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ABSTRACT
Background

With a dismal 8% median 5-year overall survival (OS), pancreatic ductal adenocarcinoma
(PDAC) is highly lethal. Only 10-20% of patients are eligible for surgery, and over 50% of
these will die within a year of surgery. Identify molecular predictors of early death would
enable the selection of PDAC patients at high risk.

Methods

We developed the Pancreatic Cancer Overall Survival Predictor (PCOSP), a prognostic

model built from a unique set of 89 PDAC tumors where gene expression was profiled using

both microarray and sequencing platforms. We used a meta-analysis framework based on
the binary gene pair method to create gene expression barcodes robust to biases arising
from heterogeneous profiling platforms and batch effects. Leveraging the largest
compendium of PDAC transcriptomic datasets to date, we show that PCOSP is a robust
single-sample predictor of early death (<1 yr) after surgery in a subset of 823 samples with

available transcriptomics and survival data.

Results

The PCOSP model was strongly and significantly prognostic with a meta-estimate of the
area under the receiver operating curve (AUROC) of 0.70 (P=1.9e-18) and hazard ratio (HR)
of 1.95(1.6-2.3) (P=2.6e-16) for binary and survival predictions, respectively. The prognostic
value of PCOSP was independent of clinicopathological parameters and molecular
subtypes. Over-representation analysis of the PCOSP 2619 gene-pairs (1070 unique genes)
unveiled pathways associated with Hedgehog signalling, epithelial mesenchymal transition
(EMT) and extracellular matrix (ECM) signalling.

Conclusion

PCOSP could improve treatment decision by identifying patients who will not benefit from

standard surgery/chemotherapy and may benefit from alternate approaches.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with 5-year overall
survival rate less than 8%'. The majority of patients (> 80%) are inoperable due to locally
advanced or metastatic disease at time of diagnosis. While surgical resection is the key to
curative treatment, it rarely results in long-term survival’. Hence, completion of multimodality
treatment - surgery combined with adjuvant or neoadjuvant chemotherapy - is the standard
of care for treatment of PDAC. However, even after surgical resection with curative intent,
median survival does not exceed 28 months and half of those who undergo surgery develop
recurrent disease, and die within a year after surgery®*. Therefore, there is a need for a
robust prognostic model to identify patients with high risk of early death based on molecular
profiles of their tumors. Such a prognostic model would assist clinicians in identifying
patients who might not benefit from surgery and standard adjuvant chemotherapy and may
benefit from alternative treatment strategies.

Various clinical factors are prognostic following PDAC surgery such as lymph node
metastasis status®, tumor grade®, margins’, degree of differentiation® and protein biomarker
CA-19-9°. However, the prognostic value of these clinical variables are insufficient to
accurately stratify patients based on risk of disease recurrence’®''. With the advent of high-
throughput next-generation molecular profiling technologies, multiple studies have released
transcriptomic profiles of PDAC to the public domain. These gene expression profiles have
been leveraged to identify molecular subtypes of PDACs'*'®. While overlap between these
subtypes'® supports the biological relevance of these published classification schemes'®,
they have not been designed to optimize prognostic value.

Previously published prognostic models were developed from small number of

samples lacking proper validation in multiple datasets'™

. Attempts have been made
recently to build a prognostic gene signature using pooled samples from multiple cohorts to
identify patients at high risk of short-term survival post surgery”*?*. However, they used

samples profiled using either array or sequencing based method as the learning cohort,
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therefore the classifiers may perform better for subjects whose samples were profiled using

only one of the two platforms.

To address these issues, we took advantage of a unique set of 89 PDAC profiled
using both microarray and sequencing technologies to develop the Pancreatic Cancer
Overall Survival Predictor (PCOSP) model. Using an independent set of PDAC
transcriptomic profiles from 823 primary resected patients, we show that PCOSP is a robust

single-sample predictor of early death (<1 yr) after surgery with a meta-estimate of the area

under the receiver operating characteristics curve of 0.70 (p=1.9e-18). We also show that
PCOSP is significantly prognostic (meta-estimate of hazard ratio of 1.95; p=2.6e-16).
Furthermore, we show that PCOSP performs significantly better than published prognostic
models across microarray and sequencing datasets (Superiority test, P < 0.01). Our results

support PCOSP as a potential tool to assist clinicians in decision making.

