, we implemented two permutation tests. To test whether the gene expression 

profiles were associated with survival, we shuffled the actual class labels while maintaining 

the expression values. To test whether the gene pairs selected in the PCOSP model were 

robustly associated with survival, we randomly assigned genes to the k-TSP model and 

assessed its prognostic value. Both procedures were performed 1000 times. As a pre-

validation set we compared the balanced accuracy of all the 1000 random models generated 

using both the approaches to PCOSP using the Wilcoxon rank sum test. Further, we trained 

the k-TSP classifier models from both approaches in the same way as we built our 

consensus PCOSP model. We then froze the parameters of the prognostic model and 

validated it in the compendium of independent datasets, and compared the meta-estimates 

for both the models against the PCOSP model. 

  

Early death prediction 

The meta analysis was performed for the PDAC sequencing cohorts, PDAC array-based 

cohorts and the overall combined cohorts to assess and statistically compare the 

performance of the PCOSP. The patient samples were dichotomized into two groups based 

on the outcome variable (time from surgery to death ≤ 1 year). Samples censored before 1 

year of follow-up were excluded from the analysis of meta-estimate of the area under the 

receiver operating characteristics curve (AUROC). The AUROC plots the sensitivity vs. 1-

Specificity and is used as a criterion to measure the discriminatory ability of the model29. The 

AUROC was computed using pROC package (version 1.10.0), and the p-value was 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 27, 2018. ; https://doi.org/10.1101/355602doi: bioRxiv preprint 

https://doi.org/10.1101/355602
http://creativecommons.org/licenses/by-nc/4.0/


 

8 

estimated using the Mann-Whitney test statistics estimating whether the AUROC curve 

estimate is significantly different from 0.5 (random classifier). The meta-estimate of AUROC 

was estimated using the random effect model30 implemented in survcomp package (version 

1.26.0)31,32. 

  

Survival prediction 

Prognostic value and statistical significance of survival difference between the predicted 

classes were assessed using the D-Index, which is a robust estimate of the hazard ratio 

comparing two equal-sized prognostic groups33. In addition, we used the concordance index 

(C-index) which estimates the probability that, for a random pair of patients, the PCOSP 

score for the patient with shorter survival is higher than the patient with longer survival34. 

Both the robust hazard ratio (HR) and the C-index were calculated using the survcomp 

package. The meta estimate of HR and C-index were calculated for the PDAC sequencing 

cohorts, the PDAC array-based cohorts and the combined PDAC sequencing and array-

based cohorts using the random effect model30 implemented in survcomp package. 

  

Subtyping of PDAC cohorts 

The PDAC cohorts were classified into basal and classical transcriptomic subtype using the 

Moffitt classification method13. 

  

Clinicopathological features based model to predict early death 

The clinical model was built by fitting the logistic regression model using common 

clinicopathological features available from all the cohorts, i.e., age, gender, TNM status and 

tumor grade. 

Gene set enrichment analysis 

To categorize genes in the PCOSP, we performed gene set enrichment analysis using 

RunGSAhyper function implemented in piano package (version 1.16.4)35. The genes 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 27, 2018. ; https://doi.org/10.1101/355602doi: bioRxiv preprint 

https://doi.org/10.1101/355602
http://creativecommons.org/licenses/by-nc/4.0/


 

9 

selected in the PCOSP model were compared against Gene Ontology (GO) gene sets, 

canonical pathways and hallmark gene sets using as background the protein-coding genes 

commonly assessed across the gene expression profiling platforms in our data compendium. 

Enrichment p-values were corrected for multiple testing using the false discovery rate 

approach (FDR < 5%)36. 

  

Comparison to existing classifiers 

We calculated the Birnbaum signature scores22 and Chen signature scores23 using the 

published coefficients of the 25 and 15 classifier genes, respectively, as weight parameter in 

the sig.score function implemented in the genefu R package (version 2.10.0)37. The Haider 

signature scores were used as courtesy of the author24. The C-index and HR were computed 

for the three classifiers using eight validation cohorts excluding the cohorts used for training 

by PCOSP and other classifiers in comparison. Further, we compared the meta-estimates of 

C-index of each classifier with PCOSP at P<0.05 (one-sided t-test) as implemented in 

survcomp package. 

  

Research reproducibility 

Our code and documentation are open-source and publicly available through the PDACSurv 

GitHub repository (github.com/bhklab/PDACsurv). A detailed tutorial describing how to run 

our pipeline and reproduce our analysis results is available in the GitHub repository. A virtual 

machine reproducing the full software environment is available on Code Ocean. Our study 

complies with the guidelines outlined in38–40. All the data are available in the form of R 

package MetaGxPancreas (http://bioconductor.org/packages/MetaGxPancreas/). 

