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ABSTRACT

There is increasing interest in developing point of care tests to diagnose dis-

ease and predict prognosis based upon biomarker signatures of RNA or protein

expression levels. Technology to measure the required biomarkers accurately

and in a time-frame useful to health care professionals will be easier to develop

by minimising the number of biomarkers measured. In this paper we describe

the Parallel Regularised Regression Model Search (PReMS) method which is

designed to estimate parsimonious prediction models. Given a set of potential

biomarkers PReMS searches over many logistic regression models constructed

from optimal subsets of the biomarkers, iteratively increasing the model size. Zero

centred Gaussian prior distributions are assigned to all regression coefficients to

induce shrinkage. The method estimates the optimal shrinkage parameter, opti-

mal model for each model size and the optimal model size. We apply PReMS

to six freely available data sets and compare its performance with the LASSO

and SCAD algorithms in terms of the number of covariates in the model, model

accuracy, as measured by the area under the receiver operator curve (AUC) and

root predicted mean square error, and model calibration. We show that PReMS

typically selects models with fewer biomarkers than both the LASSO and SCAD

algorithms but has comparable predictive accuracy.

Subject headings: Biomarker signatures, shrinkage, regularised regres-

sion

Availability: (PReMS) is freely available as an R package

https://github.com/clivehoggart/PReMS

1. Introduction

For many diseases clinical presentation features alone cannot reliably be used for di-

agnosis, this has motivated the development of proteomic and transcriptomic signatures,
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for example, to diagnose tuberculosis (TB) (Kaforou et al. (2013); Anderson et al. (2014);

Chegou et al. (2016)), Kawasaki disease (Jaggi et al. (2018)) and to distinguish bacterial from

viral infections (Herberg et al. (2016)). All such biosignatures are derived from comparing

cases and controls with measures of potential biomarkers; ranging from tens of proteins from

a multiplex cytokine platform to tens of thousands from whole genome transcriptome anal-

ysis. Logistic regression with biomarker selection via simple forward selection or penalised

regression in the form of the LASSO (least absolute shrinkage and selection operator) (Tib-

shirani (1996)) or elastic net (Zou and Hastie (2005)) have been frequently used for biomarker

signature estimation (Kaforou et al. (2013); Anderson et al. (2014); Herberg et al. (2016)).

Logistic regression is attractive as its implementation simply requires a weighted sum of the

biomarkers selected and as such it is easy to interpret, and the LASSO and elastic net both

implement biomarker selection and shrinkage of the regression coefficients resulting in more

stable model estimation.

A major challenge in using biomarker signatures as diagnostic tools is their transla-

tion to clinical tests suitable for use in hospital laboratories or at the bedside. The fewer

biomarkers used by a signature the easier it will be for it to be turned into a point of care test

(Cattamanchi et al. (2013); Gjen et al. (2017)). However, both the LASSO and elastic net

tend to select large models by allowing some noise predictors to enter the model (Buhlmann

and van de Geer (2011)) suggesting similar predictive accuracy could be attained with fewer

predictors. This paper is motivated by the task of estimating prognostic and diagnostic

biosignature models using a minimal set of markers.

We present the Parallel Regularised Regression Model Search (PReMS) algorithm, im-

plemented in R, for selecting an optimal set of biomarkers, from a set of many potential

biomarkers, for logistic regression biosignatires. We demonstrate that the method has sim-

ilar predictive accuracy as the LASSO whist utilising fewer biomarkers. The method is

conceptually straightforward: search as many models as possible and choose the best one;

throughout we use model to mean a subset of selected biomarkers with their respective logis-

tic regression coefficients. The implementation utilises the multiple processors available on

desktop computers using the R package parallel (Eddelbuettel (2018)) making the search

of very large model spaces computationally feasible. The problem can then be split in two:

1) estimating the regression coefficients of each model and 2) criteria for selecting the best

model. Gaussian shrinkage priors are applied to the regression coefficients for model robust-

ness. To aid computational efficiency the LASSO, as implemented in the R package glmnet

(Friedman et al. (2010)), is used to derive an estimate for the Guassian shrinkage parameter

and the Watanabe-Akaike Information Criteria (WAIC) (Watanabe (2010)) is used to select

the optimal model of a given size.
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We apply the method to freely available biological data sets and compare results to

those obtained with the LASSO with two alternative penalty parameters and the smoothly

clipped absolute deviation (SCAD) (Fan and Li (2001)) algorithm. The SCAD algorithm

was included in the comparison as it is known to select relatively sparse models. We do not

compare with the elastic net as it is known to select larger models than the LASSO and our

focus is on small models.