MATERIALS AND METHODS
The meta-analysis pipeline used to develop the PCOSP model and evaluate its prognostic

value is provided in Figure 1.

Datasets

We surveyed the literature and curated 17 datasets including 1,236 PDAC patients from
public domain for which transcriptome data of PDAC are available (Supplementary Table
S1). We further filtered samples based on the availability of overall survival (OS) and sample
size (>10) after dichotomization into high and low survival groups based on an OS cut-off of
1-year (Figure 2). This resulted in a total of four sequencing studies and seven array-based
studies providing transcriptomic and clinical data for 1,001 PDAC patients. A total of 12,430
protein-coding genes commonly assessed across all the cohorts were used for further
analysis. Clinicopathological features of all the cohorts are presented in Supplementary

Table S2. The different cohorts had similar clinical presentation, and were treated with
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curative surgery followed by adjuvant chemotherapy. Two third of the patients completed

multimodal treatment (i.e., surgery and adjuvant chemotherapy; Supplementary Table S2).

Prognostic model

To develop a robust predictor for early death, we used the gene expression profiles of 89
PDAC patient samples whose tumors have been profiled using both microarray and
sequencing platforms within the International Cancer Genome Consortium (ICGC) cohort.
Approximately half of the patients of the training cohort which where eligible for surgery
relapsed within 1 year, we used this threshold to predict PDAC patients with high risk of

early death (21 yr) post surgery. We excluded 7 samples from the training cohort as these

patients were censored before one year of follow-up.

To make gene expression profiles comparable between the training and validation
sets, we transformed the original gene expression profiles into binary gene pair barcodes.
The advantages of considering pairs of genes with a binary value (“1” if expression of gene i
> gene j, “0” otherwise) are; (i) it transforms the feature space in a way that mitigates
platform biases and potential batch effects; (ii) it makes the model robust to any data
processing that preserves the gene order®?®. We implemented k-Top Scoring disjoint Pairs
(k-TSP) classifier predictor?” using the Wilcoxon rank sum method as filtering function in the
SwitchBox package (version 1.12.0)%.

The decision rules are based on the relative ordering of gene expression values
within the same sample, where the k top scoring gene pairs are used to build the classifier.
The samples were resampled 1000 times, where 40 samples from each group were selected
in each run to build a k-TSP model and the model was further tested on the 49 out-of-bag
samples. The models were selected if the balanced accuracy was above 0.6 else the model

was rejected. We then froze the parameters of the predictive model and validated it in the

remaining compendium of independent datasets. The class probability of the sample was
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calculated as the frequency of sample predicted as one class divided by the total number of

models.

Random classifiers

To test whether the prognostic value of the PCOSP model could be achieved by random
chance alone, we implemented two permutation tests. To test whether the gene expression
profiles were associated with survival, we shuffled the actual class labels while maintaining
the expression values. To test whether the gene pairs selected in the PCOSP model were
robustly associated with survival, we randomly assigned genes to the k-TSP model and
assessed its prognostic value. Both procedures were performed 1000 times. As a pre-
validation set we compared the balanced accuracy of all the 1000 random models generated
using both the approaches to PCOSP using the Wilcoxon rank sum test. Further, we trained
the k-TSP classifier models from both approaches in the same way as we built our
consensus PCOSP model. We then froze the parameters of the prognostic model and
validated it in the compendium of independent datasets, and compared the meta-estimates

for both the models against the PCOSP model.

Early death prediction

The meta analysis was performed for the PDAC sequencing cohorts, PDAC array-based
cohorts and the overall combined cohorts to assess and statistically compare the
performance of the PCOSP. The patient samples were dichotomized into two groups based
on the outcome variable (time from surgery to death < 1 year). Samples censored before 1
year of follow-up were excluded from the analysis of meta-estimate of the area under the

receiver operating characteristics curve (AUROC). The AUROC plots the sensitivity vs. 1-

Specificity and is used as a criterion to measure the discriminatory ability of the model®®. The

