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Abstract

Human induced pluripotent stem cells (iPSCs) are established by introducing several
reprogramming factors, such as OCT3/4, SOX2, KLF4, c-MYC. Because of their pluripotency and
immortality, iPSCs are considered to be a powerful tool for regenerative medicine. To date, iPSCs have
been established all over the world by various gene delivery methods. All methods induced high-
quality iPSCs, but epigenetic analysis of abnormalities derived from differences in the gene delivery
methods has not yet been performed. Here, we generated genetically matched human iPSCs from
menstrual blood cells by using three kinds of vectors, i.e., retrovirus, Sendai virus, and episomal
vectors, and compared genome-wide DNA methylation profiles among them. Although comparison of
aberrant methylation revealed that iPSCs generated by Sendai virus vector have lowest number of
aberrant methylation sites among the three vectors, the iPSCs generated by non-integrating methods did
not show vector-specific aberrant methylation. However, the differences between the iPSC lines were
determined to be the number of random aberrant hyper-methylated regions compared with embryonic
stem cells. These random aberrant hyper-methylations might be a cause of the differences in the

properties of each of the iPSC lines.

Introduction

Human induced pluripotent stem cells (iPSCs) are powerful resources for disease modeling,
drug discovery, and regenerative medicine because of their potential for pluripotency, ability to self-
renew indefinitely, avoidance of rejection of their derivatives by the immune system and for ethical
issues [1]. Studies of reprogramming mechanisms and characterization of iPSCs are imperative to
ensure the safety of their derivatives in regenerative medicine [2]. Epigenetic reprogramming is an
essential event during transformation from somatic cells to iPSCs. DNA methylation is an important
epigenetic modification and has a critical role in many aspects of normal development and disease [3-
5]. Expression of OCT-4 and NANOG genes, known as reprogramming factors, are induced in
restricted tissues with an inverse correlation of DNA methylation during development [6, 7]. Transient
ectopic expression of defined reprogramming factors forces genome-wide epigenetic exchange and
transforms somatic cells to iPSCs [8-12]. After reprogramming, epigenetic profiles of the human iPSCs
can be clearly discriminated from the parent somatic cells and are similar to human embryonic stem
cells (ESCs), though there is a small fraction of differentially methylated regions [11-15]. In addition,
the degree of global DNA methylation in human pluripotent stem cells, ESCs and iPSCs, is higher
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when compared to somatic cells [11, 12]. This global hyper-methylation of human pluripotent stem
cells is a feature shared with primed murine epiblast stem cells, although mouse ESCs, that are naive
state stem cells, have global hypomethylation corresponding to early embryonic cells [16-21].

Human iPSCs have been established by various gene delivery methods. After the first report of
1PSC generation by using retrovirus vectors [8], lentivirus vectors [22], Sendai virus vectors [23, 24],
PiggyBac vectors [10], plasmid vectors [25], episomal vectors [26], protein transfer [27, 28], mRNA
transfer [29], and miRNA transfer [30] have been reported as methods for iPSC generation. All
methods induced high-quality iPSCs, but epigenetic abnormalities associated with the specific gene
delivery method have not been well analyzed. In this study, we generated human 1PSCs derived from
menstrual blood cells with three kinds of vectors, i.e., retrovirus, Sendai virus, and episomal vectors,

and evaluated them for the scale of genome-wide DNA methylation.

Results
Comparison of DNA methylation level in pluripotent stem cells and somatic cells

We generated genetically matched human iPSCs from menstrual blood cells (Edom22) in our
laboratory by retrovirus vector infection [12], episomal vector transfection or Sendai viral SeVdp-iPS
vector infection (designated as Retro-, Episomal-, and Sendai-iPSCs, respectively) (Fig. 1A and 1B,
Supplemental Fig. 1 and 2). To investigate the differences in DNA methylation between iPSCs
generated with the three kinds of vectors, we obtained DNA methylation profiles from ESCs, iPSCs
including Retro-iPSCs, Sendai-iPSCs, and Episomal-iPSCs, and parent somatic cells, using [llumina’s
Infintum HumanMethylation450K BeadChip. Methylation levels are represented as B-values, which
range from “0”, for completely unmethylated, to “1”, for completely methylated. Additional data sets
from 5 ESCs were obtained from the GEO database [31]. We completely analyzed global DNA
methylation of 49 samples (Supplemental Table 1), all with XX karyotypes. All iPSC lines in this study
were derived from the same parental somatic cell, Edom22. The promoter regions of pluripotency-
associated genes such as POUSF1, NANOG, SALL4, PTPN6, RAB25, EPHAI, TDGFI and LEFTY1
showed low levels of methylation, whereas the promoter regions of somatic cell-associated genes such
as EMILINI, LYST, RIN2 and SP100 were highly methylated in all pluripotent cells (Fig. 1C). These
results indicate that all iPSC lines were completely reprogrammed at the core genes, regardless of type
of vector used. As assessed by unsupervised hierarchical cluster analysis (HCA) (Fig. 1D) and principal

