

1
2
3
4

5 **Orchestration of *Drosophila* post-feeding physiology and behavior**
6 **by the neuropeptide leucokinin**

7

8 Meet Zandawala^{1,*}, Maria E. Yurgel², Sifang Liao¹, Michael J. Texada³,
9 Kim F. Rewitz³, Alex C. Keene², and Dick R. Nässel^{1 *}

10

11 ¹ Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden

12 ² Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458,
13 USA

14 ³ Department of Biology, University of Copenhagen, Universitetsparken 15, 2100
15 Copenhagen, Denmark.

16
17

18 * Correspondence to: Meet Zandawala and Dick R. Nässel

19 E-mail: meet.zandawala@zoologi.su.se

20 and dnassel@zoologi.su.se

21

22 ORCID for M.Z.: 0000-0001-6498-2208

23 ORCID for D.R.N.: 0000-0002-1147-7766

24 ORCID for M.J.T.: 0000-0003-2479-1241

25 ORCID for K.F.R.: 0000-0002-4409-9941

26 ORCID for A.C.K: 0000-0001-6118-5537

27

28

29

30

31

32

33

Abstract

34 Behavior and physiology are orchestrated by neuropeptides acting as neuromodulators
35 and/or circulating hormones. A central question is how these neuropeptides function to
36 coordinate complex and competing behaviors. The neuropeptide leucokinin (LK)
37 modulates diverse functions, including circadian rhythms, feeding, water homeostasis,
38 and sleep, but the mechanisms underlying these complex interactions remain poorly
39 understood. Here, we delineate the LK circuitry that governs homeostatic functions that
40 are critical for survival. We found that impaired LK signaling affects diverse but
41 coordinated processes, including regulation of stress, water homeostasis, locomotor
42 activity, and metabolic rate. There are three different sets of LK neurons, which
43 contribute to different aspects of this physiology. We show that the calcium activity of
44 abdominal ganglia LK neurons (ABLKs) increases specifically following water
45 consumption, but not under other conditions, suggesting that these neurons regulate
46 water homeostasis and its associated physiology. To identify targets of LK peptide, we
47 mapped the distribution of the LK receptor (*Lkr*), mined brain single-cell transcriptome
48 dataset for genes coexpressed with *Lkr*, and utilized trans-synaptic labeling to identify
49 synaptic partners of LK neurons. *Lkr* expression in the brain insulin-producing cells
50 (IPCs), gut, renal tubules and sensory cells, and the post-synaptic signal in sensory
51 neurons, correlates well with regulatory roles detected in the *Lk* and *Lkr* mutants.
52 Furthermore, these mutants and flies with targeted knockdown of *Lkr* in IPCs displayed
53 altered expression of insulin-like peptides (DILPs) in IPCs and modulated stress
54 responses. Thus, some effects of LK signaling appear to occur via DILP action.
55 Collectively, our data suggest that the three sets of LK neurons orchestrate the
56 establishment of post-prandial homeostasis by regulating distinct physiological
57 processes and behaviors such as diuresis, metabolism, organismal activity and insulin
58 signaling. These findings provide a platform for investigating neuroendocrine regulation
59 of behavior and brain-to-periphery communication.

60

61 **Key words:** GPCR, insulin signaling, stress resistance, metabolic rate, locomotor
62 activity, neuronal circuit

63

Introduction

64 Neuropeptides and peptide hormones commonly act on multiple targets in an organism,
65 and for a given neuropeptide these targets can be synchronized and thus orchestrate a
66 specific physiological adaptation or behavior [1-3]. In other cases, the action of a
67 specific neuropeptide can be dissociated in time and space, and therefore occur in a
68 distributed fashion in different circuits of the nervous system [1,2,4]. It can be assumed
69 that peptides expressed in smaller sets of neuroendocrine cells are more likely to serve
70 broad orchestrating functions [4,5]. To explore this assumption we investigated
71 signaling mediated by the neuropeptide leucokinin (LK), which is produced by a small
72 set of neurons and neurosecretory cells in *Drosophila* [6,7].

73 A central question in biology is how homeostatically regulated behaviors and
74 physiological processes critical for survival interact. LK is an excellent candidate as a
75 factor orchestrating these regimes because it has been implicated in multiple
76 homeostatically regulated functions, including sleep, feeding and response to ionic
77 stress. Previous *in vitro* work has suggested that one of the main functions of LK in
78 adult *Drosophila*, and several other insect species, is to regulate fluid secretion in the
79 Malpighian (renal) tubules (MTs), and, thus, to play an important role in water and ion
80 homeostasis [8-12]. More recently, additional LK functions have been inferred from
81 genetic experiments *in vivo*, such as roles in organismal water retention, survival
82 responses to desiccation and starvation, subtle regulation of food intake, and
83 chemosensory responses [13-18]. Furthermore, it was shown that diminished LK
84 signaling results in an increase in postprandial sleep [19] and impaired locomotor
85 activity [20]. Hence, while LK is critical for behavioral and physiological homeostasis, it
86 is not clear how a relatively small population of neurons can mediate different
87 responses to environmental perturbation. Moreover, it remains unclear whether the
88 different functions revealed are all part of a global orchestrating role of LK in which
89 central and peripheral actions are coordinated at different levels.

90 To identify broad coordinating actions of LK signaling we generated novel *Lk*
91 and *Lkr* mutant flies. By testing these mutants in various feeding-related physiological
92 and behavioral assays, we found that LK signaling regulates water homeostasis and
93 associated stress, locomotor activity and metabolic rate. From these data, we propose
94 that the regulatory roles of LK can be linked to the orchestration of post-feeding

95 physiology and behavior. One set of LK neurons, the abdominal ganglion LK neurons
96 (ABLks), but not the ones in the brain, display increased calcium activity in response to
97 rehydration following desiccation. Next, to reveal novel targets of LK peptide, we
98 mapped the distribution of *Lkr* expression. Using two independent *Lkr-GAL4* lines to
99 drive GFP, we show that *Lkr* is expressed in various peripheral tissues, including the
100 gut, Malpighian tubules and sensory cells, which correlates well with the functions
101 suggested by the mutant analysis. In addition, the expression of the *Lkr* in the insulin-
102 producing cells (IPCs) and the phenotypes seen after targeted receptor knockdown
103 indicate interaction between LK and insulin signaling. Thus, the three different types of
104 LK neurons orchestrate post-prandial physiology by acting on different targets in the
105 CNS, as well as renal tubules and intestine.

106

107

Results

108

Generation and analysis of *Lk* and *Lkr* mutant flies

109 To investigate the role of Lk signaling in orchestrating physiology and behavior, we
110 utilized CRISPR/Cas9 to generate GAL4 knock-in mutants for *Lk* and *Lkr* (Fig. 1A).
111 First, we tested the efficiency of the *Lk* and *Lkr* mutants by quantitative real-time PCR
112 (qPCR) and immunolabeling. In qPCR experiments, we found an 80% diminishment of
113 *Lk* expression, whereas *Lkr* mRNA was reduced by about 60% (Fig. 1C). In the
114 homozygous *Lk* mutants, LK immunolabeling is completely abolished in all cells of the
115 CNS (Fig. 1B and D), confirming the efficacy of gene-edited mutants for *Lk* and *Lkr*.
116 Next, to determine whether there is feedback between components of the LK signaling
117 system we measured LK expression in *Lkr* mutant flies. LK immunolabeling was
118 elevated in abdominal LK neurons (ABLks) (Fig. 2A and B) and the cell bodies of these
119 neurons were also enlarged (Fig. 2C) probably due to the increased peptide production
120 [see [21]]. Interestingly, the LK immunolabeling in the lateral horn LK (LHLK) neurons of
121 the brain does not change in *Lkr* mutant flies (Fig. 2D and E). Thus, LK levels are
122 differentially regulated in neurons of the brain and the abdominal ganglion, and there
123 appears to be a feedback between receptor and peptide expression in abdominal ABLK
124 neurons of *Lkr* mutant flies.

125

126

Previous studies have demonstrated the role of LK signaling in MT secretion [9,12] and a possible secondary effect of this on desiccation and starvation resistance

127 [14,16,17]. We therefore tested survival of *Lk* and *Lkr* mutant flies maintained under
128 desiccation and starvation conditions. Both homozygous and heterozygous *Lk* (*Lk*-
129 GAL4^{CC9}) and *Lkr* mutants (*Lkr*- GAL4^{CC9}), survived longer under conditions of
130 desiccation and starvation (Fig. 3A-D). To determine whether changes in water content
131 contributed to these survival differences, we assayed flies for their water content under
132 normal conditions and after 9 hours of desiccation. As expected, *Lk* and *Lkr* mutant flies
133 displayed higher water content than control flies under normal conditions as well as
134 after desiccation (Fig. 3E). Therefore, loss of *Lk* or *Lkr* promotes water retention and
135 improves survival under desiccation conditions.

136 To determine which of the LK neurons respond to starvation, desiccation
137 and/or water ingestion we monitored the calcium activity of LK neurons using the
138 CaLexA system [22]. We found that only the ABLKs, but not the LK neurons in the brain
139 (not shown), were activated following re-watering (drinking) (Fig. 4A). The activation of
140 ABLKs can be seen as increased GFP intensity as well as the number of cells that could
141 be detected (Fig. 4B and C). Moreover, these cells did not display activation when the
142 flies are placed under starvation, desiccation or on artificial diet. These results further
143 support the role of ABLKs in the regulation of water homeostasis.

144 Next, we tested the *Lk* and *Lkr* mutants for the strength of the proboscis
145 extension reflex (PER) under different sucrose concentrations (Fig. 5A-D and
146 Supplementary Table 1). The *Lk* mutant flies displayed a reduced PER (Fig. 5C) and
147 this phenotype was rescued by UAS-*Lk* in the homozygous GAL4 -insertion mutants
148 (Fig. 5D). This reduction in PER was also seen after inhibition of LK neurons by targeted
149 expression of UAS-TNT (Fig. 5B). However, the *Lkr* mutant flies displayed the opposite
150 behavior, showing increased PER that could also be rescued by UAS-*Lkr* expression
151 (Fig. 5A). Finally, we used an assay for short term feeding (over 30 min), in which the
152 amount of ingested blue-dyed food was measured in fly homogenates. In this assay,
153 there was no difference in food intake between mutant flies and controls, either in
154 starved or fed conditions (Fig. 5E). This lack of effect was also seen when the LK
155 neurons were inhibited by targeted expression of UAS-TNT (Fig. 5F). Therefore, LK
156 neurons seem to regulate the propensity of animals to initiate reflexive feeding, without
157 affecting total meal volume.

158 Activity and metabolic rate are acutely regulated by food availability and
159 environmental stress. To determine whether LK regulates these processes we

160 simultaneously recorded animal activity and metabolic rate using stop-flow indirect
161 calorimetry [23]. Single *Lk* and *Lkr* mutant flies were tested for locomotor activity and
162 metabolic rate (vCO₂) over a 24-hour period. The *Lk* mutants displayed reduced
163 locomotor activity, with homozygotes displaying almost no morning or evening activity
164 peaks (Fig. 6A and B). The metabolic rate of these mutant flies was also reduced over
165 the entire period of observation (Fig. 6C and D). The *Lkr* mutants displayed a similar
166 reduction in both locomotor activity and metabolic rate, except that the heterozygotes
167 displayed no change in locomotor activity (Fig. 6E-H). We also used the standard
168 *Drosophila* activity monitor system (DAMS) to verify our locomotor activity results from
169 the above setup. Indeed, we obtained similar results to those above, with *Lk* and *Lkr*
170 mutants displaying reduced activity (Fig. S1A and B). Together, these findings suggest
171 that LK stimulates both metabolic rate and activity.

173 Identifying targets of LK

174 The expression of *Lk* and *Lkr* in the central nervous system (CNS) and periphery raises
175 the possibility that distinct populations or neural circuits regulate different behaviors.
176 The *Lk* and *Lkr* *GAL4* knock-in mutants (*GAL4*^{CC9}) that we generated using
177 CRISPR/Cas9 enable simultaneous knockdown and visualization of the distribution of
178 peptide and receptor gene expression in different tissues. Since the *GAL4* is inserted
179 within the gene itself, the retention of all the endogenous regulatory elements should in
180 theory allow *GAL4* expression to mimic that of the *Lk* and *Lkr*. Thus, the *Lk-GAL4*^{CC9}
181 expression observed (Fig. S2) is very similar to that seen in earlier reports using
182 conventional *Lk-GAL4* lines [7,18]. With a few exceptions, the pattern of *Lk-GAL4*^{CC9}
183 expression also matches that of LK immunolabeling (Fig. S2C and D). Notably, a set of
184 5 pairs of GFP-labeled lateral neurosecretory cells does not display LK immunolabeling
185 in third instar larvae or adult flies (Fig. S2C and S3A). These neurons are known as ipc-
186 1 and ipc-2a, and they express ion transport peptide (ITP), short neuropeptide F (sNPF)
187 and *Drosophila* tachykinin (DTK) [24,25].

188 Since the cellular expression of *Lkr* in *Drosophila* is poorly known we utilized
189 our *Lkr-GAL4*^{CC9} line to drive GFP and analyzed CNS and peripheral tissues. We
190 compared the expression of our *Lkr-GAL4*^{CC9} to that of another *Lkr-GAL4* (*Lkr-*
191 *GAL4::p65*) generated using a BAC clone as described previously [26] and found a high
192 degree of overlapping expression patterns between the two drivers. In the periphery, the

193 stellate cells of the MTs express *Lkr-GAL4^{CC9}* (Fig. 7A) as expected from earlier work
194 demonstrating functional expression of the Lkr in these cells [9,12]. Furthermore, *Lkr-*
195 *GAL4^{CC9}* driven GFP was detected in endocrine cells of the posterior midgut (Fig. 7B),
196 in the anterior midgut (Fig. 7C and D), and in muscle fibers of the anterior hindgut and
197 rectal pad (Fig. 7E and F). *Lkr-GAL4^{CC9}>GFP* expression was also present in peripheral
198 neurons (Fig. S4A), the dorsal vessel as well as the nerve fibers innervating it (Fig.
199 S4A), and the sensory cells of the legs, mouthparts and anterior wing margin (Fig. S4B-
200 D). In third instar larvae, we could also detect *Lkr-GAL4^{CC9}* expression in the stellate
201 cells of the MTs (Fig. S5A and D), in the ureter (Fig. S5A), in muscle fibers of the gastric
202 caeca, midgut and hindgut (Fig. S5A-C), as well as in the endocrine cells of the midgut
203 (Fig. S5B and C). The BAC-engineered *Lkr-GAL4* had a much sparser expression
204 pattern, with GFP detected in stellate cells of larval (Fig. S6A) and adult (Fig. S6D-E)
205 MTs, and in the larval hindgut (Fig. S6B). Interestingly, the shape of the stellate cells in
206 adults varied between cuboidal and the more typical star-shaped morphology (Fig S6C
207 and D).

208 In general, the expression of the new *Lkr-GAL4^{CC9}* line is in agreement with
209 the BAC/promoter fusion line and available immunolabeling data, suggesting that they
210 largely recapitulate the endogenous receptor expression pattern. To further validate the
211 authenticity of the GFP expression in the periphery, we examined *Lkr* expression in two
212 publicly available resources for gene expression, FlyAtlas [27] and Flygut-seq [28].
213 FlyAtlas reveals that *Lkr* is expressed in the larval and adult hindgut, MTs and CNS (Fig.
214 7G). Moreover, the Flygut-seq data base shows that *Lkr* is expressed in
215 enteroendocrine cells of the midgut, in visceral muscles near the hindgut and in the gut
216 epithelium [28] (Fig. 7H). Thus, the transcript expression data correlate well with the
217 GAL4 expression pattern.

218 The expression pattern of *Lkr-GAL4^{CC9}* and the *Lkr-GAL4* also matched well
219 within the brain. Both GAL4 lines drive GFP expression in a relatively large number of
220 neurons in the larval (Fig S3B and S7A) and adult CNS (Fig. S7B-C and S8), but we
221 focus here on two sets of identified peptidergic neurons in the brain (Fig. 8). Both, the
222 *Lkr-GAL4^{CC9}* and *Lkr-GAL4*, drove GFP expression in the brain IPCs, as identified by
223 anti-DILP2 staining, and in the 5 pairs of brain ipc-1/ipc-2a cells, that colocalize anti-ITP
224 staining (Fig. 8). In addition, comparison to the single-cell transcriptome dataset of the
225 entire *Drosophila* brain [29] identified coexpression between *Lkr* and *DILP2*, 3 and 5, as

226 well as *Lkr* and *ITP* (Fig. 9). *Lkr* is widely expressed in the *Drosophila* brain with
227 transcripts expressed in cells of various clusters, including the peptidergic cell cluster
228 (marked with *dimm*) and the glia cell cluster (marked with *repo*) (Fig. 9A). Within the
229 peptidergic cell cluster, *Lkr* is coexpressed with *ITP* (Fig. 9B) and in IPCs along with
230 *DILP2*, 3 and 5 (Fig. 9C and D). Our receptor expression data further emphasizes the
231 important interplay between LK signaling within the CNS and systemic LK action that
232 targets several peripheral tissues, which together orchestrate physiology and behavior.

233 To establish the nature of connections (synaptic versus paracrine) between LK
234 neurons and the IPCs, and to identify other neurons downstream of LK signaling, we
235 employed the *trans*-Tango technique for anterograde trans-synaptic labeling of neurons
236 [30]. Using *Lk-GAL4* to drive expression of the system, we see strong GFP-labeling
237 (pre-synaptic marker) in SELK neurons and expression of the post-synaptic marker
238 (visualized by mtdTomato tagged with HA) is seen in several SEG neurons some of
239 which have axons that project to the pars intercerebralis (Fig. 10 A and B). *Lkr* is
240 expressed in the IPCs, which have dendrites in the tritocerebrum and subesophageal
241 zone where the LK post-synaptic signal is found (Fig. S10), so we asked if the IPCs are
242 post-synaptic to SELKs. However, no colocalization is seen between the IPCs and post-
243 synaptic signal of LKs. In addition, the post-synaptic signal is not coexpressed with
244 Hugin neurons (labeled with anti-CAPA antibody) although these have similar axonal
245 projections (Fig. S9). Hence, these anatomical data indicate that the IPCs express the
246 Lk receptor, but may receive non-synaptic (paracrine) inputs from LK neurons, or
247 possibly via the circulation from ABLKs.

248 Since *Lkr* is expressed in the IPCs we wanted to examine if the expression of
249 DILPs is altered in *Lk* and *Lkr* mutants. In *Lk* mutant flies, DILP3 immunolabeling is
250 increased and in *Lkr* mutants both DILP2 and DILP3 levels are significantly higher (Fig.
251 10C-F), indicating that LK could affect the release of DILP2 and DILP3 (as increased
252 immunolabeling has been proposed to reflect decreased peptide release [31]). No effect
253 on DILP5 levels was seen for any of the mutants, suggesting that LK selectively
254 modulates DILP function (Fig. S11).

255 Next, we examined *DILP2*, *DILP3* and *DILP5* transcript levels by qPCR after
256 targeted knockdown of the *Lkr* in the IPCs of flies using two different *Lkr*-RNAi lines and
257 a *DILP2-GAL4* driver; also different diets were tested since *DILP* expression in IPCs are
258 influenced by carbohydrate and protein levels in the food [32]. The experimental flies

259 developed to pupation on normal diet and were transferred as adults to three different
260 diets, high sugar+high protein, low sugar+high protein and normal diet. *UAS-Lkr-RNAi*-
261 #1 did not drive efficient knockdown and was thus excluded from the analysis; data
262 shown for *UAS-Lkr-RNAi*-#2. Significant effects on *DILP* transcripts were only seen for
263 *DILP3*, which was increased in flies after *Lkr*-RNAi under normal and high-sugar+high-
264 protein diets, and *DILP5*, which was decreased in normal diet. Having noted an effect
265 on *DILP*/*DILP* levels in mutant flies and after *Lkr* knockdown in the IPCs we went on to
266 determine the effects of this manipulation on fly weight as well as survival during
267 starvation and desiccation. As seen in Fig. S12, there was a slight increase in survival
268 during desiccation and a small increase in dry weight of the flies with reduced *Lkr* in
269 IPCs.

270 Taken together, we identify roles for the *Lkr* within the CNS and in the
271 periphery that uniquely regulate physiological homeostasis. The *Lkr* expression in the
272 periphery suggests LK signaling to be associated with water balance, gut function and
273 chemosensation (Fig. 12). Within the CNS, LK signaling modulates specific
274 neurosecretory cells of the brain that are known to regulate stress responses, feeding,
275 metabolism, energy storage and activity patterns, including sleep (Fig. 12) [24,33-37].
276

277 Discussion

278 In this study we established the role of LK signaling in orchestrating behavioral
279 and physiological homeostasis in *Drosophila*. More specifically, we determined a set of
280 effects caused by loss of LK signaling, which indicates that this neuropeptide regulates
281 physiology related to water homeostasis and metabolism, as well as associated stress,
282 locomotor activity and metabolic rate. We suggest that LK signaling regulates post-
283 feeding physiology, metabolism and behavior, as this seems to link most of the observed
284 phenotypes observed after peptide and receptor knockdown.

285 In support of the physiological roles of LK signaling, we show distribution of the
286 *Lkr* expression in cells of the renal tubules and intestine, including the water-regulating
287 rectal pads, as well as in the IPCs, which are known to signal with DILPs to affect
288 feeding, metabolism, sleep, activity and stress responses [33-36,38]. *Lkr* is also
289 expressed by another set of brain neurosecretory cells (ipc-1/ ipc-2a) known to regulate
290 stress responses by means of three different coexpressed neuropeptides [24].

291 In the CNS of the adult fly, LK is produced at high levels by a small number of
292 neurons of three major types: two pairs of interneurons in the brain and about 20
293 neurosecretory cells, ABLKs, in the abdominal ganglia [6,7]. There is mounting evidence
294 that the ABLKs use LK as a hormonal signal that targets peripheral tissues, including the
295 renal tubules [17] and that the brain LK neurons act in neuronal circuits within the CNS
296 [18-20,39]. More specifically, the LHLK brain neurons are part of the output circuitry of
297 the circadian clock in regulation of locomotor activity and sleep suppression induced by
298 starvation [19,20,39] and the SELKs of the subesophageal zone may regulate feeding
299 [18]. In fact we show here that these SELKs have axons that exit through subesophageal
300 nerves known to innervate muscles of the feeding apparatus. We found in this study that
301 the ABLKs display increased calcium activity in response to drinking in desiccated flies,
302 but not during starvation, desiccation or regular feeding. This finding supports a role of
303 ABLKs and hormonal LK in regulation of water balance. These neurons have also been
304 implicated more broadly in control of water and ion homeostasis and in responses to
305 starvation, desiccation and ionic stress [17]. The LHLKs and SELKs did not display
306 changes in calcium signaling under the tested conditions, strengthening the unique
307 function of ABLKs in diuresis.

308 The regulation of metabolic rate, as determined by measurement of CO₂
309 production, is a novel phenotype that we can link to LK signaling. This may be
310 associated with the overall activity of the flies, as suggested by the correlation between
311 activity and CO₂ levels in our data. Thus, the regulation of activity and metabolic rate
312 might be coordinated by means of the LK neurons.

313 Using anatomical and experimental strategies, we identified a novel circuit
314 linking LK to insulin signaling. *Lkr* expression was detected in the brain IPCs using two
315 independently generated GAL4 lines plus single-cell transcriptome analysis. We also
316 observed that *Lk* and *Lkr* mutants displayed increased levels of DILP2 and DILP3
317 immunoreactivity in the brain IPCs and targeted knockdown of *Lkr* in IPCs increased
318 *DILP3* expression. Associated with this we found that *Lkr*-RNAi targeted to IPCs
319 increased resistance to desiccation. However, using the *trans*-Tango method for
320 anterograde trans-synaptic labeling [30], we could not demonstrate direct synaptic
321 inputs to IPCs from LK neurons. The LHLKs did not yield any detectable signal;
322 however, the *Lk*-GAL4 line displayed very weak expression in the LHLKs. The SELKs
323 drove postsynaptic marker signal in sets of neurons in the SEG, some of which have

324 processes impinging on the IPCs. These findings suggest that SELKs form no
325 conventional synaptic contacts with IPCs, but paracrine LK signaling to these neurons is
326 not excluded since the two sets of neurons have processes in close proximity in the
327 tritocerebrum and the subesophageal zone. Nonsynaptic paracrine signaling with
328 neuropeptides has been well established in mammals (see [40-42]) and is likely to occur
329 also in insects. Alternatively, the LK input to IPCs could occur systemically at the
330 peripheral axon terminations of the IPCs after hormonal release from ABLKs. Whether
331 paracrine or hormonal, LK appears to regulate the IPCs and transcription and release of
332 DILPs. Thus, some phenotypes seen after the global knockdown of LK and its receptor
333 are likely to arise via secondary effects on insulin signaling, suggesting another layer of
334 regulatory control whereby LK-modulation of DILP production and release could affect
335 metabolism, stress responses and longevity [reviewed by [38,43,44]]. Our findings,
336 therefore, add LK as yet another regulator of the *Drosophila* IPCs, which have
337 previously been shown to be under the regulation of several other neuropeptides and
338 neurotransmitters [reviewed in [38,43]]. It is noteworthy that at the levels of both
339 transcription and presumed release the LK effect on IPCs is selective, affecting DILP2,
340 DILP3 and *DILP3* only.

341 We suggest that LK signaling regulates post-feeding physiology and behavior
342 seen in the mutants as reduced metabolic rate and locomotor activity, diminished PER,
343 and reduced diuresis, as well as increased resistance to starvation and desiccation. Our
344 data also indicate that in wild type flies LK triggers release of IPC-derived DILPs that are
345 required for post-feeding metabolism and satiety, and it acts on other cells to induce
346 diuresis, and to increase activity (especially evening activity) and metabolic rate. An
347 orchestrating role of LK signaling requires that the three types of LK neurons
348 communicate with each other or are under simultaneous control by common sets of
349 regulatory neurons. Alternatively, all the LK neurons could possess endogenous
350 nutrient-sensing capacity whereby they can monitor levels of amino acids or
351 carbohydrates in the organism. There is evidence for nutrient sensing in LHLK neurons
352 [45]. This has also been shown for the DH44, DILP and corazonin expressing brain
353 neurosecretory cells [31,46-48]. Of the LK neurons, only the ABLKs and SELKs exhibit
354 overlapping processes that could support direct communication, so it is more likely that
355 other neurons form the link between this set of neuroendocrine cells. Such neurons are
356 yet to be identified, but it has been shown that all the LK neurons express the insulin

357 receptor, dInR [21]. This may suggest that the LK neurons receive nutrient-related
358 information from insulin-producing cells in the brain or elsewhere.

359 In conclusion, we found that LK signaling is likely to orchestrate postprandial
360 physiology and behavior in *Drosophila*. Food ingestion is followed by increased insulin
361 signaling, activation of diuresis, increased metabolic rate, and lowered locomotor activity
362 and increased sleep [10,19,31,43]. Flies mutated in the *Lk* and *Lkr* genes display
363 phenotypes consistent with a role in regulation of insulin signaling, metabolic stress
364 responses, diuresis, metabolic rate, and locomotor activity, all part of postprandial
365 physiology.

366
367
368 **Experimental procedures**
369
370

Fly lines and husbandry

371 All fly strains used in this study (**Table 1**) were reared and maintained at 25°C on
372 enriched medium containing 100 g/L sucrose, 50 g/L yeast, 12 g/L agar, 3ml/L propionic
373 acid and 3 g/L nipagin, unless otherwise indicated. Experimental flies were reared under
374 normal photoperiod (12 hours light: 12 hours dark; 12L:12D). Adult males 6-8 days post-
375 eclosion were used for behavioral experiments. For some imaging experiments females
376 of the same age were also utilized. For *trans*-Tango analysis, flies were reared at 18°C
377 and adult males 2-3 weeks old post-eclosion were used.

378 For *DILP2>Lkr-RNAi* qPCR, crosses were established in normal food (NutriFly
379 Bloomington formulation) and eggs were laid for 24 hours. After adult eclosion, males
380 were transferred to alternative diets (normal diet described above; high-sugar high-
381 protein: normal diet except with 20% sucrose and 10% yeast; low-sugar high-protein:
382 normal diet except 5% sucrose and 10% yeast). After 5-7 days on these media, heads
383 were dissected for qPCR.

