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Abstract

Identifying driver mutations in cancer is notoriously difficult. To date, recurrence of a mutation
in patients remains one of the most reliable markers of mutation driver status. However, some
mutations are more likely to occur than others due to differences in background mutation rates
arising from various forms of infidelity of DNA replication and repair machinery, endogenous,

and exogenous mutagens.

We calculated nucleotide and codon mutability to study the contribution of background
processes in shaping the observed mutational spectrum in cancer. We developed and tested
probabilistic pan-cancer and cancer-specific models that adjust the number of mutation
recurrences in patients by background mutability in order to find mutations which may be

under selection in cancer.

We showed that mutations with higher mutability values had higher observed recurrence
frequency, especially in tumor suppressor genes. This trend was prominent for nonsense and
silent mutations or mutations with neutral functional impact. In oncogenes, however, highly
recurring mutations were characterized by relatively low mutability, resulting in an inversed U-
shaped trend. Mutations not yet observed in any tumor had relatively low mutability values,

indicating that background mutability might limit mutation occurrence.

We compiled a dataset of missense mutations from 58 genes with experimentally validated
functional and transforming impacts from various studies. We found that mutability of driver
mutations was lower than that of passengers and consequently adjusting mutation recurrence
frequency by mutability significantly improved ranking of mutations and driver mutation
prediction. Even though no training on existing data was involved, our approach performed
similarly or better to the state-of-the-art methods.

Availability: https://www.ncbi.nlm.nih.gov/research/mutagene/gene
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Author Summary

Cancer development and progression is associated with accumulation of mutations. However,
only a small fraction of mutations identified in a patient is responsible for cellular
transformations leading to cancer. These so-called drivers characterize molecular profiles of
tumors and could be helpful in predicting clinical outcomes for the patients. One of the major
problems in cancer research is prioritizing mutations. Recurrence of a mutation in patients
remains one of the most reliable markers of its driver status. However, DNA damage and repair
processes do not affect the genome uniformly, and some mutations are more likely to occur
than others. Moreover, mutational probability (mutability) varies with the cancer type. We
developed models that adjust the number of mutation recurrences in patients by cancer-type
specific background mutability in order to prioritize cancer mutations. Using a comprehensive
experimental dataset, we found that mutability of driver mutations was lower than that of
passengers, and consequently adjusting mutation recurrence frequency by mutability

significantly improved ranking of mutations and driver mutation prediction.
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Introduction
Cancer is driven by changes at the nucleotide, gene, chromatin, and cellular levels. Somatic cells

may rapidly acquire mutations, one or two orders of magnitude faster than germline cells [1].
The majority of these mutations are largely neutral (passenger mutations) in comparison to a
few driver mutations that give cells the selective advantage leading to their proliferation [2].
Such a binary driver-passenger model can be adjusted by taking into account additive
pleiotropic effect of mutations [3, 4]. Mutations might have different functional consequences
in various cancer types and patients, they can lead to activation or deactivation of proteins and
dysregulation of a variety of cellular processes. This gives rise to high mutational, biochemical,
and histological intra- and inter-tumor heterogeneity that may explain the resistance to

therapies and complicates the identification of driving events in cancer [5, 6].

Point DNA mutations can arise from various forms of infidelity of DNA replication and repair
machinery, endogenous, and exogenous mutagens [6-9]. There is an interplay between
processes leading to DNA damage and those maintaining genome integrity. The resulting
mutation rate can vary throughout the genome by more than two orders of magnitude [10, 11]
due to many factors operating on local and global scales [12-14]. Many studies support point
mutation rate dependence on the local DNA sequence context for various types of germline
and somatic mutations [9, 11, 13, 15]. For both germline and somatic mutations, local DNA
sequence context has been identified as a dominant factor explaining the largest proportion of
mutation rate variation [10, 16]. Additionally, differences in mutational burden between cancer
types suggest tissue type and mutagen exposure as important confounding factors contributing

to tumor heterogeneity.

Assessing background mutation rate is crucial for identifying significantly mutated genes [17,
18], sub-gene regions [19, 20], mutational hotspots [21, 22], or prioritizing mutations [23]. This
is especially important considering that the functional impact of the majority of changes
observed in cancer is poorly understood, in particular for rarely mutated genes [24]. Despite
this need, there is a persistent lack of quantitative information on per-nucleotide and per-

codon background rates in various cancer types and tissues.
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There are many computational methods that aim to detect driver genes and fewer methods
trying to rank mutations with respect to their potential carcinogenicity. As many new
approaches to address this issue have been developed [25] [26], it still remains an extremely
difficult task. As a consequence, many driver mutations, especially in oncogenes, are not
annotated as high impact or disease related [27] even though cancer mutations harbor the

largest proportion of harmful variants [28].

In this study we utilize probabilistic models that estimate background mutability per nucleotide
or codon substitution to rank mutations and help distinguish driver from passenger mutations.
The mutability concept has been used in many evolutionary and cancer studies (although it has
been estimated in different ways). Mutability is defined as a probability to obtain a nucleotide
or codon substitution purely from the underlying background processes of mutagenesis and
repair that are devoid of cancer selection component affecting a specific genomic (or protein)
site. The mutability is calculated using background models (mutational profiles) that are
constructed under the assumption that vast majority of cancer context-dependent mutations
have neutral effects, while only a small number of these mutations in specific sites are under
positive or negative selection. To assure this, we removed all recurrent mutations as these
mutations might be under selection in cancer. Mutational profiles are calculated by sampling
the frequency data on types of mutations and their trinucleotide (for nucleotide mutations) and
pentanucleotide (for codon substitutions) contexts regardless of their genomic locations. These
models in the forms of mutational profiles can be used to estimate the expected mutation rate
in a given genomic site as a result of different local or long-range context-dependent

mutational processes.

In this paper we try to decipher the contribution of background DNA mutability in the observed
mutational spectrum in cancer for missense, nonsense, and silent mutations. We compiled a set
of cancer driver and neutral missense mutations with experimentally validated impacts

collected from multiple studies and used this set to verify our approach and compare it with
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other existing methods. Our approach has been implemented online as part of the MutaGene
web-server and as a stand-alone Python package:

https://www.ncbi.nlm.nih.gov/research/mutagene/gene.

Results

Mutations not observed in cancer patients have low mutability

We analyzed all theoretically possible codon substitutions that could have occurred by single
point mutations in 520 cancer census genes and calculated their mutability values based on
their genomic context. We found that only about one percent of all theoretically possible codon
substitutions were observed in the surveyed 12,013 tumor samples derived from the COSMIC
v85 cohort (Table S1). Using the pan-cancer model, across all analyzed possible codon
substitutions produced by single point mutation, mutability ranged from 1.61 x 107 to 1.80 x 10°
> (mean = 1.34 x 10°®). Lower and upper boundaries for mutability are dependent on the cancer
model selection, and cancer models with higher mutational burdens like melanomas (1.92 x 10°
’t0 1.35 x 10, mean = 7.00 x 10°°) have higher mutability values compared to cancers such as

prostate adenocarcinoma (5.12 x 10® t0 7.31 x 10°, mean = 3.95 x 10”).

