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PReMS: Parallel Regularised Regression Model Search for sparse
bio-signature discovery

Clive J. Hoggart !

ABSTRACT

There is increasing interest in developing point of care tests to diagnose dis-
ease and predict prognosis based upon biomarker signatures of RNA or protein
expression levels. Technology to measure the required biomarkers accurately
and in a time-frame useful to health care professionals will be easier to develop
by minimising the number of biomarkers measured. In this paper we describe
the Parallel Regularised Regression Model Search (PREMS) method which is
designed to estimate parsimonious prediction models. Given a set of potential
biomarkers PREMS searches over many logistic regression models constructed
from optimal subsets of the biomarkers, iteratively increasing the model size. Zero
centred Gaussian prior distributions are assigned to all regression coefficients to
induce shrinkage. The method estimates the optimal shrinkage parameter, opti-
mal model for each model size and the optimal model size. We apply PREMS
to six freely available data sets and compare its performance with the LASSO
and SCAD algorithms in terms of the number of covariates in the model, model
accuracy, as measured by the area under the receiver operator curve (AUC) and
root predicted mean square error, and model calibration. We show that PREMS
typically selects models with fewer biomarkers than both the LASSO and SCAD
algorithms but has comparable predictive accuracy.

Subject headings: Biomarker signatures, shrinkage, regularised regres-
sion

Availability: (PREMS) is freely available as an R package
https://github.com/clivehoggart/PReMS

1. Introduction

For many diseases clinical presentation features alone cannot reliably be used for di-
agnosis, this has motivated the development of proteomic and transcriptomic signatures,
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for example, to diagnose tuberculosis (TB) (Kaforou et al. (2013); Anderson et al. (2014);
Chegou et al. (2016)), Kawasaki disease (Jaggi et al. (2018)) and to distinguish bacterial from
viral infections (Herberg et al. (2016)). All such biosignatures are derived from comparing
cases and controls with measures of potential biomarkers; ranging from tens of proteins from
a multiplex cytokine platform to tens of thousands from whole genome transcriptome anal-
ysis. Logistic regression with biomarker selection via simple forward selection or penalised
regression in the form of the LASSO (least absolute shrinkage and selection operator) (Tib-
shirani (1996)) or elastic net (Zou and Hastie (2005)) have been frequently used for biomarker
signature estimation (Kaforou et al. (2013); Anderson et al. (2014); Herberg et al. (2016)).
Logistic regression is attractive as its implementation simply requires a weighted sum of the
biomarkers selected and as such it is easy to interpret, and the LASSO and elastic net both
implement biomarker selection and shrinkage of the regression coefficients resulting in more
stable model estimation.

A major challenge in using biomarker signatures as diagnostic tools is their transla-
tion to clinical tests suitable for use in hospital laboratories or at the bedside. The fewer
biomarkers used by a signature the easier it will be for it to be turned into a point of care test
(Cattamanchi et al. (2013); Gjen et al. (2017)). However, both the LASSO and elastic net
tend to select large models by allowing some noise predictors to enter the model (Buhlmann
and van de Geer (2011)) suggesting similar predictive accuracy could be attained with fewer
predictors. This paper is motivated by the task of estimating prognostic and diagnostic
biosignature models using a minimal set of markers.

We present the Parallel Regularised Regression Model Search (PREMS) algorithm, im-
plemented in R, for selecting an optimal set of biomarkers, from a set of many potential
biomarkers, for logistic regression biosignatires. We demonstrate that the method has sim-
ilar predictive accuracy as the LASSO whist utilising fewer biomarkers. The method is
conceptually straightforward: search as many models as possible and choose the best one;
throughout we use model to mean a subset of selected biomarkers with their respective logis-
tic regression coefficients. The implementation utilises the multiple processors available on
desktop computers using the R package parallel (Eddelbuettel (2018)) making the search
of very large model spaces computationally feasible. The problem can then be split in two:
1) estimating the regression coefficients of each model and 2) criteria for selecting the best
model. Gaussian shrinkage priors are applied to the regression coefficients for model robust-
ness. To aid computational efficiency the LASSO, as implemented in the R package glmnet
(Friedman et al. (2010)), is used to derive an estimate for the Guassian shrinkage parameter
and the Watanabe-Akaike Information Criteria (WAIC) (Watanabe (2010)) is used to select
the optimal model of a given size.


https://doi.org/10.1101/355479
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/355479; this version posted June 27, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

-3 -

We apply the method to freely available biological data sets and compare results to
those obtained with the LASSO with two alternative penalty parameters and the smoothly
clipped absolute deviation (SCAD) (Fan and Li (2001)) algorithm. The SCAD algorithm
was included in the comparison as it is known to select relatively sparse models. We do not
compare with the elastic net as it is known to select larger models than the LASSO and our
focus is on small models.