component analysis (PCA) (Fig. 1E) using each iPSC lines (passaged about 30 times), human iPSCs
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were clearly distinguishable from their parent cells and were similar to ESCs. Sendai-iPSCs appeared

to be more similar to ESCs, but no clear difference among the three methods was defined.

Identification of differentially methylated regions

In further analysis, we defined a differentially methylated region (DMR) between ESCs and
1PSCs as a CpG site whose delta-B-value score differed by at least 0.3 (Fig. 2A). We compared the
DNA methylation states of each iPSC line with those of ESCs (the averaged value from 12 ESC lines).
The number of DMRs between ESCs and each iPSC line (ES-iPS-DMRs) ranged from 448 to 1,175 in
Retro-iPSCs, from 101 to 168 in Sendai-iPSCs, and from 202 to 875 in Episomal-iPSCs. Sendai-iPSCs
had lowest number of ES-iPS-DMRs among three kinds of vectors (Fig. 2B). The number of ES-1PS-
DMRs in all 6 Sendai-iPSCs was under 168. In Episomal-iPSCs, 2 out of 3 lines showed 300 or fewer
ES-1PS-DMRs. Although 1 out of 3 Retro-iPSC lines showed a relatively low number of ES-1PS-
DMRs, the range of ES-iPS-DMRs number was wider. These results suggest that the number of ES-
1PS-DMRs depended on each cell line rather than on the vectors used for iPSC generation. ES-iPS-
DMRs can be categorized into two groups: hyper-methylated and hypo-methylated sites in iPSCs, as
compared with ESCs. There was little difference in the number of hypo-methylated ES-iPS-DMRs,
especially between Sendai-iPSCs and Episomal-iPSCs (Fig. 2C). The difference between each iPSC

line therefore appears to be dependent on the number of abnormal hyper-methylated sites.

Correlation between expression of DNMT/TET genes and ES-iPS-DMRs

In order to investigate whether abnormal hyper-methylation in iPSCs was caused by irregular
expression of DNA methyltransferases (DNMTs) and/or Ten-eleven translocations (TETs) that induce
de-methylation, we examined expression level of DNMT and TET genes. All iPSC lines, regardless of
type of vector, showed hyper expression of both DNMT3B and TET1 genes compared to ESC (Fig. 2D
and 2F). However, there was no correlation between the number of ES-iPS-DMRs and the expression
levels of DNMT3B or TETI gene (Fig. 2E and 2G). Similarly, other DNMTs (DNMT1, DNMT3A and
DNMT3L) and TETs (TET2 and TET3) did not show correlation between the number of ES-iPS-DMRs

and expression level.

Vector-specific ES-iPS-DMRs
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We next aimed to detect vector-specific ES-iPS-DMR. We extracted 229 DMRs that
overlapped in all 3 Retro-Esom-iPSC lines. The 44 and 76 DMRs also overlapped in all 6 Sendai-
Esom-iPSC lines and in all 3 Episomal-Esom-iPSC lines, respectively (Fig. 3A). Approximately 80%
of ES-iPS-DMR in each vector group was detected in only one or two lines, suggesting that most of the
DMRs occurred randomly in the genome. Comparison of each the overlapping ES-iPS-DMR revealed
that 167, 2, 13 ES-iPS-DMRs were detected as the Retro-, Sendai- and Episomal-iPSC-specific DMRs,
respectively. Because these aberrant methylation sites at promoter region possibly affect gene
expression, we further investigated ES-iPS-DMRs at promoters. While no ES-iPS-DMRs overlapped
for all Sendai-iPSC lines, 44 and 5 ES-iPS-DMRs were common in all Retro- and Episomal-iPSC lines
at the promoter regions, respectively (Fig. 3B). Details of vector-specific DMRs are summarized in
Table 1 and Supplemental Table 2. Interestingly, 5 ES-iPS-DMRs in Episomal-1PSC lines appeared
transiently. They were not DMRs at different passages and in different lines (Fig. 3C). In the Retro-
1PSC line, 11 out of 44 ES-iPS-DMRs were also transient abnormal regions. These results indicated
that Retro-1PSCs had a small subset of the vector-specific ES-iPS-DMRs, but iPSCs generated by non-
integrating methods did not have the vector-specific ES-iPS-DMRs, especially those were located

promoter regions.