We found that across codon substitutions which were not observed in the COSMIC v85 cohort,
the mean mutability (1.29 x 10°) was found to be three-fold lower compared to the mutability
of observed codon substitutions (3.88 x 10°) using pan-cancer background model, Mann-
Whitney-Wilcoxon test p < 0.01 (Figure 1A). This finding also holds true for different cancer-
specific models (the list of cancer-specific mutational profiles can be found in

https://www.ncbi.nlm.nih.gov/research/mutagene/signaturestmutational profiles). The same

result is confirmed for per-nucleotide mutability (1.04 x 10° versus 3.36 x 10°, Mann-Whitney-
Wilcoxon test p < 0.01). In addition, we validated our result on a set of observed mutations
from 9,228 patients who had undergone prospective sequencing of MSK-IMPACT gene panel.
Looking at mutations in the genes which were sequenced in all patients in the MSK-IMPACT

cohort, the same pattern remains that observed codon substitutions had a higher mutability
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(3.41 x 10°®), compared to those which were theoretically possible, but did not occur in cancer

patients (1.30 x 10° ,Mann-Whitney-Wilcoxon test, p < 0.01) (Figure 1B).

Figure 1. Mutability of all theoretically possible codon substitutions (“not observed”) and all
substitutions that were observed in: (A) COSMIC v85 pan-cancer cohort; (B) MSK-IMPACT
cohort. Asterisks show the differences on Mann-Whitney-Wilcoxon test significant at p < 0.01.
Mutability values have been converted to negative logio scale as pan-cancer codon mutability
ranges several orders of magnitude.

Figure S1 shows cumulative and probability density distributions of nucleotide mutability values
for all observed mutations in patients, for theoretically possible mutations in all cancer census
genes and for two genes in particular, CASP8 and TP53. While there are many theoretically
possible mutations with low mutability values, the observed cancer spectrum is dominated by

mutations with high mutability. A similar pattern is seen for cancer-specific cases (Figure 2).

Figure 2. Relationship between cancer-specific nucleotide mutability and observed
reoccurrence frequency of all mutations from two cohorts. Counts are binned and refer to how
many times a particular mutation was observed in the given cancer type. ‘0’, ‘1, ‘2’ and 3+
refer to mutations that were not observed (including all possible point mutations), observed
once, twice, or in three or more cancer samples. Blue boxes show mutations with the observed
frequency calculated in the COSMIC v85 cohort and green boxes refer to MSK-IMPACT cohort.
(A) breast cancer (ncosmic = 1,667, nusk =783 samples), (B) Lung adenocarcinoma (ncosmic = 301,
nusk = 1,203), (C) Colon adenocarcinoma (ncosmic = 369, nusk = 688) and (D) Skin malignant
melanoma (ncosmic = 376, Nsk =182).

Silent mutations have the highest mutabilities
Figures 3A,B show the distributions of codon mutability values for all possible missense,
nonsense, and silent mutations accessible by single nucleotide base substitutions in the

protein-coding sequences of 520 cancer census genes calculated with the pan-cancer
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background model. Codon mutability spans two orders of magnitude, and silent mutations have
significantly higher average mutability values (mean = 5.68 x 10°°) than nonsense (mean = 3.44 x
10°) or missense mutations (mean = 3.29 x 10°°) (Kruskal-Wallis test p < 0.01 and Dunn’s post
hoc testp < 0.01 for all comparisons). These differences in codon mutabilities could be a
reflection of the degeneracy of genetic code, where multiple silent nucleotide substitutions in
the same codon may increase its mutability. However, degeneracy of genetic code does not
affect the calculation of nucleotide mutability. While the differences between types of
mutations are less pronounced for nucleotide mutability (Figure 3C), silent mutations are still
characterized by the highest nucleotide mutability values (mean = 3.91 x 10°° for silent, 3.10 x
10 for nonsense and 3.17 x 10° for missense mutations, Kruskal-Wallis testp < 0.01 and

Dunn’s post hoctest p < 0.01 for all comparisons).

Figure 3. Mutability distributions by mutation type and mutation frequency. (A) Cumulative
distribution of codon mutability of silent (green), nonsense (red) and missense (blue)
mutations. (C) Cumulative distribution of nucleotide mutability for silent, nonsense and
missense mutations. Inset shows the probability density distributions of mutability by mutation
type. Significance was determined by Dunn’s test; difference withp < 0.01is marked with a
double asterisk. (B) and (D) are codon and nucleotide mutability respectively binned by
frequency in the COSMIC v85 pan-cancer cohort. ‘0’, ‘1, ‘2" and ‘3+" refer to mutations that
were not observed (including all possible point mutations), observed once, twice, or in three or
more cancer samples. See Table S1 for the number of mutations in each category.

Background mutability significantly contributes to shaping the observed mutational spectrum
Under the null model of all mutations arising as a result of background mutational processes,
somatic mutations should accumulate with respect to their mutation rate and one would
expect a positive correlation between mutability and observed mutational frequency of
individual mutations. Indeed, as Figures 3B,D show, this is the case for silent and nonsense
mutations. To further investigate this relationship, in the pan-cancer COSMIC v85 cohort we

calculated both Spearman’s rank, a non-parametric test taking into account that mutability is
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not normally distributed, and Pearson linear correlation coefficients between codon mutability
and frequencies of mutations across all 520 cancer census genes. We also explored this
association for each gene with at least ten unique mutations of each type: silent, nonsense, and

missense (Figure 4).

Figure 4. Relationship between codon mutability and frequency of mutations. Histograms show
the Spearman rank correlation coefficients between the reoccurrence frequency and mutability
across cancer genes with at least 10 observed mutations of each type: (A) missense (blue), (B)
nonsense (red) and (C) silent (green). Filled bars in the left column denote genes with
significant correlation atp < 0.01. Bar graphs show Spearman correlation coefficient for
genes with significant correlation atp < 0.01. Genes with bold font are tumor suppressors
(TSG), underlined genes are oncogenes, and genes in plain font were either categorized as both
TSG and oncogene or fusion genes. (D-F) Scatterplots with regression lines and confidence
intervals show the linear relationship between mutability and reoccurrence frequency of each
type of mutation for several representative genes. Adjusted R*are shown to convey goodness
of fit. Mutation reoccurrence frequencies were taken from the pan-cancer COSMIC v85 cohort.

Overall, we found 84 and 137 genes with significant (p < 0.01) positive Spearman and
Pearson correlations, respectively, for at least one mutation type (Table S2). Among the genes
with significant correlations, 41 belong to tumor suppressor genes, 28 are oncogenes, and 15
genes are classified as either fusion genes or both oncogene and tumor suppressor. For some
genes, including TP53 (first column, Figure 4E) and tumor suppressor CASP8 (second column,
Figure 4E), a strong linear relationship between mutability and recurrence frequency of
observed mutations (R? > 0.5) was observed. Breaking up all codon changes into silent,
nonsense and missense reveals the highest correlations for silent (p = 0.15,7 =0.1,p < 0.01)

and nonsense (p = 0.20, r = 0.15,p < 0.01) mutations (Figure S2).

Relationship between mutability and observed frequency is different for tumor suppressor

and oncogenes
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The effects of mutations on protein function, with respect to their cancer transforming ability,
can drastically differ in tumor suppressor genes (TSG) and oncogenes, therefore we performed
our analysis separately for these two categories (Figure 5). In general, mutations in TSG can
cause cancer through the inactivation of their products, whereas mutations in oncogenes may
result in protein activation. We used COSMIC gene classification separating genes into tumor
suppressors and oncogenes. Genes which were annotated as both TSG and oncogenes were
excluded from this analysis. Gene ontology (GO) analysis found that top GO annotations in TSG
for cellular compartments were “nucleus”, “chromosome”, and “nuclear part” and for
molecular functions were “protein”, “DNA”, and “enzyme binding”. For the oncogenes, the top

” o

GO annotations for cellular components were “nucleoplasm”, “nucleus”, and “nuclear lumen”
and for molecular function “heterocyclic compound binding”, “organic cyclic compound biding”
and “sequence-specific DNA binding”. A full list of genes and the associated GO terms is
available in Supplemental Table S3. In addition, we used COSMIC classification into genes with
dominant or recessive mutations, but overall results were similar to the ones produced using

classification into TSG and oncogenes (Figure S3).