AUROC was computed using pROC package (version 1.10.0), and the p-value was
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estimated using the Mann-Whitney test statistics estimating whether the AUROC curve
estimate is significantly different from 0.5 (random classifier). The meta-estimate of AUROC

30
I

was estimated using the random effect model”” implemented in survcomp package (version

1.26.0)*"%,

Survival prediction

Prognostic value and statistical significance of survival difference between the predicted
classes were assessed using the D-Index, which is a robust estimate of the hazard ratio
comparing two equal-sized prognostic groupsss. In addition, we used the concordance index
(C-index) which estimates the probability that, for a random pair of patients, the PCOSP
score for the patient with shorter survival is higher than the patient with longer survival®.
Both the robust hazard ratio (HR) and the C-index were calculated using the survcomp
package. The meta estimate of HR and C-index were calculated for the PDAC sequencing
cohorts, the PDAC array-based cohorts and the combined PDAC sequencing and array-

based cohorts using the random effect model®® implemented in survcomp package.

Subtyping of PDAC cohorts
The PDAC cohorts were classified into basal and classical transcriptomic subtype using the

Moffitt classification method'.

Clinicopathological features based model to predict early death

The clinical model was built by fitting the logistic regression model using common
clinicopathological features available from all the cohorts, i.e., age, gender, TNM status and
tumor grade.

Gene set enrichment analysis

To categorize genes in the PCOSP, we performed gene set enrichment analysis using

RunGSAhyper function implemented in piano package (version 1.16.4)*. The genes
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selected in the PCOSP model were compared against Gene Ontology (GO) gene sets,
canonical pathways and hallmark gene sets using as background the protein-coding genes
commonly assessed across the gene expression profiling platforms in our data compendium.
Enrichment p-values were corrected for multiple testing using the false discovery rate

approach (FDR < 5%)%.

Comparison to existing classifiers

We calculated the Birnbaum signature scores®® and Chen signature scores®® using the
published coefficients of the 25 and 15 classifier genes, respectively, as weight parameter in
the sig.score function implemented in the genefu R package (version 2.10.0)*’. The Haider
signature scores were used as courtesy of the author®. The C-index and HR were computed
for the three classifiers using eight validation cohorts excluding the cohorts used for training
by PCOSP and other classifiers in comparison. Further, we compared the meta-estimates of
C-index of each classifier with PCOSP at P<0.05 (one-sided t-test) as implemented in

survcomp package.

Research reproducibility
Our code and documentation are open-source and publicly available through the PDACSurv

GitHub repository (github.com/bhklab/PDACsurv). A detailed tutorial describing how to run

our pipeline and reproduce our analysis results is available in the GitHub repository. A virtual
machine reproducing the full software environment is available on Code Ocean. Our study
complies with the guidelines outlined in**™°. All the data are available in the form of R

package MetaGxPancreas (http://bioconductor.org/packages/MetaGxPancreas/).

RESULTS

Overall survival predictive model
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To predict the patients with early death (< 1 year after surgery), the PCOSP model was
trained on the 89 ICGC cohort samples profiled using both microarray and sequencing

transcriptomic profiles (Supplementary Table S1). To develop a predictor that can be applied

to multiple profiling platforms, we transformed the gene expression profiles into binary gene
pairs (x=1 if expression of gene i > gene j, x=0 otherwise) and used these transcriptomic
barcodes in an ensemble of 1000 k-TSP predictive models. The PCOSP score is
subsequently calculated using the majority voting rule. We tested the prognostic value of
PCOSP score in three independent sequencing cohorts, including the Pancreatic Cancer
Sequencing Initiative (PCSI)*'", TCGA-PAAD" and Kirby*? cohorts, and seven independent
array-based cohorts composed of ICGC-array (excluding the 89 samples used for training)*?,
UNC™, OUH*, Chen?®, Zhang"®, Winter*® and Collisson cohorts'*(Supplementary Table S1).
We first tested the predictive value of early death by calculating the AUROC for each dataset
separately (Figure 3A). PCOSP was highly significant overall (AUROC=0.70; P<1.9E-18;
Figure 3A), although higher in the datasets generated using sequencing platforms compared

to microarrays (AUROC 0.72 vs 0.68 for sequencing and array datasets, respectively).