Aberrant methylation in imprinted genes in pluripotent stem cells.

We also compared DNA methylation of imprinted genes between somatic cells and
1PSCs/ESCs, and identified 413 differentially methylated regions at promoter regions including 68
imprinted genes. These 68 genes comprised 69.4 % of imprinted genes examined. Representative
imprinted genes including MEG3, H19, PEG3, IGFR2, PEG10 and XIST in ESCs and iPSCs showed
aberrant methylation compared with parent somatic cells, independent of the vector type (Fig. 4). In

addition, most of the aberrant methylation was not adapted during culture (Supplemental Fig. 3).

Discussion

Choi et al. [32] reported that hiPSCs, which were generated by using a Sendai virus vector,
were molecularly and functionally equivalent to genetically matched hESCs. Schlaeger et al. [33] also
reported that there were no substantial method-specific differences in DNA methylation, marker
expression levels or patterns, or developmental potential by comparing among Retro-, Lenti-, Sendai-,

Episomal-, and mRNA-iPSCs. Our study bridges the gap between the two previous studies. In this
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study, we compared iPSC lines derived from the same parental somatic cell line, menstrual blood-
derived cells, using three types of vectors. Three types of menstrual blood cell-derived-iPSCs are
preferable for comparison analysis to avoid any influence from different parental cells. Over 99% of
CpG sites in all iPSC lines did not show differences in the methylation levels, compared with ESCs;
therefore, iPSCs were almost identical to ESCs in epigenetics regardless of vector types used for iPSC
generation. Our findings are consistent with the results of previous studies. However, when focusing
the ES-iPS-DMRs of each iPSC line in details, we found that Sendai-iPSCs were more similar to ESCs
than Retro- and Episomal-1PSCs at the epigenetic scale. Also, the ranges of the numbers of ES-iPS-
DMRs among Retro-iPSC line was wider than those seen in Sendai- and Episomal-iPSCs. This wide
variation might result from genome integration of transgenes. Among Episomal-iPSC lines, some lines
as well as Sendai-iPSCs showed low numbers of DMRs. The differences between ESCs and iPSCs,
especially Sendai- and Episomal-iPSCs, might be derived from characteristics of each of the iPSC
lines, rather than type of vectors used for iPSC generation. The type of vector might influence the
variety of line-specific properties. The line-specific differences depended on the number of aberrant
hyper-methylated DMRs. There was no correlation between this aberrant hyper-methylation and the
expression levels of the DNMT or TET genes; therefore, this aberrant hyper-methylation might be
generated at the initial reprogramming step and maintained during culture. Approximately 80% of
aberrant hyper-methylated ES-iPS-DMR in each vector group was detected in only one or two lines
and there were no vector-specific DMRs in non-integrating methods, suggesting that most of the DMRs
occurred randomly in the genome. Therefore, this random hyper-methylation might be a cause of the
differences in the properties of each of the iPSC lines.

Aberrant methylation of some imprinted genes in ESCs and iPSCs have been reported by
several groups [12, 34, 35]. In this study, we detected 68 imprinted genes that exhibited aberrant
methylation, which comprised 69.4% of imprinted genes examined. These abnormalities have been
widely detected in pluripotent stem cells. Most iPSC lines as well as ESCs, were abnormally hyper-
methylated at MEG3, H19, PEG3, IGFR2 and XIST, regardless of the vector type. The aberrant
methylation at imprinted gene and X7ST gene promoters was maintained throughout continuous passage
(data not shown). The aberrant methylation of imprinted genes should therefore be monitored for
validation of PSC quality.

In conclusion, we compared genetically matched iPSCs and revealed that there were no

vector-specific aberrant methylated regions in iPSCs generated by non-integrating methods. The line-
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specific properties depended on the number of random aberrant hyper-methylated DMRs rather than
type of vectors used for iPSC generation. The differences between the vectors might influence the
variety of line-specific properties. It is noteworthy that epigenetic information can be useful to

determine 1PSC quality.