Figure 5. Relationship between codon mutability and reoccurrence frequency of mutations for
different mutation types and gene functions. Genes grouped into oncogene and tumor
suppressor (TSG) by their role in cancer. Mutations were binned by their reoccurrence
frequency in COSMIC v85 cohort. Boxplots show codon mutability calculated with pan-cancer
model. See Table S1 for counts.

We observed a weak but statistically significant correlation between codon mutability and
recurrence frequency in TSG (p =0.17, r =0.13,p < 0.01) while oncogenes showed a
weaker Spearman correlation and no significant Pearson correlation (p =0.13,p < 0.01;r =
0, p = 0.61) (Figure S2B,C). This correlation mostly arises from neutral mutations as shown in
the following section. An inverse U-shaped trend was detected for missense and silent
mutations in oncogenes: highly recurrent mutations (observed in three and more samples)

were characterized by low average mutability values (Figure 5). In the latter case, selection may
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be a more important factor compared to background mutation rate explaining reoccurrence of
these mutations. Functionally conserved sites overall were found to be more frequently
mutated in oncogenes [29], and our analysis did not find a straightforward association between

mutability and evolutionary conservation.

Neutral mutations have higher mutability values than non-neutral

We complied a combined dataset of experimentally annotated missense mutations in cancer
genes from several sources. Mutations were categorized as ‘non-neutral’ or ‘neutral’ based on
their experimental effect on protein function, transforming effects, and other characteristics
(see Methods and Table S4). For all mutations in combined dataset, whether they were
observed in MSK-IMPACT or the COSMIC v85 cohorts, the codon mutability values of neutral
mutations were significantly higher (mean = 2.71 x 10°) (Mann-Whitney-Wilcoxon test,
p < 0.01) than for non-neutral mutations (mean = 1.74 x 10°) (Figure 6A). Binning the
mutations by their reoccurrence frequency also showed differences between ‘neutral’ and
‘non-neutral’, with the frequency of neutral mutation depending on their mutability. For
neutral mutations, mutations that were observed in three or more samples had higher
background mutability (meanusk = 6.39 x 10°, meancoswic = 6.22 x 10°) compared to mutations
which were not observed (meanmsk = 2.46 x 10, meancosmic = 2.54 x 10'6). In contrast, the
background mutability of non-neutral mutations did not vary with the reoccurrence frequency
(Figure 6B), suggesting that background mutability was much less important in driving

reoccurrence of non-neutral mutations.

Figure 6. Codon mutability of missense mutations grouped by their experimental effects. (A)
Mutations from the combined dataset were categorized as neutral and non-neutral. Significant
differences with p < 0.01 are marked with a double asterisk. Mutability was calculated with
pan-cancer background model (B) Mutations binned by their reoccurrence frequency in both
MSK-IMPACT (green) and COSMIC v85 (blue) cohorts. In both cohorts, reoccurrence frequency
of neutral mutations depends on mutability, whereas for non-neutral mutations, reoccurrence
frequency does not scale with background mutability.

11
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Accounting for context-dependent mutability in ranking of mutations

In the previous sections we explored the contribution of background mutational processes in
understanding the observed mutational patterns in cancer. With our finding that background
mutability differs between neutral mutations and non-neutral mutations, we explored if
background mutability could be used to facilitate the detection of cancer driver mutations or
provide a reasonable ranking in terms of their potential carcinogenic effects. We tested
different ways to calculate codon mutability and if it could help to differentiate between
experimentally annotated neutral, or putatively passenger mutations, and non-neutral driver
mutations. We found that a simple and intuitive measure, B-score, calculated without using
gene weights (see next section) performed the best on the combined experimental test set. A
similar measure was used previously to identify mutational hot spots [21, 30]. Hotspots are
defined for sites, whereas our approach assesses specific mutations, and different mutations
from the same hotspot can be drivers or passengers. For instance, TP53 Tyr236 site is
annotated as a hotspot in [21, 30], however p.Tyr236Phe mutation in this site is experimentally

characterized as neutral in the IARC database.

We compared the performance of B-score to six state-of-the-art computational methods which
distinguish driver from passenger mutations in cancer: CHASM [31], CHASMplus [32]VEST[33],
REVEL[34], CanDrAplus[35]and FatHMM[36]. Table 1 shows the performance of the various
computational predictors at classifying mutations from the combined dataset observed in two
sets of cancer cohorts. To compare across methods, which use different thresholds for calling
neutral versus non-neutral mutations, we calculated the Matthew’s correlation coefficient
(MCC) across a range of thresholds for each method and reported the maximal MCC value.
Based on the MCC, the best classifiers are CHASMplus, B-score and CanDrAplus (MCC = 0.64,
0.61, and 0.58 respectively) (Table 1). Surprisingly, mutation reoccurrence frequency alone
performs very well, with MCC of 0.49 in the COSMIC v85 cohort and 0.51 in the MSK-Impact
cohort. B-Score is able to provide a correction to reoccurrence frequency using codon

mutability and yields a much better performance than frequency alone. Intriguingly, inverse
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mutability alone performs better than random, emphasizing the fundamental quality of non-
neutral mutations in cancer: mutability of driver mutations is lower than the mutability of

passengers (Figure 6).

We also explored the performance of methods in classifying mutations that were not observed
or observed only once in the COSMIC v85 cohort or MSK-Impact cohort (Table S6). For
mutations which were not observed in the COSMIC v85 cohort B-Score classification
performance is low but better than random (AUC=0.65). On mutations which were observed in
only one cancer sample in the cohort (207 passenger and 157 driver mutations), B-Score still
performed better than VEST and CHASM (MCC = 0.46, 0.42, and 0.36 respectively). On the
combined set which includes all experimentally verified mutations, whether they were
observed or not observed in cancer patients, B-score ranks fourth after CHASMplus, REVEL and

FatHMM (Table S7).

B-score also allows to break ties for mutations observed in the same number of patients. For
example in the TP53 gene, mutations p.GlullLys and p.Cys135Gly have been observed in two
patients each in the COSMIC v85 cohort. However, p.Glulllys (mutability of 1.18 x 10°) is
predicted a passenger mutation and p.Cys135Gly (mutability of 2.20 x 10”) is predicted as a
driver mutation which is consistent with the annotations from the experimental combined

dataset.

Variability of mutation rates across genes

Even though our probabilistic model indirectly incorporates different factors affecting mutation
rate, we checked explicitly if large-scale factors, allowing mutations of the same type to have
different mutational probabilities in different genes, affected retrieval performance on the
combined test set. Several methods have been developed to estimate gene weights (see
Methods), which consider the overall number of mutations or the number of silent mutations
affecting a gene. Additionally, we estimated the gene weights based on the number of SNPs in

the vicinity of a gene. We also examined the effects of several large-scale confounding factors
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such as gene expression levels, replication timing, and chromatin accessibility (provided in the
gene covariates in MutSigCV [37]) on gene weights. We used gene weights to adjust mutability
values and explored whether any of the gene weight models were helpful in distinguishing
between experimentally determined neutral and non-neutral mutations. We found that “no-
outlier’-based weight (r = 0.66,p = 0.004) and “silent mutation”-based weight (r = 0.65,p =
0.004) significantly correlated with the gene expression levels. No other correlations of gene
weights with confounding factors were found. Overall, using gene weight as an adjustment for
varying background mutational rates across genes did not improve classification performance
of mutations in the experimental benchmark. Only a SNP-based weight affected the AUC-ROC,
but the gain was very minimal, and no gene weight affected the MCC (Table S8). One of the
reasons could be the limited number of genes used in the experimental benchmark set (58

genes).