2. Materials and Methods

Regression coefficients can be naively estimated by their maximum likelihood estimates
(MLEs). However, in situations in which there are more covariates than observations (p > n)
the MLE is not identifiable and otherwise results in over-fitting and sub-optimal predictive
accuracy (Pavlou et al. (2016)). This can be simply remedied by ’shrinking’ the MLEs
towards zero. From a Bayesian perspective shrinkage is achieved by assigning the regres-
sion coefficients zero centred symmetric prior distributions, the greater the prior precision
(=1/variance) the greater the shrinkage. All model selection methods considered employ
shrinkage of logistic regression coefficients. Logistic regression is used as we are interested
in prediction of a binary outcome, ie disease status, however, the method is equally ap-
plicable to other generalised linear model. The log-posterior, or equivalently the penalised
log-likelihood, of logistic regression shrinkage models is

n n p
log posterior = Z y;log 6; + Z(l — ;) log(1 —6;) + Z eh
i=1 i=1 j=1
1 p
where §; = ——— 1, = [y + Xii 05, 1
1+ exp{—n;} ’ ]Zl o @

y; is the outcome of the ith individual (i = 1,...,n) taking values 0 or 1, B8 = (B4, ..., 5p)
are the regression coefficients, 3y is the intercept, X;; is covariate j for individual ¢, 0; is the
predicted probability for individual ¢ and f is the log-prior or minus penalty function. The
solution for any given penalty function is given by maximising the log-posterior with respect

to 3.
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2.1. LASSO

From a Bayesian perspective the LASSO assigns regression coefficients double exponen-
tial prior distributions. With shrinkage parameter A the log-prior can be expressed as

A

for all coefficients 3}, x is a constant. The greater A the greater the shrinkage. We use the R
package glmnet (Friedman et al. (2010)) to fit the LASSO and consider two solutions for the
penalty parameter provided by the package: one which minimises the leave-one-out cross-
validated deviance (denoted by A,y) and the other derived from the penalty which gives
a cross-validated deviance within one standard error of A,,, denoted by Ais. A desirable
property of the LASSO is that it performs simultaneous variable selection and parameter
estimation through the tuning of the univariate shrinkage parameter.

2.2. SCAD

The SCAD algorithm (Fan and Li (2001)), like the LASSO, performs simultaneous
variable selection and parameter estimation. Unlike the LASSO, the SCAD penalty is not
derived from a known parametric prior distribution, however, the equivalent log-prior can
be expressed as

(5] if |B;] <

a—|B;]/2 .
f — _’Y( a\fyll/ ol lf’j/ < |5J| S ary

(a)? :
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The result of this penalty is to shrink larger regression coefficients less than smaller coeffi-
cients relative to the LASSO. The R package ncvreg (Breheny and Huang (2011)) is used
for model estimation.

2.3. Parallel Regularised Regression Model Search

PREMS fits logistic regression Gaussian shrinkage models to multiple subsets of covari-
ates. The method first fits all possible models with one and two covariates and ranks them
based on their log-likelihood. The top S two covariate models (user setting with default
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value of 100) are taken forward to the next stage in which the algorithm determines the
unique set of three covariate models that can be constructed by the addition of one covariate
to the top two covariate models. The log-likelihood of these models is calculated, and the
process continues taking forward the top .S models to construct models one covariate larger.
The user has the option of only searching those two covariate models that can be constructed
from the top one covariate models.

The problem can then be split in two: 1) selecting the shrinkage parameter and 2)
criteria for selecting the best model.

2.3.1.  Selecting the shrinkage parameter

Shrinkage is induced by assigning zero centred Gaussian prior distributions. We parametrise
the prior by precision parameter 7=1/variance, the log-prior can then be expressed as

T
f = _56]2_‘_'%)

for all coefficients ;, k is a constant. The prior precision can be interpreted as the penalty
parameter in classical penalised regression.