384
385 **Table 1:** Fly strains used in this study

Fly strain	Inserted on chromosome	Source / reference
<i>w¹¹¹⁸</i> (RNAi control)	-	BDSC
<i>w¹¹¹⁸</i> (mutant control)	-	BDSC #5905 [49]
<i>w¹¹¹⁸, Lk-GAL4^{cc9}</i> (mutant)		This study

<i>w¹¹¹⁸; Lkr-GAL4^{cc9}</i> (mutant)		This study
<i>w¹¹¹⁸; Lk-GAL4</i>	III	Y. J. Kim [50]
<i>w¹¹¹⁸; Lk-GAL4</i>	II	P. Herrero [7]
<i>w¹¹¹⁸; Lkr-GAL4::p65</i> (<i>Lkr-GAL4</i>)	III	This study
<i>w; DILP2-GAL4</i>	III	E. Rulifson [34]
<i>yw; Sco/CyO; UAS-CD8-GFP</i>	III	BDSC
<i>JFRC81-10xUAS-IVS-Syn21-GFP-p10</i>		[51]
<i>JFRC29-10xUAS-IVS-myr::GFP-p10</i>		[51]
<i>UAS-DenMark</i>		BDSC #33064, (donated by C. Wegener). [52]
<i>UAS-Dscam-GFP</i>		Tzumin Lee, (donated by C. Wegener). [53]
<i>UAS-trans-Tango</i>	X and II	BDSC #77124 [30]
<i>UAS-IMP-TNT</i> (inactive control)	II	BDSC #28840
<i>UAS-TNT</i>	X	BDSC #28996
<i>UAS-CaLexA</i>	II and III	BDSC #66542 [22]
<i>w¹¹¹⁸; UAS-Lkr</i>		B. Al-Anzi [18]
<i>w¹¹¹⁸; UAS-Lk</i>	II	This study
<i>UAS-Lkr RNAi</i>	II	VDRC #105155
<i>UAS-Lkr-RNAi-#1</i> (JF01956)	III	BDSC #25936
<i>UAS-Lkr-RNAi-#2</i> (HMC06205)	III	BDSC #65934
<i>UAS-Luciferase-RNAi</i> control	III	BDSC #35789

386

387

Generation of GAL4 knock-in mutants and transgenic lines

388

389

390

391

392

393

394

395

396

397

398

399

Lk /- and *Lkr* /- were generated using the CRISPR/Cas9 system to induced homology-dependent repair (HDR) using one guide RNA (*Lk* /-: GATCTTGCCATCTTCTCCAG and *Lkr* /-: GTAGTGCAATACATCTTCAG). At gRNA target sites a donor plasmid was inserted containing a GAL4::VP16 and floxed 3xP3-RFP cassette. For *Lk* /-, the knockin cassette was incorporated immediately following the ATG start site (4bp to 10bp, relative to start site). For *Lkr* /-, the knock in cassette was incorporated upstream of the ATG start site (-111bp to -106bp, relative to start site). All lines were generated in the *w¹¹¹⁸* background. Proper insertion loci for both mutations were validated by genomic PCR. CRISPR gene editing was done by WellGenetics (Taipei City, Taiwan).

To prepare the *Lkr-GAL4::p65* line, recombineering approaches based on

previous methods [54] were used (briefly, containing a large genomic BAC with

GAL4::p65 replacing the first coding region of *Lkr*, thereby retaining regulatory flanks and

400 introns). First, a landing-site cassette was prepared: GAL4 and terminator homology
401 arms were amplified from *pBPGUw* [55] and added to the flanks of the marker *RpsL-kana*
402 [56], which confers resistance to kanamycin and sensitivity to streptomycin. *Lkr*-specific
403 arms were added to this landing-site cassette by PCR with the following primers, made
404 up of 50 bases of *Lkr*-specific homology (lower case) plus regions matching the
405 GAL4/terminator sequences:

406 Lkr-F:

407 tcatatcctcattaggatacacaactaaaactaaaaacgaaaaagtgttATGAAGCTACTGTCTTCTATCG
408 AACAAAGC

409 Lkr-R:

410 tggatgagtgcgtccccagttgcttgaagggattagagagtatacttacGATCTAACGAGTTTTAAGCAA
411 ACTCACTCCCC

412 Note the underlined ATG, reflecting the integration of *GAL4* at the *Lkr* initiation site. The
413 PCR product was recombined into bacterial artificial chromosome CH321-16C22 [57]
414 (obtained from Children's Hospital Oakland Research Institute, Oakland, CA, USA),
415 which contains the *Lkr* locus within 90 kb of genomic flanks. Recombinants were selected
416 on kanamycin. Next, this landing pad was replaced by full-length GAL4::p65+terminators
417 amplified from *pBPGAL4.2::p65Uw* [58], and recombinants were screened for
418 streptomycin resistance. Recombination accuracy was confirmed by sequencing, and the
419 construct was integrated into *attP40* by Rainbow Transgenic Flies (Camarillo, CA, USA).

420

421 RT-qPCR

422 To quantify *Lk* and *Lkr* transcript levels in mutant flies, the following method was used.
423 Briefly, ten or more fed flies were flash frozen for each sample. Total RNA was extracted
424 from whole flies using RNeasy Tissue Mini kit (QIAGEN) according to the manufacturer's
425 protocol. RNA samples were reverse transcribed using iScript (Biorad), and the
426 subsequent cDNA was used for real-time RT-qPCR (Biorad CFX96TM, SsoAdvancedTM
427 Universal SYBR[®] Green Supermix qPCR Mastermix Plus for SYBRGreen I) using 1.7ng
428 of cDNA template per well and a primer concentration of approximately 300nM. The
429 primers used are listed in **Table 2**. Triplicate measurements were conducted for each
430 sample.

431 To quantify *DILP2*, 3 and 5 transcript levels following *DILP2>Lkr RNAi*, the
432 following method was used. *DILP2-GAL4* and *UAS-RNAi* animals (*Lkr-RNAi-#1* and *-#2*,

433 plus *UAS-Luciferase-RNAi* as a control for effects of genetic background and RNAi
434 induction) were mated and allowed to lay eggs for 24 hours in vials containing normal
435 food; adult males from these crosses were then transferred to vials of normal food or
436 high-sugar, high-protein or low-sugar high-protein diet. After 7 days, heads were
437 dissected on ice into extraction buffer, and RNA was extracted with the Qiagen RNeasy
438 Mini kit (#74106) with RNase-free DNase treatment (Qiagen #79254). cDNA was
439 prepared using the High-Capacity cDNA Reverse Transcription Kit with RNase Inhibitor
440 (ThermoFisher #4268814), and qPCR was performed using the QuantiTect SYBR Green
441 PCR Kit (Fisher Scientific #204145) and an Mx3005P qPCR system (Agilent
442 Technologies). Expression levels were normalized against RpL32 (Rp49), whose levels
443 have been determined to be stable under dietary modification [32,59]. The primers used
444 are listed in **Table 2**. Samples were prepared in four biological replicates of 10 heads
445 each, and each biological replicate was assayed in two technical replicates.

446

447 **Table 2:** Primers used for qPCR

Primer	Sequence (5' to 3')
Primers for <i>Lk</i> and <i>Lkr</i> transcripts	
<i>Lk</i> forward	GCCTTTGGCCGTCAAGTCTA
<i>Lk</i> reverse	TGAACCTGCGGTACTTGGAG
<i>Lkr</i> forward	GGAGGAAGCAGAATTGAGCG
<i>Lkr</i> reverse	AAAGTGTGCCAATGACGGC
<i>Actin5C</i> forward	AGCGCGGTTACTCTTCACCAC
<i>Actin5C</i> reverse	GTGGCCATCTCCTGCTCAAAGT
β -tubulin forward	GCAGTTCACCGCTATGTTCA
β -tubulin reverse	CGGACACCAGATCGTTCAT
Primers for <i>DILP2</i> , 3 and 5 transcripts	
<i>DILP2</i> forward	CTCAACGAGGTGCTGAGTATG
<i>DILP2</i> reverse	GAGTTATCCTCCTCCTCGAACT
<i>DILP3</i> forward	CAACGCAATGACCAAGAGAAC
<i>DILP3</i> reverse	GCATCTGAACCGAACTATCACTC
<i>DILP5</i> forward	ATGGACATGCTGAGGGTTG
<i>DILP5</i> reverse	GTGGTGAGATTCGGAGCTATC

<i>RpL32/Rp49</i> forward	AGTATCTGATGCCAACATCG
<i>RpL32/Rp49</i> reverse	CAATCTCCTTGCCTTCTTG

448

449

Immunohistochemistry and imaging

450 Immunohistochemistry for *Drosophila* larval and adult tissues was performed as
451 described earlier [17,60]. Briefly, tissues were dissected in phosphate buffered saline
452 (PBS) and fixed in 5% ice-cold paraformaldehyde (2 hours for larval samples and 3.5 – 4
453 hours for adults). Samples were then washed in PBS and incubated for 48 hours at 4°C
454 in primary antibodies diluted in PBS with 0.5% Triton X (PBST) (**Table 3**). Samples were
455 thereafter washed with PBST and incubated for 48 hours at 4°C in secondary antibodies
456 diluted in PBST (**Table 3**). Following this incubation, some samples (peripheral tissues)
457 were incubated with rhodamine-phalloidin (1:1000; Invitrogen) and/or DAPI as a nuclear
458 stain (1:1000; Sigma) diluted in PBST for 1 hour at room temperature. Finally, all
459 samples were washed with PBST and then PBS, and mounted in 80% glycerol. An
460 alternate procedure was used for the adult gut to prevent tissues from rupturing. Briefly,
461 intestinal tissues (proventriculus, crop, midgut, hindgut and MTs) were fixed at room
462 temperature for 2 hours, washed in PBS, incubated in rhodamine-phalloidin for 1 hour
463 and washed in PBST and then PBS before mounting. Samples were imaged with a Zeiss
464 LSM 780 confocal microscope (Jena, Germany) using 10X, 20X or 40X oil immersion
465 objectives. Images for the whole fly, proboscis and wing were captured using a Zeiss
466 Axioplan 2 microscope after quickly freezing the fly at -80°C. Cell fluorescence was
467 measured as described previously [17]. Confocal and fluorescence microscope images
468 were processed with Fiji [61] for projection of z-stacks, contrast and brightness, and
469 calculation of immunofluorescence levels.

470

471

Table 3: Antibodies used for immunohistochemistry

Antibody	Antigen	Source / reference	Dilution
Primary antisera			
Rabbit anti-LK	<i>Leucophaea maderae</i> leucokinin I	Own production [62]	1:2000
Rabbit anti-DromeLkr	<i>Drosophila</i> Lkr C-terminus (GIYNGSSGQNNNVN)	[9]	1:1000
Guinea pig anti-ITP	<i>Drosophila</i> ITP amidated	(H. Dirksen and D. Nässel, unpublished)	1:4000
Rabbit anti-DILP2	<i>Drosophila</i> DILP2	From J.A. Veenstra [63]	1:2000
Rabbit anti-DILP3	<i>Drosophila</i> DILP3	From J.A. Veenstra	1:2000

		[63]	
Rabbit anti-DILP5	<i>Drosophila</i> DILP5	Own production [64]	1:2000
Rabbit anti-CAPA	<i>Periplaneta americana</i> CAPA-PVK-2	R. Predel [65]	1:4000
Mouse anti-GFP	Jelly fish GFP	Invitrogen	1:1000
Chicken anti-GFP	Jelly fish GFP	Invitrogen	1:1000
Mouse anti-HA	HA-tag (YPYDVPDYA)	Invitrogen	1:1000
Secondary antisera			
Goat anti-mouse Alexa Fluor 488	-	Invitrogen	1:1000
Goat anti-rabbit Alexa Fluor 546	-	Invitrogen	1:1000
Goat anti-guinea pig Cyanine3	-	Invitrogen	1:500
Goat anti-rabbit Cyanine5	-	Life Technologies	1:500
Goat anti-chicken Alexa Fluor 488		Life Technologies	1:1000
Goat anti-mouse Alexa Fluor 546	-	Life Technologies	1:1000
Other fluorophores			
Rhodamine-phalloidin	-	Invitrogen	1:1000
DAPI	-	Sigma	1:1000

472

473

Calcium activity in LK neurons

474 Calcium activity of LK neurons following various stresses was measured using the
475 CaLexA (Calcium-dependent nuclear import of LexA) technique [22]. Briefly, 6-8-day-old
476 males were either transferred to a vial containing nothing (desiccation), a vial containing
477 aqueous 1% agar (starvation) or a vial containing artificial diet (normal food) and
478 incubated for 16 hours. In addition, one set of flies were desiccated for 13 hours and then
479 transferred to a vial containing 1% agar (re-watered). Following this period, the flies were
480 fixed, dissected brains processed for immunohistochemistry and the GFP fluorescence
481 was quantified as described above.

482

483

Stress-resistance assays

484 To assay for survival under desiccation (dry starvation) and starvation, flies were kept in
485 empty vials and vials containing 5 ml of 0.5% aqueous agarose (A2929, Sigma-Aldrich),
486 respectively. Four biological replicates and 3 technical replicates for each biological
487 replicate were performed for each experiment. For each technical replicate, 15 flies were
488 kept in a vial and their survival was recorded every 3 to 6 hours until all the flies were
489 dead. The vials were placed in incubators at 25°C under normal photoperiod conditions
490 (12L:12D).

491

492

Water-content measurements

493

494

495

496

497

498

499

500

501

Blue dye feeding assay

502

503

504

505

506

507

508

509

510

511

512

Proboscis extension reflex

513

514

515

516

517

518

519

520

521

522

For water content measurements, 15 flies per replicate (4 biological replicates) were either frozen immediately on dry ice or desiccated as above for 9 hours and then frozen. The samples were stored at -80°C until use. To determine their wet weight, flies were brought to room temperature and their weight was recorded using a Mettler Toledo MT5 microbalance (Columbus, USA). The flies were then dried for 24-48 hours at 60°C before recording their dry weight. The water content of the flies was determined by subtracting dry weight from wet weight.

Short-term food intake was measured as previously described [66]. Briefly, flies were starved for 24 hours on 1% agar (Fisher Scientific) or maintained on standard fly food. At ZT0, flies were transferred to food vials containing 1% agar, 5% sucrose, and 2.5% blue dye (FD&C Blue Dye No. 1, Spectrum). Following 30 minutes of feeding, flies were flash frozen on dry ice and four flies per sample were homogenized in 400 µL PBS (pH 7.4, Fisher Scientific). Color spectrophotometry was used to measure absorbance at 655 nm in a 96-well plate reader (Millipore, iMark, Bio-Rad). Baseline absorbance was determined by subtracting the absorbance measured in non-dye fed flies from each experimental sample.

Flies were collected and placed on fresh food for 24 hours, then starved for 24 hours in vials containing 1% agar. Flies were then anaesthetized under CO₂, and their thorax and wings were glued with nail polish to a microscopy slide, leaving heads and legs unconstrained. Following 1-hour recovery in a humidified chamber, the slide was mounted vertically under the dissecting microscope (SM-3TX-54S, AmScope) and proboscis extension reflex (PER) was observed. PER induction was performed as described previously [67]. Briefly, flies were satiated with water before and during experiments. Flies that did not water satiate within 5 minutes were excluded from the experiment. A 1 ml syringe (Tuberculin, BD&C) with an attached pipette tip was used for tastant (sucrose) presentation. Tastant was manually applied to tarsi for 2-3 seconds 3

523 times with 10 second inter-trial intervals, and the number of full proboscis extensions was
524 recorded. Tarsi were then washed with distilled water between applications of different
525 concentrations of sucrose (0.1, 1.0, 10, and 100 mM) and flies were allowed to drink
526 water during the experiment *ad libitum*. Each fly was assayed for response to tastants.
527 PER response was calculated as a percentage of proboscis extensions to total number of
528 tastant stimulations to tarsi.

529

530

Activity and metabolic rate

531 Activity and metabolic rate (MR) was simultaneously recorded using the setup described
532 earlier [23]. Briefly, MR was measured at 25°C through indirect calorimetry, measuring
533 CO₂ production of individual flies with a CO₂ analyzer (LI-7000, LI-COR). Baseline CO₂
534 levels were measured from an empty chamber, alongside five behavioral chambers, each
535 measuring the CO₂ production of a single male fly. The weight of a group of 10 flies was
536 used to normalize metabolic rate since *Lk* mutants weighed significantly more than
537 control *w¹¹¹⁸* flies. Flies were anesthetized using CO₂ for sorting and allowed 24 hours
538 acclimation before the start of an experiment. Flies were placed in glass tubes that fit a
539 custom-built *Drosophila* Locomotor Activity Monitor (Trikinetics, Waltham, MA),
540 containing a single food tube containing 1% agar plus 5% sucrose with green food
541 coloring (McCormick). Locomotor activity data was calculated by extracting 10 minute
542 activity periods for 24 hours using a custom generated Python program. CO₂ output was
543 measured by flushing air from each chamber for 75 seconds providing readout of CO₂
544 accumulation over the 10-minute period. This allowed for the coordinate and
545 simultaneous recordings of locomotor activity and metabolic rate.

546

547

Locomotor Activity

548 *Drosophila* activity monitoring system (DAMS; Trikinetics, Waltham, MA) detects activity
549 by monitoring infrared beam crossings for each animal. These data were used to
550 calculate locomotor activity using the *Drosophila* Sleep Counting Macro [68]. Flies were
551 anaesthetized under CO₂ and loaded into DAMS tubes containing standard fly food for
552 acclimation. After 24 hours acclimation in DAMS tubes with food, baseline activity was
553 measured for 24 hours. Tubes were maintained in a 25°C incubator with 12:12 LD cycles.

554

555

Mining public datasets for expression of genes

556 *Lkr* distribution in various tissues was determined by mining the FlyAtlas database [27].
557 *Lkr* expression in the different regions of the gut and its cell types was obtained using
558 Flygut-seq [28]. A single-cell transcriptome atlas of the *Drosophila* brain was mined using
559 SCope (<http://scope.aertslab.org>) to identify genes coexpressed with *Lkr* [29].
560

561 Statistical analyses

562 The experimental data are presented as means \pm s.e.m. Unless stated otherwise, one-
563 way analysis of variance (ANOVA) followed by Tukey's multiple comparisons test was
564 used for comparisons between three genotypes and an unpaired *t* test was used for
565 comparisons between two genotypes. All statistical analyses were performed using
566 GraphPad Prism with a 95% confidence limit ($p < 0.05$). Survival and stress curves were
567 compared using Mantel–Cox log-rank test.
568
569

570 Acknowledgements

571 We are grateful to the Bloomington *Drosophila* Stock Center, the Vienna *Drosophila*
572 Resource Center and Drs. Julian Dow, Pilar Herrero, Reinhard Predel, Patricia
573 Pietrantonio and Jan A. Veenstra, for providing flies and reagents. Stina Höglund and
574 the Imaging Facility at Stockholm University (IFSU) are acknowledged for maintenance
575 of the confocal microscopes. We thank Dr. Yiting Liu for providing images of IPC
576 dendrites and Dr. Wouter van der Bijl for assistance in creating Figure 11. This work
577 was supported by a grant from the European Commission Horizon 2020 (Research and
578 Innovation Grant 634361) to D.R.N. and National Institute of Health award
579 R01NS085152 to A.C.K, and Danish Council for Independent Research, Natural
580 Sciences grant 4181-00270 to Kim F. Rewitz. The *Lkr-GAL4::p65* line was generated by
581 M.J.T. at HHMI Janelia Research Campus in the lab of J. Truman.
582
583

583 References

- 584 1. Taghert PH, Nitabach MN (2012) Peptide neuromodulation in invertebrate model systems. *Neuron* 76: 82-97.
585
- 586 2. Nässel DR, Winther ÅM (2010) *Drosophila* neuropeptides in regulation of physiology and
587 behavior. *Progr Neurobiol* 92: 42-104.
588
- 589 3. Nusbaum MP, Blitz DM, Marder E (2017) Functional consequences of neuropeptide and small-
molecule co-transmission. *Nat Rev Neurosci* 18: 389-403.

590 4. Nässel DR (2009) Neuropeptide signaling near and far: how localized and timed is the action
591 of neuropeptides in brain circuits? *Invert Neurosci* 9: 57-75.

592 5. Nässel DR, Enell LE, Santos JG, Wegener C, Johard HA (2008) A large population of diverse
593 neurons in the *Drosophila* central nervous system expresses short neuropeptide F,
594 suggesting multiple distributed peptide functions. *BMC Neurosci* 9: 90.

595 6. Cantera R, Nässel DR (1992) Segmental peptidergic innervation of abdominal targets in larval
596 and adult dipteran insects revealed with an antiserum against leucokinin I. *Cell Tissue Res*
597 269: 459-471.

598 7. de Haro M, Al-Ramahi I, Benito-Sipos J, Lopez-Arias B, Dorado B, et al. (2010) Detailed
599 analysis of leucokinin-expressing neurons and their candidate functions in the *Drosophila*
600 nervous system. *Cell Tissue Res* 339: 321-336.

601 8. Terhzaz S, O'Connell FC, Pollock VP, Kean L, Davies SA, et al. (1999) Isolation and
602 characterization of a leucokinin-like peptide of *Drosophila melanogaster*. *J Exp Biol* 202:
603 3667-3676.

604 9. Radford JC, Davies SA, Dow JA (2002) Systematic G-protein-coupled receptor analysis in
605 *Drosophila melanogaster* identifies a leucokinin receptor with novel roles. *J Biol Chem* 277:
606 38810-38817.

607 10. Coast GM, Orchard I, Phillips JE, Schooley DA (2002) Insect diuretic and antidiuretic
608 hormones. In: Evans PD, editor. *Adv Insect Physiol* London Academic Press. pp. 279-409.

609 11. Terhzaz S, Alford L, Yeoh JGC, Marley R, Dornan AJ, et al. (2017) Renal neuroendocrine
610 control of desiccation and cold tolerance by *Drosophila suzukii*. *Pest Manag Sci*.

611 12. Halberg KA, Terhzaz S, Cabrero P, Davies SA, Dow JA (2015) Tracing the evolutionary
612 origins of insect renal function. *Nat Commun* 6: 6800.

613 13. Lopez-Arias B, Dorado B, Herrero P (2011) Blockade of the release of the neuropeptide
614 leucokinin to determine its possible functions in fly behavior: chemoreception assays.
615 *Peptides* 32: 545-552.

616 14. Liu Y, Luo J, Carlsson MA, Nässel DR (2015) Serotonin and insulin-like peptides modulate
617 leucokinin-producing neurons that affect feeding and water homeostasis in *Drosophila*. *J*
618 *Comp Neurol* 523: 1840-1863.

619 15. Cognigni P, Bailey AP, Miguel-Aliaga I (2011) Enteric neurons and systemic signals couple
620 nutritional and reproductive status with intestinal homeostasis. *Cell Metab* 13: 92-104.

621 16. Cannell E, Dornan AJ, Halberg KA, Terhzaz S, Dow JA, et al. (2016) The corticotropin-
622 releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate
623 desiccation and starvation tolerance in *Drosophila melanogaster*. *Peptides* 80: 96-107.

624 17. Zandawala M, Marley R, Davies SA, Nässel DR (2018) Characterization of a set of abdominal
625 neuroendocrine cells that regulate stress physiology using colocalized diuretic peptides in
626 *Drosophila*. *Cell Mol Life Sci* 75: 1099-1115.

627 18. Al-Anzi B, Armand E, Nagamei P, Olszewski M, Sapin V, et al. (2010) The leucokinin pathway
628 and its neurons regulate meal size in *Drosophila*. *Curr Biol* 20: 969-978.

629 19. Murphy KR, Deshpande SA, Yurgel ME, Quinn JP, Weissbach JL, et al. (2016) Postprandial
630 sleep mechanics in *Drosophila*. *Elife* 5.

631 20. Cavey M, Collins B, Bertet C, Blau J (2016) Circadian rhythms in neuronal activity propagate
632 through output circuits. *Nature Neuroscience* 19: 587-595.

633 21. Luo J, Liu Y, Nässel DR (2013) Insulin/IGF-regulated size scaling of neuroendocrine cells
634 expressing the bHLH transcription factor Dimmed in *Drosophila*. *PLoS genetics* 9: e1004052.

635 22. Masuyama K, Zhang Y, Rao Y, Wang JW (2012) Mapping neural circuits with activity-
636 dependent nuclear import of a transcription factor. *J Neurogenet* 26: 89-102.

637 23. Stahl BA, Slocumb ME, Chaitin H, DiAngelo JR, Keene AC (2017) Sleep-Dependent
638 Modulation of Metabolic Rate in *Drosophila*. *Sleep* 40.

639 24. Kahsai L, Kapan N, Dirksen H, Winther ÅM, Nässel DR (2010) Metabolic stress responses
640 in *Drosophila* are modulated by brain neurosecretory cells that produce multiple
641 neuropeptides. *PLoS ONE* 5: e11480.

642 25. Dirksen H, Tesfai LK, Albus C, Nässel DR (2008) Ion transport peptide splice forms in
643 central and peripheral neurons throughout postembryogenesis of *Drosophila melanogaster*. *J
644 Comp Neurol* 509: 23-41.

645 26. Schlegel P, Texada MJ, Mirochnikow A, Schoofs A, Huckesfeld S, et al. (2016) Synaptic
646 transmission parallels neuromodulation in a central food-intake circuit. *Elife* 5.

647 27. Chintapalli VR, Wang J, Dow JA (2007) Using FlyAtlas to identify better *Drosophila*
648 *melanogaster* models of human disease. *Nat Genet* 39: 715-720.

649 28. Dutta D, Dobson AJ, Houtz PL, Glasser C, Revah J, et al. (2015) Regional Cell-Specific
650 Transcriptome Mapping Reveals Regulatory Complexity in the Adult *Drosophila* Midgut. *Cell
651 Reports* 12: 346-358.

652 29. Davie K, Janssens J, Koldere D, De Waegeneer M, Pech U, et al. (2018) A Single-Cell
653 Transcriptome Atlas of the Aging *Drosophila* Brain. *Cell* ePub.

654 30. Talay M, Richman EB, Snell NJ, Hartmann GG, Fisher JD, et al. (2017) Transsynaptic
655 Mapping of Second-Order Taste Neurons in Flies by trans-Tango. *Neuron* 96: 783-+.

656 31. Park S, Alfa RW, Topper SM, Kim GE, Kockel L, et al. (2014) A genetic strategy to measure
657 circulating *Drosophila* insulin reveals genes regulating insulin production and secretion.
658 *PLoS genetics* 10: e1004555.

659 32. Post S, Tatar M (2016) Nutritional Geometric Profiles of Insulin/IGF Expression in *Drosophila*
660 *melanogaster*. *PLoS One* 11: e0155628.

661 33. Broughton SJ, Piper MD, Ikeya T, Bass TM, Jacobson J, et al. (2005) Longer lifespan, altered
662 metabolism, and stress resistance in *Drosophila* from ablation of cells making insulin-like
663 ligands. *Proc Natl Acad Sci U S A* 102: 3105-3110.

664 34. Rulifson EJ, Kim SK, Nusse R (2002) Ablation of insulin-producing neurons in flies: growth
665 and diabetic phenotypes. *Science* 296: 1118-1120.

666 35. Crocker A, Shahidullah M, Levitan IB, Sehgal A (2010) Identification of a neural circuit that
667 underlies the effects of octopamine on sleep:wake behavior. *Neuron* 65: 670-681.

668 36. Söderberg JA, Carlsson MA, Nässel DR (2012) Insulin-Producing Cells in the *Drosophila*
669 Brain also Express Satiety-Inducing Cholecystokinin-Like Peptide, Drosulfakinin. *Front
670 Endocrinol* 3: 109.

671 37. Wu Q, Zhang Y, Xu J, Shen P (2005) Regulation of hunger-driven behaviors by neural
672 ribosomal S6 kinase in *Drosophila*. *Proc Natl Acad Sci U S A* 102: 13289-13294.

673 38. Nässel DR, Vanden Broeck J (2016) Insulin/IGF signaling in *Drosophila* and other insects:
674 factors that regulate production, release and post-release action of the insulin-like peptides.
675 *Cell Mol Life Sci* 73: 271-290.

676 39. Murakami K, Yurgel ME, Stahl BA, Masek P, Mehta A, et al. (2016) translin Is Required for
677 Metabolic Regulation of Sleep. *Curr Biol* 26: 972-980.

678 40. Nässel DR (2018) Substrates for neuronal cotransmission with neuropeptides and small
679 molecule neurotransmitters in *Drosophila*. *Front Cell Neurosci* 12:83.

680 41. Merighi A (2002) Costorage and coexistence of neuropeptides in the mammalian CNS. *Prog
681 Neurobiol* 66: 161-190.

682 42. Jan LY, Jan YN (1982) Peptidergic transmission in sympathetic ganglia of the frog. *J Physiol
683* 327: 219-246.

684 43. Alfa RW, Kim SK (2016) Using *Drosophila* to discover mechanisms underlying type 2
685 diabetes. *Disease models & mechanisms* 9: 365-376.

686 44. Tatar M, Post S, Yu K (2014) Nutrient control of *Drosophila* longevity. *Trends Endocrinol
687 Metabol* 25: 509-517.

688 45. Yurgel ME, Kakad P, Zandawala M, Nassel DR, Godenschwege TA, et al. (2018) A single
689 pair of leucokinin neurons are modulated by feeding state and regulate sleep-metabolism
690 interactions. *bioRxiv*.

691 46. Kreneisz O, Chen X, Fridell YW, Mulkey DK (2010) Glucose increases activity and Ca(2+) in
692 insulin-producing cells of adult *Drosophila*. *Neuroreport* 21: 1116-1120.

693 47. Miyamoto T, Slone J, Song X, Amrein H (2012) A fructose receptor functions as a nutrient
694 sensor in the *Drosophila* brain. *Cell* 151: 1113-1125.