Ranking of cancer point mutations in MutaGene

MutaGene webserver provides a collection of cancer-specific context-dependent mutational
profiles [38] It allows to calculate nucleotide and codon mutability and B-Score for missense,
nonsense and silent mutations for any given protein coding DNA sequence and background
mutagenesis model using the “Analyze gene” option. Following the analysis presented in this
study, we added options to provide a ranking of mutations observed in cancer samples based
on the B-Score or the multiple-testing adjusted g-values. Using the combined dataset as a
performance benchmark (Table 1, Table S7), we calibrated two thresholds: the first
corresponds to the maximum of MCC, and the second corresponds to 10% FPR. Mutations with
the B-Score below the first threshold are predicted to be “cancer drivers”, whereas mutations
with scores in between two thresholds are predicted to be “potential drivers”. All mutations
with scores above the second threshold are predicted as “passengers”. Importantly,
calculations are not limited to pan-cancer and can be performed using a mutational profile for
any particular cancer type, the latter would result in a cancer-specific ranking of mutations and
could be useful for identification of driver mutations in a particular type of cancer. An example

of prediction of driver mutations status for EGFR is shown in Figure 7. MutaGene Python
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package allows to rank mutations in a given sample or cohort in a batch mode using pre-
calculated or user-provided mutational profiles and available at

https://www.ncbi.nlm.nih.gov/research/mutagene/gene.

Figure 7. Ranking of mutations and prediction of driver mutations based on B-score. Snapshots
from the MutaGene server show the results of analysis of EGFR gene with a Pan-cancer model.
(A) Scatterplot with expected mutability versus observed mutational frequencies. (B) Top list of
mutations ranked by their B-Scores. (C) EGFR nucleotide and translated protein sequence
shows per-nucleotide site mutability per codon mutability as well as mutabilities of nucleotide
and codon substitutions (heatmaps). Mutations observed in tumors from ICGC repository are
shown as circles colored by their prediction status: Driver, Potential driver, and Passenger.
Missense mutation p.Arg252Pro is shown with a blue arrow.

Discussion

To understand what processes drive point mutation accumulation in cancer, we used DNA
context-dependent probabilistic models to estimate the baseline mutability for nucleotide
mutation or codon substitution in specific genomic sites. Passenger mutations, constituting the
majority of all observed mutations, may have largely neutral functional impacts and are unlikely
to be under selection pressure. For passenger mutations one would expect that mutations with
lower DNA mutability would have lower observed mutational frequency and vice versa. In a
recent study the fraction of sites harboring SNPs in the human genome was indeed found to
correlate very well with the mutability although the later was estimated differently from our
study [39]. We detected a significant positive correlation between background mutability,
which is proportional to per-site mutation rate, and observed reoccurrence frequencies of
mutations in cancer patients. In accordance with this trend, we also found that mutations that
were not observed in cancer cohorts were marked by a lower background mutability. For some
genes, such as TP53 or CASP8, mutations and their frequencies can be predicted from their

mutability values. Outliers of this association trend, mutations which reoccur at high

15


https://doi.org/10.1101/354506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/354506; this version posted April 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

frequencies but have low mutabilities might be important for inferring mutations under positive

selection, as illustrated especially for missense mutations in oncogenes.

In this respect, reoccurring synonymous mutations with low mutability may represent
interesting cases for further investigation of potential synonymous drivers. Mutability of
synonymous mutations was found to be the highest among other types of mutations. Observed
mutational frequency of synonymous mutations scales with their mutability, therefore it is
important to correct for mutability while ranking these mutations with respect to their driver
status. Overall, B-score predicted 102 synonymous driver mutations in 64 out of 520 cancer-
associated genes. It has been previously shown that some synonymous mutations might be
under positive selection and can affect the speed and accuracy of transcription and translation,
protein folding rate, and splicing [40]. Some recurrent highly mutable synonymous mutations
might not represent relevant candidates of drivers, whereas some rare mutations with
relatively low mutability are predicted to be drivers by our approach (e.g. KDR gene p.Leu355=,
NTRK1 gene p.Asn270=).

In this paper we developed and tested a probabilistic model, implemented as B-Score, to adjust
the reoccurrence frequency of a mutation (a measure commonly used in clinical research to
identify genes and mutations under selection) by its expected background mutability. B-Score is
able to provide a correction to reoccurrence frequency using mutability and improves the
classification of cancer driver and passenger mutations by up to 20% compared to reoccurrence
frequency alone. The advantages of B-score are that: (i) it is intuitive and interpretable, (ii) does
not rely on many parameters, and (iii) does not involve explicit training on driver and passenger
mutation sets. One of the disadvantages is that it requires the knowledge of a total number of
patients tested. We found that B-Score performed comparably or better to many of state-of-
the-art methods even for rare mutations observed in two large cancer cohorts. However, it
underperformed for those mutations from combined experimental set that were not observed

in cancer patients. These latter mutations might either constitute functionally disruptive
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mutations not directly connected with the carcinogenesis or might represent rare cancer

mutations not yet detected in large cancer cohorts.

A lot of efforts have been focused so far on developing a comprehensive set of cancer driver
mutations verified at the levels of functional assays or animal models [26, 41, 42]. However,
existing sets often contain predictions and very few neutral cancer passenger mutations. The
vast majority of computational prediction methods rely on machine learning algorithms trained
on mutations from a few genes and/or on recurrent mutations as estimates of driver events or

III

use germline SNPs or silent mutations as the presumed “neutral” set. In many cases, the
performance is evaluated on similarly generated synthetic benchmarks. As a result, methods
can be trained on incorrectly labeled data and even if trained on correct data, can exhibit a

well-known overfitting effect.

While mutational processes vary widely among cancer types, and different driver mutations
have been shown to be preferentially associated with specific mutational processes [39, 40],
there remains a lack of cancer-specific driver/passenger datasets. In our combined dataset, the
effects of mutations were determined using experimental assays, which were not linked to any
particular cancer type, therefore a pan-cancer model was used for calculation of B-score and
other methods tested. However, we provide the ability to apply cancer-specific B-Score ranking
of mutations using the models available via the MutaGene package and website (see Methods).
Additionally, for some cancer types, the background mutational processes may differ greatly
between subsets of cancer patients. For these highly heterogenous cancer types rather than
using cancer type specific, it may be more appropriate to use background mutational

profiles/models specific for a given cohort.

In this study, we restricted our test dataset to only missense mutations that have been
experimentally assessed, with several thousands of driver and passenger mutations from 58
genes. Intriguingly, we found that experimentally annotated driver mutations had a lower

background mutability than neutral mutations, suggesting possible action of context-dependent
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codon bias towards less mutable codons at critical sites for these genes, although more studies
would have to be conducted to further investigate this observation. This important difference
in mutability between drivers and passengers may explain the outstanding performance of the
simple measure B-score which enables an understanding of the differential roles that

background mutation rate and selection play in shaping the cancer mutational spectrum.

Methods

Defining driver and passenger mutations using datasets of experimental assays

We assembled a combined dataset that included mutations from the five datasets described
below. First we obtained missense mutations for TP53 gene with experimentally determined
functional transactivation activities from IARC P53 database where they were classified as

functional, partially-functional, and non-functional[43].

The second dataset contained experimental evidence collected from the literature[44]. The
experimental evidence of impact of mutations included changes in enzymatic activity, response
to ligand binding, impacts on downstream pathways, an ability to transform human or murine
cells, tumor induction in vivo, or changes in the rates of progression-free or overall survival in
pre-clinical models. Mutations were considered “damaging” if there was literature evidence to
support their impact on at least one of the above-mentioned categories. Mutations with no
significant impacts on the wild-type protein function were classified as “neutral”. Mutations
with no reliable functional evidence were regarded as “uncertain” and were not used in this

study.