The optimal shrinkage, 7, is dependent on the structure of data set under analysis. We
tackle this problem by utilising the LASSO estimates \,,; and A5 and their respective model
fits of the data. We then set 7 by equating the shrinkage induced by the LASSO with the
shrinkage induced by the Gaussian prior on the largest regression coefficient of the optimal

LASSO fit (Bas)

Double exponential penalty = Gaussian penalty
T a2

A
S IPmax| — § 2

using the optimal LASSO fit and its shrinkage on its largest coefficient 3,,4|0pt

. - )\opt
L= P
> ‘ﬂmax\opt|
and similarly for the A, fit to give an estimate
. o )\186
lse = ——
> ‘ﬂmax\lse’

Equating the shrinkage on the largest regression coefficient results in relatively less shrinkage
on the other covariate effects. We use the LASSO penalty as it accounts for both the
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shrinkage of the selected parameters and the number of potential models in the sample
space. The appropriate degree of shrinkage can be assessed by examining the calibration
slope; this is the slope of a linear regression of the binary outcome against the predicted
probabilities, for a well calibrated model this will equal one. With too much shrinkage the
predictions are overly shrunk to the mean, the proportion of true positives in the training
set, and the slope is greater than one, with too little shrinkage the predictions are overly
confident taking values closer to zero and one, resulting in a slope less than one. We show
that the PREMS and LASSO have similar calibration slopes for values of 7 and A satisfying

(1).

2.3.2. PREMS: Selecting the best model

We use the Watanabe-Akaike Information Criteria (WAIC) to select the optimal model
for a given number of predictors Watanabe (2010). The WAIC is a Bayesian information
criteria for estimating the out-of-sample expected error and assumes inference is made from
the posterior distribution. WAIC is defined as follows

WAIC = lppd — pwarc

where Ippd is the log pointwise predictive density and py a;c is a measure of the effective
number of parameters included to adjust for over-fitting. Ippd and pw a;c are both defined
by expectations over the posterior distribution of the regression coefficients 3 as follows

Ippd = Zlog / #(8I7, D)dB
pWAIC—Z [ 006 ~ E(toz0))%(8r, D)ig

= Z varost (log ;)

i=1

where D is the data and 6; = p(y;|3). The two quantities are estimated by Monte Carlo
integration, taking samples 3° from the posterior distribution as follows

n S
Ippd = Z log <% Z Qf)
i=1 s=1

Pwarc = Z V.2, (log 67)

i=1
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where 6} is the evaluation at 3° and V.2, oy = gt (a,—@). The R package BayesLogit is used
to sample from the posterior distribution of the logistic regression coefficients (Polson et al.
(2013)). Estimation comes at a computation expense and it would infeasible to calculate the
WAIC for all models considered. We show in the supplementary material that for a given
model size the WAIC is approximately proportional to the log-likelihood, therefore, we only

calculate the WAIC for the top ten models ranked by log-likelihood.

We use WAIC rather than the commonly used Akaike information criteria (AIC) since
the AIC assumes inference is made at the MLE whereas we make inference from the posterior
distribution and thus is suboptimal in settings with strong prior information (Gelman et al.
(2014)). Furthermore, Gelman et al. (2014) show that the WAIC has a more-or-less explicit
connection to cross-validation which is computationally expensive but commonly viewed as
the gold standard for model selection.

In practice inference is made from the posterior mean of the regression coefficients
since, unlike the posterior distribution, the posterior mean allows the model to be simply
expressed in terms of fixed regression coefficients, we show for one example data set that
this simplification has negligible effect on predictive accuracy. The accompanying R package
has a function to make predictions from the posterior distribution.