 

RESULTS 

Overall survival predictive model 
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To predict the patients with early death (≤ 1 year after surgery), the PCOSP model was 

trained on the 89 ICGC cohort samples profiled using both microarray and sequencing 

transcriptomic profiles (Supplementary Table S1). To develop a predictor that can be applied 

to multiple profiling platforms, we transformed the gene expression profiles into binary gene 

pairs (x=1 if expression of gene i > gene j, x=0 otherwise) and used these transcriptomic 

barcodes in an ensemble of 1000 k-TSP predictive models. The PCOSP score is 

subsequently calculated using the majority voting rule. We tested the prognostic value of 

PCOSP score in three independent sequencing cohorts, including the Pancreatic Cancer 

Sequencing Initiative (PCSI)41, TCGA-PAAD15 and Kirby42 cohorts, and seven independent 

array-based cohorts composed of ICGC-array (excluding the 89 samples used for training)43, 

UNC13, OUH44, Chen23, Zhang45, Winter46 and Collisson cohorts12(Supplementary Table S1). 

We first tested the predictive value of early death by calculating the AUROC for each dataset 

separately (Figure 3A). PCOSP was highly significant overall (AUROC=0.70; P<1.9E-18; 

Figure 3A), although higher in the datasets generated using sequencing platforms compared 

to microarrays (AUROC 0.72 vs 0.68 for sequencing and array datasets, respectively). 

PCOSP was significantly predictive of early death in all cohorts (AUROC∈[0.67,0.76]; 

P<0.05) except  the Winter and OUH cohorts (P>0.48) and was almost significant for the 

Collisson cohort (AUROC=0.69; P=0.051). To determine whether the  early death predictive 

value of the PCOSP model can be achieved by random chance alone, we first computed 

meta-estimates of AUROC by randomly shuffling the class labels (early deaths) 1000 times 

and applying the same training procedure used for the PCOSP model. We observed that the 

gene expression profiles were significantly associated with survival as none of the random 

models could yield a predictive value greater or equal to PCOSP (p<0.001; Supplementary 

Figure S1A). We further tested whether the gene pairs selected in the PCOSP model were 

robustly associated with early death events, by randomly assigning genes to the PCOSP 

model. Again, we observed that the genes selected in PCOSP yielded significantly more 
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predictive information than the models comprised of random genes (p<0.001; 

Supplementary Figure S1B), supporting the biological relevance of the PCOSP gene set. 

  

Prognostic relevance of the PCOSP  model 

To assess the prognostic value of the PCOSP model, we calculated the C-indices and HR 

using the overall survival data for all the cohorts. The C-index is significant overall (C-

index=0.63, P=3.5E-21; Figure 3B). In agreement with the results of early death prediction, 

the PCOSP prognostic value was higher for the sequencing datasets when compared to the 

arrays (C-index=0.65 vs 0.61 for sequencing and array datasets, respectively; P<2.1E-11; 

Figure 3B). Similar to the C-index, the PCOSP HR was strong and significant overall (HR 

=1.95, P=2.7E-16; Figure 3C), and stronger for the sequencing datasets (HR = 2.24 vs 1.83; 

Figure 3C). To assess whether the prognostic value of PCOSP depends on PDAC molecular 

subtypes, we stratified PDAC samples into the basal and classical subtypes and calculated 

meta-estimates of C-index and HR (Supplementary Figures S2A and S2B). We found that 

PCOSP was prognostic in validation cohorts independently of molecular subtypes. We 

further tested whether PCOSP prognostic value was complementary to clinicopathological 

parameters and molecular subtypes by fitting both a multivariate Cox proportional hazard 

model to predict survival and a logistic regression model to predict binary outcome (death 

>1yr or not) (Supplementary Table S3). 

  

Clinicopathological model to predict OS 

Patient-specific clinicopathologic features were available for the PCSI, ICGC-sequencing, 

ICGC-array, TCGA and OUH cohorts. The common variables available were age, gender, 

TNM status and tumor grade. We fitted the logistic regression model using these 

clinicopathological features to predict early death of PDAC patients. The clinicopathological 

model was significant overall with however a weak predictive value (C-index=0.55; P=0.04; 

Figure 4A). Contrary to PCOSP, the clinicopathological model was not predictive in the 
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sequencing cohort (C-index=0.53 vs 0.58 with P=0.25 vs 0.03 for the sequencing and the 

array datasets, respectively; Figure 4A). Only nodal status, tumor grade and molecular 

classes were significant in the univariate analysis (Supplementary Table S3). We compared 

the prognostic value of the clinicopathological model against PCOSP (Figure 4B,C). PCOSP 

was significantly more prognostic than the clinicopathological model (one-sided t-test P < 

0.01; Figure 4D). 