The third dataset included experimentally verified BRCA1 mutations and was originally
collected by using deep mutational scanning to measure the effects of missense mutations on
the ability of BRCA1 to participate in homology-directed repair. In this dataset missense
mutations were categorized as either “neutral” or “damaging” [45, 46]. Noteworthy, BRCA1 set

contained inherited germline as well as somatic mutations.
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The fourth dataset explored over 81,000 tumors to identify drivers of hypermutation in DNA
polymerase epsilon and polymerase delta genes (POLE/POLD1). “Drivers of hypermutation”
were variants which occurred in a minimum of two hypermutant tumors, which were never
found in lowly mutated tumors, and did not co-occur with an existing known driver mutation in
the same tumor. Other variants in these genes were considered “passengers” with respect to

hypermutation[25].

The fifth dataset consisted of missense mutations annotated based on their effects on cell-
viability in Ba/FC and MCF10A models[47]. “Activating mutations” were mutations where the
cell viability was higher than the wild-type gene, and “neutral mutations” were those mutations
where cell-viability was similar to the wild-type. Ng et al. used these consensus functional
annotations to compare the performance of 21 different computational tools in classifying
between activating and neutral mutations using ROC analysis, with activating mutations acting
as the positive set and neutral as the negative set. The authors found that the tools yielding
best performance were CanDrAplus and CHASM. We included 743 mutations (488 neutral and
255 activating) in 50 genes accessible through single nucleotide substitutions out of the 816

activating and neutral mutations that Ng et al tested [47].

Finally, we removed redundant and conflicting entries when mutations annotated as non-
functional or neutral in one dataset were also annotated as damaging or benign in another. As a
result, all mutations in the combined data set were categorized as “non-neutral” (affecting

III

function, binding or transforming) and “neutral” (other mutations). We treated “functional”

and “partially -functional” mutations in IARC TP53 dataset as “neutral”, and “non-functional” as
“non-neutral”. Overall, the combined dataset contains 5,276 mutations (4,137 neutral and
1,139 non-neutral) from 58 genes (Table S4) and is available on MutaGene website at

https://www.ncbi.nlm.nih.gov/research/mutagene/benchmark.

Datasets of mutations observed in cancer patients
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The Catalogue of Somatic Mutations in Cancer (COSMIC) database stores data on somatic
cancer mutations and integrates the experimental data from the full-genome (WGS) and whole-
exome (WES) sequencing studies [48]. Cancer census genes (520 genes) were defined according
to COSMIC release v84. For each of these genes, we explored all theoretically possible
nucleotide mutations along the DNA sequence of the principal transcripts. This resulted in

4,129,461 possible nucleotide substitutions, and 3,293,538 codon substitutions.

For analyses comparing oncogenes and tumor suppressor genes (TSG), genes classified as only
fusion genes or those with both oncogenic and TSG activities were not used. This resulted in
205 oncogenes and 167 TSG (Table S3). For gene ontology (GO) enrichment analysis we used
the R package “GOfuncR”. For enrichment analysis, the genes annotated as either TSG or
oncogenes were compared to all other genes in the “Homo.sapiens” gene annotation package
in R. 98% of all COSMIC v85 samples contained less than 1000 mutations so were not
hypermutated. COSMIC v85 samples which came from cell-lines, xenografts, or organoid
cultures were excluded. Only mutations with somatic status of “Confirmed somatic variant”

were included and mutations which were flagged as SNPs were excluded.

For each cancer patient, a single sample from a single tumor was used. Additionally, it is
possible that the same patient may be assigned different unique identifiers in different papers,
and duplicate tumor samples are sometimes erroneously added to COSMIC database during
manual curation. These samples may affect the recurrence counts of mutations. We applied
clustering method in order to detect and remove any redundant tumor samples. Each sample
was represented as a binary vector with 1 if a sample had a mutation in a particular genomic
location and O otherwise. The binary vectors were compared with Jaccard distance metric,

J =

|AU B|-|AN B|
|AUB|

, where identical samples have ] = 0, followed by agglomerative clustering
with complete linkage. Non-singleton clusters with pairwise distance cutoff of J > 0.3 were
extracted and only one representative of each cluster was used, whereas other samples were
discarded. Because of these relatively stringent criteria for inclusion, it is likely that some small

number of non-duplicate samples were discarded in this process.
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MSK-IMPACT cohort was obtained from cBioPortal [49]. We ensured that no mutations were
counted multiple times for each patient; if there were multiple tumor samples per patient,
primary and metastatic, the primary tumor was kept, and the metastatic discarded. Only
those tumors which were sequenced against a matched normal sample were kept to ensure

validity of somatic mutations.

In the 520 genes we explored, we investigated if these genes were expressed in cancer cell lines
from multiple tissue types using RNAseq data from the January 2019 release of the Cancer Cell
Line Encyclopedia [50]. Using RNAseq data of 1,019 unique cancer cell lines from 26 different
tissue types and a cutoff for expression at 0.5 RPKM (Reads Per Kilobase of transcript, per

Million mapped reads), we found that 512 genes were expressed in at least one tissue.

Calculation of context-dependent DNA background mutability

Context-dependent mutational profiles were constructed previously from the pools of
mutations from different cancer samples by counting mutations observed in a specific
trinucleotide context [38]. Altogether, there are 64 different types of trinucleotides and three
types of mutations x>>y (for example C>A, C>T, C>G and so on) in the central position of
each trinucleotide which results in 192 trinucleotide context-dependent mutation types. In a
mutated double-stranded DNA both complementary purine-pyrimidine nucleotides are
substituted, and therefore we considered only substitutions in pyrimidine (C or T) bases,
resulting in 96 possible context-dependent mutation types m = a[x > y]b, wherea, b,x,y €
{A,T,C,G}, x #y. Thus, mutational profile can be expressed as a vector of a number of
mutations of certain type (f, ..., fo¢) Or @ number of mutations of certain type per sample
(ry, ..., T9g). Profiles were constructed under the assumption that vast majority of cancer
context-dependent mutations have neutral effects, while only a negligible number of these
mutations in specific sites are under selection. To assure this, we removed recurrent mutations
(observed twice or more times in the same site) as these mutations might be under selection in

cancer. In the current study we used pan-cancer and cancer-specific mutational profiles for
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breast, lung adenocarcinoma, colon adenocarcinoma, and skin melanoma derived from

MutaGene [38].

We calculated mutability that described baseline DNA mutagenesis per nucleotide or per
codon. Mutability was defined as a probability to obtain a context-dependent nucleotide
mutation purely from the baseline mutagenic processes operating in a given group of samples.
Mutability is proportional to the expected mutation rate of a certain type of context-dependent
mutation regardless of the genomic site it occurs. For exome mutations, given the number of
different trinucleotides of type t in a diploid human exome, n; , the nucleotide mutability is
calculated as:

pic =2 (1)
In protein-coding sequences it is practical to calculate mutation probability for a codon in its
local pentanucleotide context, given trinucleotide contexts of each nucleotide in the codon. For
a given transcript of a protein, at exon boundaries the local context of the nucleotides was
taken from the genomic context. The COSMIC consensus transcript was chosen for the
transcript for each protein. Changes in codons can lead to amino acid substitutions,
synonymous and nonsense mutations. Therefore, codon mutability was calculated as the
probability to observe a specific type of codon change which can be realized by single

nucleotide mutations at each codon position i as:

pir?t =1-TI(1 - Xfpi*) )

Where k denotes a number of mutually exclusive mutations at codon position i. For example,
for Phe codon “TTT” in a given context 5’-A and G-3’ three single nucleotide mutations can lead
to Phe— Leu substitution (to codons “TTG”, “TTA” and “CTT” for Leu): A[T>C]TTG in the first
codon position or mutually exclusive ATT[T>>G]G and ATT[T>>A]G in the third codon position.