PCOSP was significantly predictive of early death in all cohorts (AUROCEg[0.67,0.76];
P<0.05) except the Winter and OUH cohorts (P>0.48) and was almost significant for the

Collisson cohort (AUROC=0.69; P=0.051). To determine whether the early death predictive

value of the PCOSP model can be achieved by random chance alone, we first computed
meta-estimates of AUROC by randomly shuffling the class labels (early deaths) 1000 times
and applying the same training procedure used for the PCOSP model. We observed that the
gene expression profiles were significantly associated with survival as none of the random
models could yield a predictive value greater or equal to PCOSP (p<0.001; Supplementary
Figure S1A). We further tested whether the gene pairs selected in the PCOSP model were
robustly associated with early death events, by randomly assigning genes to the PCOSP

model. Again, we observed that the genes selected in PCOSP yielded significantly more

10
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predictive information than the models comprised of random genes (p<0.001;

Supplementary Figure S1B), supporting the biological relevance of the PCOSP gene set.

Prognostic relevance of the PCOSP model

To assess the prognostic value of the PCOSP model, we calculated the C-indices and HR
using the overall survival data for all the cohorts. The C-index is significant overall (C-
index=0.63, P=3.5E-21; Figure 3B). In agreement with the results of early death prediction,
the PCOSP prognostic value was higher for the sequencing datasets when compared to the
arrays (C-index=0.65 vs 0.61 for sequencing and array datasets, respectively; P<2.1E-11;
Figure 3B). Similar to the C-index, the PCOSP HR was strong and significant overall (HR
=1.95, P=2.7E-16; Figure 3C), and stronger for the sequencing datasets (HR = 2.24 vs 1.83;
Figure 3C). To assess whether the prognostic value of PCOSP depends on PDAC molecular
subtypes, we stratified PDAC samples into the basal and classical subtypes and calculated
meta-estimates of C-index and HR (Supplementary Figures S2A and S2B). We found that
PCOSP was prognostic in validation cohorts independently of molecular subtypes. We
further tested whether PCOSP prognostic value was complementary to clinicopathological
parameters and molecular subtypes by fitting both a multivariate Cox proportional hazard
model to predict survival and a logistic regression model to predict binary outcome (death

>1yr or not) (Supplementary Table S3).

Clinicopathological model to predict OS

Patient-specific clinicopathologic features were available for the PCSI, ICGC-sequencing,
ICGC-array, TCGA and OUH cohorts. The common variables available were age, gender,
TNM status and tumor grade. We fitted the logistic regression model using these
clinicopathological features to predict early death of PDAC patients. The clinicopathological
model was significant overall with however a weak predictive value (C-index=0.55; P=0.04;

Figure 4A). Contrary to PCOSP, the clinicopathological model was not predictive in the

11
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sequencing cohort (C-index=0.53 vs 0.58 with P=0.25 vs 0.03 for the sequencing and the
array datasets, respectively; Figure 4A). Only nodal status, tumor grade and molecular
classes were significant in the univariate analysis (Supplementary Table S3). We compared
the prognostic value of the clinicopathological model against PCOSP (Figure 4B,C). PCOSP
was significantly more prognostic than the clinicopathological model (one-sided t-test P <

0.01; Figure 4D).

Comparison with published prognostic models

We compared the prognostic value of PCOSP to three published PDAC prognostic models,
referred to as Birnbaum??, Chen®*and Haider®. The overall prognostic value of the three
published models was significant (P<8.5E-7; Figure 5A,C). PCOSP significantly
outperformed published prognostic models in all cases (P<0.05, Figure 5C,D); except for the
HR of the Chen classifier where the superiority of the PCOSP prognostic value showed a

trend to significance (one sided t-test P=0.10) .

Pathway analysis of prognostic genes

Gene enrichment analysis for PCOSP signature genes was performed using hypergeometric
test using the hallmarks gene sets, GO molecular function, GO cellular component terms
and canonical pathways in MSigDb*’ with the 1,070 unique genes from the PCOSP model.
The Extracellular matrix (ECM), Epithelial Mesenchymal transition (EMT) and hedgehog
signalling pathway genes were enriched in the PCOSP model at false discovery rate (FDR)
<5%. The complete list of GO terms and pathways significantly enriched in the PCOSP

model are listed in Supplementary Table S4A- 4D.