695 48. Dus M, Lai JSY, Gunapala KM, Min S, Tayler TD, et al. (2015) Nutrient Sensor in the Brain
696 Directs the Action of the Brain-Gut Axis in *Drosophila*. *Neuron* 87: 139-151.
697 49. Levis R, Hazelrigg T, Rubin GM (1985) Effects of Genomic Position on the Expression of
698 Transduced Copies of the White Gene of *Drosophila*. *Science* 229: 558-561.
699 50. Min S, Chae HS, Jang YH, Choi S, Lee S, et al. (2016) Identification of a Peptidergic Pathway
700 Critical to Satiety Responses in *Drosophila*. *Curr Biol* 26: 814-820.
701 51. Pfeiffer BD, Truman JW, Rubin GM (2012) Using translational enhancers to increase
702 transgene expression in *Drosophila*. *Proceedings of the National Academy of Sciences of
703 the United States of America* 109: 6626-6631.
704 52. Nicolai LJJ, Ramaekers A, Raemaekers T, Drozdzecki A, Mauss AS, et al. (2010) Genetically
705 encoded dendritic marker sheds light on neuronal connectivity in *Drosophila*. *Proceedings of
706 the National Academy of Sciences of the United States of America* 107: 20553-20558.
707 53. Wang J, Ma XJ, Yang JS, Zheng XY, Zugates CT, et al. (2004)
708 Transmembrane/juxtamembrane domain-dependent Dscam distribution and function during
709 mushroom body neuronal morphogenesis. *Neuron* 43: 663-672.
710 54. Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly
711 efficient BAC recombineering using galK selection. *Nucleic Acids Research* 33.
712 55. Pfeiffer BD, Jenett A, Hammonds AS, Ngo TT, Misra S, et al. (2008) Tools for neuroanatomy
713 and neurogenetics in *Drosophila*. *Proc Natl Acad Sci U S A* 105: 9715-9720.
714 56. Wang SW, Zhao YJ, Leiby M, Zhu JY (2009) A New Positive/Negative Selection Scheme for
715 Precise BAC Recombineering. *Molecular Biotechnology* 42: 110-116.
716 57. Venken KJT, Carlson JW, Schulze KL, Pan HL, He YC, et al. (2009) Versatile P[acman] BAC
717 libraries for transgenesis studies in *Drosophila melanogaster*. *Nature Methods* 6: 431-U446.
718 58. Pfeiffer BD, Ngo TTB, Hibbard KL, Murphy C, Jenett A, et al. (2010) Refinement of Tools for
719 Targeted Gene Expression in *Drosophila*. *Genetics* 186: 735-U488.
720 59. Ponton F, Chapuis MP, Pernice M, Sword GA, Simpson SJ (2011) Evaluation of potential
721 reference genes for reverse transcription-qPCR studies of physiological responses in
722 *Drosophila melanogaster*. *J Insect Physiol* 57: 840-850.
723 60. Kubrak OI, Lushchak OV, Zandawala M, Nassel DR (2016) Systemic corazonin signalling
724 modulates stress responses and metabolism in *Drosophila*. *Open Biol* 6.
725 61. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, et al. (2012) Fiji: an open-
726 source platform for biological-image analysis. *Nat Methods* 9: 676-682.
727 62. Nässel DR, Cantera R, Karlsson A (1992) Neurons in the cockroach nervous system reacting
728 with antisera to the neuropeptide leucokinin I. *J Comp Neurol* 322: 45-67.
729 63. Veenstra JA, Agricola HJ, Sellami A (2008) Regulatory peptides in fruit fly midgut. *Cell Tissue
730 Res* 334: 499-516.
731 64. Söderberg JA, Birse RT, Nässel DR (2011) Insulin production and signaling in renal tubules
732 of *Drosophila* is under control of tachykinin-related peptide and regulates stress resistance.
733 PLoS ONE 6: e19866.
734 65. Pollak E, Eckert M, Molnar L, Predel R (2005) Differential sorting and packaging of capa-gene
735 related products in an insect. *J Comp Neurol* 481: 84-95.
736 66. Wong R, Piper MD, Wertheim B, Partridge L (2009) Quantification of food intake in
737 *Drosophila*. PLoS ONE 4: e6063.
738 67. Masek P, Scott K (2010) Limited taste discrimination in *Drosophila*. *Proceedings of the
739 National Academy of Sciences of the United States of America* 107: 14833-14838.
740 68. Pfeiffenberger C, Lear BC, Keegan KP, Allada R (2010) Processing sleep data created with
741 the *Drosophila* Activity Monitoring (DAM) System. *Cold Spring Harb Protoc* 2010: pdb
742 prot5520.
743
744
745
746
747

Figure captions

748 **Figure 1: Generation of *Lk* and *Lkr* *GAL4* knock-in mutants. (A)** Schematics of the *Lk*
749 and *Lkr* gene loci and the locations of construct insertion to generate *GAL4* knock-in
750 mutants. **(B)** A schematic of the adult CNS showing the location of LK-expressing
751 neurons [based on [6,7,17]]. LHLK, lateral horn LK neuron; SELK, subesophageal
752 ganglion LK neuron; ABLK, abdominal LK neuron, T1 – T3, thoracic neuromeres. **(C)**
753 Quantitative PCR shows a significant reduction in *Lk* and *Lkr* transcripts in *Lk* and *Lkr*
754 homozygous mutants, respectively. (** p < 0.001 as assessed by unpaired *t* test). **(D)**
755 LK-immunoreactivity is completely abolished in the brain and ventral nerve cord of *Lk*
756 mutants.

757

758 **Figure 2: LK cell body size and peptide levels in *Lkr* mutants. (A)** LK-
759 immunoreactivity in abdominal LK neurons (ABLks) of *Lkr* mutant and control flies. **(B)**
760 Staining intensity and **(C)** cell body size of both the anterior (a) and posterior (p) ABLks
761 is increased in *Lkr* mutants compared to control flies. **(D)** LK-immunoreactivity in brain
762 lateral horn LK neurons (LHLKs) of *Lkr* mutant and control flies. **(E)** The intensity of LK
763 staining is unaltered in *Lkr* mutants. (**** p < 0.0001 as assessed by one-way ANOVA
764 followed by Tukey's multiple comparisons test for **C** and *** p < 0.001 as assessed by
765 unpaired *t* test for **B**).

766

767 **Figure 3: *Lk* and *Lkr* mutants have altered stress resistance and water content.**
768 Survival under desiccation is increased in both **(A)** *Lk* and **(B)** *Lkr* mutants. Survival
769 under starvation is also increased in both **(C)** *Lk* and **(D)** *Lkr* mutants. Data are presented
770 in survival curves and the error bars represent standard error (**** p < 0.0001, as
771 assessed by Log-rank (Mantel-Cox) test). **(E)** Hydrated and 9-hour-desiccated (9 h) *Lk*
772 and *Lkr* mutant flies show increased water content compared to control flies. (** p < 0.01,
773 *** p < 0.001, **** p < 0.0001 as assessed by one-way ANOVA followed by Tukey's
774 multiple comparisons test).

775

776 **Figure 4: Calcium activity of ABLks under nutritional and osmotic stress. (A)** The
777 calcium activity of ABLks, as measured using CaLexA [22], is low in flies that have been
778 starved, desiccated, or incubated on normal artificial food but increased in flies that have
779 been rewatered (desiccated and then incubated on 1% agar). **(B)** The GFP intensity of
780 ABLks is increased in rewatered flies compared to other conditions. **(C)** The number of

781 ABLKs that could be detected is higher in rewatered flies compared to other conditions.
782 (assessed by one-way ANOVA followed by Tukey's multiple comparisons test).
783

784 **Figure 5: *Lk* and *Lkr* mutants show varying phenotypes in different feeding assays.**

785 **(A)** *Lkr* mutants show increased motivation to feed in proboscis extension reflex (PER)
786 which could be rescued to control levels by driving *UAS-Lkr* with *Lkr-GAL4^{CC9}*. **(B)**
787 Interestingly, targeted expression of tetanus toxin (to block synaptic transmission) in *Lk*
788 neurons using *Lk-GAL4* caused a decrease in PER. **(C)** Both the homozygous and
789 heterozygous *Lk* mutants also show decreased PER and this phenotype could be
790 rescued in **(D)** the homozygous flies. See Supplementary Table 1 for the statistics of
791 graphs A-E. **(E)** Starved and fed *Lk* and *Lkr* mutants do not show any differences in
792 short-term feeding compared to control flies as measured using a blue-dye feeding assay
793 (assessed by one-way ANOVA). **(F)** Expression of tetanus toxin in *Lk* neurons also has
794 no effect on short-term feeding.

795

796 **Figure 6: Total activity and metabolic rate is lowered in individual *Lk* and *Lkr* mutants.** **(A)** Locomotor activity pattern of individual *Lk* homozygous and heterozygous
797 mutants measured over 24 hours. **(B)** Total locomotor activity of *Lk* mutants is lowered
798 compared to control flies. **(C)** Metabolic rate rhythms of individual *Lk* homozygous and
799 heterozygous mutants measured over 24 hours. **(D)** Average metabolic rate of *Lk*
800 mutants is lowered compared to control flies. **(E)** Locomotor activity pattern of individual
801 *Lkr* homozygous and heterozygous mutants measured over 24 hours. **(F)** Total locomotor
802 activity of *Lkr* mutants is lowered compared to control flies. **(G)** Metabolic rate rhythms of
803 individual *Lkr* homozygous and heterozygous mutants measured over 24 hours. **(H)**
804 Average metabolic rate of *Lkr* mutants is lowered compared to control flies. (* p < 0.05, **
805 p < 0.01, *** p < 0.001, **** p < 0.0001 as assessed by one-way ANOVA).

807

808 **Figure 7: *Lkr* is expressed in the adult gut and Malpighian tubules.** *Lkr-GAL4^{CC9}*
809 drives GFP (*pJFRC81-10xUAS-Syn21-myr::GFP-p10*) expression in the adult **(A)** stellate
810 cells in Malpighian tubules, **(B)** enteroendocrine cells in the posterior midgut, **(C and D)**
811 anterior midgut, **(E)** hindgut and **(F)** rectal pad. Muscles (F-actin filaments) in all the
812 preparations (except B) have been stained with rhodamine-phalloidin (magenta). Note
813 the expression of GFP in hindgut and rectal pad muscles. **(G)** Schematics of third instar

814 larvae and adult fly showing the expression of *Lkr*. (data from FlyAtlas.org, [27]). **(H)** A
815 schematic of the adult gut and heat map showing expression of *Lkr* in different regions of
816 the gut (R1 to R5) and its various cell types (VM, visceral muscle; EEC, enteroendocrine
817 cell; EC, enterocyte; EB, enteroblast; ISC, intestinal stem cell; Ep, epithelium. Data was
818 mined using Flygut-seq [28].

819

820 **Figure 8: *Lkr* is expressed in identified peptidergic neurosecretory cells of the**
821 **adult brain.** *Lkr-GAL4^{CC9}* drives GFP (*pJFRC81-10xUAS-Syn21-myr::GFP-p10*)
822 expression in **(A)** insulin-producing cells (labeled with anti-DILP2 antiserum) and **(B)** ion
823 transport peptide (ITP)-producing lateral neurosecretory cells in the brain (labeled with
824 anti-ITP antiserum). **(C)** *Lkr-GAL4* drives GFP (*UAS-mCD8GFP*) expression in the adult
825 **(D and F)** ITP-producing cells and **(E and F)** insulin-producing cells.

826

827 **Figure 9: *Lkr* is coexpressed with peptidergic and glial markers.** Mining the single-
828 cell transcriptome atlas of the *Drosophila* brain reveals that *Lkr* is coexpressed with **(A)**
829 *repo* (glial marker; cell cluster marked G) and *dimm* (peptidergic cell marker; cell cluster
830 marked P). **(B)** Within both the glial and peptidergic cell clusters, *Lkr* is coexpressed with
831 ITP. Within the peptidergic cell cluster, **(C)** insulin-producing cells expressing *DILP2*, 3
832 and 5 could be identified (cluster marked IPCs), a subset of which express *Lkr* **(D)**. Data
833 was mined using SCope (<http://scope.aertslab.org>) [29]. In both **(C)** and **(D)**, cells
834 expressing all three genes are colored in white.

835

836 **Figure 10: Anatomical and functional Interactions between LK and insulin**
837 **signaling.** **(A)** Expression of *trans*-Tango components [30] using *Lk-GAL4* generates a
838 pre-synaptic signal (labeled with anti-GFP antibody) in the subesophageal ganglion
839 (SEG) and a post-synaptic signal (labeled with anti-HA antibody) in the SEG and pars
840 intercerebralis which does not colocalize with insulin-producing cells or their axons
841 (labeled with anti-DILP2 antibody). **(B)** Higher magnification of the SEG showing the pre-
842 synaptic and post-synaptic signals and the lack of colocalization with anti-DILP2 staining.
843 **(C, E)** *Lkr* homozygous mutants show increased DILP2 immunoreactivity in insulin-
844 producing cells (IPCs) of the adult brain. **(D, F)** Both *Lk* and *Lkr* homozygous mutants
845 show increased DILP3 immunoreactivity in IPCs of the adult brain. (** p < 0.001, **** p <

846 0.0001, as assessed by one-way ANOVA followed by Tukey's multiple comparisons test).
847 CTCF, corrected total cell fluorescence.
848

849 **Figure 11: *Lkr* knockdown in insulin-producing cells affects insulin expression. (A)**
850 Quantitative PCR shows no difference in *DILP2* transcript levels between control flies
851 (*DILP2 > Luciferase-RNAi*) and flies with *Lkr* knockdown in insulin-producing cells (IPCs)
852 that were reared as adults on normal diet, high sugar and high protein diet (HSHP) or low
853 sugar and high protein diet (LSHP). **(B)** *DILP3* transcript levels are upregulated in *DILP2*
854 > *Lkr-RNAi-#2 (BL65934)* flies reared on normal and HSHP diets. **(C)** *DILP5* transcript is
855 downregulated in *DILP2 > Lkr-RNAi-#2 (BL65934)* flies reared on normal diet. (* p < 0.05
856 and ** p < 0.01 as assessed by unpaired *t* test).

857
858 **Figure 12: *Lk* signaling scheme.** LK signaling scheme showing the location of all LK
859 neurons, identified neurons downstream of LK neurons, target tissues and their effects.
860 Dashed arrows indicate probable links that need to be functionally validated. DSK,
861 drosulfakinin; sNPF, short neuropeptide F; DTK, tachykinin.
862
863

864 **Captions for supplementary figures**

865 **Supplementary Table 1:** p-values for the proboscis extension reflex data in Figure 5. p-
866 values below 0.05 have been highlighted in grey. Wilcoxon Rank-Sum was used for
867 comparison between two genotypes, while Kruskal-Wallis with Steel-Dwass post-hoc test
868 was used for two or more genotypes. These tests were performed at each concentration
869 independently.

870
871 **Figure S1: Total activity (measured using DAMS) of *Lk* and *Lkr* mutants.** Total
872 locomotor activity of single flies measured over 24 hours is lowered for homozygous and
873 heterozygous **(A)** *Lk* and **(B)** *Lkr* mutants. The activity was monitored using a standard
874 *Drosophila* Activity Monitor (DAMS). (** p < 0.001, **** p < 0.0001, as assessed by one-
875 way ANOVA).

877 **Figure S2: The *Lk-GAL4*^{CC9} drives GFP expression in the adult CNS.** *Lk-GAL4*^{CC9}
878 drives GFP (*pJFRC81-10xUAS-Syn21-myr::GFP-p10*) expression in the adult **(A)** brain
879 and **(B)** ventral nerve cord (VNC). SELK, subesophageal LK neurons; ABLK, abdominal
880 LK neurons. *Lk-GAL4*^{CC9} also drives GFP expression in four pairs of neurons in the brain
881 (indicated by the white box). **(C)** These four pairs of neurons display very weak LK-
882 immunoreactivity and are positive for ion transport peptide-immunoreactivity. GFP
883 expression also colocalizes with anti-LK staining in the SELKs and lateral horn LK
884 neurons (LHLK). **(D)** *Lk-GAL4*^{CC9} drives GFP expression in ABLKs (labeled with anti-LK
885 antiserum) in the VNC.

886

887 **Figure S3: *Lk-GAL4*^{CC9} and *Lkr-GAL4*^{CC9} drive GFP expression in the larval CNS.**
888 **(A)** *Lk-GAL4*^{CC9} drives GFP (*pJFRC81-10xUAS-Syn21-myr::GFP-p10*) expression in
889 neurosecretory cells in the larval brain and ventral nerve cord (VNC). **(B)** *Lkr-GAL4*^{CC9}
890 drives GFP (*UAS-mCD8GFP*) expression in larval CNS. Note the GFP expression in
891 motor neurons in the VNC.

892

893 **Figure S4: The *Lkr-GAL4*^{CC9} drives GFP expression in adult peripheral tissues.** *Lkr-*
894 *GAL4*^{CC9} drives GFP (*pJFRC81-10xUAS-Syn21-myr::GFP-p10*) expression in the adult
895 **(A)** dorsal vessel and peripheral neurons (indicated by an arrow), **(B)** legs, **(C)** proboscis
896 and **(D)** wings. Note the expression of *Lkr* in nerve fibers closely associated with the anti-
897 LK immunostaining in **(A)**.

898

899 **Figure S5: The *Lkr-GAL4*^{CC9} drives GFP expression in larval gut and Malpighian
900 tubules.** *Lkr-GAL4*^{CC9} drives GFP (*pJFRC81-10xUAS-Syn21-myr::GFP-p10*) expression
901 in the larval **(A)** gut, **(B)** gastric caeca and anterior midgut, **(C)** midgut and **(D)** anti-
902 DromeLkr expressing stellate cells in Malpighian tubules. Nuclei in all the preparations
903 have been stained with DAPI (blue).

904

905 **Figure S6: The *Lkr-GAL4* drives GFP expression in gut and Malpighian tubules.** *Lkr-*
906 *GAL4* drives GFP (*pJFRC29-10xUAS-myr::GFP-p10*) expression in **(A)** the larval stellate
907 cells of Malpighian tubules, **(B)** larval hindgut and **(C-E)** adult stellate cells (labeled with
908 anti-DromeLkr antiserum). Note that the adult stellate cells can be **(C)** cuboidal or **(D)**
909 star-shaped (indicated by an arrow).

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

Figure S7: *Lkr-GAL4* drives GFP (*UAS-mCD8-GFP*) expression in larval and adult CNS. (A) *Lkr-GAL4* drives GFP expression in several neurons of the larval CNS, including a pair of abdominal Lk neurons stained with anti-Lk antiserum (indicated with a white arrow). In adults, *Lkr-GAL4* drives GFP expression in **(B)** T1 and T2 thoracic neuromeres and, **(C)** T3 thoracic neuromere.

Figure S8: The *Lkr-GAL4^{CC9}* drives GFP expression in the adult CNS. *Lkr-GAL4^{CC9}* drives GFP (*UAS-mCD8GFP*) expression in **(A)** the brain and **(B)** ventral nerve cord. The inset in **(A)** represents a smaller Z-stack which shows GFP expression in the fan-shaped body. These preparations were counterstained with anti-nc82 antiserum. **(C)** *Lkr-GAL4^{CC9}* drives GFP (*pJFRC81-10xUAS-Syn21-myr::GFP-p10*) expression in neurons of the abdominal ganglia that do not express LK.

Figure S9: Anatomical interactions between LK and CAPA/hugin signaling. (A) Expression of *trans*-Tango components [30] using *Lk-GAL4* generates a post-synaptic signal (labeled with anti-HA antibody) in the tritocerebrum and pars intercerebralis which does not colocalize with CAPA/hugin axons (labeled with anti-CAPA antibody). **(B)** Higher magnification of the subesophageal ganglion showing the pre-synaptic and post-synaptic signals and the lack of colocalization with anti-CAPA staining.

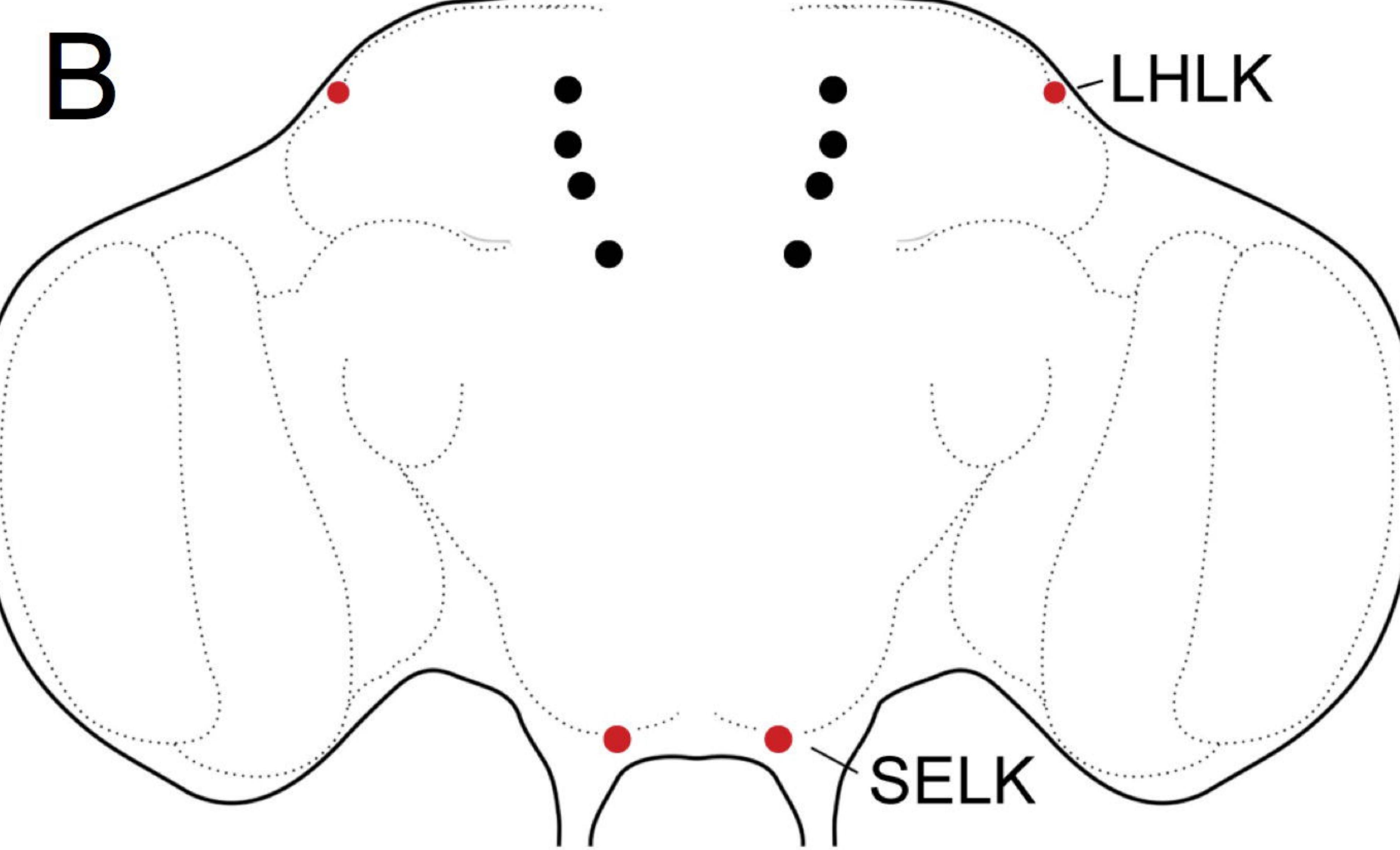
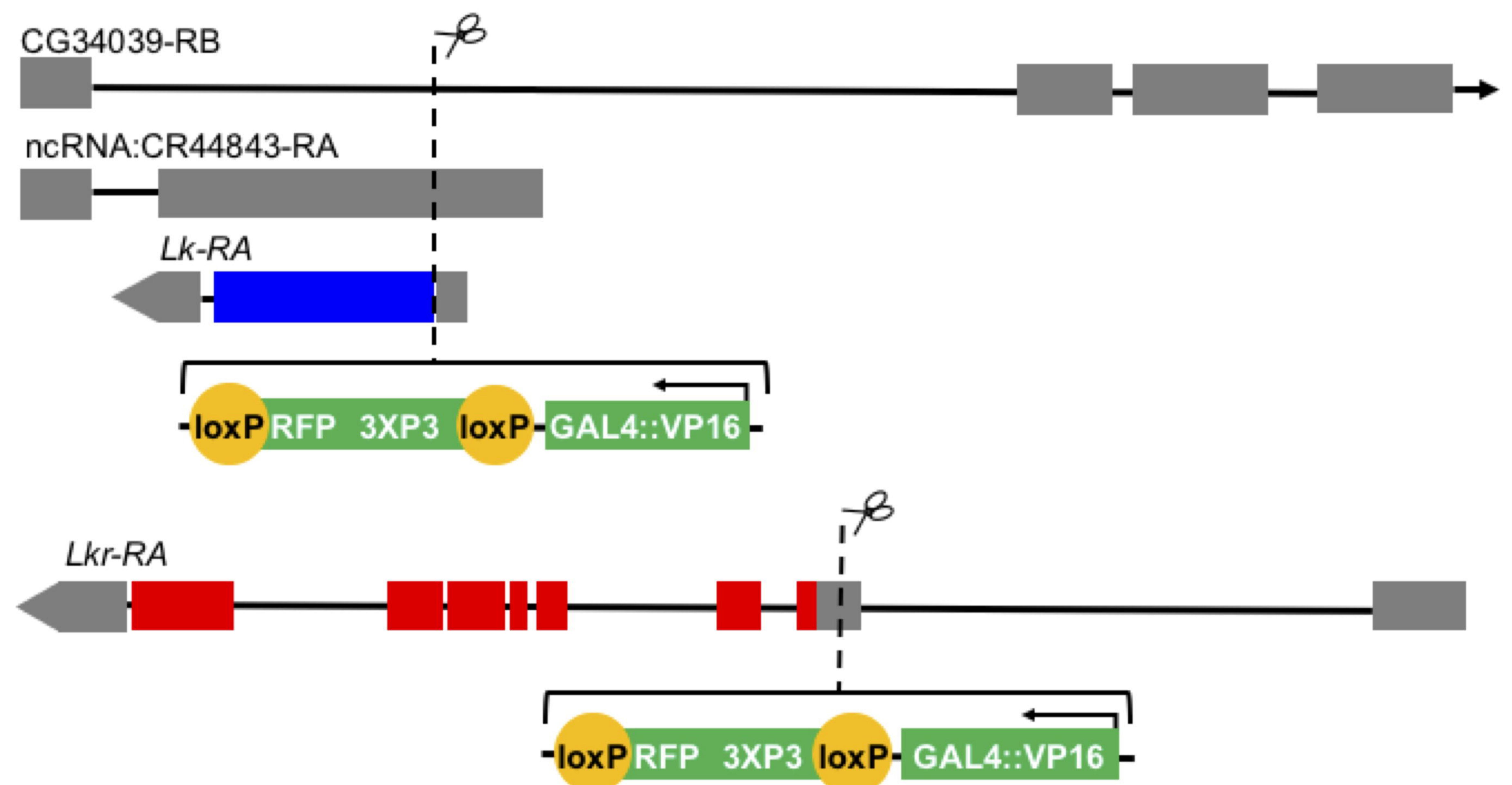
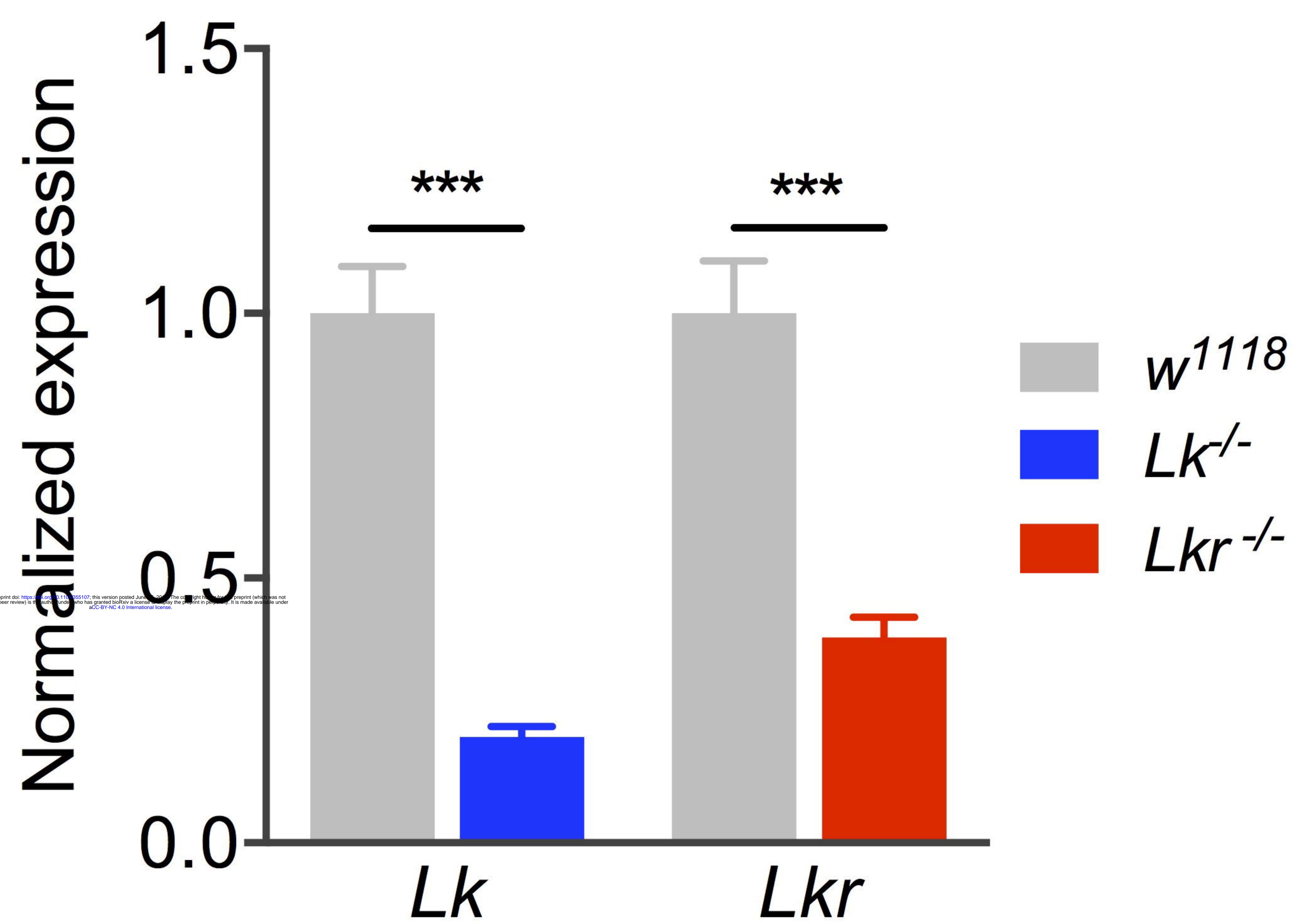
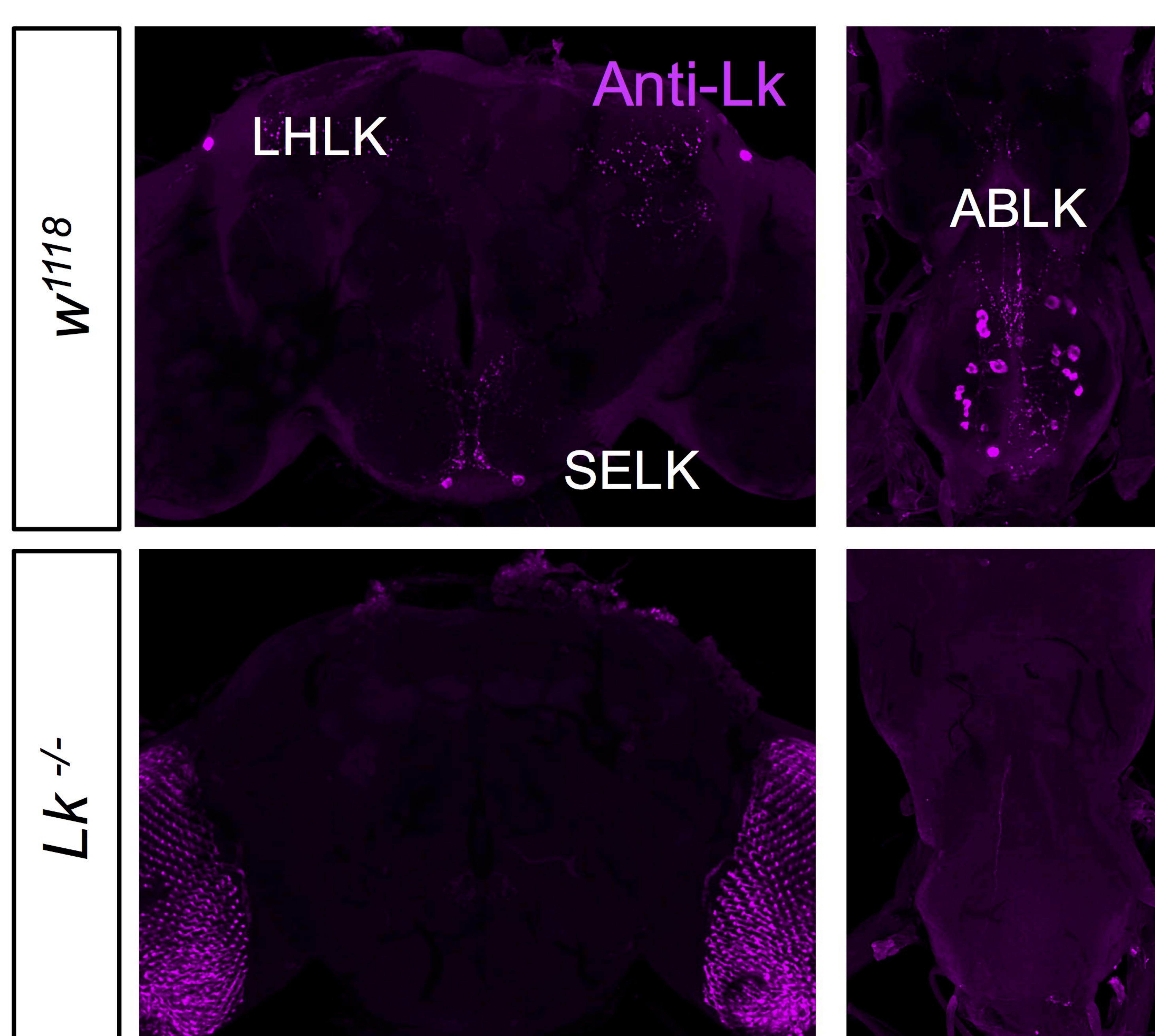
Figure S10: The processes of IPCs in pars intercerebralis and tritocerebrum/subesophageal zone have dendrite properties. Using dendrite-directed UAS constructs, fluorescent labeling can be seen in IPC processes in pars intercerebralis and tritocerebrum/subesophageal zone, shown in inverted images. **(A)** *DILP2-GAL4* driven *Dscam-GFP* and **(B)** *DILP2-GAL4* driven *DenMark-RFP*. These images were kindly provided by Dr. Yiting Liu.