Materials and Methods
Ethics Statement

Human cells were collected with ethical approval of the Institutional Review Board of
National Institute for Child Health and Development, Japan. Signed informed consent was obtained
from donors, and the specimens were irreversibly de-identified. All experiments handling human cells

and tissues were performed in line with the Tenets of the Declaration of Helsinki.

Human cell culture

Menstrual blood (Edom22) cells were independently established in our laboratory [36, 37],
and were maintained in the POWEREDBY 10 medium (Glyco Technica Ltd., Sapporo, Japan). Human
Retro-1PSCs were generated from Edom22 by retroviral vector pMXs, which encodes the cDNA for
human OCT3/4, SOX2, c-MYC, and KLF4, via previously described procedures [8] with slight
modifications [11, 36, 38, 39]. Episomal-iPSCs were established from Edom 22 by episomal vectors,
pCXLE-hOCT3/4-shp53, pCXLE-hSK, and pCXLE-hUL, via procedures described [26]. Sendai-iPSCs
were produced from Edom 22 by Sendai viral vector SeVdp-iPS, which encodes the polycisrtonic
cDNAs for mouse Oct3/4, Sox2, c-Myc, and Klf4, via procedures described [24]. These iPSCs clearly
showed human ESC-like characters in terms of morphology; gene expression of stem cell markers;
cell-surface antigens; growth (over than 20 passages); normal karyotypes; and teratoma formation
(Supplemental Fig. 1 and 2). Non-integrating episomal vectors in the genome or erasing SeVdp vector
RNA genome was also confirmed. Human ESCs, SEES, were generated in our laboratory [40]. Human
1PSCs and ESCs were maintained on irradiated MEFs in iPSellon medium (Cardio Incorporated,
Osaka, Japan) supplemented with 10 ng/ml recombinant human basic fibroblast growth factor (bFGF,
Wako Pure Chemical Industries, Ltd., Osaka, Japan). ESC genomes [41, 42] were kindly gifted from
Drs. C. Cowan and T. Tenzan (Harvard Stem Cell Institute, Harvard University, Cambridge, MA).

DNA methylation analysis
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DNA methylation analysis was performed using the [llumina infinium assay with the
HumanMethylation450K BeadChip (Illumina inc.). Genomic DNA was extracted from the cells using
QIAamp DNA Mini Kit (Qiagen). One microgram of genomic DNA from each sample was bisulfite-
converted using EZ DNA Methylation kit (Zymo Research), according to the manufacturer’s
recommendations. Bisulfite-converted genomic DNA was hybridized to the HumanMethylation450K
BeadChip and the BeadChip was scanned on a BeadArray Reader (Illumina inc.), according to the
manufacturer’s instructions. Methylated and unmethylated signals were used to compute a B-value,
which was a quantitative score of DNA methylation levels, ranging from “0”, for completely
unmethylated, to “1”, for completely methylated. On the HumanMethylation450K BeadChip,
oligonucleotides for 485,577 CpG sites covering more than 96% of Refseq and 95% of CpG islands
were mounted. The probe with MAF (minor allele frequency of the overlapping variant) > 5% [43]
and CpG sites with > 0.05 “Detection p value” (computed from the background based on negative
controls) were eliminated from the data for further analysis, leaving 416,528 CpGs valid for use with
the 49 samples tested. Average methylation was calculated from ESCs, in which 46,681 DMRs among
each ESC line in each set were removed. In Fig.1C, each iPSC line (at about the 30th passage) was
used and the probes were follows; POUSF1 (cg15948871, TSS1500), NANOG (cg25540142, TSS200),
SALL4 (cg25570495, TSS200), PTPNG6 (cgl12690127, TSS200), RAB25 (cg15896939, TSS200),
EPHAI (cg02376703, TSS200), TDGF1 (cg27371741, TSS200), LEFTY1 (cg15604953, TSS1500),
EMILINI (cg19399165, TSS200), LYST (cgl3677741, TSS1500), RIN2 (cg17016000, TSS1500),
SP100 (cg23539753, TSS200). TSS200 and TSS1500 indicated the position of the probe; TSS200, 0 -
200 bases and TSS1500, 200 - 1500 bases upstream of the transcriptional start site (TSS).