2. Materials and Methods

Regression coefficients can be naively estimated by their maximum likelihood estimates

(MLEs). However, in situations in which there are more covariates than observations (p > n)

the MLE is not identifiable and otherwise results in over-fitting and sub-optimal predictive

accuracy (Pavlou et al. (2016)). This can be simply remedied by ’shrinking’ the MLEs

towards zero. From a Bayesian perspective shrinkage is achieved by assigning the regres-

sion coefficients zero centred symmetric prior distributions, the greater the prior precision

(=1/variance) the greater the shrinkage. All model selection methods considered employ

shrinkage of logistic regression coefficients. Logistic regression is used as we are interested

in prediction of a binary outcome, ie disease status, however, the method is equally ap-

plicable to other generalised linear model. The log-posterior, or equivalently the penalised

log-likelihood, of logistic regression shrinkage models is

log posterior =
n∑
i=1

yi log θi +
n∑
i=1

(1− yi) log(1− θi) +

p∑
j=1

f(βj)

where θi =
1

1 + exp{−ηi}
, ηi = β0 +

p∑
j=1

Xijβj, (1)

yi is the outcome of the ith individual (i = 1, . . . , n) taking values 0 or 1, β = (β1, . . . , βp)

are the regression coefficients, β0 is the intercept, Xij is covariate j for individual i, θi is the

predicted probability for individual i and f is the log-prior or minus penalty function. The

solution for any given penalty function is given by maximising the log-posterior with respect

to β.
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2.1. LASSO

From a Bayesian perspective the LASSO assigns regression coefficients double exponen-

tial prior distributions. With shrinkage parameter λ the log-prior can be expressed as

f = −λ
2
|βj|+ κ,

for all coefficients βj, κ is a constant. The greater λ the greater the shrinkage. We use the R

package glmnet (Friedman et al. (2010)) to fit the LASSO and consider two solutions for the

penalty parameter provided by the package: one which minimises the leave-one-out cross-

validated deviance (denoted by λopt) and the other derived from the penalty which gives

a cross-validated deviance within one standard error of λopt, denoted by λ1se. A desirable

property of the LASSO is that it performs simultaneous variable selection and parameter

estimation through the tuning of the univariate shrinkage parameter.

2.2. SCAD

The SCAD algorithm (Fan and Li (2001)), like the LASSO, performs simultaneous

variable selection and parameter estimation. Unlike the LASSO, the SCAD penalty is not

derived from a known parametric prior distribution, however, the equivalent log-prior can

be expressed as

f =



−γ|βj| if |βj| ≤ γ

−γ(α−|βj |/2γ|
α−1 if γ < |βj| ≤ αγ

− (αγ)2

2(α−1)|βj | if |βj| > αγ

The result of this penalty is to shrink larger regression coefficients less than smaller coeffi-

cients relative to the LASSO. The R package ncvreg (Breheny and Huang (2011)) is used

for model estimation.

2.3. Parallel Regularised Regression Model Search

PReMS fits logistic regression Gaussian shrinkage models to multiple subsets of covari-

ates. The method first fits all possible models with one and two covariates and ranks them

based on their log-likelihood. The top S two covariate models (user setting with default
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value of 100) are taken forward to the next stage in which the algorithm determines the

unique set of three covariate models that can be constructed by the addition of one covariate

to the top two covariate models. The log-likelihood of these models is calculated, and the

process continues taking forward the top S models to construct models one covariate larger.

The user has the option of only searching those two covariate models that can be constructed

from the top one covariate models.

The problem can then be split in two: 1) selecting the shrinkage parameter and 2)

criteria for selecting the best model.

2.3.1. Selecting the shrinkage parameter

Shrinkage is induced by assigning zero centred Gaussian prior distributions. We parametrise

the prior by precision parameter τ=1/variance, the log-prior can then be expressed as

f = −τ
2
β2
j + κ,

for all coefficients βj, κ is a constant. The prior precision can be interpreted as the penalty

parameter in classical penalised regression.