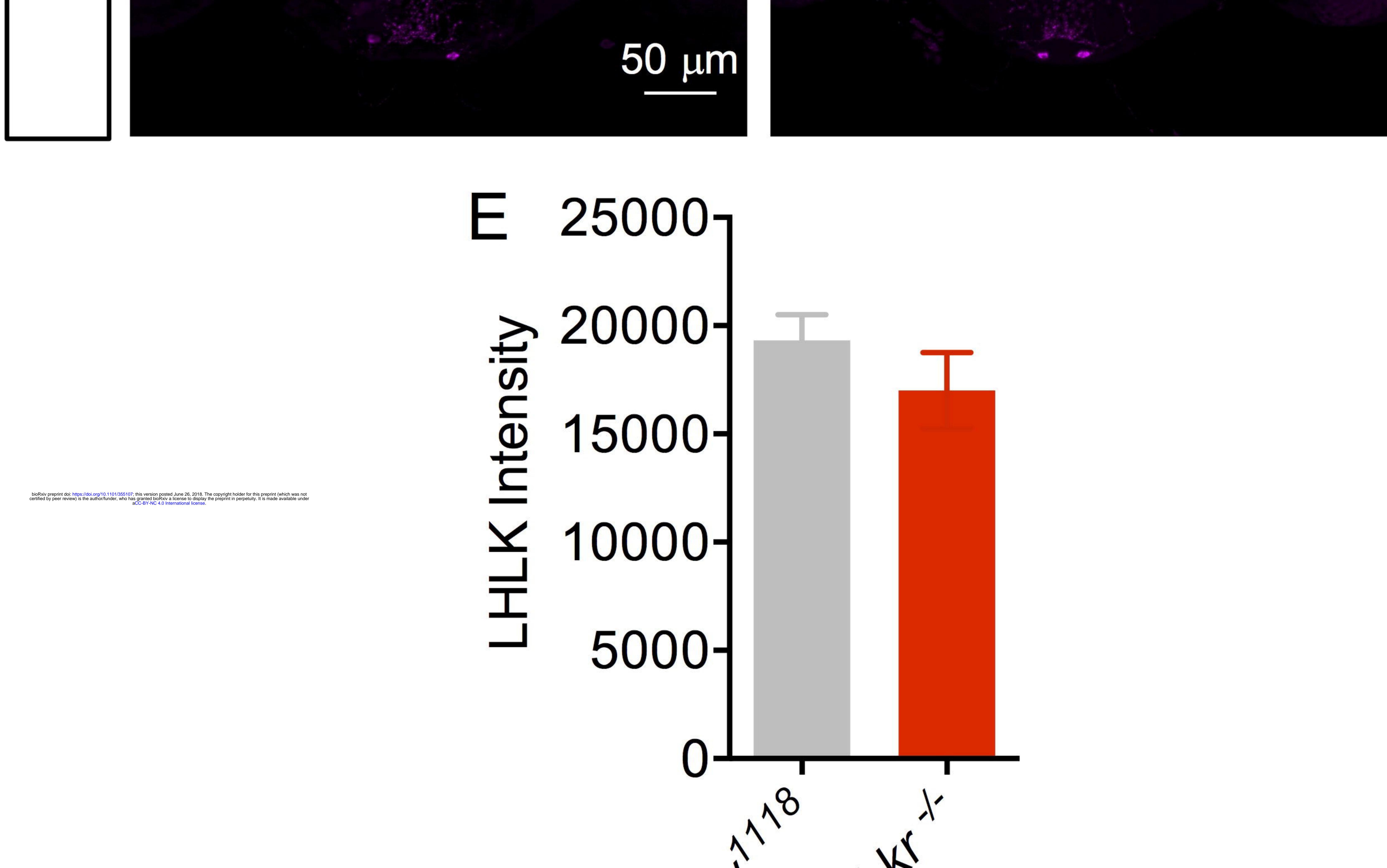
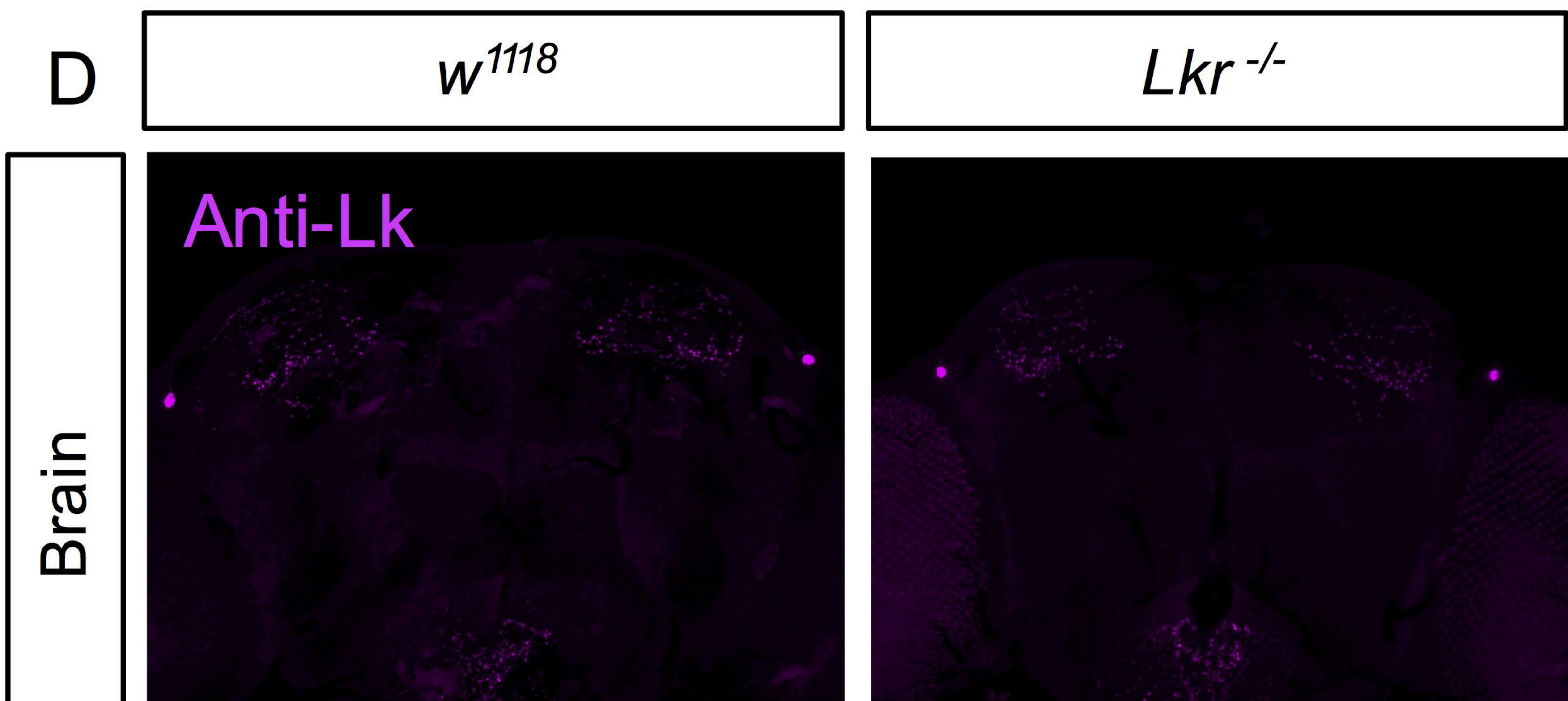
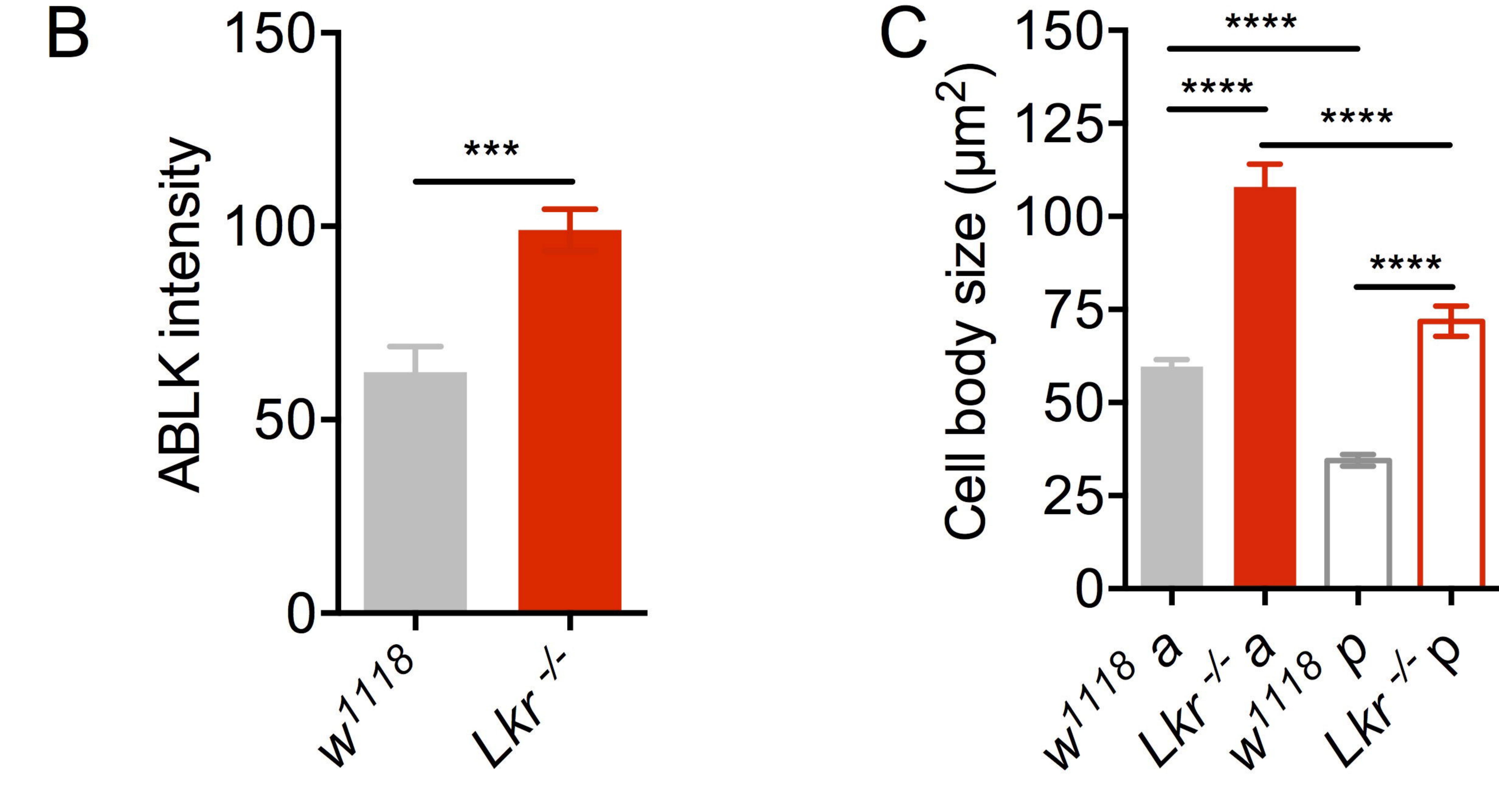
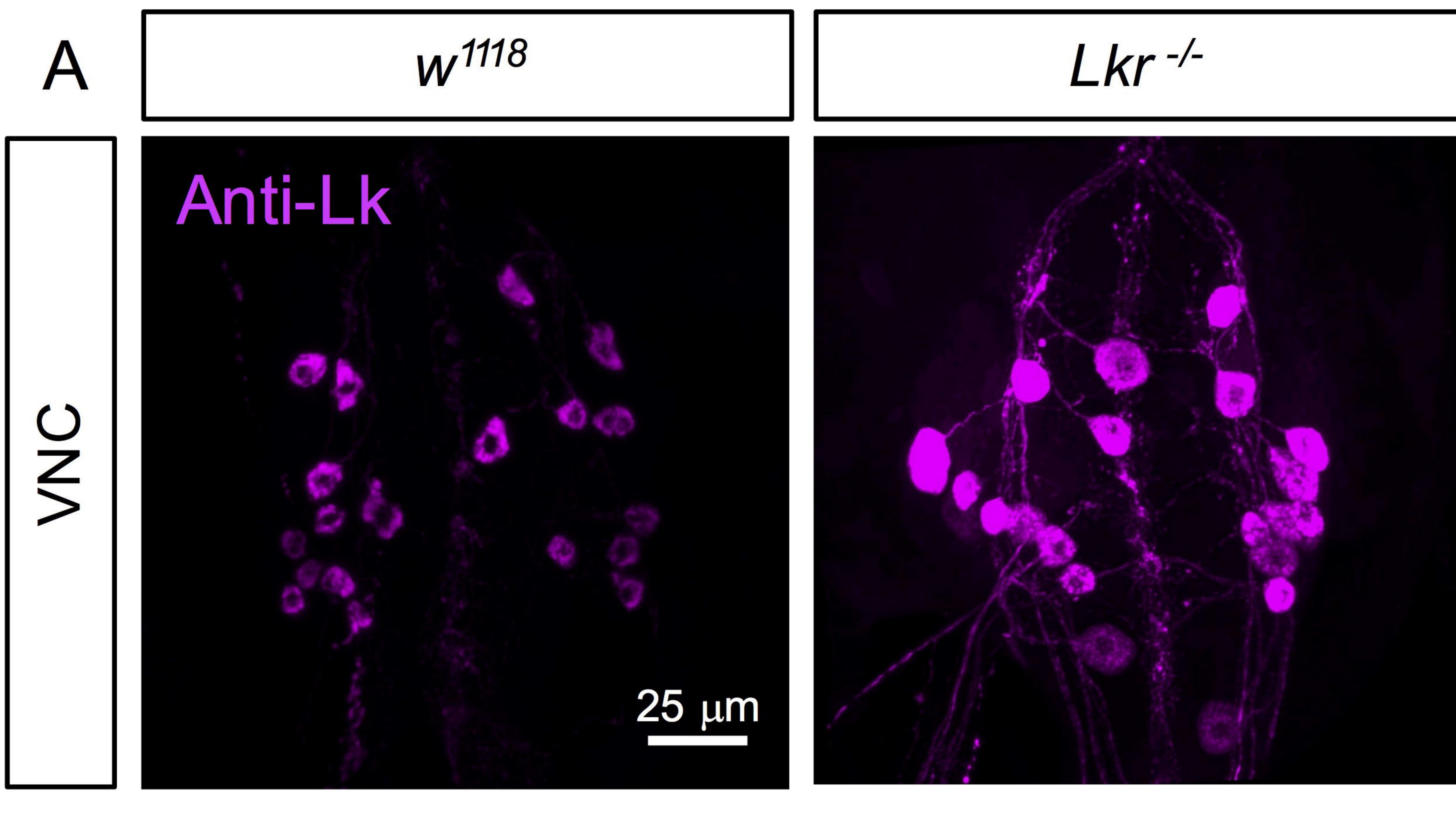
Figure S11: DILP5 levels are unaltered in *Lk* and *Lkr* mutants. **(A)** *Lk* and *Lkr* homozygous mutants do not display any difference in DILP5 immunoreactivity in insulin-producing cells (IPCs) of the adult brain. **(B)** Fluorescence intensity measurement of IPCs shows no difference in DILP5 immunoreactivity in *Lk* and *Lkr* mutant flies compared to control flies. CTCF, corrected total cell fluorescence.