WAIC is a measure of average prediction error and adjusts for over-fitting by adding a
correction for the effective number of parameter, however, it does not account for the number
of models and covariates searched over in the PREMS algorithm. Therefore, WAIC is used
to determine the optimal model for each model size, but it is not applicable for selecting
the optimal model size. Instead cross-validation is used to choose the optimal model size:
model fitting is repeated for each training set and applied across all model sizes to the
respective test set. PREMS then selects the optimal model size as the one which maximises
the mean predictive log-likelihood across all folds. Specifically, if the data is split into m
folds Jgy, ..., Jgmy, k is chosen to maximise

1 m
mean predictive log-likelihood model size k = G*) = — E G® ()
m
i=1

- %Zlogp (yJi | 93’:@) (3)
=1

where y;, and HL(]]Z) s, are the outcomes and predictions for each element in the test set J;
given the best fitting model of size k determined by training data J_;. In each fold 7 is
re-estimated given the available training data. Results presented use m = 20 folds. We
note that in this setting in which many models are searched over WAIC cannot be used to
determine the shrinkage parameter 7 since the effective number of models searched over is
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dependent on 7 which is not captured by the WAIC of a single model.

Following this procedure it can occur that many model sizes result in “similar” predictive
log-likelihood and it may be somewhat random which of the model sizes is chosen as the
“best”. Therefore we also present results for model sizes with predictive log-likelihood within
one-standard error of the “best” model — the model with the highest predictive log-likelihood.
Following Friedman et al. (2010) the standard error of G® = (G®(.Jy),...,G¥(J,)) is
calculated as

SE <G(k)> - \/%m <G(’“)(J1), o ,G(k)(Jm)>

Therefore, in addition to selecting model size kyuq, (maximising G(k)) we select model size
k1s. which is the smallest k such that

GI > Glhner) — S (Glher)) (4)

In the text PREMS.opt refers to the model size which maximises G* and PREMS.1se
refers to the model size sataisfying (4).

2.3.8.  Prediction

Throughout, results are presented for inference made at the posterior mean, ie for each
sample predict from 6; = p(y; | B), given in (1), and where

_ 1E
5= [ avan D=3 0

and B} are samples from the posterior. For one data set we also show results for inference
made from the posterior mode 8 and the full posterior distribution of 3

1 S
6= [ bl | Bp(BIr. D)B = > plus | B

Predictive log-likelihoods calculated from the cross-validation procedure to choose model
size (3) were also used to select between 7,,; and 7.

2.4. Data sets

We compare the predictive performance of the PREMS, LASSO and SCAD algorithms
applied to six freely available data sets. Of these one is transcriptomic (TB data), two are
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proteomic (Arcene and Mice), cardiac arrhythmia data and SPECTF Heart data are clinical
data sets with alternate measures and the ionosphere data is a physical data set. Description
of the data sets are below.

2.4.1.  Arcene

The goal of this data is to distinguish ovarian and prostate cancer patients from healthy
individuals using protein measures from mass-spectrometry. The available data was split
into training and test sets each of 44 cases and 56 controls, with 7000 real probes and 3000
additional noise probes. The data set was prepared by NIPS 2003 as a benchmark data set
to compare prediction algorithms (https://archive.ics.uci.edu/ml/datasets/Arcene).

2.4.2.  Paediatric Tuberculous

The goal of this data is to distinguish children with tuberculous from children with sim-
ilar clinical presentations but without tuberculous using 47,323 genome-wide transcriptomic
measurements (Anderson et al. (2014)). The data is comprised of two cohorts, a discovery
set of 135 cases and 89 controls recruited from Malawi and Cape Town and a validation set
of 55 controls and 35 cases recruited from Kenya.

2.4.3. Mice Protein Expression data

The goal of this data is to distinguish control mice from trisomic mice (Down syndrome)
using 77 measures of protein expression levels. In total there are 570 control samples and 507
case samples (https://archive.ics.uci.edu/ml/datasets/Mice+Protein+Expression).

2.4.4. Cardiac arrhythmia data

The goal of this data is to distinguish cardiac arrhythmia from normal heart function us-
ing 191 electrocardiogram measurements (https://archive.ics.uci.edu/ml/datasets/Arrhythmia).
In total 245 samples are classified as normal and 206 as abnormal. The abnormal samples
are classified into one of 13 abnormal classes but were combined in our analysis.
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2.4.5. SPECTEF Heart data

The goal of this data is to distinguish between individuals with normal and abnormal
heart function using 44 continuous feature pattern. In total 55 individuals are classified as
normal and 210 as abnormal (https://archive.ics.uci.edu/ml/datasets/SPECTF+Heart).

2.4.6. lonosphere data

The goal of this data is to classify radar returns from the ionosphere into good returns
and bad from 32 continuous measures (https://archive.ics.uci.edu/ml/datasets/ionosphere).
In total 126 returns are classified as bad and 225 as good.