The optimal shrinkage, τ , is dependent on the structure of data set under analysis. We

tackle this problem by utilising the LASSO estimates λopt and λ1se and their respective model

fits of the data. We then set τ by equating the shrinkage induced by the LASSO with the

shrinkage induced by the Gaussian prior on the largest regression coefficient of the optimal

LASSO fit (βmax)

Double exponential penalty = Gaussian penalty

λ

2
|βmax| =

τ

2
β2
max (2)

using the optimal LASSO fit and its shrinkage on its largest coefficient βmax|opt

τopt =
λopt

|βmax|opt|

and similarly for the λ1se fit to give an estimate

τ1se =
λ1se

|βmax|1se|

Equating the shrinkage on the largest regression coefficient results in relatively less shrinkage

on the other covariate effects. We use the LASSO penalty as it accounts for both the
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shrinkage of the selected parameters and the number of potential models in the sample

space. The appropriate degree of shrinkage can be assessed by examining the calibration

slope; this is the slope of a linear regression of the binary outcome against the predicted

probabilities, for a well calibrated model this will equal one. With too much shrinkage the

predictions are overly shrunk to the mean, the proportion of true positives in the training

set, and the slope is greater than one, with too little shrinkage the predictions are overly

confident taking values closer to zero and one, resulting in a slope less than one. We show

that the PReMS and LASSO have similar calibration slopes for values of τ and λ satisfying

(1).

2.3.2. PReMS: Selecting the best model

We use the Watanabe-Akaike Information Criteria (WAIC) to select the optimal model

for a given number of predictors Watanabe (2010). The WAIC is a Bayesian information

criteria for estimating the out-of-sample expected error and assumes inference is made from

the posterior distribution. WAIC is defined as follows

WAIC = lppd− pWAIC

where lppd is the log pointwise predictive density and pWAIC is a measure of the effective

number of parameters included to adjust for over-fitting. lppd and pWAIC are both defined

by expectations over the posterior distribution of the regression coefficients β as follows

lppd =
n∑
i=1

log

∫
θip(β|τ,D)dβ

pWAIC =
n∑
i=1

∫
(log(θi)− E(log θ))2p(β|τ,D)dβ

=
n∑
i=1

varpost(log θi)

where D is the data and θi = p(yi|β). The two quantities are estimated by Monte Carlo

integration, taking samples βs from the posterior distribution as follows

lppd =
n∑
i=1

log

(
1

S

S∑
s=1

θsi

)

pWAIC =
n∑
i=1

V S
s=1(log θsi )
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where θsi is the evaluation at βs and V S
s=1αs = 1

S−1(αs−ᾱ). The R package BayesLogit is used

to sample from the posterior distribution of the logistic regression coefficients (Polson et al.

(2013)). Estimation comes at a computation expense and it would infeasible to calculate the

WAIC for all models considered. We show in the supplementary material that for a given

model size the WAIC is approximately proportional to the log-likelihood, therefore, we only

calculate the WAIC for the top ten models ranked by log-likelihood.

We use WAIC rather than the commonly used Akaike information criteria (AIC) since

the AIC assumes inference is made at the MLE whereas we make inference from the posterior

distribution and thus is suboptimal in settings with strong prior information (Gelman et al.

(2014)). Furthermore, Gelman et al. (2014) show that the WAIC has a more-or-less explicit

connection to cross-validation which is computationally expensive but commonly viewed as

the gold standard for model selection.

In practice inference is made from the posterior mean of the regression coefficients

since, unlike the posterior distribution, the posterior mean allows the model to be simply

expressed in terms of fixed regression coefficients, we show for one example data set that

this simplification has negligible effect on predictive accuracy. The accompanying R package

has a function to make predictions from the posterior distribution.

WAIC is a measure of average prediction error and adjusts for over-fitting by adding a

correction for the effective number of parameter, however, it does not account for the number

of models and covariates searched over in the PReMS algorithm. Therefore, WAIC is used

to determine the optimal model for each model size, but it is not applicable for selecting

the optimal model size. Instead cross-validation is used to choose the optimal model size:

model fitting is repeated for each training set and applied across all model sizes to the

respective test set. PReMS then selects the optimal model size as the one which maximises

the mean predictive log-likelihood across all folds. Specifically, if the data is split into m

folds J{1}, . . . , J{m}, k is chosen to maximise

mean predictive log-likelihood model size k = G(k) =
1

m

m∑
i=1

G(k)(Ji)

=
1

m

m∑
i=1

log p
(
yJi | θ

(k)
Ji|J−i

)
(3)

where yJi and θ
(k)
Ji|J−i

are the outcomes and predictions for each element in the test set Ji
given the best fitting model of size k determined by training data J−i. In each fold τ is

re-estimated given the available training data. Results presented use m = 20 folds. We

note that in this setting in which many models are searched over WAIC cannot be used to

determine the shrinkage parameter τ since the effective number of models searched over is
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dependent on τ which is not captured by the WAIC of a single model.