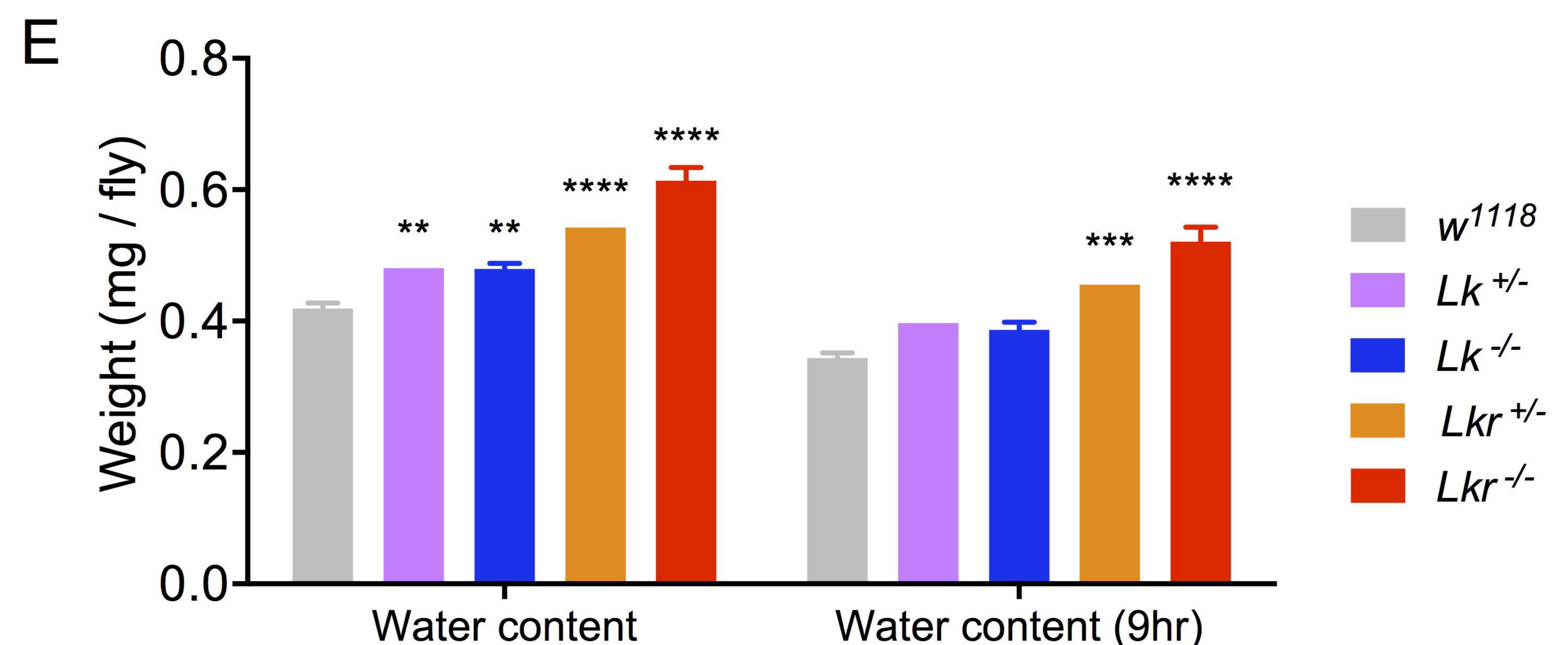
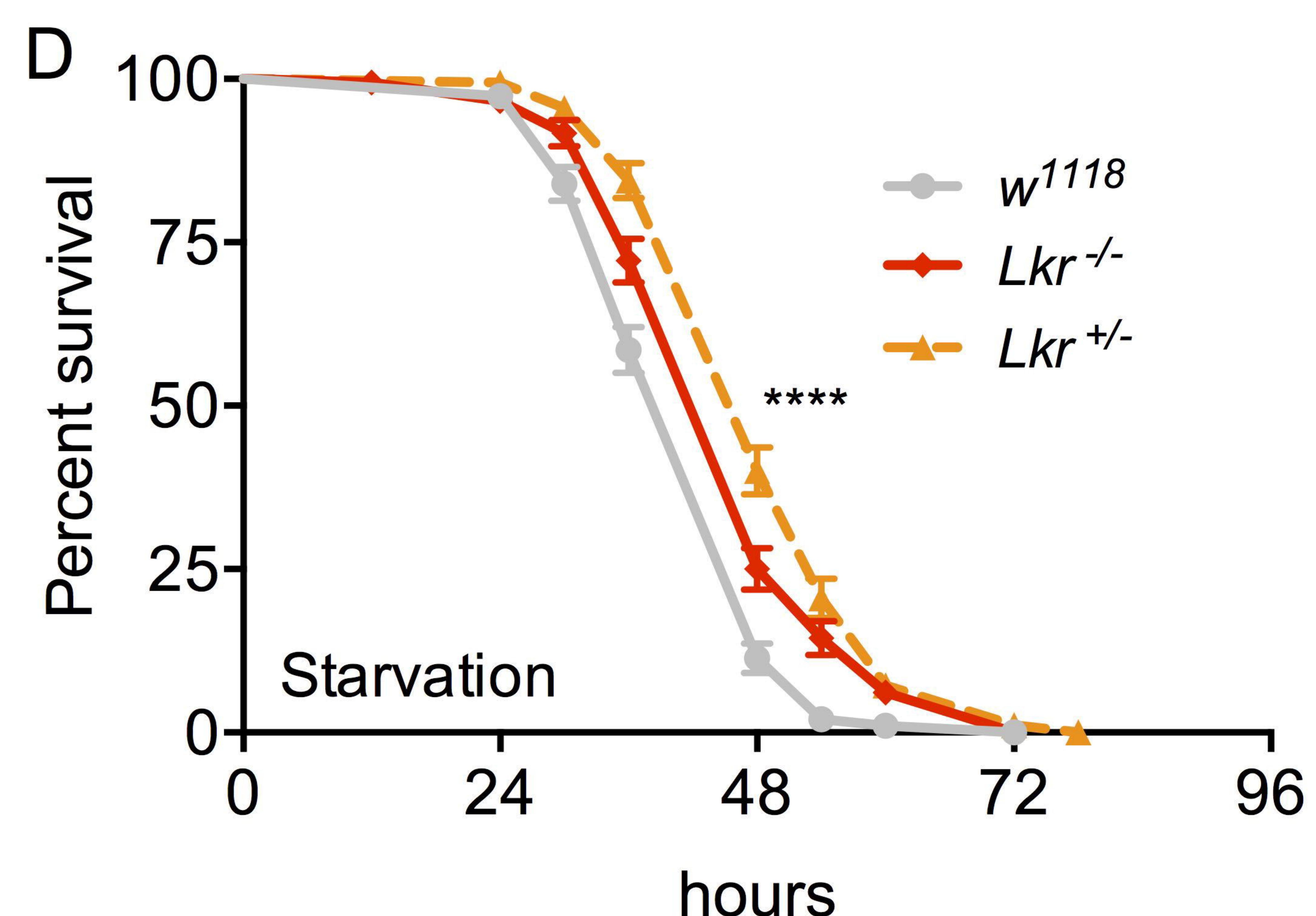
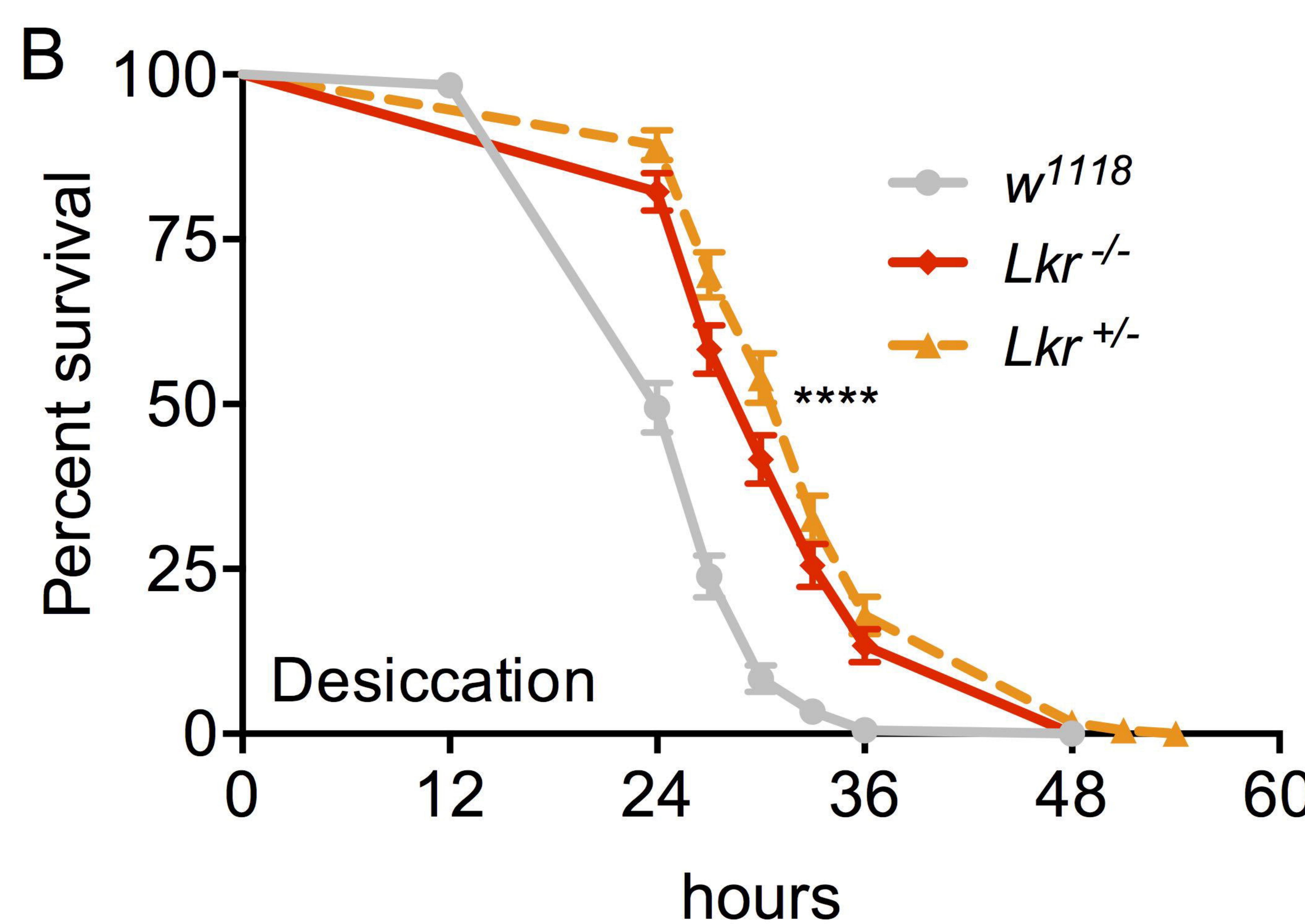
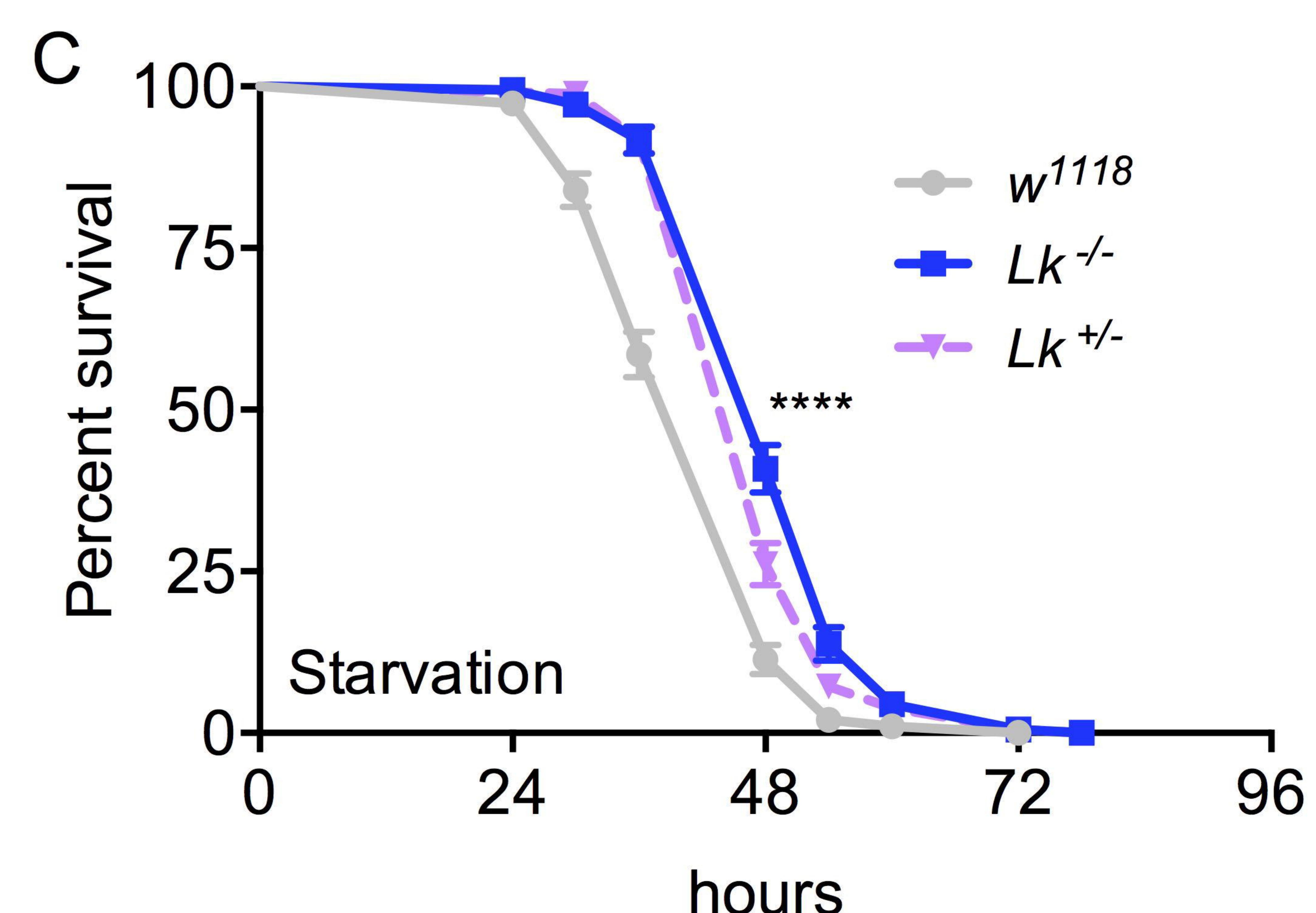
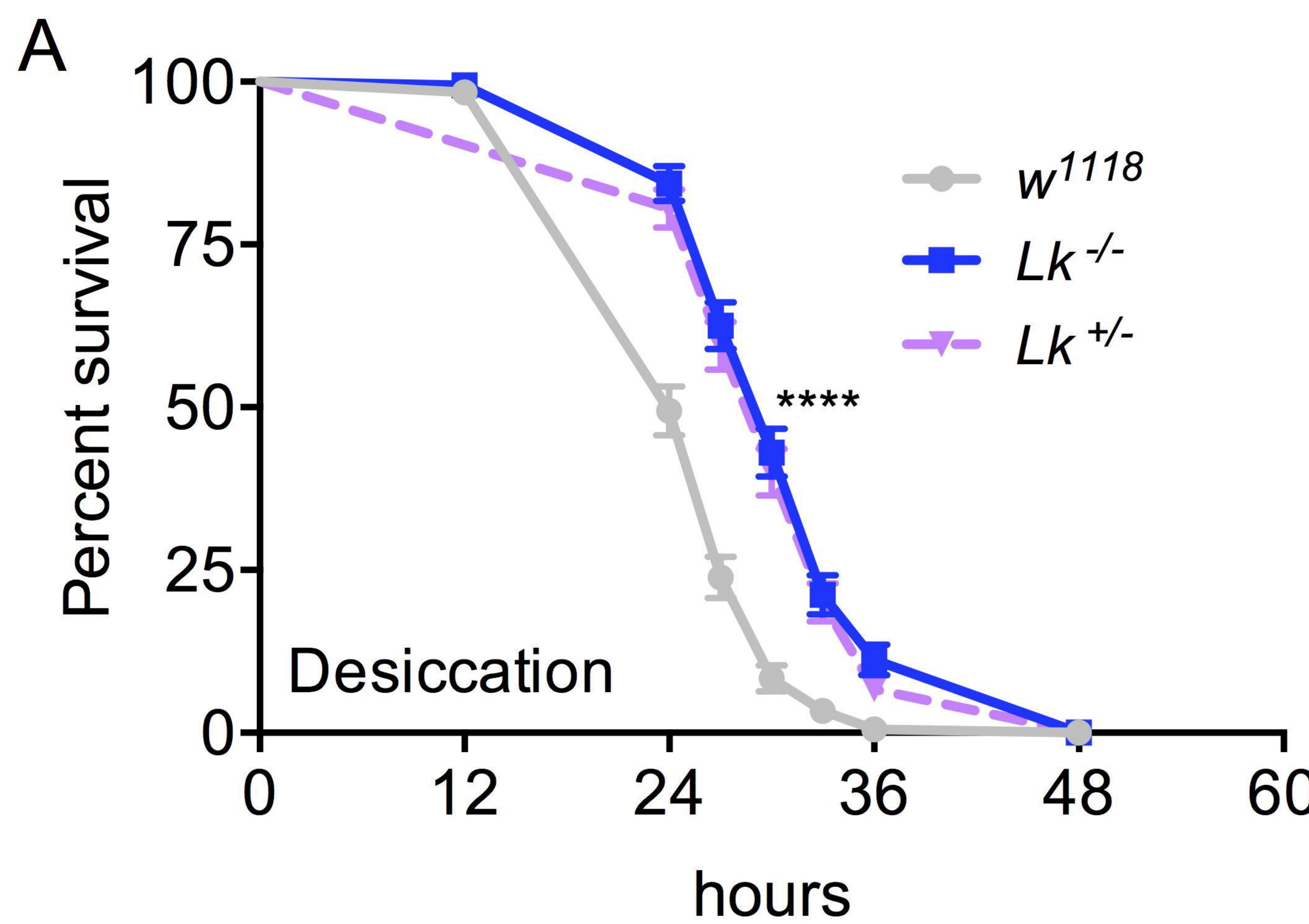
943

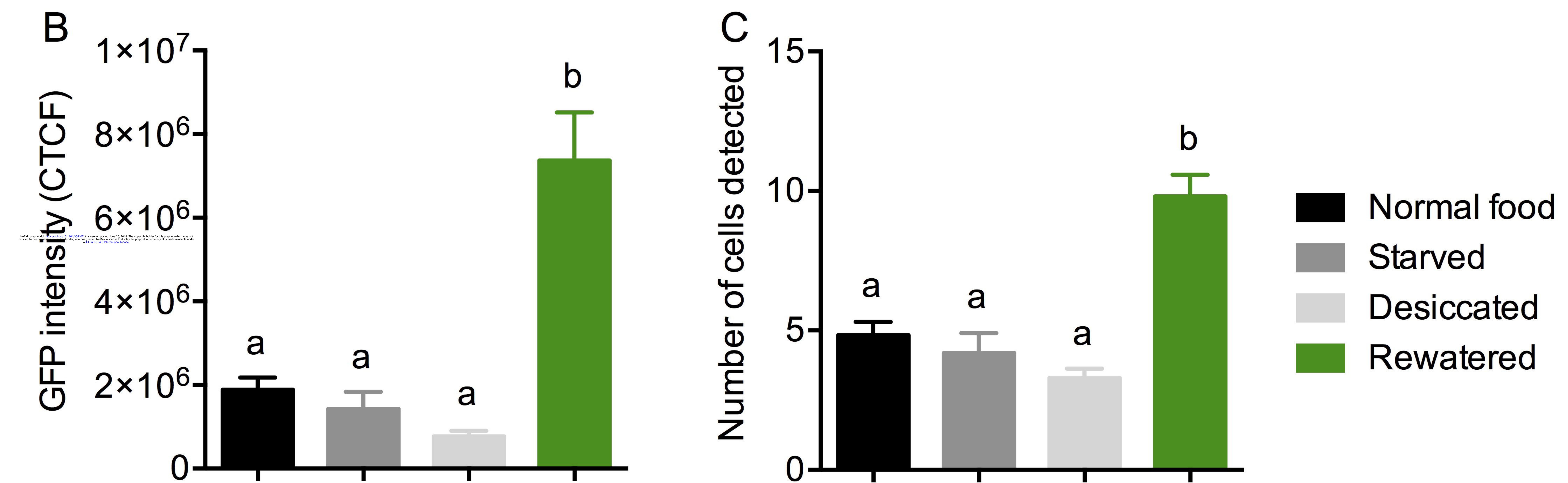
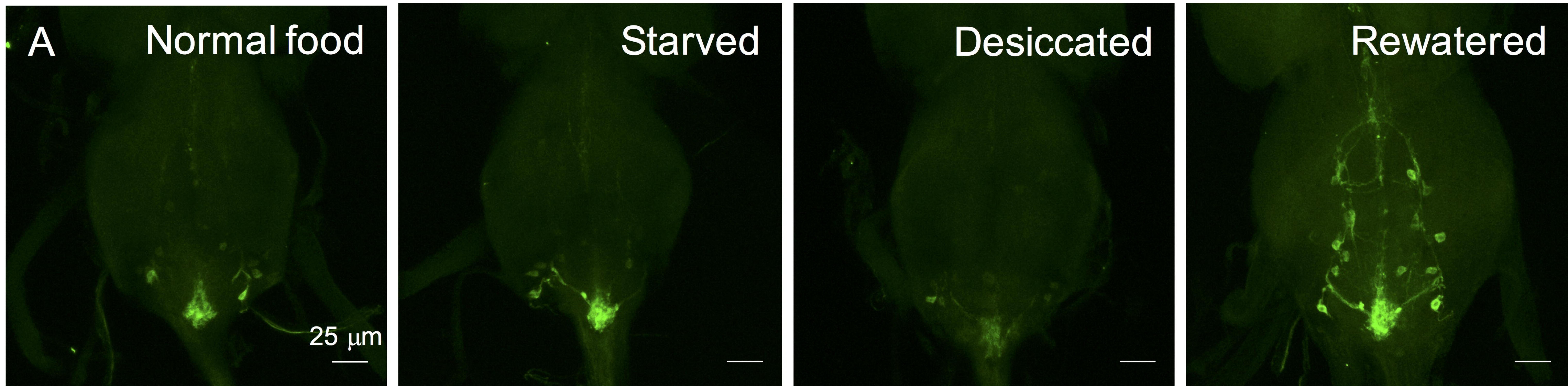
944