  

Comparison with published prognostic models 

We compared the prognostic value of PCOSP to three published PDAC prognostic models, 

referred to as Birnbaum22, Chen23and Haider24. The overall prognostic value of the three 

published models was significant (P<8.5E-7; Figure 5A,C). PCOSP significantly 

outperformed published prognostic models in all cases (P<0.05, Figure 5C,D); except for the 

HR of the Chen classifier where the superiority of the PCOSP prognostic value showed a 

trend to significance (one sided t-test P=0.10) . 

  

Pathway analysis of prognostic genes 

Gene enrichment analysis for PCOSP signature genes was performed using hypergeometric 

test using the hallmarks gene sets, GO molecular function, GO cellular component terms 

and canonical pathways in MSigDb47 with the 1,070 unique genes from the PCOSP model. 

The Extracellular matrix (ECM), Epithelial Mesenchymal transition (EMT) and hedgehog 

signalling pathway genes were enriched in the PCOSP model at false discovery rate (FDR) 

<5%. The complete list of GO terms and pathways significantly enriched in the PCOSP 

model are listed in Supplementary Table S4A- 4D. 

  

DISCUSSION 

We performed a meta-analysis of the transcriptomic profiles of 1,236 PDAC patients and 

developed PCOSP, a new prognostic model to identify patients with high risk of early death 
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after surgery. The model is built from a unique set of 89 patients profiled using both array-

based and sequencing platforms, and validated on a compendium of ten independent 

datasets, including 823 patients. The prognostic value of the PCOSP model was highly 

significant for both early death (≤1 year) and overall survival (P<0.001; Figure 3). 

Contrary to published prognostic signatures fitted on small number of samples and 

lacking validation in large independent datasets17–21, PCOSP has been trained and validated 

on a large compendium of datasets. Comparison of PCOSP with existing classifiers22–24 

showed that the Birnbaum, Chen and Haider models yielded significant (P<0.8.5E-7) but 

significantly weaker prognostic value than PCOSP (Figure 5C,D). Importantly, PCOSP 

performs significantly better than existing classifiers for both microarray and sequencing 

platforms, likely due to simplifying the continuous expression space into binary pair 

barcodes. This enables PCOSP to be used as a single sample predictor robust to profiling 

platforms, potential batch effects and normalization methods compared to other classifiers. 

Comparison of PCOSP against known prognostic clinicopathological variables 

showed that PCOSP outperformed the clinicopathological model in predicting early death 

(Figure 4). PCOSP prognostic value was significant, even after adjusting for molecular 

subtyping (classical vs basal) and clinicopathological parameters (age, sex, TNM status, 

differentiation grade of tumor and molecular classes); Supplementary Figure S2A,B and 

Supplementary Table S3). 

The PCOSP model incorporates 2,619 unique gene pairs, totalling 1,070 unique 

genes. Functional analysis of 1,070 genes showed enrichment of Hedgehog signalling, ECM 

and EMT pathway. Numerous studies have suggested the involvement of EMT in invasion 

and metastasis of PDAC48. EMT enhances cell motility through loss of cell-cell adhesion, 

escaping from extracellular matrix and overcoming the apoptosis process48. The ECM and 

EMT pathways are not only associated with the metastatic spread of tumor but also with 

chemoresistance that leads to worse survival49. 
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PDAC is a heterogeneous and genetically highly complex disease, supporting the 

molecular13,14 and morphological50 characterization of a given tumor as an important 

cornerstone for the development of future therapies. We provide the largest compendium of 

17 PDAC datasets as a gold standard for future PDAC analyses. The new meta-analysis 

framework implemented in PCOSP maximizes robustness and performance across the 

cohorts. In order to implement PCOSP as a clinical assay, we tested different feature set 

sizes for the k-TSP models and compared the performance of the reduced models. We 

achieved accuracy comparable to the 1,070 gene-PCOSP model by including only 256 

unique genes, supporting the potential of a smaller PCOSP based useful in the clinic 

(Supplementary Figure S3). Endoscopic ultrasound (EUS) biopsies could be utilized prior to 

curative surgery to estimate the prognosis of PDAC patients using PCOSP. This may assist 

clinicians in making postoperative treatment decision, i.e., palliative therapy, standard 

adjuvant chemotherapy or alternative chemotherapy regimens, which holds the potential to 

improve the overall survival of the patients. 

The current study has potential limitations. First, there are inherent tumor sample 

collection biases as the different datasets were collected and sampled at different centers. 