Following this procedure it can occur that many model sizes result in “similar” predictive

log-likelihood and it may be somewhat random which of the model sizes is chosen as the

“best”. Therefore we also present results for model sizes with predictive log-likelihood within

one-standard error of the “best” model – the model with the highest predictive log-likelihood.

Following Friedman et al. (2010) the standard error of G(k) = (G(k)(J1), . . . ,G
(k)(Jm)) is

calculated as

SE
(

G(k)
)

=

√
1

m
var
(

G(k)(J1), . . . ,G
(k)(Jm)

)
Therefore, in addition to selecting model size kmax (maximising G(k)) we select model size

k1se which is the smallest k such that

G(k) > G(kmax) − SE
(

G(kmax)
)
. (4)

In the text PReMS.opt refers to the model size which maximises G(k) and PReMS.1se

refers to the model size sataisfying (4).

2.3.3. Prediction

Throughout, results are presented for inference made at the posterior mean, ie for each

sample predict from θi = p(yi | β̄), given in (1), and where

β̄ =

∫
β p(β|τ,D)dβ =

1

S

S∑
s=1

β∗s

and β∗s are samples from the posterior. For one data set we also show results for inference

made from the posterior mode β̂ and the full posterior distribution of β

θi =

∫
p(yi | β)p(β|τ,D)dβ =

1

S

S∑
s=1

p(yi | β∗s)

Predictive log-likelihoods calculated from the cross-validation procedure to choose model

size (3) were also used to select between τopt and τ1se.

2.4. Data sets

We compare the predictive performance of the PReMS, LASSO and SCAD algorithms

applied to six freely available data sets. Of these one is transcriptomic (TB data), two are
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proteomic (Arcene and Mice), cardiac arrhythmia data and SPECTF Heart data are clinical

data sets with alternate measures and the ionosphere data is a physical data set. Description

of the data sets are below.

2.4.1. Arcene

The goal of this data is to distinguish ovarian and prostate cancer patients from healthy

individuals using protein measures from mass-spectrometry. The available data was split

into training and test sets each of 44 cases and 56 controls, with 7000 real probes and 3000

additional noise probes. The data set was prepared by NIPS 2003 as a benchmark data set

to compare prediction algorithms (https://archive.ics.uci.edu/ml/datasets/Arcene).

2.4.2. Paediatric Tuberculous

The goal of this data is to distinguish children with tuberculous from children with sim-

ilar clinical presentations but without tuberculous using 47,323 genome-wide transcriptomic

measurements (Anderson et al. (2014)). The data is comprised of two cohorts, a discovery

set of 135 cases and 89 controls recruited from Malawi and Cape Town and a validation set

of 55 controls and 35 cases recruited from Kenya.

2.4.3. Mice Protein Expression data

The goal of this data is to distinguish control mice from trisomic mice (Down syndrome)

using 77 measures of protein expression levels. In total there are 570 control samples and 507

case samples (https://archive.ics.uci.edu/ml/datasets/Mice+Protein+Expression).

2.4.4. Cardiac arrhythmia data

The goal of this data is to distinguish cardiac arrhythmia from normal heart function us-

ing 191 electrocardiogram measurements (https://archive.ics.uci.edu/ml/datasets/Arrhythmia).

In total 245 samples are classified as normal and 206 as abnormal. The abnormal samples

are classified into one of 13 abnormal classes but were combined in our analysis.
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2.4.5. SPECTF Heart data

The goal of this data is to distinguish between individuals with normal and abnormal

heart function using 44 continuous feature pattern. In total 55 individuals are classified as

normal and 210 as abnormal (https://archive.ics.uci.edu/ml/datasets/SPECTF+Heart).

2.4.6. Ionosphere data

The goal of this data is to classify radar returns from the ionosphere into good returns

and bad from 32 continuous measures (https://archive.ics.uci.edu/ml/datasets/ionosphere).

In total 126 returns are classified as bad and 225 as good.