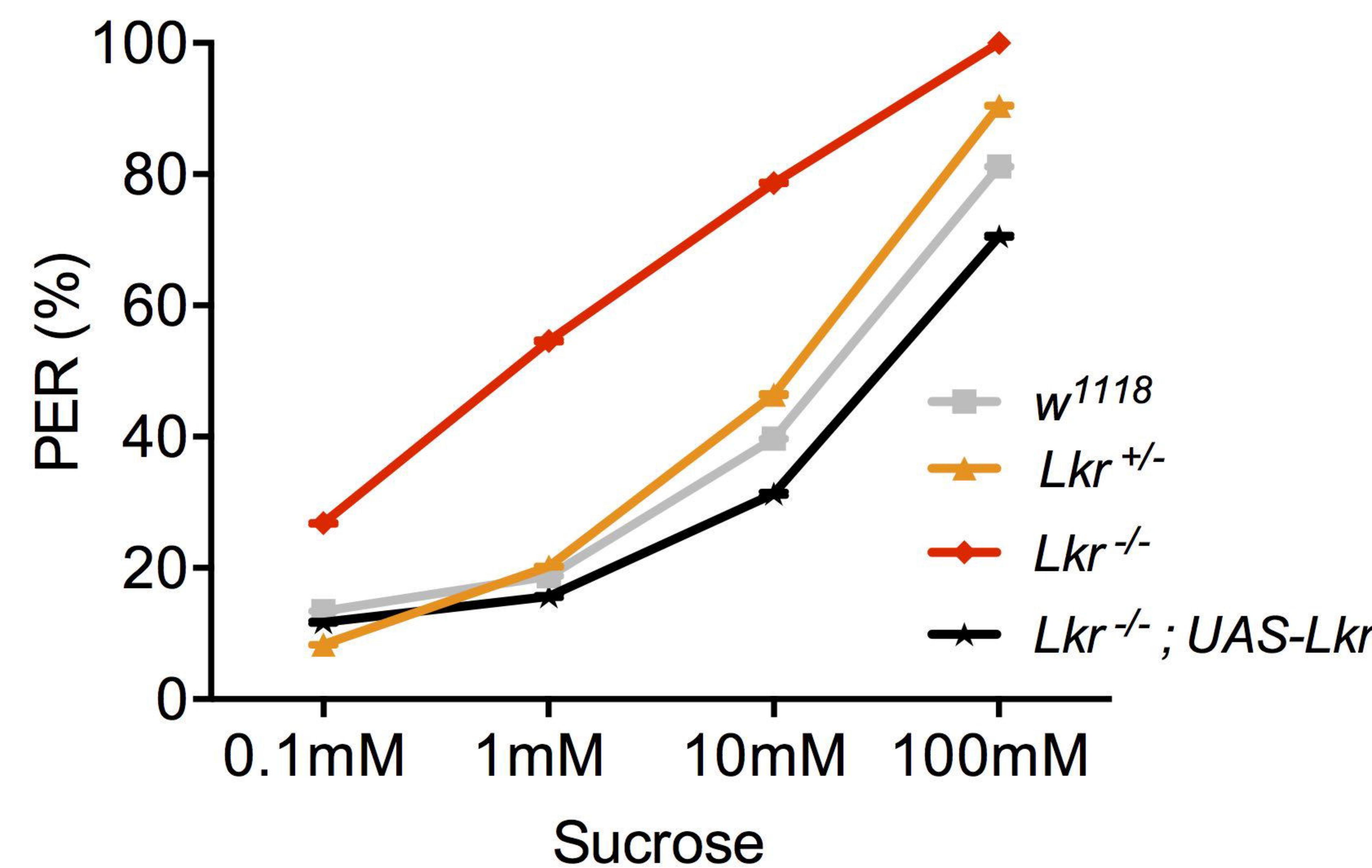
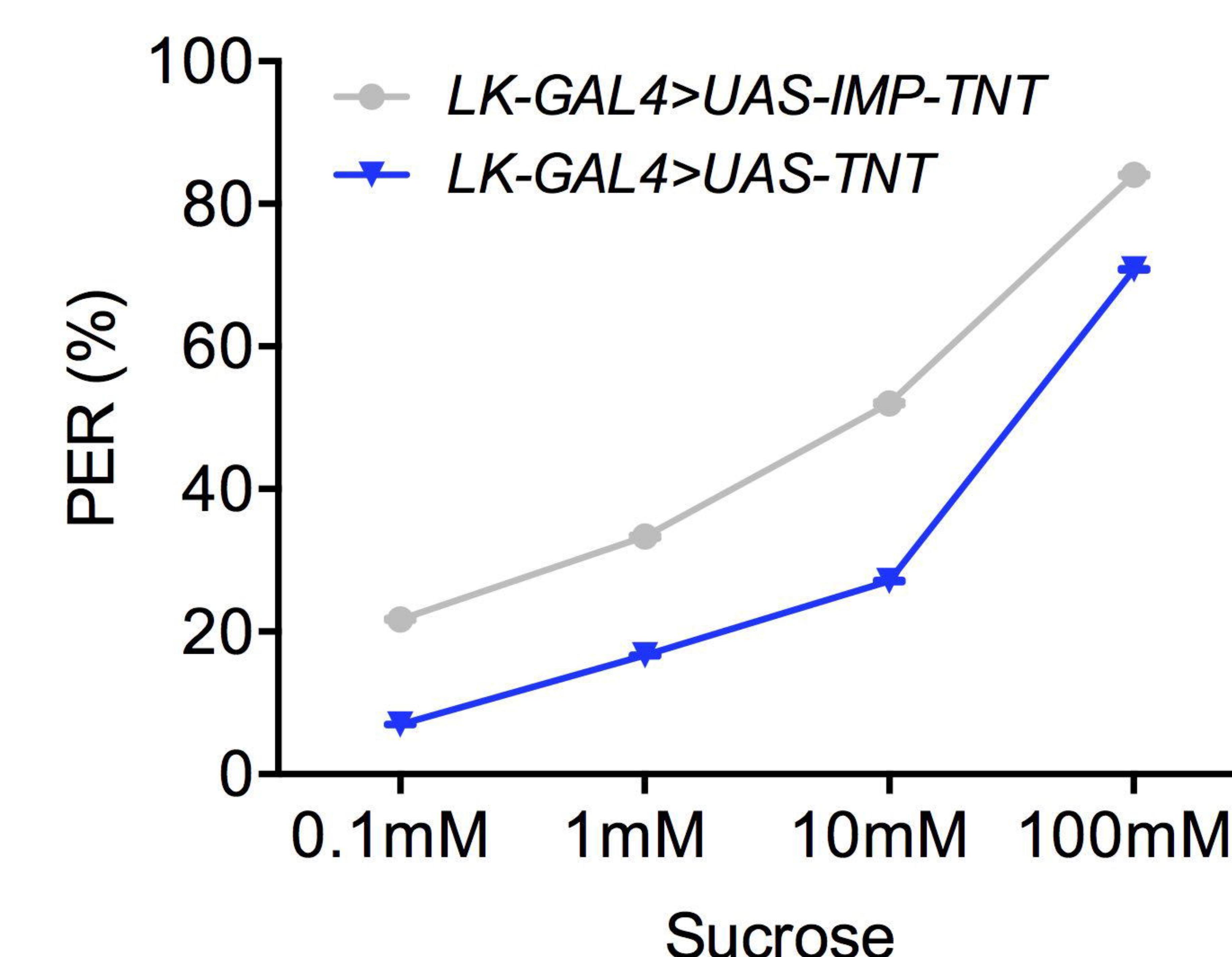
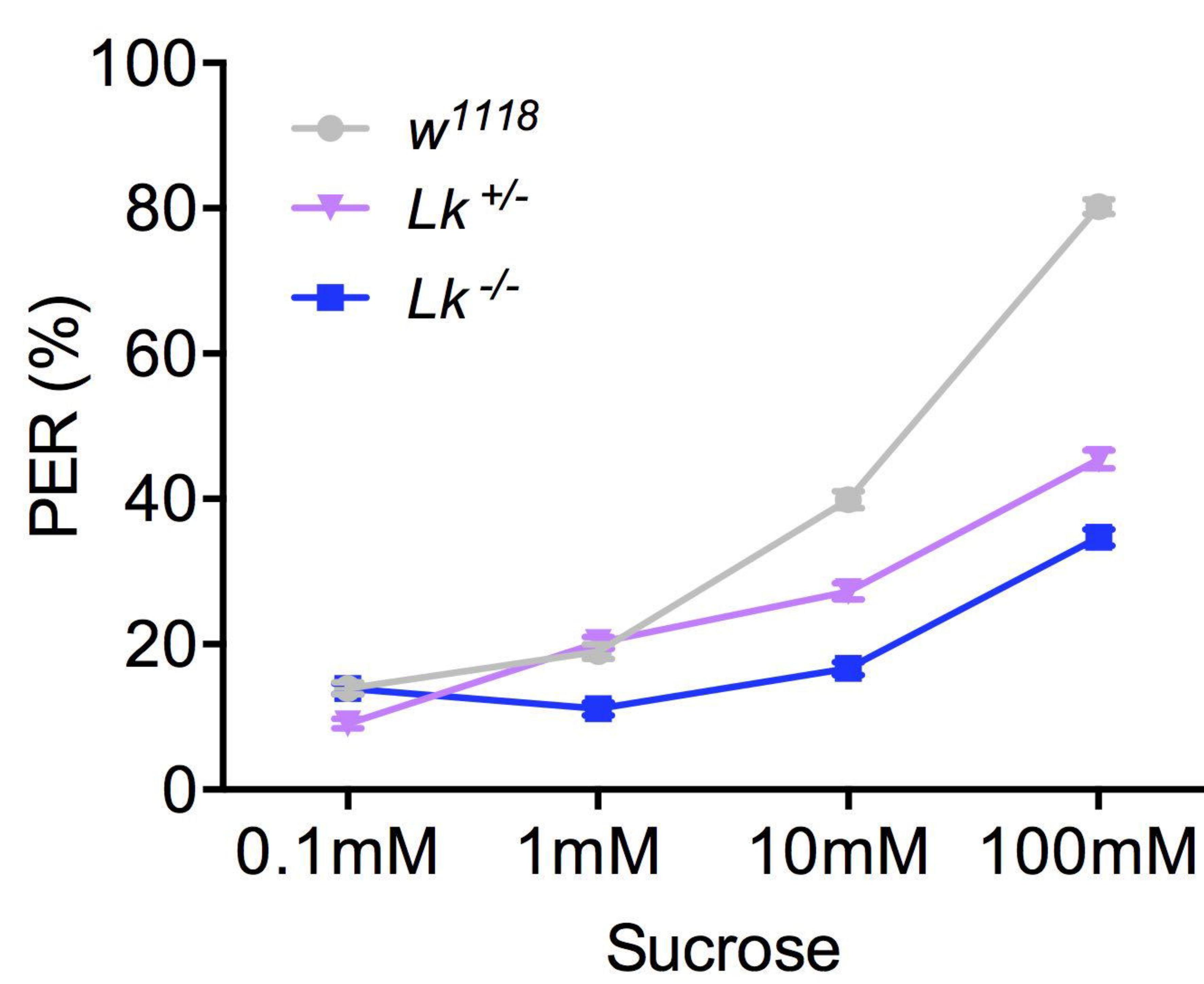
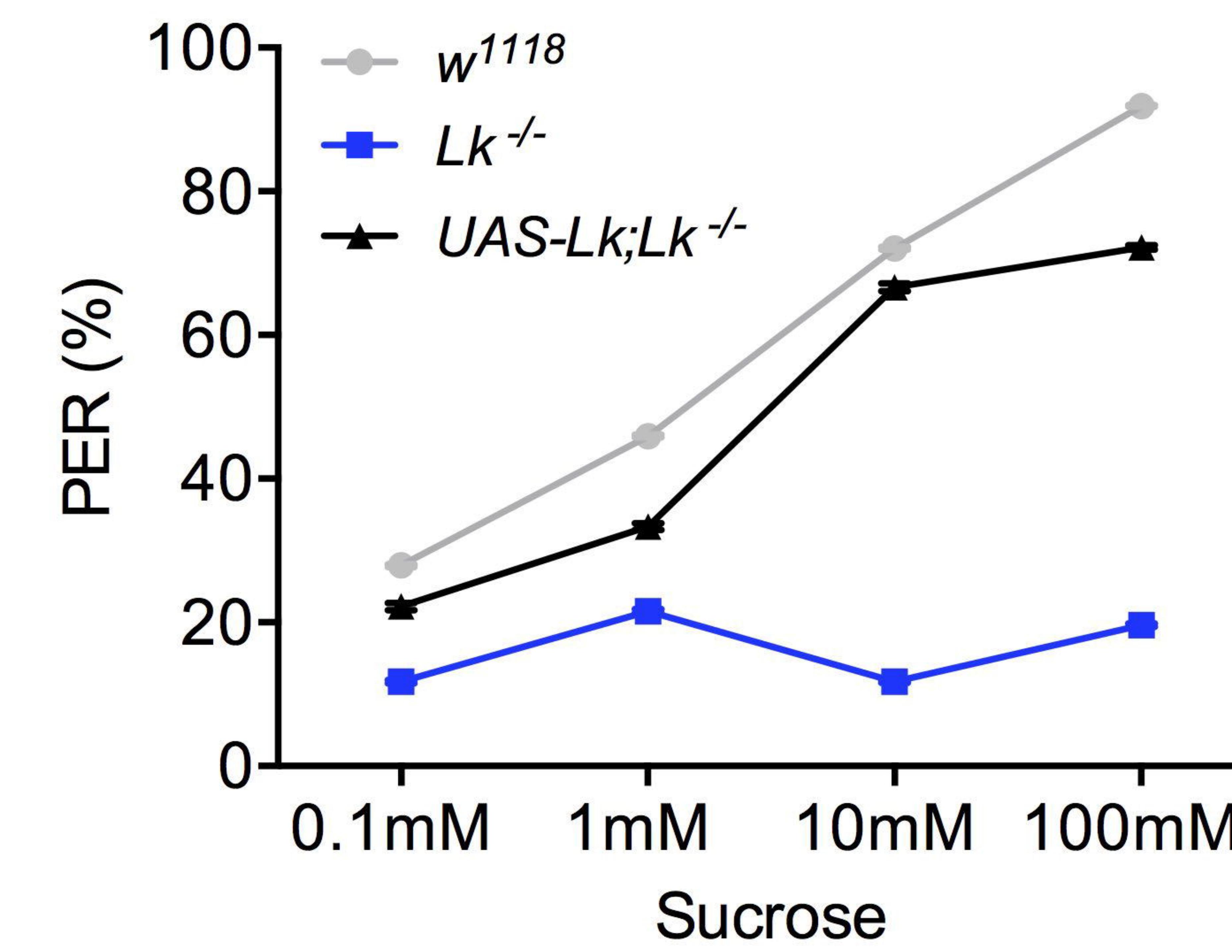
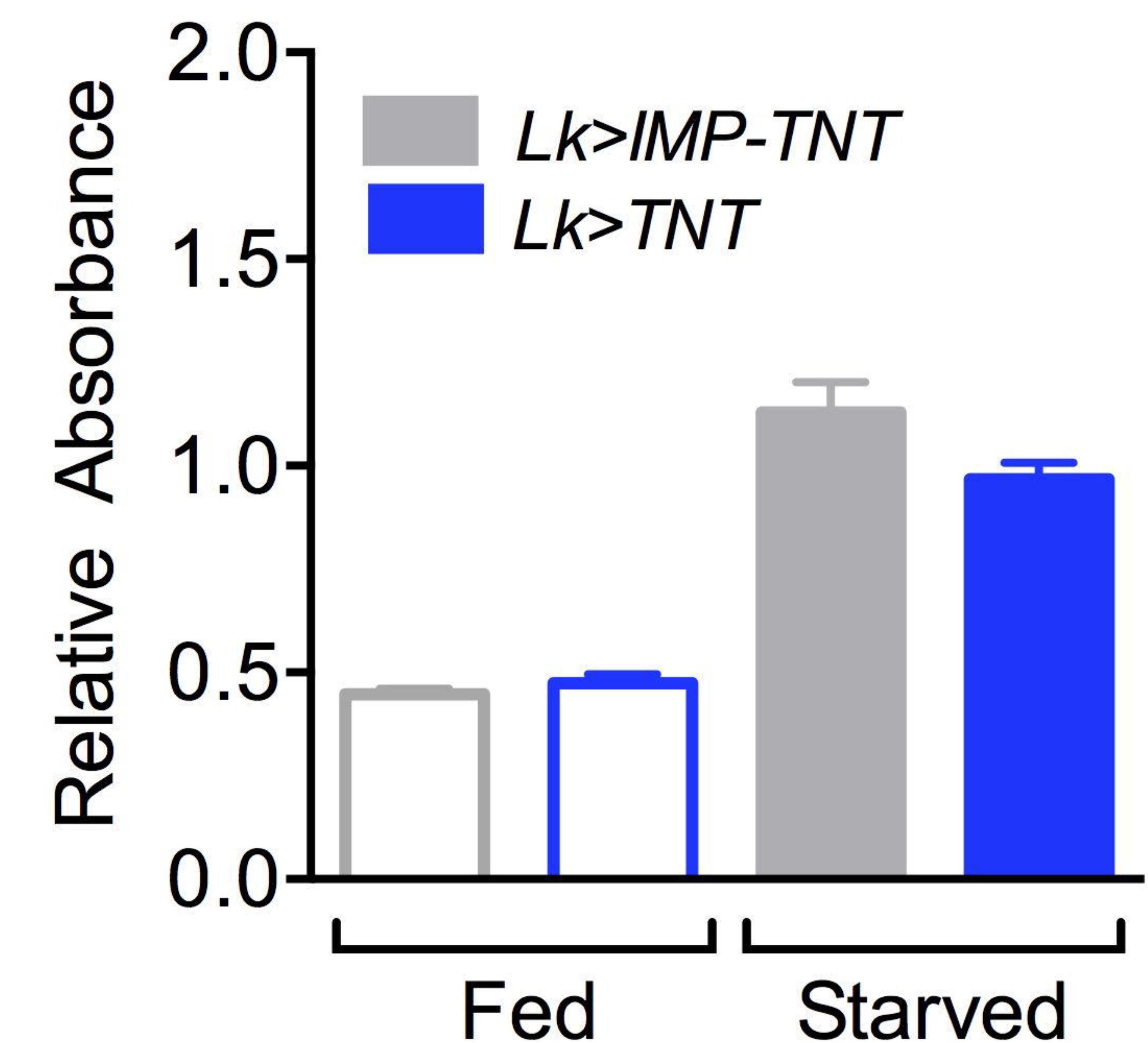
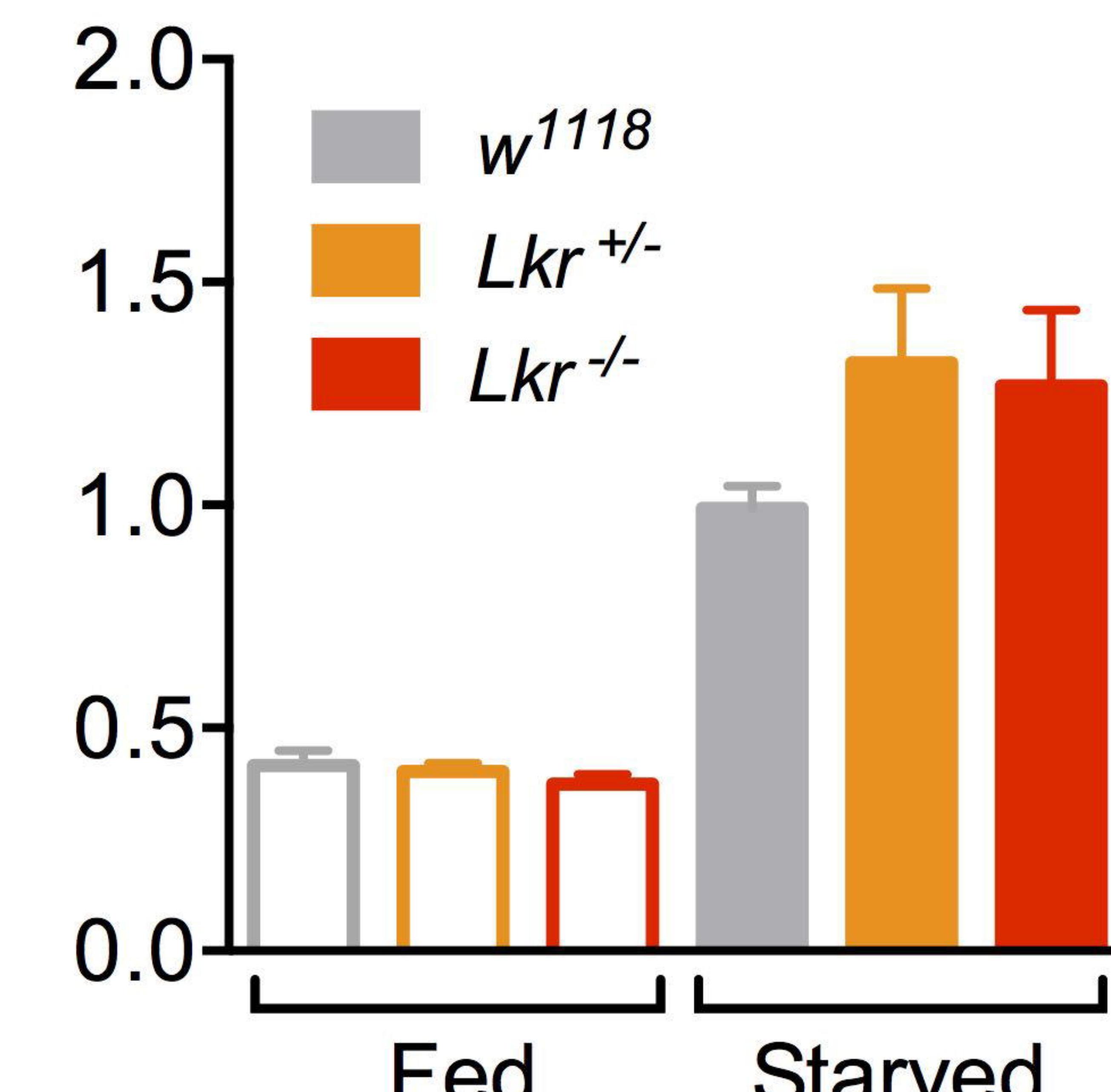
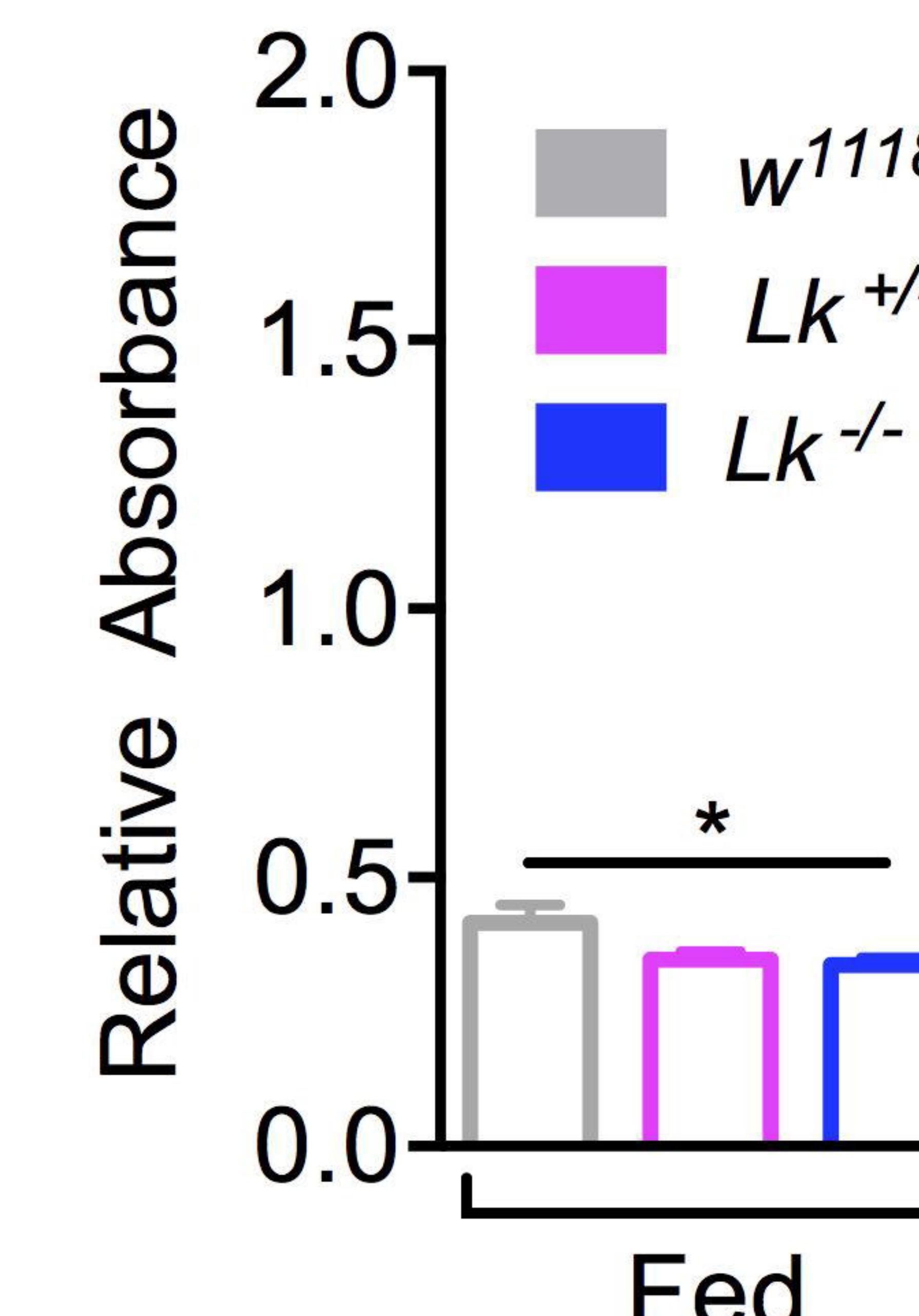
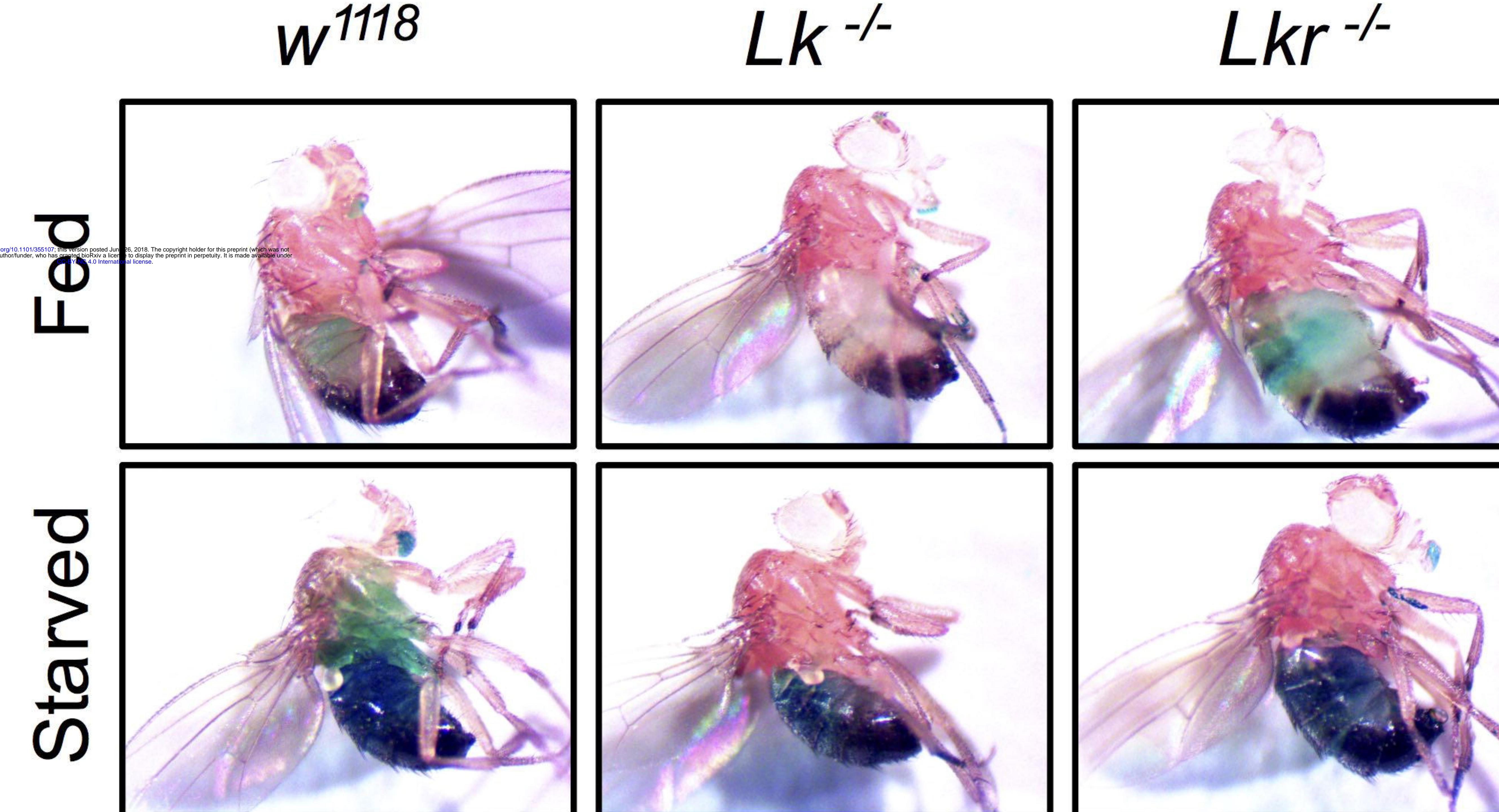
Figure S12: *Lkr* knockdown in insulin-producing cells. Knockdown of *Lkr* in IPCs has
(A) no effect on starvation, results in (B) increased survival under desiccation and (C) an
increase in dry weight. (* p < 0.05 as assessed by Log-rank (Mantel-Cox) test for (B), and
* p < 0.05 and ** p < 0.01 for (C) as assessed by one-way ANOVA followed by Tukey's
multiple comparisons test).

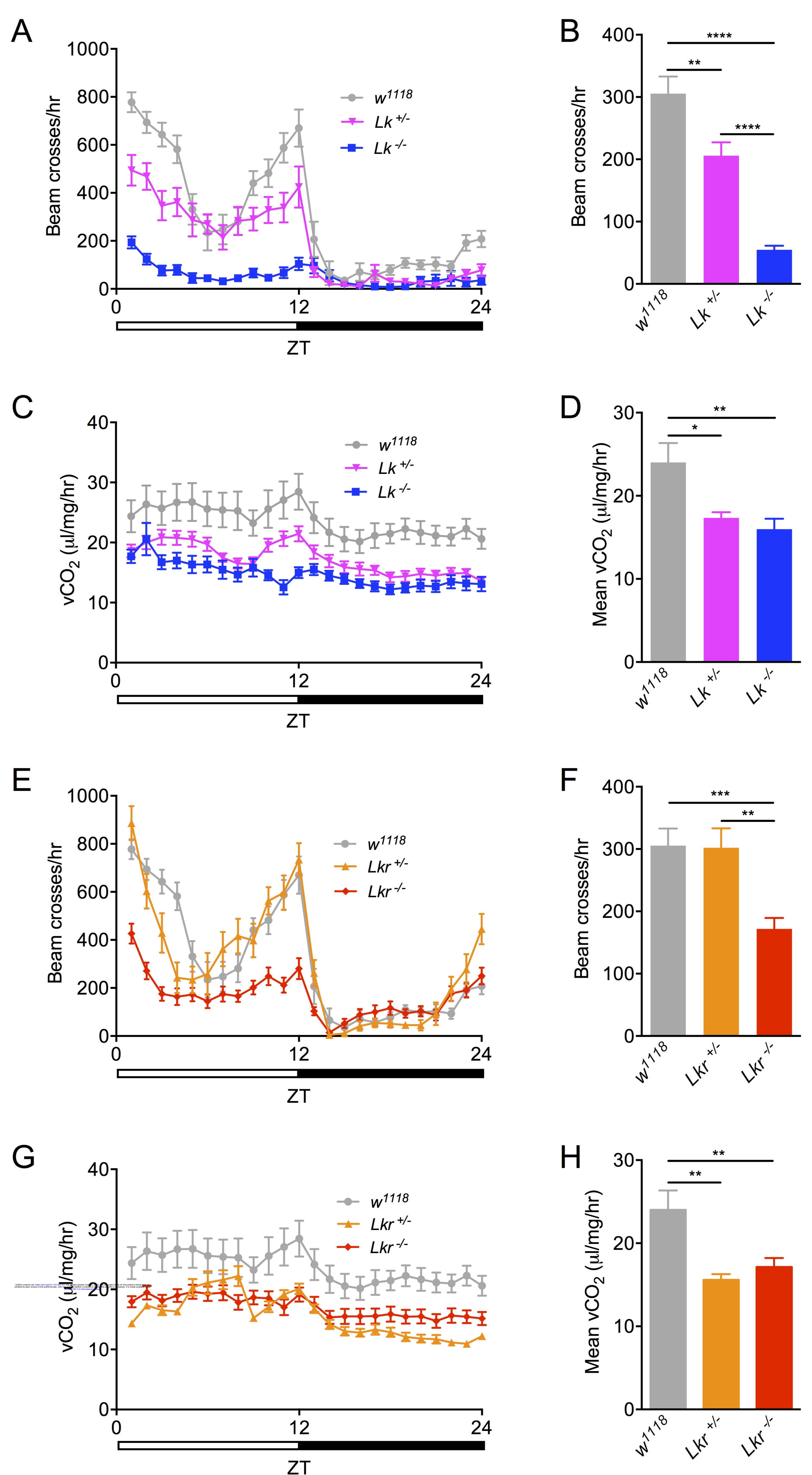




945

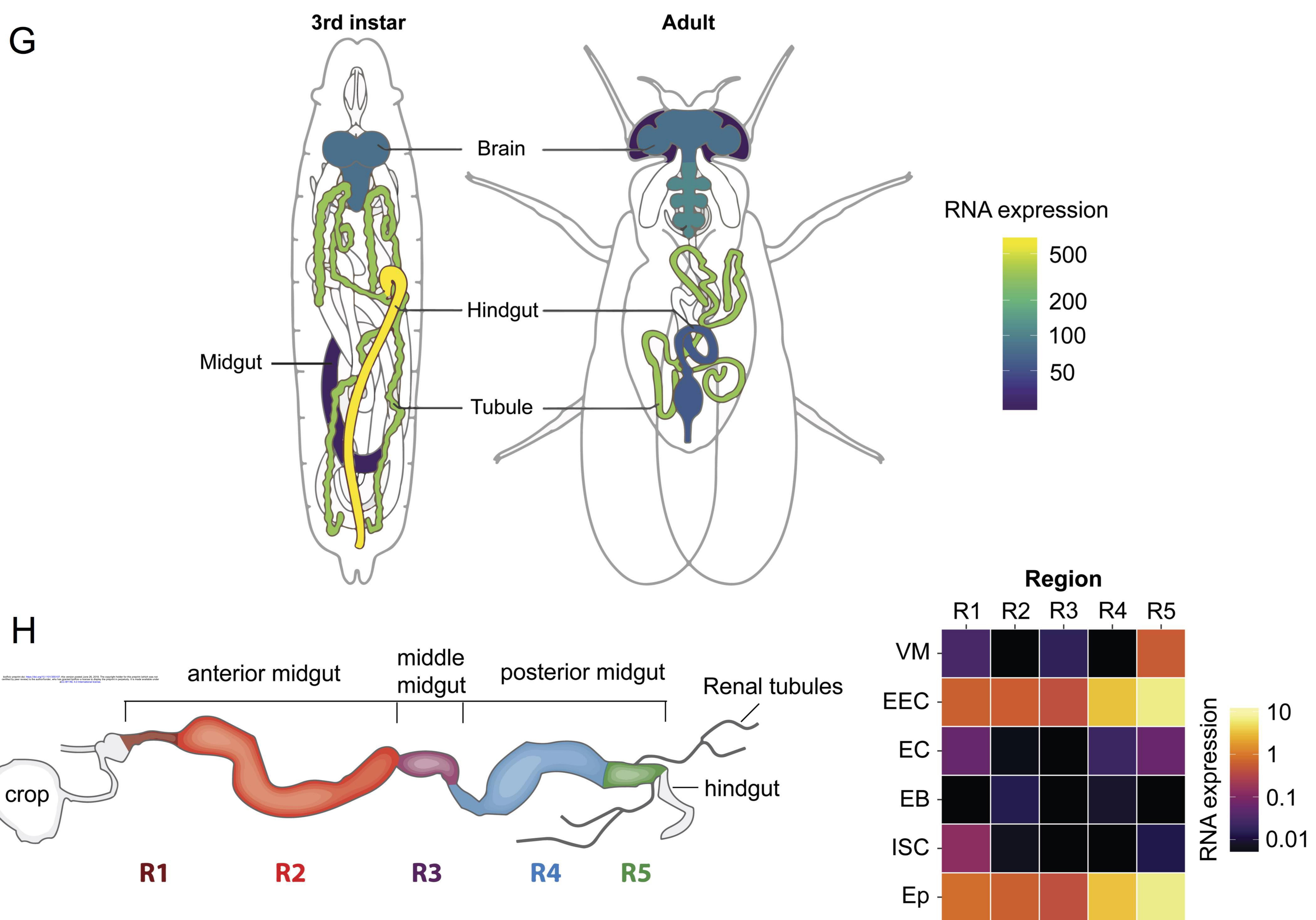
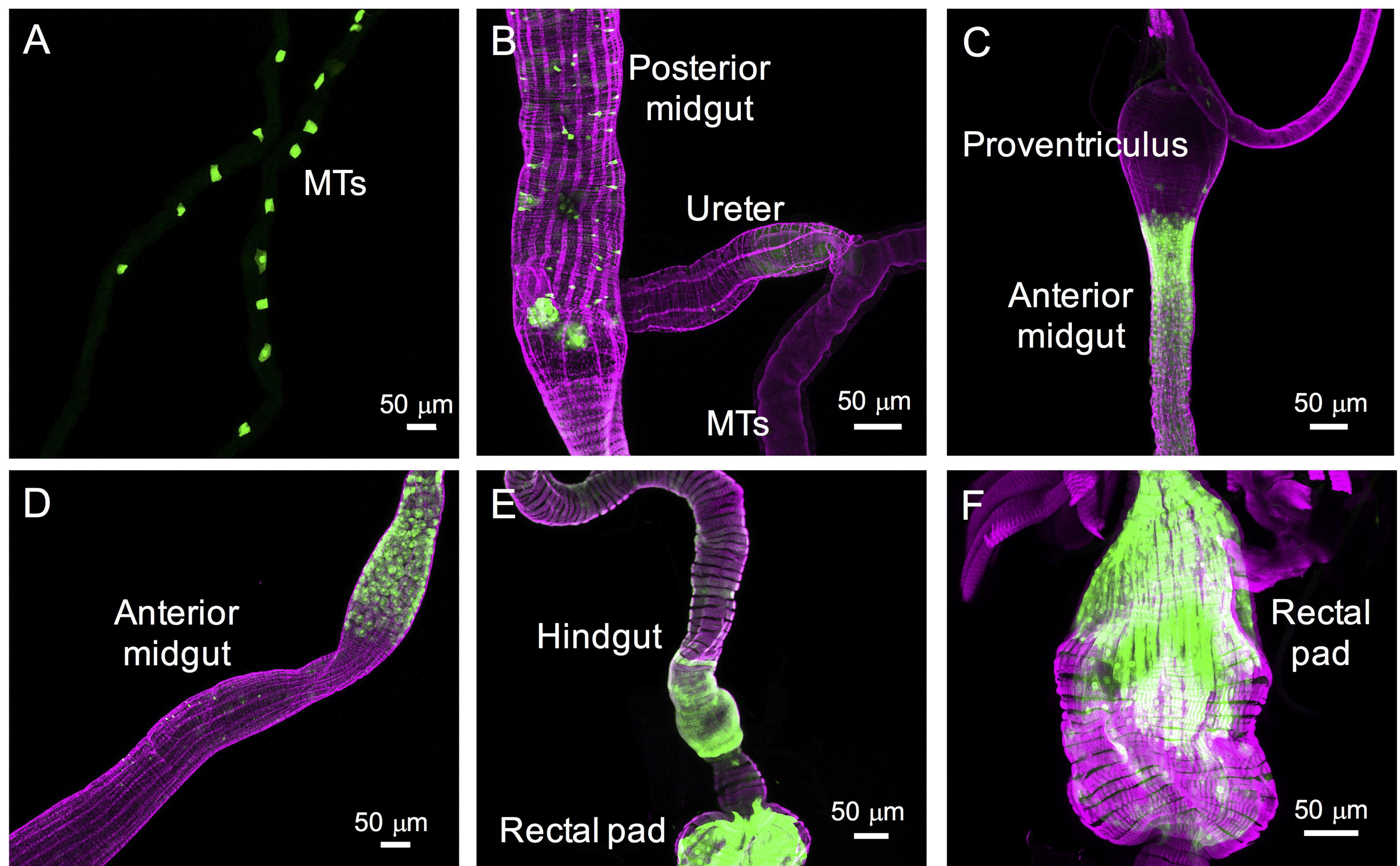