Quantitative reversetranscription-PCR

Total RNA was extracted from samples by the conventional method using ISOGEN I1
(NIPPON GENE, Toyama, Japan). An aliquot of total RNA was reverse-transcribed using ReverTra
Ace (TOYOBO, Japan) with random hexamer primers. The cDNA template was amplified using
specific primers for DNMT1, DNMT3A4, DNMT3B, DNMT3L, TETI, TET2 and TET3. Expression of
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a control. Primers used in this study
are summarized in Supplemental Table 3. Quantitative PCR was performed in at least triplicate for each

sample on LightCycler®96 Real-Time PCR system (Roche) with Power SYBR Green PCR Master Mix
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(Life Technologies) using a standard protocol. Relative expression was calculated by the ddCT method

using GAPDH as an internal standard.

Accession numbers

NCBI GEO: HumanMethylation450K BeadChip data in this study has been submitted under accession
number GSE73938 and GSExxxxxx (in progress). Additional data sets of 5 ESCs were obtained from
GSE31848.
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Fig. 1 Generation of genetically matched human iPSCs from the same parent somatic cells using three
kinds of vetors. A, Schematic for generation of the genetically matched human iPSC lines. Human
1PSCs were derived from the same parent somatic cell, Edom-22 using retrovirus, Sendai virus and
episomal vectors. B, Morphology of the parent somatic cells and iPSCs. C, Heatmap presenting DNA
methylation levels at promoter regions of pluripotency-associated and somatic cell-associated genes. D,
Unsupervised hierarchical clustering analysis (HCA) based on DNA methylation scores in the averaged
ESCs (black), Retro-Edom-iPSCs (green), Sendai- Edom-iPSCs (red), Episomal- Edom-iPSCs (blue)
and the parent comatic cell, Edom-22 (purple). E, Principal component analysis (PCA) based on DNA
methylation scores in the averaged ESCs (black diamond), Retro-iPSCs (green circles), Sendai-iPSCs
(red triangles) and Episomal-iPSCs (blue squares).
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Fig. 2 Comparison of differentially methylated regions between ESCs and each iPSC line. A,
Comparison of DNA methylation scores for each iPSC lines with that of the average for ESCs. The
DMRs between the average for ESCs and iPSCs are designated as ES-iPS-DMRs. B, Comparison of
the number of ES-iPS-DMRs in Retro-Edom-iPSCs (n=3), Sendai- Edom-iPSCs (n=6) and Episomal-
Edom-iPSCs (n=3). C, Proportion of the hyper- and hypomethylated ES-iPS-DMRs in each iPSC lines.
D, Quantitative RT-PCR for hDNMT?3B in each PSC lines. E, Correlation between expression level of
hDNMT?3B and the number of ES-iPS-DMRs. The averaged ESCs, black diamond; Retro-iPSCs, green
circles; Sendai-iPSCs, red triangles; Episomal-iPSCs, blue squares. F, Quantitative RT-PCR for hTET1
in each PSC lines. G, Correlation between expression level of hTET1 and the number of
ES-iPS-DMRs. The averaged ESCs, black diamond; Retro-iPSCs, green circles; Sendai-iPSCs, red
triangles; Episomal-iPSCs, blue squares.
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Fig. 3 Aberrant methylation in human iPSCs. A, The number of overlapping ES-iPS-DMRs in 3
RetroEdom-iPSC lines, 6 Sendai-iPSC lines and 3 Episomal-iPSC lines. B, Venn diagram showing
method-specific DMRs among three kinds of vectors. C, Effect of continuous cultivation on 44
and 5 ES-iPS-DMRs at TSS in Retro-iPSC line and in Episomal-iPSC lines, respectively. The
difference values were estimated by subtracting the scores of the averaged ESCs from that of each
passage sample. Each line shows a difference value of each probe during culture. Red lines
represent transiently ES-iPS-DMRs, which are not DMR at different passage and in different line.
a, EPHA10 (probe ID: cg06163371), b, WIPF2 (cg04977733), c, FTH1 (cg25270670), d, ZNF629
(cg05549854), e, SLC19A1 (cg07658590).
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Table 1. Details of the vector-specific DMRs.