In this case the probability of Phe— Leu substitution in the ATTTG context can be calculated as

pg?lggrieu =1-(1- pA[T>>C]T)(1 — Prir>alc — pT[T>>G]G) where trinucleotide frequencies
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were taken from the mutational profile. Amino acid substitutions corresponding to each
missense mutation are calculated by translating the mutated and wild type codons using a
standard codon table. Codon mutability strongly depends on the neighboring codons as

illustrated in Figure S5.

Gene-weight adjusted mutability
Gene weights estimate a relative probability of a gene compared to other genes to be mutated
in cancer through somatic mutagenesis. There are multiple ways the gene weights can be

calculated:

SNP-based weight was calculated using the number of SNPs in the vicinity of the gene of
interest. We used the “EnsDb.Hsapiens.v86” database to find genomic coordinates of a gene,
including introns, and extended the range in both 3’ and 5’ directions according to the window
size (Table S7). We then counted the number of common SNPs from dbSNP database[51] within

the genomic region. Gene weight was calculated as: w3Vf = —NF

g , where Ngnp is the

Lwindow

number of SNPs and L,,i,q40w is the length of the genomic region in base pairs. We tested

several window sizes for defining the genomic regions around the gene of interest (Table S6).

Mutation-based weight was calculated using the number of nucleotide sites with reoccurring

mutations counted only once to avoid the bias that may be present due to selection on

o ) - k
individual sites: w3tes = -2

g ~ Here k, is the number of mutated sites and n; is the number of
k

base pairs in the gene transcript.

Silent mutation-based weight was introduced previously and was shown to be superior in

assessment of significant non-synonymous mutations across genes [52]. This weight can be

calculated by taking into account only silent somatic mutations: wgile”t = Ns—g. Here s, is the

g

total number of somatic silent mutations within the gene, N is the number of tumor samples

and L is the number of codons in the gene transcript.
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No-outlier-based weight introduced previously [21] takes into account the number of all codon
mutations within a gene, (;, excluding mutations in outlier codon sites bearing more than the

C
99" percentile of mutations of the gene: a)gout = ﬁ, normalized by gene length L, in amino

g

acids and the total number of samples N.

Using gene weights, an adjusted probability per codon can be then expressed as:

Py = WPy (3)

Similarly, per nucleotide probability can be calculated adjusted by gene weight.

Identification of significant mutations
B-score uses the binomial model to calculate the probability of observing a certain type of

mutation in a given site more frequently than k:

Bscore = Z¥=n+1(1]\(]) pk(l - p)N_k (4)

where p = py, or p = p,, and k is the number of observed mutations of a given type at a
particular nucleotide or codon, N is a total number of cancer samples in a cohort. Depending on
the dataset chosen or a particular cohort of patients (for instance, corresponding to one cancer
type), the total number of samples N and the numbers of observed mutations k will change.
While ranking mutations in a given gene, B, can further be adjusted for multiple-testing

with Benjamini-Hochberg correction as implemented on the MutaGene website.

Computational Predictions

CanDrAplus®* program was downloaded and ran using default specifications with the “Cancer-
in-General” annotation data file. REVEL® predictions were obtained from dbNSFP database[53].
CHASMplus predictions were obtained using CRAVAT[54]. The pan-cancer model was used for

CHASMplus. FatHMM?™ cancer-associated scores were obtained from their webserver.
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Statistical analyses and evaluation of performance

Differences between various groups were tested with the Kruskal-Wallis, Dunn test, and Mann-
Whitney-Wilcoxon tests implemented in R software. Dunn’s test is a non-parametric pairwise
multiple comparisons procedure based on rank sums; it is used to infer difference between
means in multiple groups and was used because it is relatively conservative post-hoc test for
Kruskal-Wallis. Associations between mutability and observed frequency (the number of
individuals with a mutation in whole-exome/genome studies from COSMIC), was tested using

Pearson as well as Spearman correlation tests since the variables were not normally distributed.

To quantify the performance of scores, we performed Receiver Operating Characteristics (ROC)
and precision-recall analyses. Sensitivity or true positive rate was defined as TPR=TP/(TP + FN)
and specificity was defined as SPC=TN/(FP+TN). Additionally, in order to account for imbalances
in the labeled dataset, the quality of the predictions was described by Matthews correlation

coefficient:

TP «TN — FP « FN

MCC =
ATP + FP) * (TP + FN) % (TN + FP) » (TN + FN)

In order to compare across tools, the threshold which gave the maximum MCC was chosen for

each tool to calculate TP, TN, FP, and FN.
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Table 1. Comparison of different methods to distinguish neutral from non-neutral mutations.
from combined experimental dataset. Mutations were observed in corresponding cancer
cohorts. See Table S6 and S7 for results on rare and all mutations. Maximum Matthew’s
correlation is reported for each predictor. B-Score for each cohort is calculated with the
respective cohort size: COSMIC v85 cohort 12,013; MSK-Impact 9,228. For CHASM the

background model yielding best performance was chosen.

Measure AUC-ROC AUC-PR Matthews Sensitivity at Cohort
correlation 10% FPR

CHASMplus 0.91 0.95 0.64 0.74
B-Score 0.88 0.94 0.61 0.65
CanDrA 0.82 0.88 0.58 0.49
FatHMM 0.84 0.90 0.56 0.53 | COSMIC
REVEL 0.84 0.91 0.51 0.60 v85
Frequency 0.79 0.90 0.49 0.60
CHASM 0.75 0.83 0.48 0.20
VEST 0.78 0.87 0.45 0.40
CHASMplus 0.90 0.94 0.66 0.75
FatHMM 0.86 0.90 0.66 0.53
B-Score 0.89 0.94 0.65 0.69
CanDrA 0.83 0.87 0.62 0.42 MSK-
REVEL 0.87 0.92 0.58 0.62 | IMPACT
Frequency 0.80 0.90 0.51 0.62
CHASM 0.79 0.86 0.47 0.38
VEST 0.79 0.87 0.45 0.41
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Figure S1.Comparison between expected nucleotide mutability spectrum of all possible
mutations (blue) and mutations which were observed in cancer patients (brown) in the COSMIC
v85 cohort. (A) Mutations from 520 cancer census genes; (B) CASP8 and (C) TP53 genes. Y-axis
has been mirrored and shows the proportion of nucleotide mutations with the mutability given
on the X-axis. For example, 5.6% of the 57,074 observed nucleotide mutations occurred at a
site with the maximum pan-cancer nucleotide mutability of 1.18 x 107, despite the fact that
only 0.4% of possible nucleotide mutations have a mutability that high. Inset shows the
cumulative distribution functions for both spectra. Annotations in (A) show nucleotide
substitutions in specific sequence contexts.
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Figure S2. Relationship between codon mutability and reoccurrence frequency by mutation
type and gene role in cancer. Scatterplots for (A) all cancer census genes (n = 520), (B)
oncogenes (n = 202) and (C) tumor suppressor genes (TSG) (n = 166) for all mutation types:
missense (blue), nonsense (red) and silent (green). Spearman and Pearson correlation
coefficient with respective p-values are shown in all figures with p < 0.01 in bold.
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Figure S3. Relationship between codon mutability and observed reoccurrence frequency by
mutation type and molecular genetics. (A) Genes with only dominant mutations, (B) Genes with
only recessive mutations. Different colors show scatterplots broken down by mutation type:
missense (blue), nonsense (red) and silent (green). (C) Mutations in cancer census genes
grouped by Dominant and Recessive mutations. Spearman and Pearson correlation coefficient
with respective p-values shown in all, significant at p < 0.01 in bold. Counts summarized in
Table S1.