946

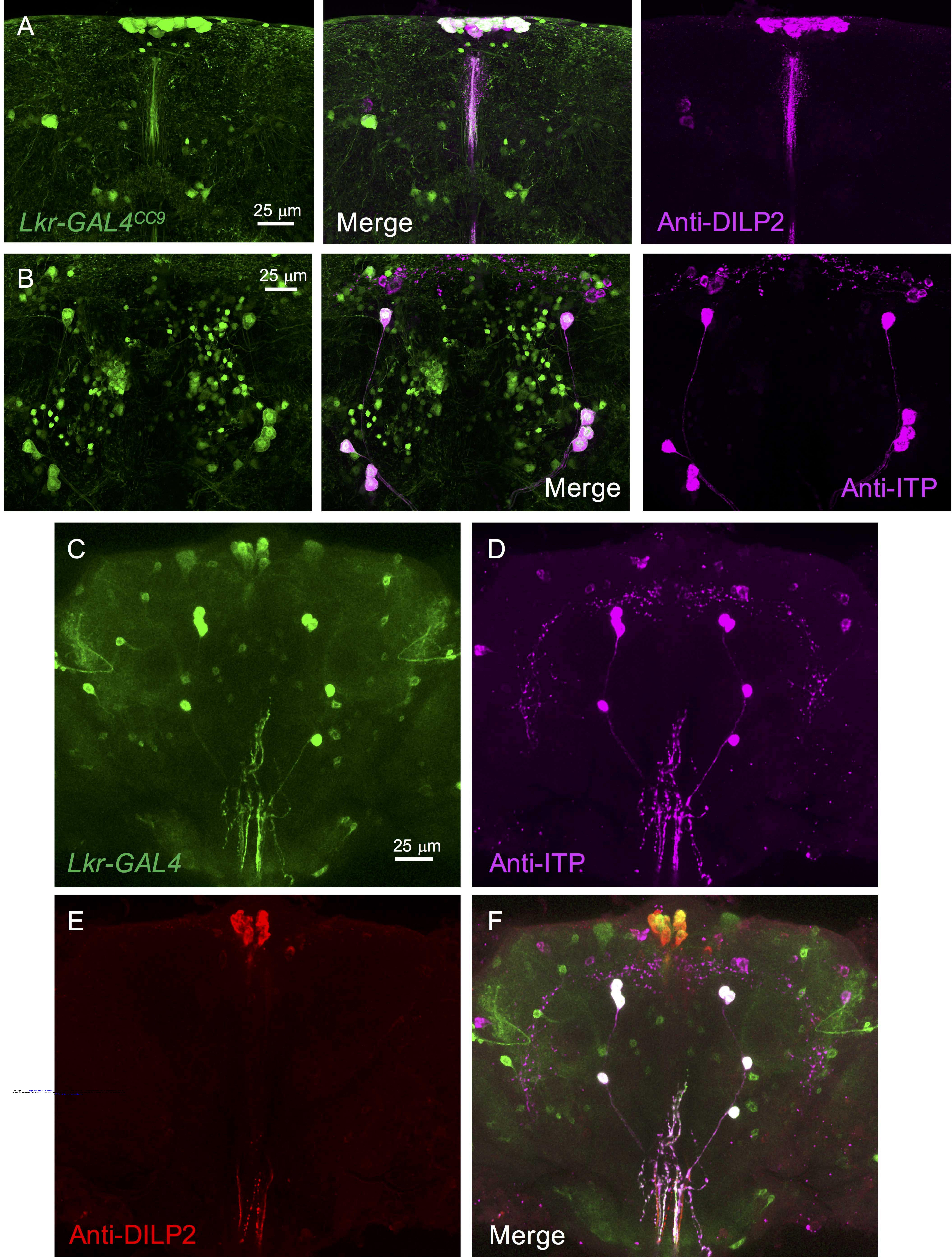





947

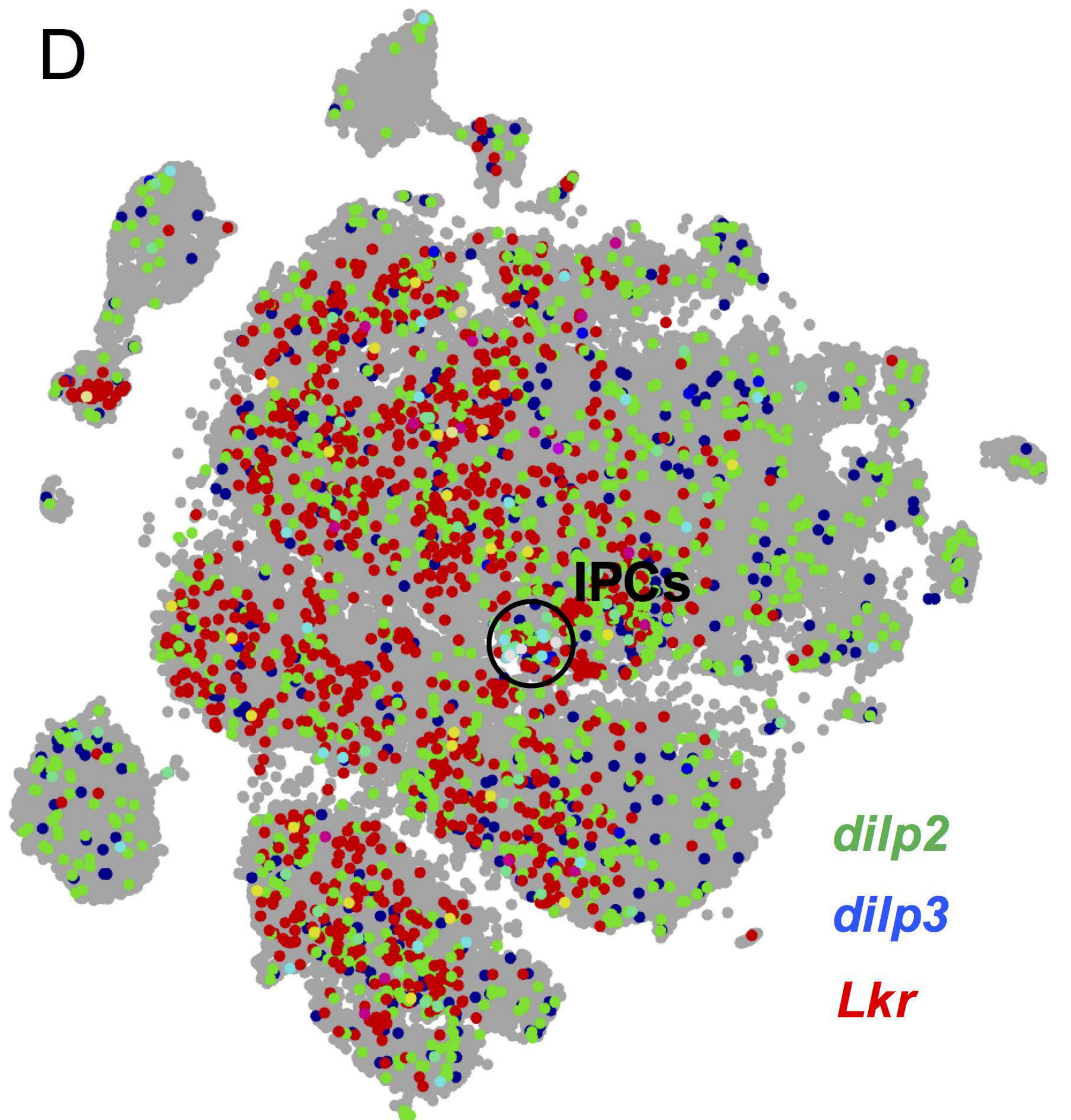
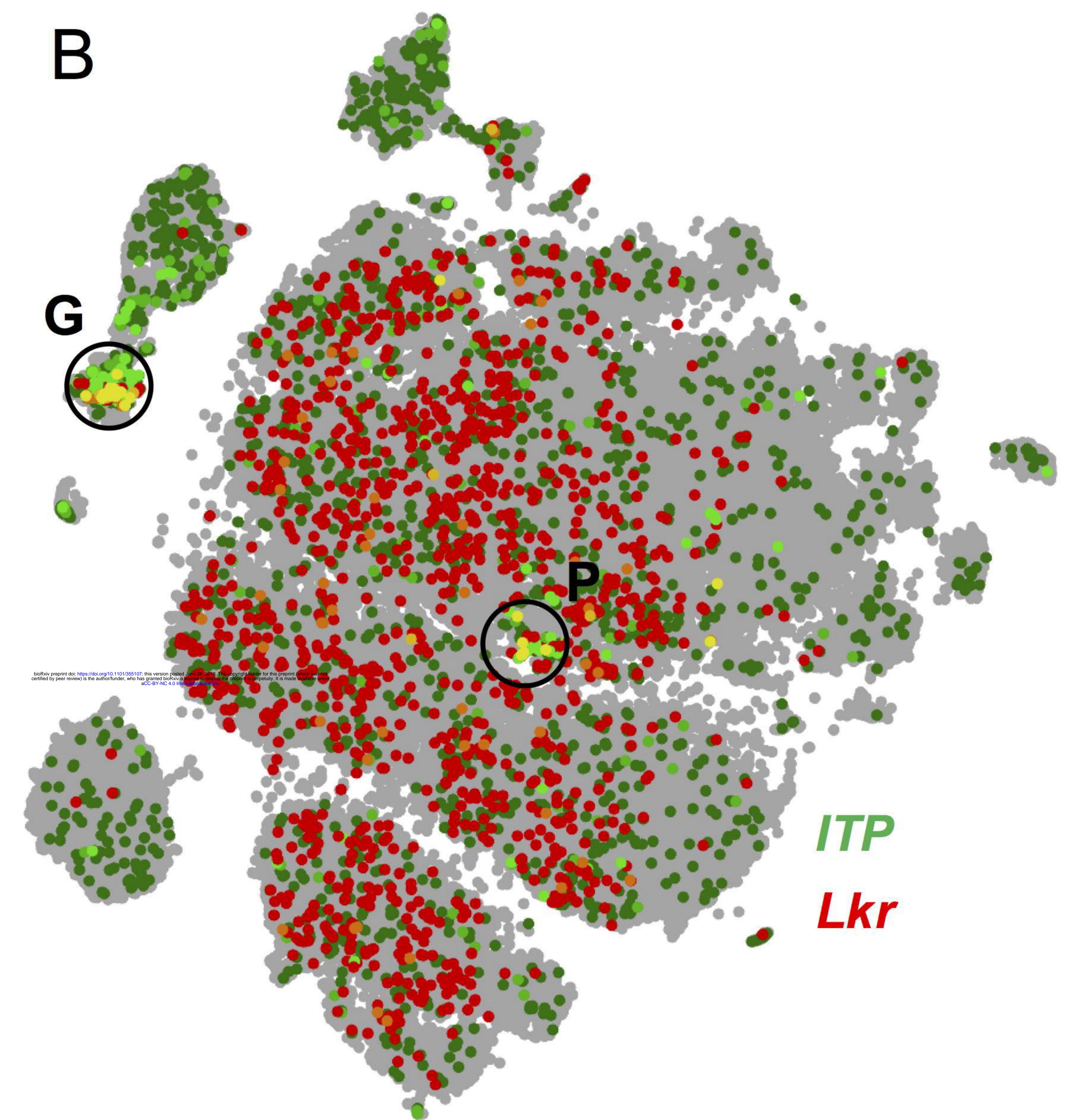
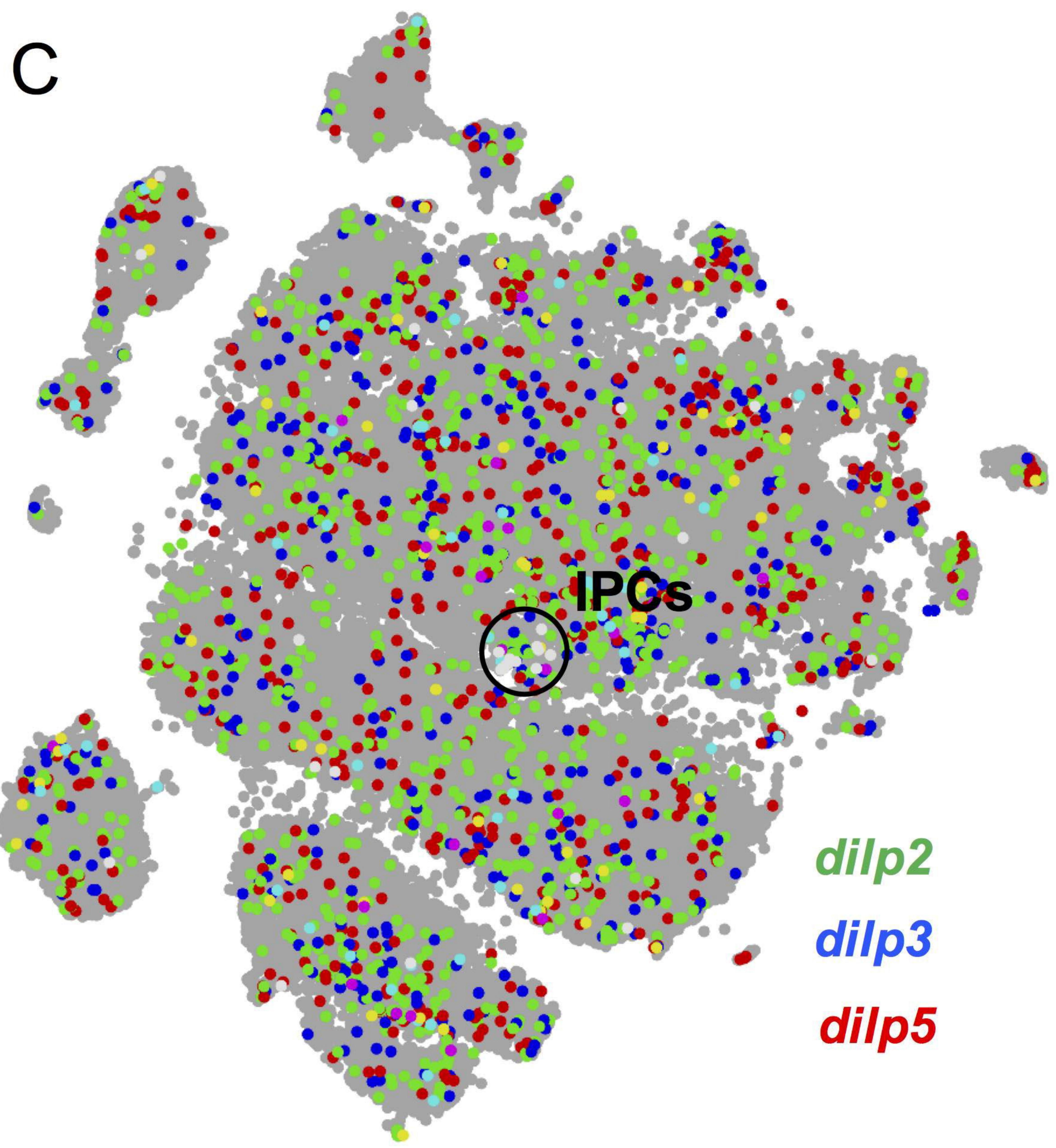
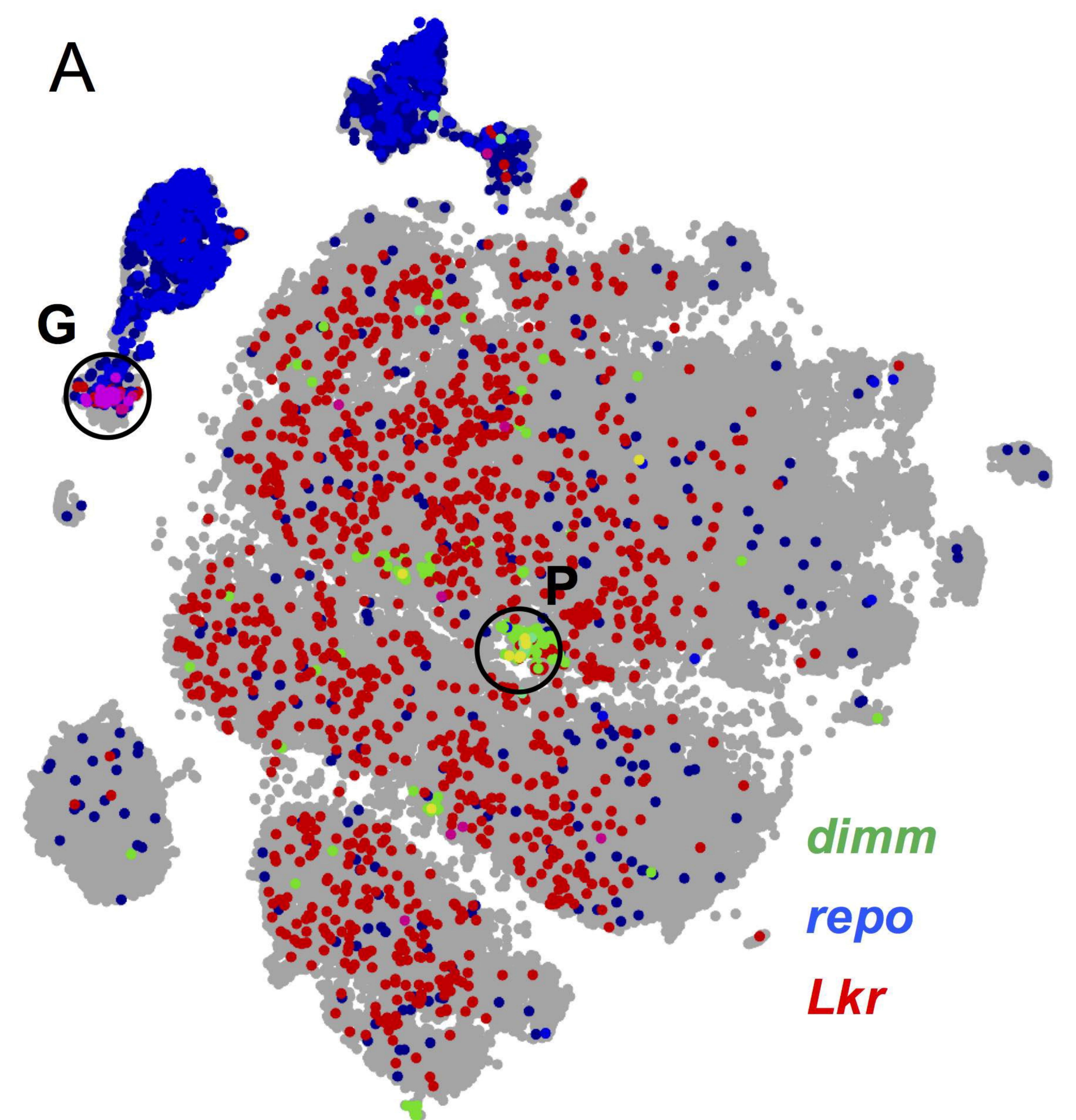


948

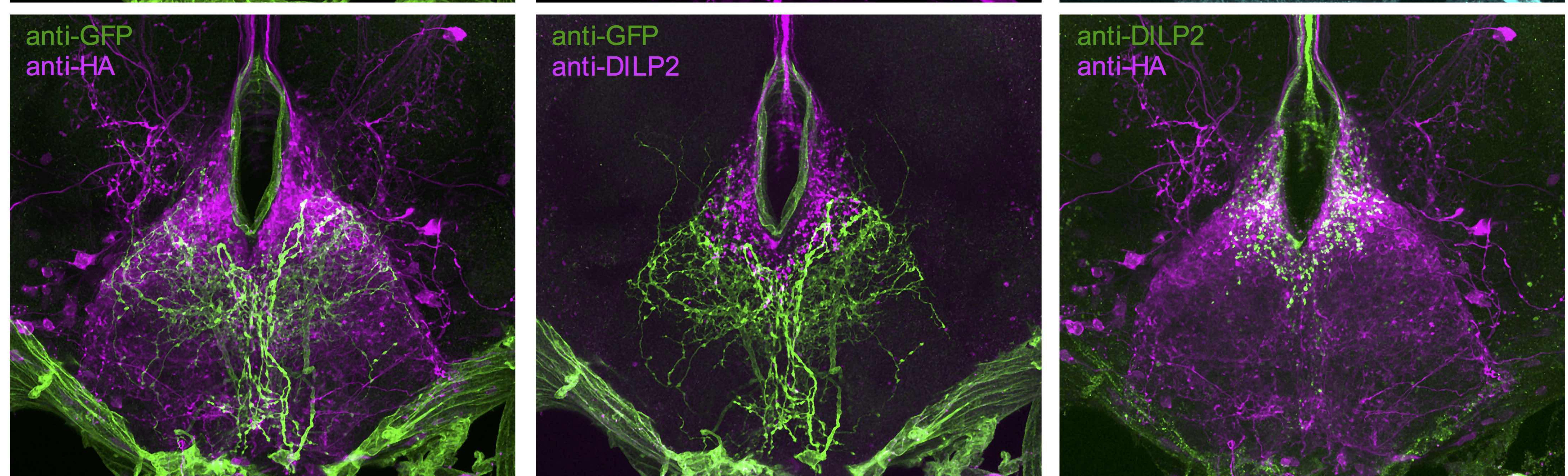
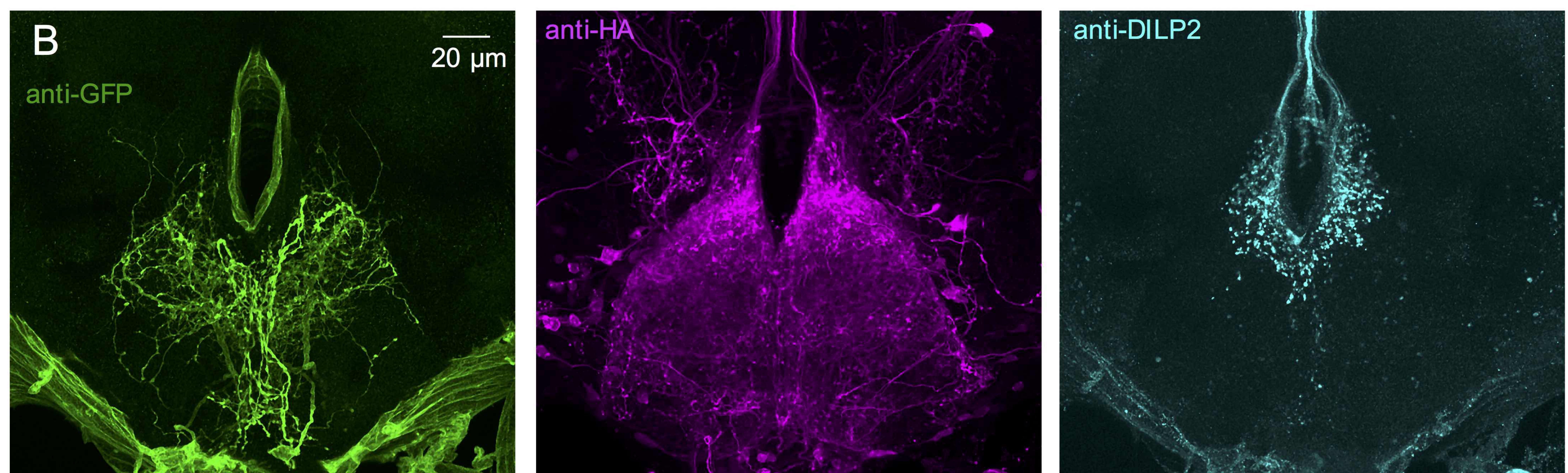
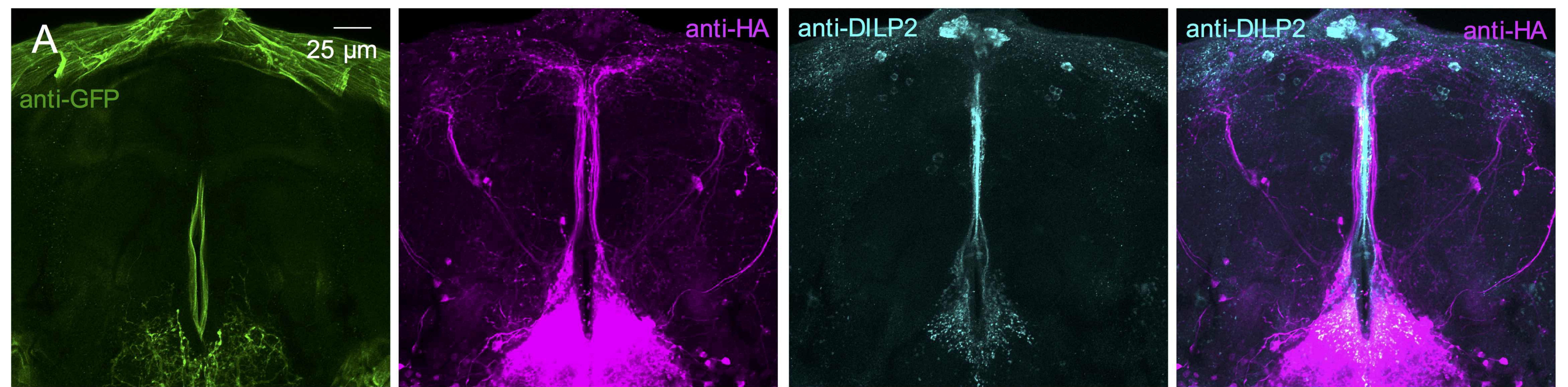