2.5. Analyses

All data sets, except Arcene, were randomly split into 100 80% training and 20% test

sets, each time ensuring equal proportions of cases and controls in each set. For the TB data

the discovery data was randomly split into training and test sets. Measures of model accuracy

are calculated in both the test set and Kenyan validation data set for each 100 model fits.

In the analysis of this data presented in Anderson et al. (2014) only those transcripts with

log-fold change > 0.5 between cases and controls were taken forward to model building, we

follow the same strategy which on average selected 340 transcripts across the training / test

splits. A more detailed single analysis of the Arcene data is presented using the available

training and test sets. All analyses used 20-fold cross-validation to choose the optimal model

size. The following measures were calculated across all test sets:

• number of covariates selected

• area under the receiver operator curve (AUC)

• calibration slope, slope of a linear regression of y on θ

• root predictive mean square error (RPMSE) =
√

1
n

∑n
i=1(yi − θi)2

The range of model sizes PReMS searched over was determined by pilot cross-validation

analyses such that the predictive log-likelihood was seen to reach a maximum and then decline

for increasing model size.
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3. Results

3.1. Analysis of Arcene data

Figure 1 shows both within training set predictive log-likelihood of the Arcene data and

test set AUC for increasing model size. For PReMS models fit with both τ = τ1se and

τ = τopt the relationship between model size and predictive log-likelihood is well mirrored

by that between model size and test AUC up to model sizes of 6. For larger models both

the predictive log-likelihood and AUC plateau or deteriorate, however, τopt displays greater

consistency across model sizes. Further Table 1, which displays a summary of accuracy for

all methods, PReMS fit with τopt has a greater maximum predictive log-likelihood than

PReMS fit with τ1se.

The optimum PReMS model, that which maximises the predictive log-likelihood, oc-

curred with τ = τopt and six proteins. In comparison, the selected LASSO and SCAD

models use between 24 and 31 proteins and have inferior AUC and RPMSE. All models have

calibration slope with confidence intervals intersecting 1.

Fig. 1.— Training set predictive log-likelihood (•) and test set AUC (◦) by model size for

the Arcene data. A τ = τ1se, B τ = τopt. Solid grey bars indicate one standard error of the

predictive log-likelihood. Vertical dashed lines indicate the optimal and one standard error

fits.
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Method pll k AUC (CI) RPMSE Calibration (CI)

LASSO - 1se -0.465 24 0.785 (0.697, 0.873) 0.433 1.11 (0.723, 1.49)

LASSO - opt -0.431 31 0.783 (0.695, 0.872) 0.438 0.937 (0.598 ,1.28)

SCAD -0.518 27 0.779 (0.690, 0.868) 0.441 0.951 (0.597, 1.30)

PReMS- τ1se – 1se -0.487 6 0.804 (0.718, 0.890) 0.428 1.01 (0.679, 1.35)

PReMS- τ1se – opt -0.478 9 0.823 (0.742, 0.903) 0.416 1.00 (0.702, 1.30)

PReMS- τopt – 1se -0.519 5 0.781 (0.691, 0.870) 0.440 0.892 (0.568, 1.21)

PReMS- τopt – opt -0.475 6 0.803 (0.716, 0.889) 0.431 0.863 (0.577, 1.15)

Table 1: Results of analyses of the Arcene data by the LASSO, SCAD and PReMS algo-

rithms. k is the model size determined by 20-fold cross-validation.

3.2. Analyses of other data sets

Table 2 shows the range of model sizes searched over and the proportion of times τopt
was chosen in favour of τ1se, by means of maximising the predictive log-likelihood across

the 100 training/test splits. Table 3 summarises the performance of the Methods in terms

of average number of markers selected and AUC. For all analyses the optimum PReMS

models selected fewer biomarkers than the optimum LASSO models and in the case of the

transcriptomic TB test and Kenyan data sets had superior AUC. In all cases PReMS.1se

has lower average AUC than PReMS.opt indicating declining performance with smaller

model sizes. For the TB test data prems.opt has the highest AUC of all models considered,

however, on average prems.opt used one more transcript than Lasso.1se and five more than

the SCAD algorithm, although the SCAD method has a greatly reduced AUC. Lasso.1se has

the best average AUC in the TB Kenya data, this is likely to reflect heterogeneity between

the training and Kenyan data sets and therefore the need for greater shrinkage in training.