The levels of tumor cellularity varied highly across cohorts as PCSI and Collisson datasets 

were generated using laser microdissection prior to sequencing, Kirby and Chen datasets 

were macrodissected, while TCGA, ICGC, OUH, Zhang and Winter datasets used bulk 

tumors for profiling. Second, the transcriptomic profiles in our data compendium were 

generated using different gene expression profiling technologies for sequencing (Illumina 

HiSeq 2000/2500) and microarray platforms (Agilent, Affymetrix, and Illumina). Third, all 

samples were normalized using the published processing methods, which depend on the 

profiling platforms (Supplementary Table S2). Despite these limitations, PCOSP yielded 

robust prognostic value across the heterogeneous datasets, indicating that the gene 

expression barcode transformation is robust to the inevitable biases present in large meta-

analyses. 
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The lack of available clinical and treatment information across the cohorts is also a 

limiting factor in our meta-analysis. However, comparison of cohort specific clinical 

information for the cohort were not significantly different across the cohorts (Supplementary 

table S2). During the time period of sample collection, standard of care treatment for PDAC 

was curative-intent surgery followed by adjuvant chemotherapy with gemcitabine or 5-FU. 

New approaches using doublet and triplet chemotherapy regimens are now standard of care 

in the palliative setting and randomised trials using these agents in the adjuvant setting will 

be reported shortly. Neoadjuvant therapy is also being evaluated in many centres. Thus, 

heterogeneity in treatment is expected within and between different cohorts, we will need to 

test our PCOSP model using new clinical datasets, or preferably within the context of 

randomized trials. 

  

CONCLUSION 

We leveraged the largest compendium of PDAC transcriptomes to develop PCOSP, a 

prognostic model identifying PDAC patients at high risk of early death independently of, and 

superior to, clinicopathological features and molecular subtypes. PCOSP may be useful in 

the clinical setting as a single sample classifier to identify patients who could be at higher 

risk of early death following surgery and adjuvant chemotherapy, potentially facilitating 

treatment decisions, including the use of neoadjuvant chemotherapy or alternate treatment 

strategies. 
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FIGURES 

Figure 1. Pipeline showing the approach used for building the Pancreatic Cancer Overall 

Survival Predictor (PCOSP). 

Figure 2: Flowchart showing the inclusion criteria for the pancreatic adenocarcinoma 

samples. 

Figure 3. Predictive value of PCOSP for early death and overall survival. (A) Area under 

the ROC curves for all the cohorts and the meta estimates for sequencing cohorts, array-

based cohorts and for both the platforms combined. (Forestplot reporting (B) the 

concordance indices (C-index) and (C) the hazard ratio (HR) for all the cohorts and the meta 

estimates for sequencing cohorts (orange), array-based cohorts (blue) and for both the 

platforms combined (grey). 

Figure 4. Comparison of the prognostic value of the clinicopathological model and 

PCOSP. (A) Barplot reporting the AUROCs for the clinical model and the PCOSP model. 

(Forestplot reporting the  the (B) concordance index (C-index) and (C) Hazard ratio (HR) of 

validation cohorts computed using PCOSP, and clinicopathological model. 

Figure 5. Comparison of existing classifiers with PCOSP. The forestplot reports the 

meta-estimate of (A) concordance indices (C-index) and (B) hazard ratio (HR) for PCOSP 

and existing classifiers. 

  

SUPPLEMENTARY FIGURES 

  

Supplementary Figure S1: Density plot showing the distribution of balanced accuracy 

for random models. Distribution of meta-estimates of 1000 models generated using (A) 

random reshuffling of labels  and (B) random assignment of genes to TSP models. The 

meta-estimates were independently calculated for all the cohorts combined, sequencing 
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cohorts and array-based cohort. The pink, green, blue dashed lines represent meta-estimate 

of AUROC from PCOSP model for overall, sequencing and array-based cohorts 

respectively. 

  

Supplementary Figure S2: Forestplot of (A) concordance index (C-index) and (B) hazard 

ratio (HR) for all the cohorts divided based on the molecular subtypes. The grey, green and 

pink color in the forestplot depicts meta-estimate of C-index for overall cohort, the basal 

subtype and the classical subtype of the cohorts, respectively. 

  

Supplementary Figure S3:  The scatterplot shows the  meta-estimate of AUROC (orange) 

and total number of unique genes (blue) in the PCOSP model at different balanced accuracy 

thresholds. The threshold used in the PCOSP is marked as dashed line at 0.6. 

  

SUPPLEMENTARY TABLES 

  

Supplementary Table S1: The table shows the datasets used in the project for meta-

analysis. 

  

Supplementary Table S2: The table shows the clinicopathological information of the 

validation cohorts used in the analysis. 

  

Supplementary Table S3: Univariate and multivariate regression analysis.from (A) logistic 

regression model to predict early death (death >1 yr or not), and (B). the Cox regression 

model using clinicopathological features, molecular subtypes and PCOSP model 

probabilities for validation cohorts. 
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Supplementary table S4: The table shows the pathways overrepresented in the PCOSP 

model genes using (A) hallmark gene sets, (B) canonical pathways, (C) GO-molecular 

function term (and (D) GO cellular component terms from MSigDB. 
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