949


A**C****D**






A**B****C****D****F****E**

C

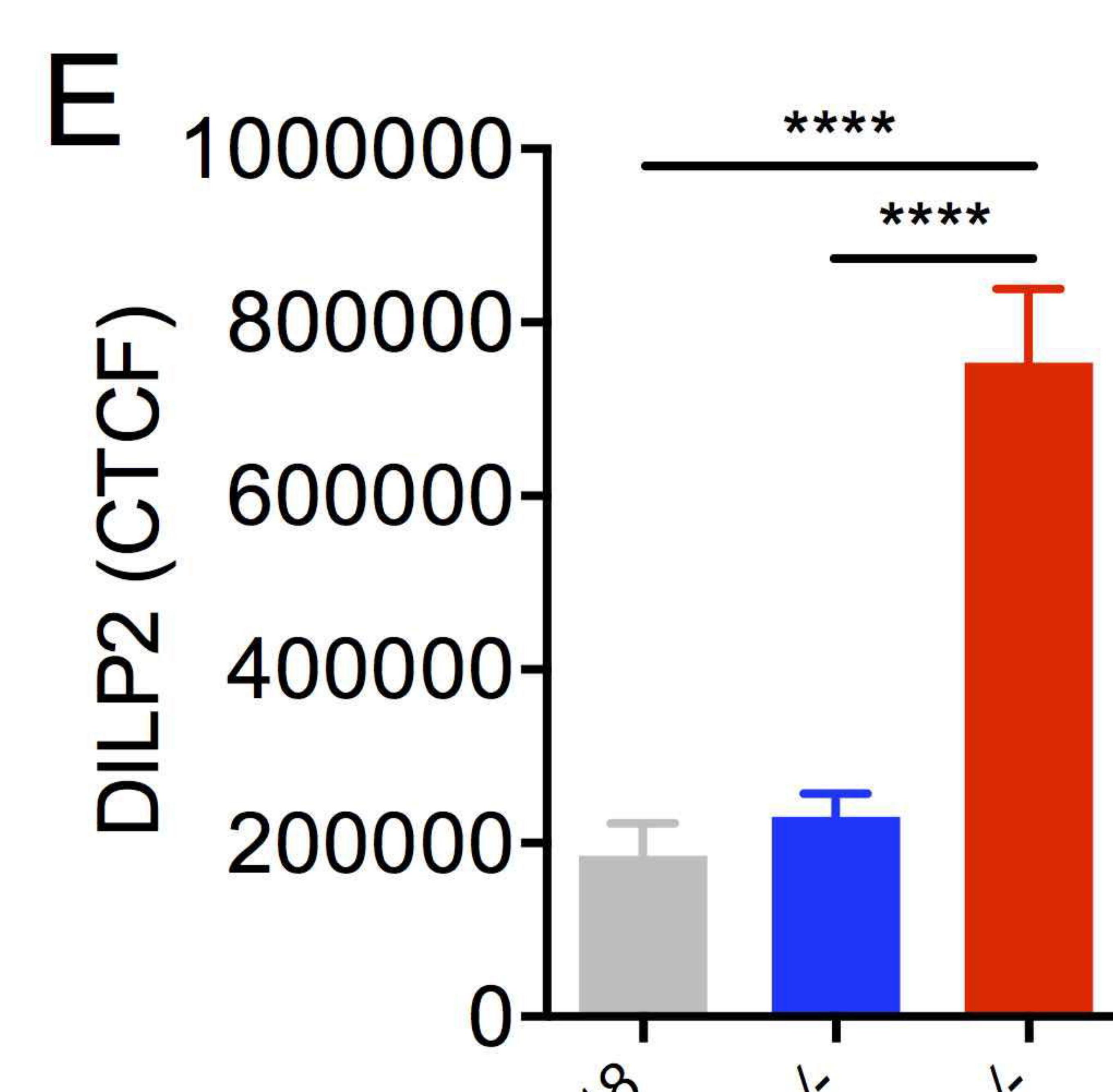
anti-DILP2

W¹¹¹⁸

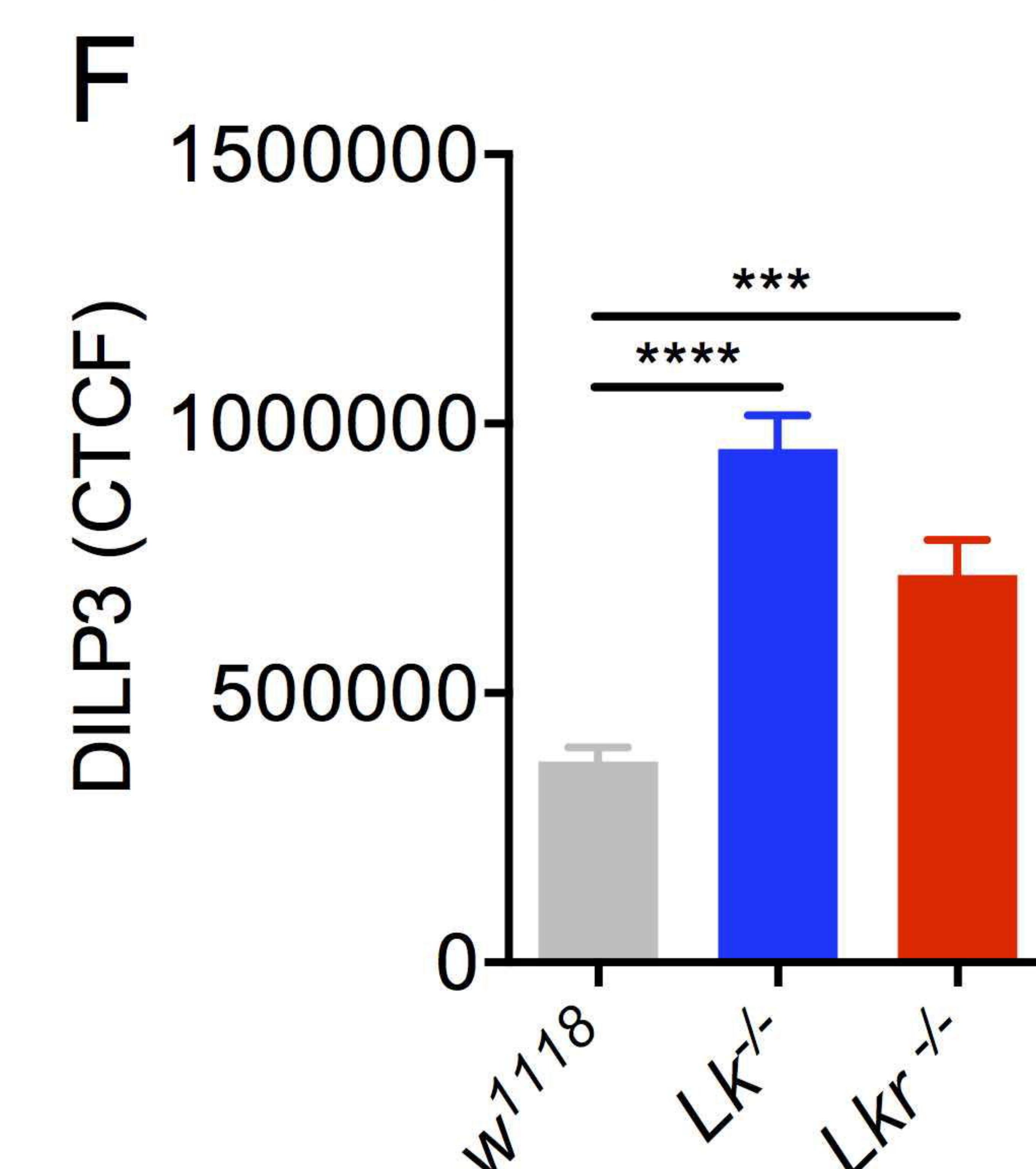
20 μ m

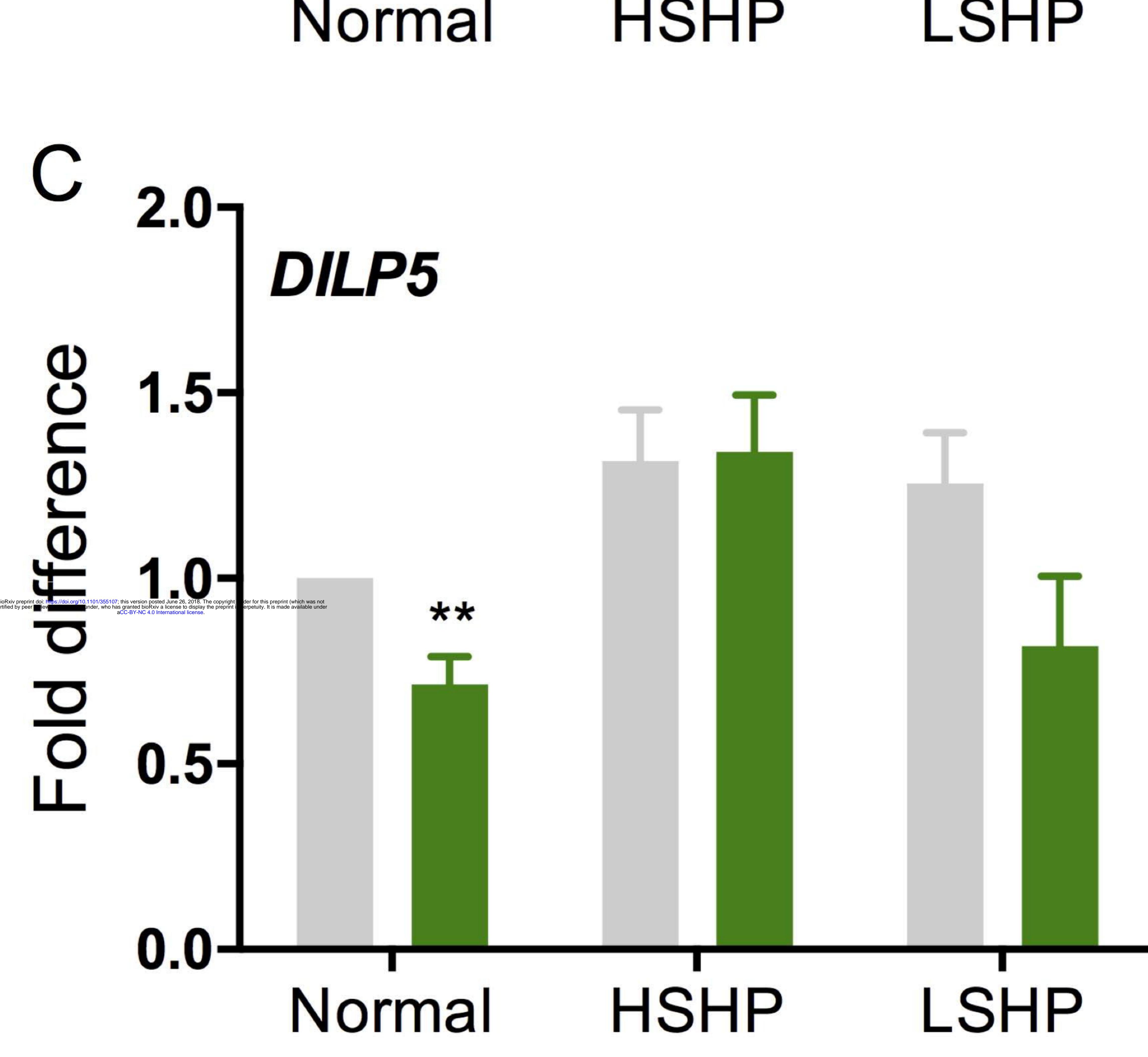
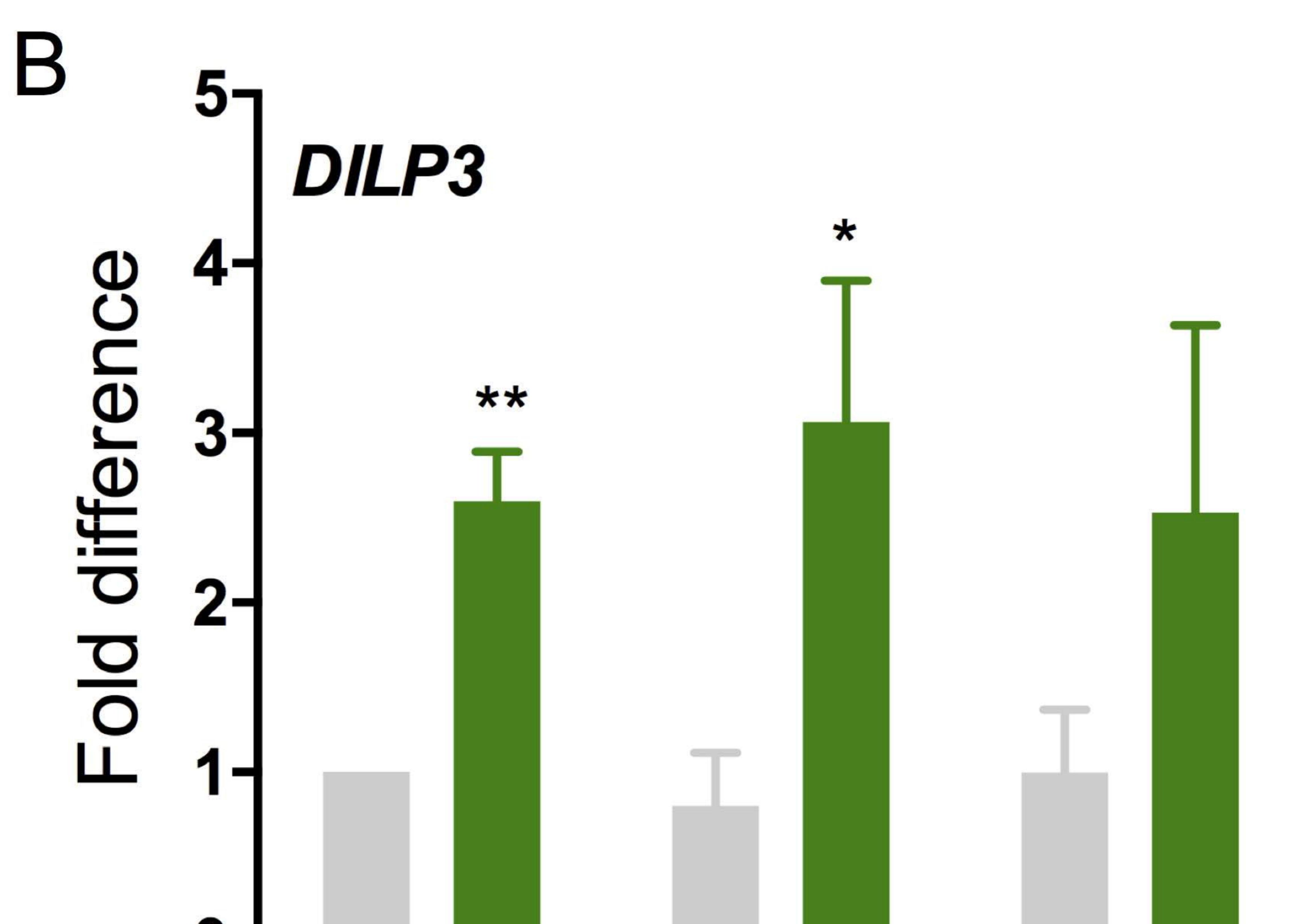
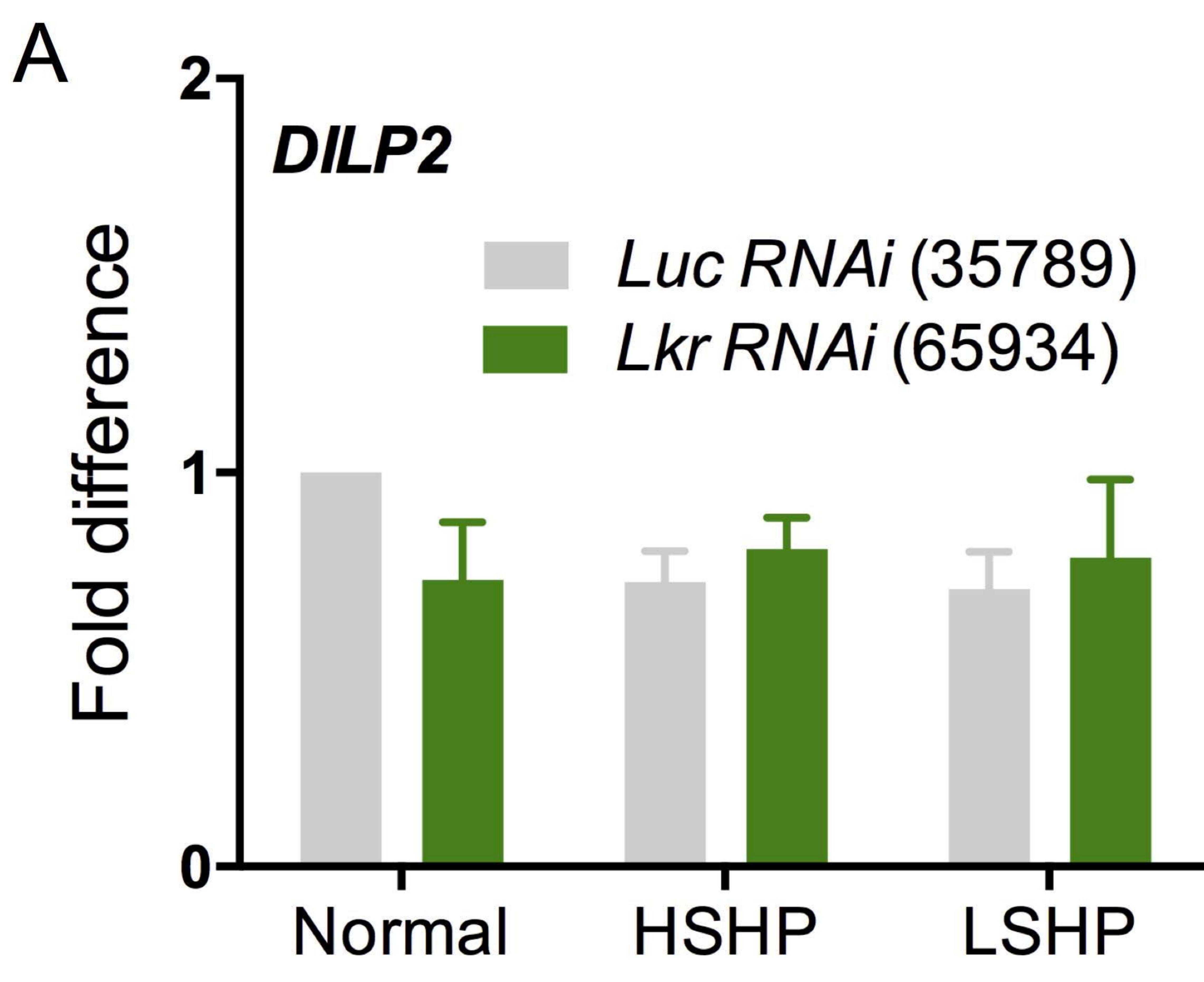
Lk^{-/-}

Lkr^{-/-}


D

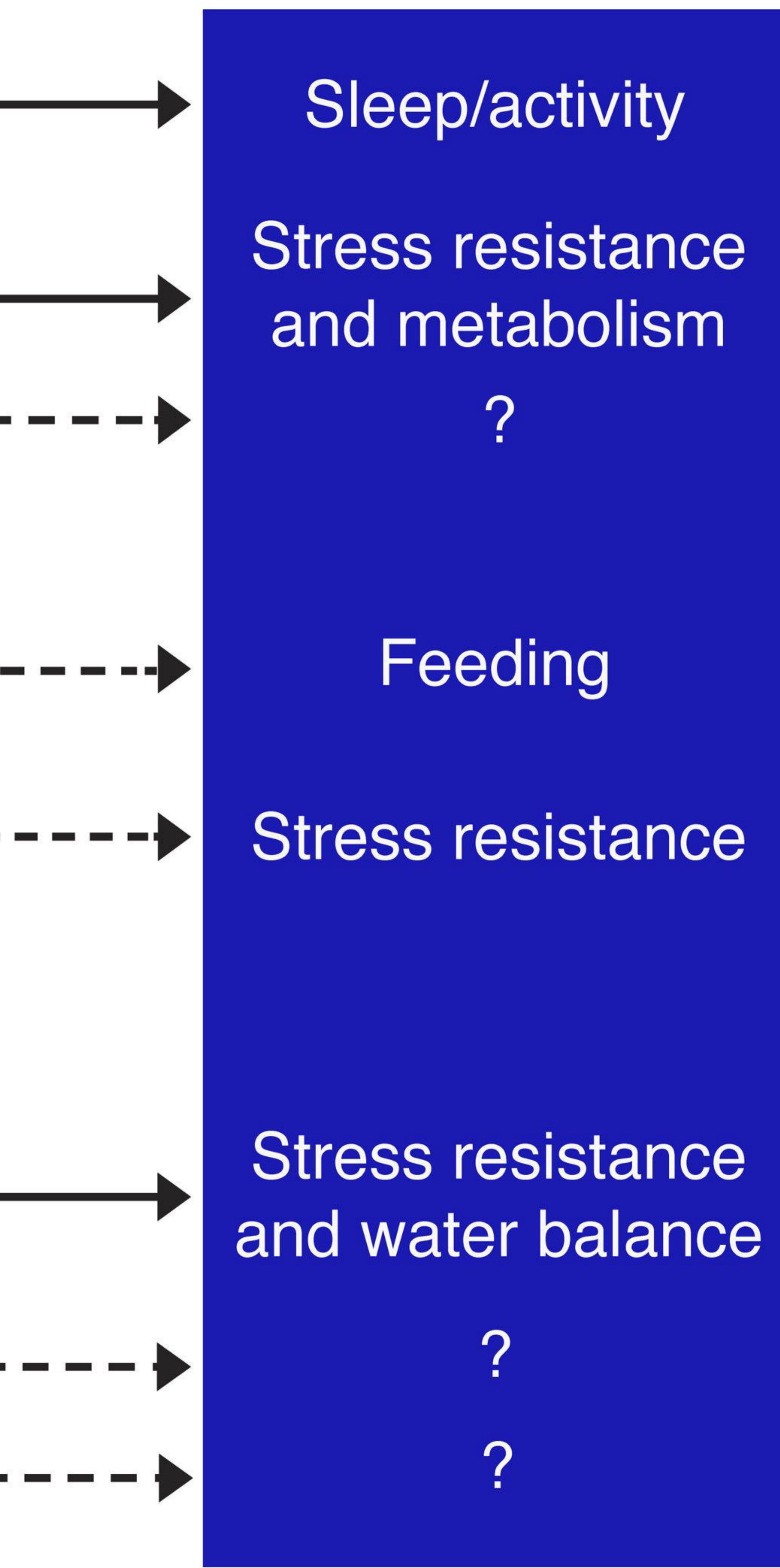
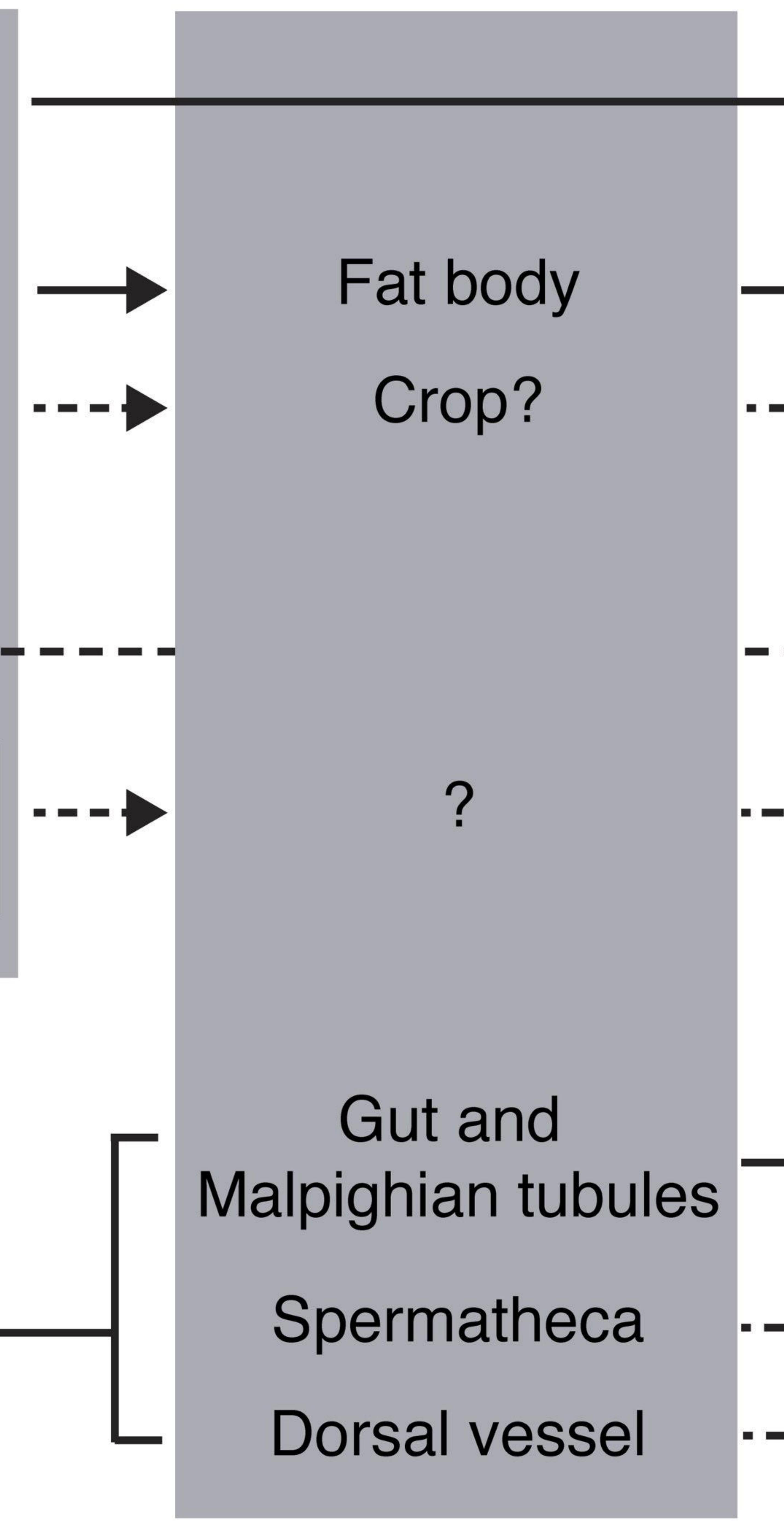
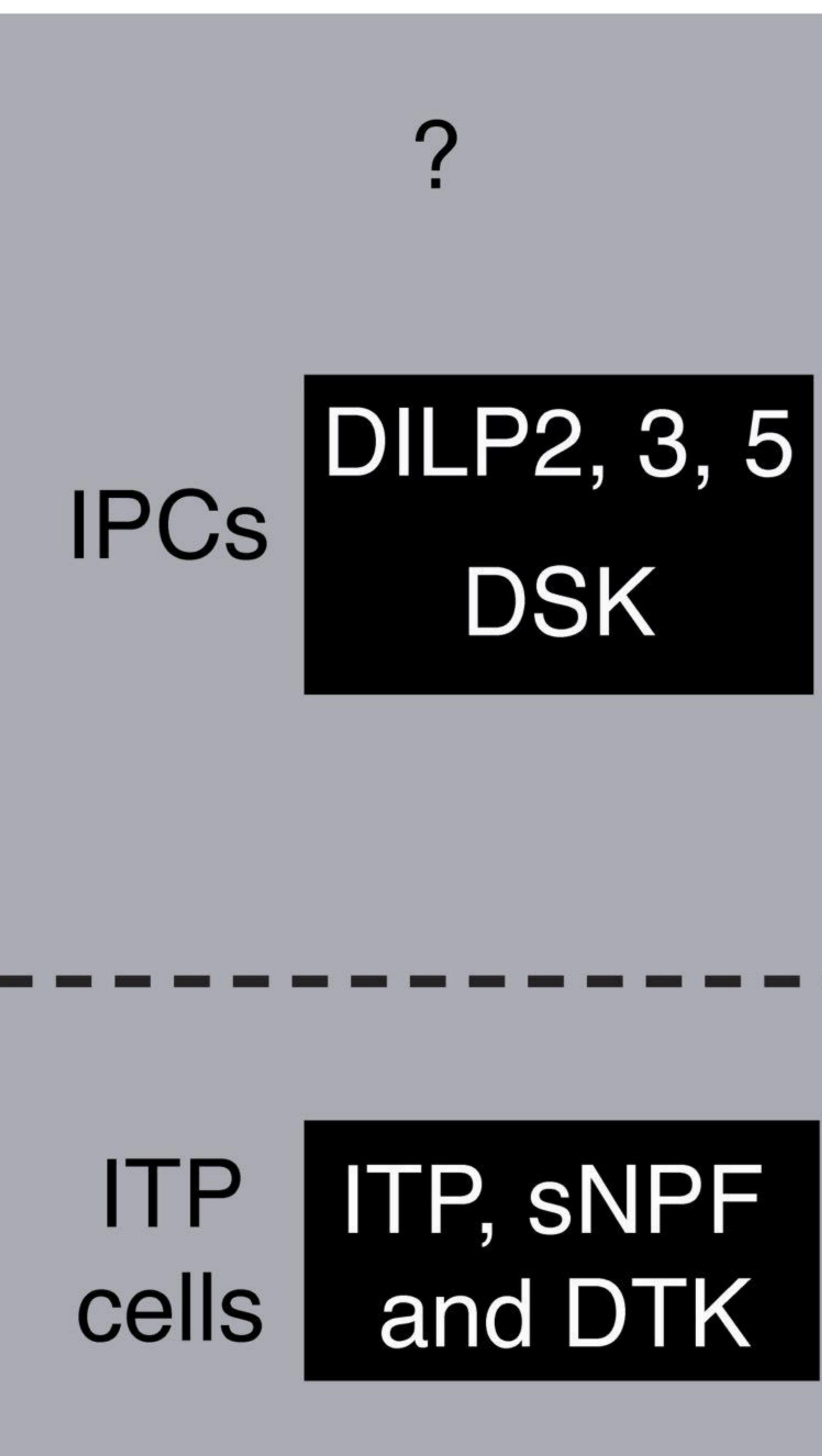
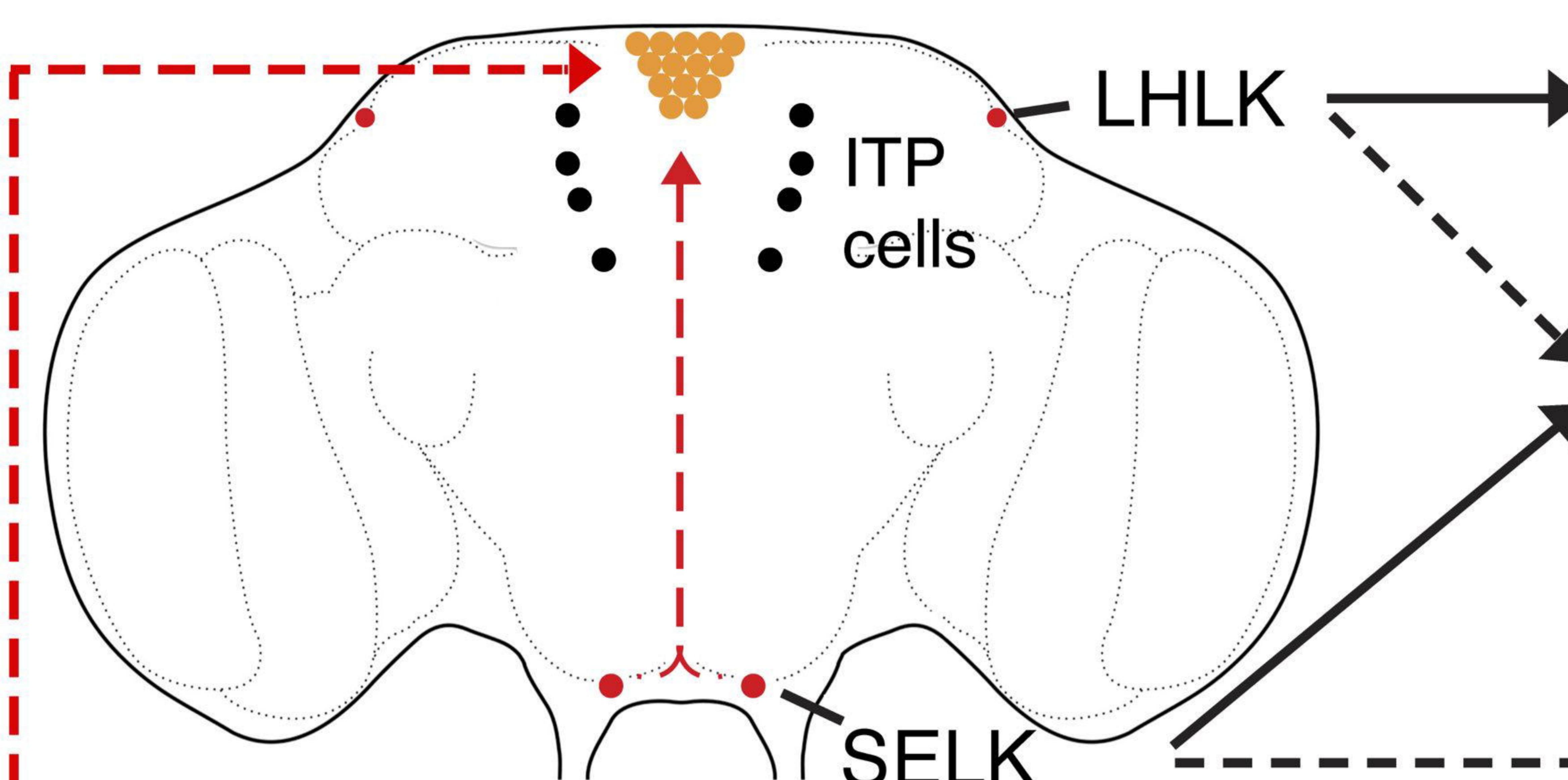
anti-DILP3


W¹¹¹⁸




Lk^{-/-}

E

F

CENTRAL TARGET

PERIPHERAL TARGET

EFFECT