2.5. Analyses

All data sets, except Arcene, were randomly split into 100 80% training and 20% test
sets, each time ensuring equal proportions of cases and controls in each set. For the TB data
the discovery data was randomly split into training and test sets. Measures of model accuracy
are calculated in both the test set and Kenyan validation data set for each 100 model fits.
In the analysis of this data presented in Anderson et al. (2014) only those transcripts with
log-fold change > 0.5 between cases and controls were taken forward to model building, we
follow the same strategy which on average selected 340 transcripts across the training / test
splits. A more detailed single analysis of the Arcene data is presented using the available
training and test sets. All analyses used 20-fold cross-validation to choose the optimal model
size. The following measures were calculated across all test sets:

e number of covariates selected
e area under the receiver operator curve (AUC)

e calibration slope, slope of a linear regression of y on ¢

e root predictive mean square error (RPMSE) = \/ L3y — 6;)?

The range of model sizes PREMS searched over was determined by pilot cross-validation
analyses such that the predictive log-likelihood was seen to reach a maximum and then decline
for increasing model size.
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3. Results

3.1. Analysis of Arcene data

Figure 1 shows both within training set predictive log-likelihood of the Arcene data and
test set AUC for increasing model size. For PREMS models fit with both 7 = 7, and
T = Topt the relationship between model size and predictive log-likelihood is well mirrored
by that between model size and test AUC up to model sizes of 6. For larger models both
the predictive log-likelihood and AUC plateau or deteriorate, however, 7,, displays greater
consistency across model sizes. Further Table 1, which displays a summary of accuracy for
all methods, PREMS fit with 7,, has a greater maximum predictive log-likelihood than
PREMS fit with 7.

The optimum PREMS model, that which maximises the predictive log-likelihood, oc-
curred with 7 = 7,, and six proteins. In comparison, the selected LASSO and SCAD
models use between 24 and 31 proteins and have inferior AUC and RPMSE. All models have
calibration slope with confidence intervals intersecting 1.

A B
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] &/‘ AN 3 i E\T/B\L/&—‘\& 1 3
p T/ 1 \/\ 778 0 | /i . —~— 7 [ g
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Fig. 1.— Training set predictive log-likelihood (e) and test set AUC (o) by model size for
the Arcene data. A 7 = Ty, B 7 = 7. Solid grey bars indicate one standard error of the

predictive log-likelihood. Vertical dashed lines indicate the optimal and one standard error
fits.
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Method pll k AUC (CI) RPMSE Calibration (CI)
LASSO - 1se -0.465 24 0.785 (0.697, 0.873) 0.433  1.11 (0.723, 1.49)
LASSO - opt -0.431 31 0.783 (0.695, 0.872) 0.438 0.937 (0.598 ,1.28)
SCAD -0.518 27 0.779 (0.690, 0.868) 0.441 0.951 (0.597, 1.30)
PREMS- 75 — 1se -0.487 6 0.804 (0.718, 0.890) 0.428  1.01 (0.679, 1.35)
PREMS- 7y, —opt -0.478 9 0.823 (0.742, 0.903) 0.416  1.00 (0.702, 1.30)
PREMS- 7, — Ise -0.519 5 0.781 (0.691, 0.870)  0.440 0.892 (0.568, 1.21)
PREMS- 7,,; —opt -0.475 6 0.803 (0.716, 0.889) 0.431 0.863 (0.577, 1.15)

Table 1: Results of analyses of the Arcene data by the LASSO, SCAD and PREMS algo-
rithms. k is the model size determined by 20-fold cross-validation.

3.2. Analyses of other data sets

Table 2 shows the range of model sizes searched over and the proportion of times 7,
was chosen in favour of 7, by means of maximising the predictive log-likelihood across
the 100 training/test splits. Table 3 summarises the performance of the Methods in terms
of average number of markers selected and AUC. For all analyses the optimum PREMS
models selected fewer biomarkers than the optimum LASSO models and in the case of the
transcriptomic TB test and Kenyan data sets had superior AUC. In all cases PREMS.1se
has lower average AUC than PREMS.opt indicating declining performance with smaller
model sizes. For the TB test data PREMS.opt has the highest AUC of all models considered,
however, on average PREMS.opt used one more transcript than Lasso.1se and five more than
the SCAD algorithm, although the SCAD method has a greatly reduced AUC. Lasso.1se has
the best average AUC in the TB Kenya data, this is likely to reflect heterogeneity between
the training and Kenyan data sets and therefore the need for greater shrinkage in training.
For comparison, the analysis of the TB data presented in Anderson et al. (2014) applied the
elastic net to an 80/20 split of the discovery data resulting in a 51 transcript signature with
test AUC of 0.862 (95% CI (0.771, 0.940)) and an AUC in the Kenyan of 0.890 (95% CI
(0.823, 0.949)).