29


https://doi.org/10.1101/354506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/3545086; this version posted April 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

A B

1.00 1 1.0

CanDrA
0.75 1 CHASM 0.8
CHASMplus ‘

® FatHMM
TU. Frequency
= REVEL
@ VEST, S
s 0.50 1 :E 0.6
2]
3 8
o ol
p o
2
= 0.251 0.4

0.00 1 - - 0.21

0.0 0.1 ; ; : . .
060 055 0Eo 0TS 100 0.00 0.25 0.50 0.75 1.00
False positive rate Recall

Figure S4. Assessment of classification performance between all neutral and non-neutral
mutations in a combined dataset. (A) ROC curves for B-Score, and observed mutational
frequency based on mutation frequency in COSMIC v85 cohort. Inset shows the performance of
highlighted area corresponding to up to 10% FPR. (B) Precision-recall curves for the same
benchmark set. The ROC for reoccurrence frequency cannot be calculated for all mutations
because some experimentally validated mutations were not observed in the COSMIC v85
cohort.
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Figure S5. Example of how codon mutability for amino acid substitution is affected

by the neighboring nucleotides. A peptide sequence of Pro-Cys-Leu could be encoded by
nucleotide sequence CCG-TGC-TTG (left) or CCC-TGT-CTG (right). For both peptides, the
pentanucleotides used to calculate the codon mutability for a substitution has been
highlighted in the blue box. Figure below shows lung adenocarcinoma cancer mutational profile
used to calculate nucleotide mutability, x-axis is the 96 different possible context-dependent
mutation types, y-axis shows mutation frequency. For each of the nucleotide mutations leading
toa amino acid substitution, the corresponding peak on the mutational profile id

shown.
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Table S1. Counts for boxplots in Figure 3.

Count group
0 (not observed) ‘ 1 ‘ 2| 3+
Codon mutations
Missense 2660636 36019 2088 896
Nonsense 142526 3667 362 181
Silent 429864 12523 873 147
Nucleotide mutations
Missense 2978365 36131 2082 882
Nonsense 168773 3719 350 178
Silent 920579 12854 736 132
Codon mutations — Oncogene
Missense 811980 11884 738 344
Nonsense 42575 793 53 9
Silent 130163 4378 349 47
Codon mutations — TSG
Missense 1058490 14290 815 263
Nonsense 56636 1987 232 125
Silent 171368 4731 338 71
Codon mutations — Dominant
Missense 1743551 23492 1333 467
Mutation Type | Nonsense 94451 1750 115 31
Silent 281044 8486 597 84
Codon mutations — Recessive
Missense 697206 9497 564 379
Nonsense 37310 1615 223 146
Silent 113365 2903 185 51
Codon mutations — Dom/Rec
Missense 57061 802 48 10
Nonsense 2814 99 8 1
Silent 9151 308 18
Codon mutations — Rec/X
Missense 5503 0 0 0
Nonsense 304 0 0 0
Silent 904 0 0 0
Codon mutations — No Molecular Genetics Information Provided
Missense 157315 2228 143 40
Nonsense 7647 203 16 3
Silent 25400 826 73 11
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Table S2. Correlation between mutability and recurrence of mutations in cancer-associated

genes.
https://zenodo.org/record/2575077#.XG8bASNKjUJ

Table S3. List of cancer-associated genes and GO terms.
https.//zenodo.org/record/2575077#. X GBbASNK UJ

Table S4. Combined dataset with experimentally annotated neutral and non-neutral mutations.

in 58 genes
https://www.ncbi.nlm.ih.gov/research/mutagene/benchmark
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Table S5. Comparison of mutability on three experimental datasets with different cancer-

specific background mutation models

P Value — Dunn

TP53 IARC

Model .
Test Comparison
2.17 x 10 | functional — non-functional
0.36 | functional — partially-functional
Pan-cancer

1.41x 10°®

non-functional — partially-
functional

Breast cancer

1.84 x 10°

functional — non-functional

0.47

functional — partially-functional

6.11x 108

non-functional — partially-
functional

Lung adenocarcinoma

9.82x 10~

functional — non-functional

0.23

functional — partially-functional

3.13x10°

non-functional — partially-
functional

Skin melanoma

0.005

functional — non-functional

0.51

functional — partially-functional

0.04

non-functional — partially-
functional

4.90x 10

functional — non-functional

SNP 0.42 | functional — partially-functional
non-functional — partially-
0.00013 | functional
P-Value — Mann-Whitney-Wilcoxon
Pan-cancer 6.24 x 10°
Martelotto et. al Breast cancer 9.06 x 107
Lung adenocarcinoma 0.02
Skin melanoma 5.45x 10™°
SNP 8.90x 10"
Pan-cancer 0.04
Breast cancer 0.07
BRCA1 - DMS Lung adenocarcinoma 0.12
Skin melanoma 0.29
SNP 0.009
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Table S6. Performance of different classifiers on unobserved and rarely observed mutations in
both cancer cohorts. Classifiers are sorted by their maximum Matthews correlation. B-Score for
each cohort is calculated with the respective cohort size: COSMIC v85 cohort (N=12,013); MSK-
Impact (N=9,228). For CHASM the background model yielding best performance was chosen.

Measure AUC-ROC AUC-PR Matthews | Sensitivity | Reoccurence
correlation at 10% frequency
FPR
COSMIC v85
CHASMplus 0.83 0.52 0.46 0.59
REVEL 0.82 0.50 0.45 0.56
FatHMM 0.81 0.38 0.42 0.28
CanDrA 0.80 0.35 0.42 0.32 0
VEST 0.69 0.28 0.21 0.28
CHASM 0.70 0.28 0.21 0.25
B-Score 0.65 0.24 0.17 0.22
CHASMplus 0.87 0.86 0.61 0.64
REVEL 0.82 0.79 0.55 0.61
CanDrA 0.78 0.73 0.53 0.41
FatHMM 0.81 0.75 0.51 0.44 1
B-Score 0.79 0.73 0.46 0.45
VEST 0.75 0.69 0.42 0.41
CHASM 0.72 0.64 0.36 0.24
MSK-IMPACT
CHASMplus 0.83 0.50 0.43 0.56
CanDrA 0.79 0.31 0.41 0.27
REVEL 0.81 0.45 0.41 0.52
FatHMM 0.80 0.34 0.40 0.24 0
VEST 0.68 0.26 0.19 0.26
CHASM 0.68 0.25 0.19 0.24
B-Score 0.64 0.22 0.15 0.21
CHASMplus 0.89 0.85 0.66 0.74
FatHMM 0.85 0.75 0.62 0.48
CanDrA 0.85 0.73 0.62 0.49
REVEL 0.85 0.82 0.61 0.63 1
B-Score 0.79 0.73 0.49 0.53
CHASM 0.76 0.68 0.39 0.38
VEST 0.75 0.69 0.38 0.37
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Table S7. Comparison of different methods to distinguish all neutral from non-neutral
mutations using combined experimental dataset. AUC-ROC (Area under the receiver operator
curve) and AUC-PR (Area under the precision recall curve) values for reoccurrence frequency
counts were extrapolated since some experimentally validated mutations were not observed in
tumor samples. See Figure S6 for the ROC and PR plots. Maximum Matthew’s correlation
reported for each predictor. For CHASM the background model yielding best performance was

chosen.