Type of vector Retrovirus Sendai virus Episomal Common
a) No. DMR CpG 167 2 13 39
b) hyper-methylated DMR in a) 154 0 7 5

¢) hyo-methylated DMR in a) 13 2 6 34
d) % hyper-methylated DMR (b / a) 92.22% 0.00% 53.85% 12.82%
e) No. DMR CpG on Gene locus in a) 121 2 10 28

f) % gene locus (e / a) 72.46% 100.00% 76.92% 71.79%
g) hyper-methylated DMR in e) 117 0 7 2

h) hyo-methylated DMR in e) 4 2 3 26

i) % hyper-methylated DMR (f/ e) 96.69% 0.00% 70.00% 7.14%
Relationship to canonical CpG Island*

j) CpG island in e) 94 0 6 4

k) N_Shore in e) 8 1 1 4

1) N_Shelf in e) 1 0 0 2
m) S_Shore in e) 9 0 2 3

n) S_Shelf in e) 0 1 0 0

0) non-CpG island in e) 9 0 1 15
Gene region feature category **

p) TSS1500 in e) 42 0 4 4

q) TSS200 in e) 24 0 2 4

r) 1stExon in e) 22 0 2 4

s) 5'UTR in e) 30 0 3 3

t) Body in e) 94 2 5 60
u) 3'UTR in e) 2 0 0 9

v) No, Gene in e) 14 2 8 41
W) No. probe in p) and q) 44 0 5 6

x) No. Gene with TSS-DMR (v and w) 12 0 5 6

*Relationship to canonical CpG Island: Shores, - 0-2 kb from CpG island; Shelves, - 2-4 kb from CpG island;

N, upstream of CpG island; S, downstream of CpG island.

**Gene region feature category: Gene region feature category describing the CpG position, from UCSC.
TSS200 = 0-200 bases upstream of the transcriptional start site (TSS).
TSS1500 = 200-1500 bases upstream of the TSS.
5'UTR = Within the 5' untranslated region, between the TSS and the ATG start site.
Body = Between the ATG and stop codon; irrespective of the presence of introns, exons, TSS, or promoters.
3'UTR = Between the stop codon and poly A signal.

This information on HumanMethylation450K was provided by Illumina Inc.
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Fig. 4 Distribution of methylation scores at promoters of imprint genes and XIST gene. H19,
MEG3, PEG3, PEG10, IGF2R and XIST genes are shown. ESCs (n=12, black circles);
Retro-Edom-iPSCs (n=3, green circles); Sendai-Edom-iPSCs (n=6, red circles);
Episomal-Edom-iPSCs (n=3, blue circles); parent somatic cells, Edom-22 (n=2, yellow circles).
The probe IDs and probe positions of each gene were cgl17985533, TSS200 for H19, ¢g09926418,
TSS200 for MEG3, ¢g13960339, TSS200 for PEG3, cg27504782, TSS1500 for PEG10,
cg10894318, TSS1500 for IGF2R and cg11717280, TSS200 for XIST. TSS200 and TSS1500
indicated the position of the probe; TSS200, 0 - 200 bases and TSS1500, 200 - 1500 bases
upstream of the transcriptional start site (TSS).
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Supplemental Fig. 1 Characterization of Sendai-Edom-iPSCs. A, Immunohistochemistry of stem

cell-specific surface antigens, SSEA-4, TRA1-60, and SOX2, OCT3/4, NANOG in
Sendai-Edom-iPS-31. B, Teratoma formation of Sendai-Edom-iPS-31 by subcutaneous