For the analyses of the proteomic Mice data only the LASSO.opt models had superior
AUC to the PREMS.opt models, however, they on on average used almost 20 more proteins
improving the average AUC by 0.002. PREMS.opt and LASSO.1se analyses had the same
average AUC, but PREMS.opt used on average 11 fewer proteins. The SCAD analyses had
the the lowest average AUC using on average the same number of protein as the PREMS.1se
analyses.
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For the analyses of the Heart data PREMS analyses frequently identified significantly
smaller models than the other methods and on average had only marginally inferior AUC to
LASSO.opt models. SCAD models had the highest average AUC but used on average twice
as many biomarker compared with PREMS.opt.

PREMS analyses performed worst on the analyses of the Cardiac and Ionosphere data
sets. LASSO.opt analyses of the Ionosphere data had significantly better average AUC of
all other methods potentially indicating the contribution of many small effects. Models from
both LASSO analyses performed well on the Cardiac data potentially indicating that the
double exponential prior is most of appropriate of those considered for this data set.

Supplementary Figs 1-6 show boxplots of the number of biomarkers selected, AUC,
calibration slope and RPMSE across the 100 training/test splits of the data sets in Table 2.
The calibration slopes of the PREMS.7,,; and PREMS.7y,, fits mirror those of Lasso.opt
and Lasso.1se respectively indicating the appropriateness of the method for estimating 7. In
line with LASSO results PREMS.7,,; had better calibration than PREMS.7y5.. There were
significant differences in AUC and RPMSE between PREMS.7,,; and PREMS.7,. across
the five data sets with the optimum value varying between data sets, see also Table 2.

Data set K P(Top)
TB 5-25 0.19
Mice 15-40 0.06
Cardiac 5-25 0.32
Heart 1-10 0.93

Ionosphere  1-15 0.70

Table 2: K — range of models searched over for the PREMS analyses and P(7,,;) — proportion
of training runs which selected 7 = 7.

3.3. Mean, mode and full posterior inference

Table 4 shows a comparison of predictive accuracy using prediction based on the pos-
terior mean, mode and the full posterior distribution across the 100 training/test splits of
the mice data. For both the PREMS.7y,. and PREMS.7,,; analyses full posterior prediction
resulted in marginally better prediction in terms of the AUC. As would be expected, full
posterior prediction, with the encumbant increase in parameter uncertainty, resulted in an
increase in the calibration slope. RPMSE captures both factors influencing both the AUC
and calibration and shows no clear pattern.
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Lasso.1se Lasso.opt SCAD PREMS.1se  PREMS.opt
Data set k AUC k. AUC k. AUC k. AUC k AUC
TB test 19 0.88 38.1 0.889 15.8 0.874 10.2 0.882 20.3 0.892
TB Kenya - 0.921 - 0.903 - 091 - 0.906 0.911
Mice 45.1 0.989 53.5 0.991 21.1 0.982 21.5 0.986 34 0.989
Cardiac 16.9 0.818 36.1 0.819 19.1 0.806 7.8 0.799 14.9 0.805
Heart 9.5 0.847 142 0.852 9.2 0.858 3.2 0843 4.6 0.85

Ionosphere 10 0876 174 0.884 99 0876 53 087 9.2 0.873

Table 3: Mean number of covariates selected and AUC for analyses of five test data sets by
the LASSO, SCAD and PREMS algorithms. Means were calculated accross 100 random
80/20 training/test splits of the data. Results for the TB test and Kenya data use the same
prediction models estimated from each of the 100 training data sets. PREMS.opt results
are for model size and 7 (either 714 or 7,,) choosen within their respective training sets to
maximise the predictive log-likelihood.