DISCUSSION

We performed a meta-analysis of the transcriptomic profiles of 1,236 PDAC patients and

developed PCOSP, a new prognostic model to identify patients with high risk of early death
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after surgery. The model is built from a unique set of 89 patients profiled using both array-
based and sequencing platforms, and validated on a compendium of ten independent
datasets, including 823 patients. The prognostic value of the PCOSP model was highly
significant for both early death (<1 year) and overall survival (P<0.001; Figure 3).

Contrary to published prognostic signatures fitted on small number of samples and
lacking validation in large independent datasets'’?', PCOSP has been trained and validated
on a large compendium of datasets. Comparison of PCOSP with existing classifiers®*2*
showed that the Birnbaum, Chen and Haider models yielded significant (P<0.8.5E-7) but
significantly weaker prognostic value than PCOSP (Figure 5C,D). Importantly, PCOSP
performs significantly better than existing classifiers for both microarray and sequencing
platforms, likely due to simplifying the continuous expression space into binary pair
barcodes. This enables PCOSP to be used as a single sample predictor robust to profiling
platforms, potential batch effects and normalization methods compared to other classifiers.

Comparison of PCOSP against known prognostic clinicopathological variables
showed that PCOSP outperformed the clinicopathological model in predicting early death
(Figure 4). PCOSP prognostic value was significant, even after adjusting for molecular
subtyping (classical vs basal) and clinicopathological parameters (age, sex, TNM status,
differentiation grade of tumor and molecular classes); Supplementary Figure S2A,B and
Supplementary Table S3).

The PCOSP model incorporates 2,619 unique gene pairs, totalling 1,070 unique
genes. Functional analysis of 1,070 genes showed enrichment of Hedgehog signalling, ECM
and EMT pathway. Numerous studies have suggested the involvement of EMT in invasion
and metastasis of PDAC*. EMT enhances cell motility through loss of cell-cell adhesion,
escaping from extracellular matrix and overcoming the apoptosis process*®. The ECM and
EMT pathways are not only associated with the metastatic spread of tumor but also with

chemoresistance that leads to worse survival®.

13


https://doi.org/10.1101/355602
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/355602; this version posted June 27, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

PDAC is a heterogeneous and genetically highly complex disease, supporting the

13,14 |50

molecular and morphological>™ characterization of a given tumor as an important
cornerstone for the development of future therapies. We provide the largest compendium of
17 PDAC datasets as a gold standard for future PDAC analyses. The new meta-analysis
framework implemented in PCOSP maximizes robustness and performance across the
cohorts. In order to implement PCOSP as a clinical assay, we tested different feature set
sizes for the k-TSP models and compared the performance of the reduced models. We
achieved accuracy comparable to the 1,070 gene-PCOSP model by including only 256
unique genes, supporting the potential of a smaller PCOSP based useful in the clinic
(Supplementary Figure S3). Endoscopic ultrasound (EUS) biopsies could be utilized prior to
curative surgery to estimate the prognosis of PDAC patients using PCOSP. This may assist
clinicians in making postoperative treatment decision, i.e., palliative therapy, standard
adjuvant chemotherapy or alternative chemotherapy regimens, which holds the potential to
improve the overall survival of the patients.

The current study has potential limitations. First, there are inherent tumor sample
collection biases as the different datasets were collected and sampled at different centers.
The levels of tumor cellularity varied highly across cohorts as PCSI and Collisson datasets
were generated using laser microdissection prior to sequencing, Kirby and Chen datasets
were macrodissected, while TCGA, ICGC, OUH, Zhang and Winter datasets used bulk
tumors for profiling. Second, the transcriptomic profiles in our data compendium were
generated using different gene expression profiling technologies for sequencing (lllumina
HiSeq 2000/2500) and microarray platforms (Agilent, Affymetrix, and lllumina). Third, all
samples were normalized using the published processing methods, which depend on the
profiling platforms (Supplementary Table S2). Despite these limitations, PCOSP yielded
robust prognostic value across the heterogeneous datasets, indicating that the gene

expression barcode transformation is robust to the inevitable biases present in large meta-