implantation into NOD/Scid mice. The Sendai-Edom-iPSCs differentiated to various tissues
including ectoderm (epidermis and neural tissues), mesoderm (cartilage) and endoderm (gut-like
epithelium). Immunostaining and teratoma formation were carried out as previously described [36,
38]. C, Karyotypic analysis of Sendai-Edom-iPSCs. D, STR analysis of Sendai-Edom-iPSCs.
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Supplemental Fig. 2 Characterization of Episomal-Edom-iPSCs. A, Immunohistochemistry of
stem cell-specific surface antigens, SSEA-4, TRA1-60, and SOX2, OCT3/4, NANOG in
Episomal-Edom-iPS-01. B, Teratoma formation of Episomal-Edom-iPS-01 by subcutaneous
implantation into NOD/Scid mice. The Episomal-Edom-iPSCs differentiated to various tissues
including ectoderm (epidermis and neural tissues), mesoderm (cartilage) and endoderm (gut-like
epithelium). Immunostaining and teratoma formation were carried out as previously described [36,
38]. C, Karyotypic analysis of Episomal-Edom-iPSCs. D, STR analysis of Episomal-Edom-iPSCs.
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Supplemental Fig. 3 Effect of continuous cultivation on ES-iPS-DMRs at promoters of imprint
genes and XIST gene. ESCs (n=12, black circles); Retro-Edom-iPSCs (n=3, green circles and
lines); Sendai-Edom-iPSCs (n=6, red circles and lines); Episomal-Edom-iPSCs (n=3, blue circles
and lines); parent somatic cells, Edom-22 (n=2, yellow circles). The probe IDs and probe positions
of each gene were cg17985533, TSS200 for H19, cg09926418, TSS200 for MEG3, ¢g13960339,
TSS200 for PEG3, ¢g27504782, TSS1500 for PEG10, cg10894318, TSS1500 for IGF2R and ¢
g11717280, TSS200 for XIST. TSS200 and TSS1500 indicated the position of the probe; TSS200,
0 - 200 bases and TSS1500, 200 - 1500 bases upstream of the transcriptional start site (TSS).
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Supplemental Table 2. List of gene with DMRs at the promoters

Gene with ES-iPS-DMRs

at TSS in Retro-Edom—-iPSCs

UCSC_REFGENE_NAME

description

TargetID

A2BP1

Ataxin—2—-Binding Protein 1

cg02230017,cg03586879, cg08545287,cg19378133

CSMD1 CUB And Sushi Multiple Domains 1 cg08383399

Cbhorf38 Chromosome 5 Open Reading Frame 38 cg05903444,cg18371475

DPP6 Dipeptidyl—Peptidase 6 cg05640128,cg06002683,cg07590961,cg09124223

. cg02214745,cg02291403,cg09048530,cg17537177,

Fzbio Frizzled Class Receptor 10 cg18209212,0220058043,c¢21386611,c£22813950
cg04992127,cg08204280,c508235864,c509524455,

IRX2 Iroquois—Class Homeodomain Protein IRX-2 cg11552694,cg11793269,cg13702053,cg19679633,
cg21093166,cg02135861,c226504021

IRX1 Iroquois—Class Homeodomain Protein IRX-1 cg05534710,cg09232937

LOC100190940 cg13822303,cg02681173

OSR1 Odd-Skipped Related 1 cg21619325

TCERGI1L Transcription Elongation Regulator 1 Like cg03943081

TMEM132C Transmembrane Protein 132C cg03530754

TMEM132D Transmembrane Protein 132D cg00765828,cg12122146,cg13234863,c223891360,

cg25013011

Gene with ES-iPS-DMRs

at TSS in Episomal-Edom—iPSCs

UCSC_REFGENE_NAME |description TargetID

FTH1 Ferritin Heavy Chain 1 cg25270670
WIPF2 WAS/WASL Interacting Protein Family Member 2 cg04977733
ZNF629 Zinc Finger Protein 629 cg05549854
SLC19A1 Solute Carrier Family 19 Member 1 cg07658590
EPHA10 EPH Receptor A10 cg06163371
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Supplemental Table 4 List of primers

Primers for quantitative RT-PCR

Name Sequence (5 > 3°) Anealing temp.
hDNMTI1-F ATTCTGATGGATCCCAGTCCC

hDNMTI1-R GTCCTTCTCCCTGGTAGAATG 60°C
hDNMT3A-F GCCAAAACTGCAAGAACTGC

hDNMT3A-R CCTTTGGAGGGTCAAATTCC 60°C
hDNMT3B-F AATCCTGGAGGCTATCCGCAC

hDNMT3B-R GTCAGAGCCATCCCCATCTTC 60°C
hDNMT3L-F ATGTGGTTGATGTCACAGAC

hDNMT3L-R GACAGCATTCTGCAAGGATC 60°C
hTETI1-F CTGGACTTCTGTGCTCATCC

hTETI1-R ACATGGAGCTGCTCATCTTG 60°C
hTET2-F CAGCAGCCAATAGGACATGATC

hTET2-R ATGGGAGGTGATGGTATCAG 60°C
hTET3-F CAAGGACCAGCATAACCTCTAC

hTET3-R AGAACATGCAGCTGCTCATC 60°C
hGAPDH-F GCTCAGACACCATGGGGAAGGT

hGAPDH-R GTGGTGCAGGAGGCATTGCTGA 60°C
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