PREMS.T{se PREMS. T,
s B p(B|D) 5 B p(B|D)
AUC 0.9886 0.9886 0.9892 0.9894 0.9892 0.9899

RPMSE 0.1737 0.1764 0.1771 0.1776 0.1793 0.1781
Calibration ~ 1.026  1.038 1.044 0989  0.998 1.004

Table 4: Comparison of PREMS model fit to the mice data by the posterior mean 3, mode
A3 and the full posterior p(3|D).
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4. Discussion

PREMS is more computationally intensive than the SCAD and LASSO algorithms,
however, its use of the multiple cores available in desktop computers and the use of compu-
tationally efficient methods for selecting the shrinkage parameter 7 and the optimum model
of a given size make the exhaustive model search used in PREMS feasible. However, the
cross-validation used to select model size is computationally expensive. Further, choosing
model size by maximising the predictive log-likelihood can be quite unstable as shown by the
range of model sizes selected in Supplementary Figures 1-6. This occurs as the predictive
log-likelihood plateaus and then for increasing model size fluctuations can just be due to
random error, see Figure 1. For the application of PREMS to real bio-signature discovery
the number of cross-validation folds may have to be increased from the 20 used here to
reduce the error in the predictive log-likelihood. Plots of the predictive log-likelihood and
its standard error against model size (for example Figure 1) will indicate the stability of the
model size estimate. Further there maybe a better method for selecting model size which
accounts for both the predictive log-likelihood and its standard error.

The PREMS results presented here could be improved further if a greater range of
shrinkage values 7 was searched over by cross-validation, however, this may be at the expense
of model calibration as we have shown that 7, typically results in good model calibration.

We have demonstrated good performance of the PREMS method, in comparison with
the LASSO and SCAD methods, in the analyses of the the transcriptomic TB data set and
the Arcene and Mice proteomic data sets, in terms of both model predictive accuracy and
the number of biomarkers selected. Therefore, of the methods compared, PREMS is the
most suitable for the discovery of sparse ’omics biosignatures.
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5. Supplementary Material

Figures S1-6 show comparison of LASSO, SCAD and PREMS model fits applied to
100 random training/test splits for five example data sets. Throughout Lasso.opt is the fit
attained from the LASSO penalty parameter that minimises the cross-validated deviance.
LASSO.1se is fit attained from the LASSO penalty parameter with cross-validated deviance
within 1 standard error of the minimum deviance. PMS.7y4..0pt and PMS.7,..1se are the
PREMS fits with penalty parameter derived from the LASSO.1se penalty parameter with
the optimal model size and the smallest model size within one standard error of the optimum.
Similarly for PMS.7,,:.opt and PMS.7,,.1se.

This preprint was prepared with the AAS I4TEX macros v5.0.
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Fig. S1.— Application to the TB test data set. A —number of covariates selected, B — area
under the receiver operator curve (AUC), C — calibration slope, D — root predictive mean
square error (RPMSE). Dash horizontal lines in plots B and D indicate the performance
of the best performing method. Dash horizontal line in C is at one indicting optimum

calibration.
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Fig. S2.— Application to the external Kenya TB validation data. A — number of covariates
selected, B — area under the receiver operator curve (AUC), C — calibration slope, D — root
predictive mean square error (RPMSE). Dash horizontal lines in plots A and C indicate the
performanc eof the best performing method. Dash horizontal line in B is at one indicting
optimum calibration.
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Fig. S3.— Application to the mice data. A — number of covariates selected, B — area under
the receiver operator curve (AUC), C — calibration slope, D — root predictive mean square
error (RPMSE). Dash horizontal lines in plots B and D indicate the performance of the best
performing method. Dash horizontal line in C is at one indicting optimum calibration.
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Fig. S5h.— Application to the SPECTF Heart data. A — number of covariates selected, B —
area under the receiver operator curve (AUC), C — calibration slope, D —root predictive mean
square error (RPMSE). Dash horizontal lines in plots B and D indicate the performance
of the best performing method. Dash horizontal line in C is at one indicting optimum

calibration.
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Fig. S6.— Application to the ionospehere data. A — number of covariates selected, B — area
under the receiver operator curve (AUC), C — calibration slope, D — root predictive mean
square error (RPMSE). Dash horizontal lines in plots B and D indicate the performance
of the best performing method. Dash horizontal line in C is at one indicting optimum
calibration.
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