analyses.
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The lack of available clinical and treatment information across the cohorts is also a
limiting factor in our meta-analysis. However, comparison of cohort specific clinical
information for the cohort were not significantly different across the cohorts (Supplementary
table S2). During the time period of sample collection, standard of care treatment for PDAC
was curative-intent surgery followed by adjuvant chemotherapy with gemcitabine or 5-FU.
New approaches using doublet and triplet chemotherapy regimens are now standard of care
in the palliative setting and randomised trials using these agents in the adjuvant setting will
be reported shortly. Neoadjuvant therapy is also being evaluated in many centres. Thus,
heterogeneity in treatment is expected within and between different cohorts, we will need to
test our PCOSP model using new clinical datasets, or preferably within the context of

randomized trials.

CONCLUSION

We leveraged the largest compendium of PDAC transcriptomes to develop PCOSP, a
prognostic model identifying PDAC patients at high risk of early death independently of, and
superior to, clinicopathological features and molecular subtypes. PCOSP may be useful in
the clinical setting as a single sample classifier to identify patients who could be at higher
risk of early death following surgery and adjuvant chemotherapy, potentially facilitating
treatment decisions, including the use of neoadjuvant chemotherapy or alternate treatment

strategies.
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FIGURES

Figure 1. Pipeline showing the approach used for building the Pancreatic Cancer Overall

Survival Predictor (PCOSP).

Figure 2: Flowchart showing the inclusion criteria for the pancreatic adenocarcinoma

samples.

Figure 3. Predictive value of PCOSP for early death and overall survival. (A) Area under
the ROC curves for all the cohorts and the meta estimates for sequencing cohorts, array-
based cohorts and for both the platforms combined. (Forestplot reporting (B) the
concordance indices (C-index) and (C) the hazard ratio (HR) for all the cohorts and the meta
estimates for sequencing cohorts (orange), array-based cohorts (blue) and for both the

platforms combined (grey).

Figure 4. Comparison of the prognostic value of the clinicopathological model and
PCOSP. (A) Barplot reporting the AUROCSs for the clinical model and the PCOSP model.
(Forestplot reporting the the (B) concordance index (C-index) and (C) Hazard ratio (HR) of

validation cohorts computed using PCOSP, and clinicopathological model.

Figure 5. Comparison of existing classifiers with PCOSP. The forestplot reports the
meta-estimate of (A) concordance indices (C-index) and (B) hazard ratio (HR) for PCOSP

and existing classifiers.

SUPPLEMENTARY FIGURES

Supplementary Figure S1: Density plot showing the distribution of balanced accuracy
for random models. Distribution of meta-estimates of 1000 models generated using (A)
random reshuffling of labels and (B) random assignment of genes to TSP models. The

meta-estimates were independently calculated for all the cohorts combined, sequencing
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cohorts and array-based cohort. The pink, green, blue dashed lines represent meta-estimate
of AUROC from PCOSP model for overall, sequencing and array-based cohorts

respectively.

Supplementary Figure S2: Forestplot of (A) concordance index (C-index) and (B) hazard
ratio (HR) for all the cohorts divided based on the molecular subtypes. The grey, green and
pink color in the forestplot depicts meta-estimate of C-index for overall cohort, the basal

subtype and the classical subtype of the cohorts, respectively.

Supplementary Figure S3: The scatterplot shows the meta-estimate of AUROC (orange)
and total number of unique genes (blue) in the PCOSP model at different balanced accuracy

thresholds. The threshold used in the PCOSP is marked as dashed line at 0.6.

SUPPLEMENTARY TABLES

Supplementary Table S1: The table shows the datasets used in the project for meta-

analysis.

Supplementary Table S2: The table shows the clinicopathological information of the

validation cohorts used in the analysis.

Supplementary Table S3: Univariate and multivariate regression analysis.from (A) logistic
regression model to predict early death (death >1 yr or not), and (B). the Cox regression
model using clinicopathological features, molecular subtypes and PCOSP model

probabilities for validation cohorts.
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Supplementary table S4: The table shows the pathways overrepresented in the PCOSP
model genes using (A) hallmark gene sets, (B) canonical pathways, (C) GO-molecular

function term (and (D) GO cellular component terms from MSigDB.
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