For comparison, the analysis of the TB data presented in Anderson et al. (2014) applied the

elastic net to an 80/20 split of the discovery data resulting in a 51 transcript signature with

test AUC of 0.862 (95% CI (0.771, 0.940)) and an AUC in the Kenyan of 0.890 (95% CI

(0.823, 0.949)).

For the analyses of the proteomic Mice data only the LASSO.opt models had superior

AUC to the PReMS.opt models, however, they on on average used almost 20 more proteins

improving the average AUC by 0.002. PReMS.opt and LASSO.1se analyses had the same

average AUC, but PReMS.opt used on average 11 fewer proteins. The SCAD analyses had

the the lowest average AUC using on average the same number of protein as the PReMS.1se

analyses.
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For the analyses of the Heart data PReMS analyses frequently identified significantly

smaller models than the other methods and on average had only marginally inferior AUC to

LASSO.opt models. SCAD models had the highest average AUC but used on average twice

as many biomarker compared with PReMS.opt.

PReMS analyses performed worst on the analyses of the Cardiac and Ionosphere data

sets. LASSO.opt analyses of the Ionosphere data had significantly better average AUC of

all other methods potentially indicating the contribution of many small effects. Models from

both LASSO analyses performed well on the Cardiac data potentially indicating that the

double exponential prior is most of appropriate of those considered for this data set.

Supplementary Figs 1-6 show boxplots of the number of biomarkers selected, AUC,

calibration slope and RPMSE across the 100 training/test splits of the data sets in Table 2.

The calibration slopes of the PReMS.τopt and PReMS.τ1se fits mirror those of Lasso.opt

and Lasso.1se respectively indicating the appropriateness of the method for estimating τ . In

line with LASSO results PReMS.τopt had better calibration than PReMS.τ1se. There were

significant differences in AUC and RPMSE between PReMS.τopt and PReMS.τ1se across

the five data sets with the optimum value varying between data sets, see also Table 2.

Data set K P (τopt)

TB 5-25 0.19

Mice 15-40 0.06

Cardiac 5-25 0.32

Heart 1-10 0.93

Ionosphere 1-15 0.70

Table 2: K – range of models searched over for the PReMS analyses and P (τopt) – proportion

of training runs which selected τ = τopt.

3.3. Mean, mode and full posterior inference

Table 4 shows a comparison of predictive accuracy using prediction based on the pos-

terior mean, mode and the full posterior distribution across the 100 training/test splits of

the mice data. For both the PReMS.τ1se and PReMS.τopt analyses full posterior prediction

resulted in marginally better prediction in terms of the AUC. As would be expected, full

posterior prediction, with the encumbant increase in parameter uncertainty, resulted in an

increase in the calibration slope. RPMSE captures both factors influencing both the AUC

and calibration and shows no clear pattern.
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Lasso.1se Lasso.opt SCAD prems.1se prems.opt

Data set k̄ AUC k̄ AUC k̄ AUC k̄ AUC k̄ AUC

TB test 19 0.886 38.1 0.889 15.8 0.874 10.2 0.882 20.3 0.892

TB Kenya - 0.921 - 0.903 - 0.91 - 0.906 0.911

Mice 45.1 0.989 53.5 0.991 21.1 0.982 21.5 0.986 34 0.989

Cardiac 16.9 0.818 36.1 0.819 19.1 0.806 7.8 0.799 14.9 0.805

Heart 9.5 0.847 14.2 0.852 9.2 0.858 3.2 0.843 4.6 0.85

Ionosphere 10 0.876 17.4 0.884 9.9 0.876 5.3 0.87 9.2 0.873

Table 3: Mean number of covariates selected and AUC for analyses of five test data sets by

the LASSO, SCAD and PReMS algorithms. Means were calculated accross 100 random

80/20 training/test splits of the data. Results for the TB test and Kenya data use the same

prediction models estimated from each of the 100 training data sets. PReMS.opt results

are for model size and τ (either τ1se or τopt) choosen within their respective training sets to

maximise the predictive log-likelihood.

prems.τ1se prems.τopt
β̄ β̂ p(β|D) β̄ β̂ p(β|D)

AUC 0.9886 0.9886 0.9892 0.9894 0.9892 0.9899

RPMSE 0.1737 0.1764 0.1771 0.1776 0.1793 0.1781

Calibration 1.026 1.038 1.044 0.989 0.998 1.004

Table 4: Comparison of PReMS model fit to the mice data by the posterior mean β̄, mode

β̂ and the full posterior p(β|D).
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4. Discussion

PReMS is more computationally intensive than the SCAD and LASSO algorithms,

however, its use of the multiple cores available in desktop computers and the use of compu-

tationally efficient methods for selecting the shrinkage parameter τ and the optimum model

of a given size make the exhaustive model search used in PReMS feasible. However, the

cross-validation used to select model size is computationally expensive. Further, choosing

model size by maximising the predictive log-likelihood can be quite unstable as shown by the

range of model sizes selected in Supplementary Figures 1-6. This occurs as the predictive

log-likelihood plateaus and then for increasing model size fluctuations can just be due to

random error, see Figure 1. For the application of PReMS to real bio-signature discovery

the number of cross-validation folds may have to be increased from the 20 used here to

reduce the error in the predictive log-likelihood. Plots of the predictive log-likelihood and

its standard error against model size (for example Figure 1) will indicate the stability of the

model size estimate. Further there maybe a better method for selecting model size which

accounts for both the predictive log-likelihood and its standard error.

The PReMS results presented here could be improved further if a greater range of

shrinkage values τ was searched over by cross-validation, however, this may be at the expense

of model calibration as we have shown that τopt typically results in good model calibration.

We have demonstrated good performance of the PReMS method, in comparison with

the LASSO and SCAD methods, in the analyses of the the transcriptomic TB data set and

the Arcene and Mice proteomic data sets, in terms of both model predictive accuracy and

the number of biomarkers selected. Therefore, of the methods compared, PReMS is the

most suitable for the discovery of sparse ’omics biosignatures.
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5. Supplementary Material

Figures S1-6 show comparison of LASSO, SCAD and PReMS model fits applied to

100 random training/test splits for five example data sets. Throughout Lasso.opt is the fit

attained from the LASSO penalty parameter that minimises the cross-validated deviance.

LASSO.1se is fit attained from the LASSO penalty parameter with cross-validated deviance

within 1 standard error of the minimum deviance. PMS.τ1se.opt and PMS.τ1se.1se are the

PReMS fits with penalty parameter derived from the LASSO.1se penalty parameter with

the optimal model size and the smallest model size within one standard error of the optimum.

Similarly for PMS.τopt.opt and PMS.τopt.1se.

This preprint was prepared with the AAS LATEX macros v5.0.
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Fig. S1.— Application to the TB test data set. A – number of covariates selected, B – area

under the receiver operator curve (AUC), C – calibration slope, D – root predictive mean

square error (RPMSE). Dash horizontal lines in plots B and D indicate the performance

of the best performing method. Dash horizontal line in C is at one indicting optimum

calibration.
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Fig. S2.— Application to the external Kenya TB validation data. A – number of covariates

selected, B – area under the receiver operator curve (AUC), C – calibration slope, D – root

predictive mean square error (RPMSE). Dash horizontal lines in plots A and C indicate the

performanc eof the best performing method. Dash horizontal line in B is at one indicting

optimum calibration.
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Fig. S3.— Application to the mice data. A – number of covariates selected, B – area under

the receiver operator curve (AUC), C – calibration slope, D – root predictive mean square

error (RPMSE). Dash horizontal lines in plots B and D indicate the performance of the best

performing method. Dash horizontal line in C is at one indicting optimum calibration.
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Fig. S4.— Application to the cardiac test data. A – number of covariates selected, B – area

under the receiver operator curve (AUC), C – calibration slope, D – root predictive mean

square error (RPMSE). Dash horizontal lines in plots B and D indicate the performance

of the best performing method. Dash horizontal line in C is at one indicting optimum

calibration.
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Fig. S5.— Application to the SPECTF Heart data. A – number of covariates selected, B –

area under the receiver operator curve (AUC), C – calibration slope, D – root predictive mean

square error (RPMSE). Dash horizontal lines in plots B and D indicate the performance

of the best performing method. Dash horizontal line in C is at one indicting optimum

calibration.
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Fig. S6.— Application to the ionospehere data. A – number of covariates selected, B – area

under the receiver operator curve (AUC), C – calibration slope, D – root predictive mean

square error (RPMSE). Dash horizontal lines in plots B and D indicate the performance

of the best performing method. Dash horizontal line in C is at one indicting optimum

calibration.
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