Matthew’s | Sensitivity at 10%
Method AUC-ROC AUC-PR

correlation | FPR
CHASMplus 0.88 0.74 0.59 0.70
REVEL 0.85 0.67 0.54 0.63
FatHMM 0.85 0.59 0.53 0.40
B-Score 0.79 0.65 0.53 0.54
CanDrAplus 0.83 0.52 0.52 0.41
Frequency 0.71 0.58 0.47 0.48
CHASM 0.74 0.43 0.30 0.28
VEST 0.74 0.46 0.31 0.35
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Table S8. Performance metrics for B-score on combined dataset using different gene weights.

. Sensitivity at 10%
Gene Weight AUC-ROC AUC-PR  MCC error
No Weight 0.79 0.65 0.53 0.54
SNP — 10,000 bp 0.80 0.66 0.52 0.54
SNP —20,000 bp 0.80 0.66 0.52 0.54
SNP —100,000 bp 0.80 0.66 0.52 0.55
SNP — 200,000 bp 0.81 0.66 0.52 0.55
No-outlier based
weight 0.68 0.58 0.48 0.49
N Mutated Sites -
based weight 0.71 0.59 050 0.49
Silent mutation-
based weight 0.80 0.61 051 054

37


https://doi.org/10.1101/354506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/354506; this version posted April 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

References

1. Lynch M. Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci U
S A. 2010;107(3):961-8. Epub 2010/01/19. doi: 10.1073/pnas.0912629107. PubMed PMID: 20080596;
PubMed Central PMCID: PM(C2824313.

2. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al. Patterns of somatic
mutation in human cancer genomes. Nature. 2007;446(7132):153-8. Epub 2007/03/09. doi:
10.1038/nature05610. PubMed PMID: 17344846; PubMed Central PMCID: PMC2712719.

3. Leedham S, Tomlinson I. The continuum model of selection in human tumors: general paradigm
or niche product? Cancer research. 2012;72(13):3131-4. Epub 2012/05/04. doi: 10.1158/0008-
5472.CAN-12-1052. PubMed PMID: 22552286.

4. Nussinov R, Tsai CJ. 'Latent drivers' expand the cancer mutational landscape. Curr Opin Struct
Biol. 2015;32:25-32. Epub 2015/02/11. doi: 10.1016/j.sbi.2015.01.004. PubMed PMID: 25661093.

5. Dagogo-lack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin
Oncol. 2018;15(2):81-94. Epub 2017/11/09. doi: 10.1038/nrclinonc.2017.166. PubMed PMID: 29115304.
6. Hiley C, de Bruin EC, McGranahan N, Swanton C. Deciphering intratumor heterogeneity and
temporal acquisition of driver events to refine precision medicine. Genome Biol. 2014;15(8):453. Epub
2014/09/16. doi: 10.1186/s13059-014-0453-8. PubMed PMID: 25222836; PubMed Central PMCID:
PMCPMC4281956.

7. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, et al. Mutational
processes molding the genomes of 21 breast cancers. Cell. 2012;149(5):979-93. Epub 2012/05/23. doi:
10.1016/j.cell.2012.04.024. PubMed PMID: 22608084; PubMed Central PMCID: PMCPMC3414841.

8. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of
mutational processes in human cancer. Nature. 2013;500(7463):415-21. Epub 2013/08/16. doi:
10.1038/nature12477. PubMed PMID: 23945592; PubMed Central PMCID: PMC3776390.

9. Rogozin IB, Pavlov YI, Goncearenco A, De S, Lada AG, Poliakov E, et al. Mutational signatures and
mutable motifs in cancer genomes. Briefings in bioinformatics. 2017. Epub 2017/05/13. doi:
10.1093/bib/bbx049. PubMed PMID: 28498882.

10. Michaelson JJ, Shi Y, Gujral M, Zheng H, Malhotra D, Jin X, et al. Whole-genome sequencing in
autism identifies hot spots for de novo germline mutation. Cell. 2012;151(7):1431-42. Epub 2012/12/25.
doi: 10.1016/j.cell.2012.11.019. PubMed PMID: 23260136; PubMed Central PMCID: PMC3712641.

11. Hodgkinson A, Eyre-Walker A. Variation in the mutation rate across mammalian genomes.
Nature reviews Genetics. 2011;12(11):756-66. Epub 2011/10/05. doi: 10.1038/nrg3098. PubMed PMID:
21969038.

12. Lynch M, Ackerman MS, Gout JF, Long H, Sung W, Thomas WK, et al. Genetic drift, selection and
the evolution of the mutation rate. Nature reviews Genetics. 2016;17(11):704-14. Epub 2016/10/16. doi:
10.1038/nrg.2016.104. PubMed PMID: 27739533.

13. Stratton MR. Exploring the genomes of cancer cells: progress and promise. Science.
2011;331(6024):1553-8. Epub 2011/03/26. doi: 10.1126/science.1204040. PubMed PMID: 21436442.
14. Polak P, Karlic R, Koren A, Thurman R, Sandstrom R, Lawrence M, et al. Cell-of-origin chromatin

organization shapes the mutational landscape of cancer. Nature. 2015;518(7539):360-4. Epub
2015/02/20. doi: 10.1038/naturel4221. PubMed PMID: 25693567; PubMed Central PMCID:
PMC4405175.

15. Rogozin IB, Kolchanov NA. Somatic hypermutagenesis in immunoglobulin genes. Il. Influence of
neighbouring base sequences on mutagenesis. Biochimica et biophysica acta. 1992;1171(1):11-8. Epub
1992/11/15. PubMed PMID: 1420357.

38


https://doi.org/10.1101/354506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/354506; this version posted April 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

16. Chen C, Qi H, Shen Y, Pickrell J, Przeworski M. Contrasting Determinants of Mutation Rates in
Germline and Soma. Genetics. 2017;207(1):255-67. Epub 2017/07/25. doi: 10.1534/genetics.117.1114.
PubMed PMID: 28733365; PubMed Central PMCID: PMC5586376.

17. Gonzalez-Perez A, Lopez-Bigas N. Functional impact bias reveals cancer drivers. Nucleic acids
research. 2012;40(21):e169. Epub 2012/08/21. doi: 10.1093/nar/gks743. PubMed PMID: 22904074;
PubMed Central PMCID: PMC3505979.

18. Martincorena |, Raine KM, Gerstung M, Dawson KJ, Haase K, Van Loo P, et al. Universal Patterns
of Selection in Cancer and Somatic Tissues. Cell. 2017;171(5):1029-41 e21. Epub 2017/10/24. doi:
10.1016/j.cell.2017.09.042. PubMed PMID: 29056346; PubMed Central PMCID: PMC5720395.

19. Araya CL, Cenik C, Reuter JA, Kiss G, Pande VS, Snyder MP, et al. Identification of significantly
mutated regions across cancer types highlights a rich landscape of functional molecular alterations.
Nature genetics. 2016;48(2):117-25. Epub 2015/12/23. doi: 10.1038/ng.3471. PubMed PMID: 26691984;
PubMed Central PMCID: PMC4731297.

20. Peterson TA, Gauran IIM, Park J, Park D, Kann MG. Oncodomains: A protein domain-centric
framework for analyzing rare wvariants in tumor samples. PLoS computational biology.
2017;13(4):e1005428. Epub 2017/04/21. doi: 10.1371/journal.pcbi.1005428. PubMed PMID: 28426665;
PubMed Central PMCID: PM(C5398485.

21. Chang MT, Asthana S, Gao SP, Lee BH, Chapman JS, Kandoth C, et al. Identifying recurrent
mutations in cancer reveals widespread lineage diversity and mutational specificity. Nature
biotechnology. 2016;34(2):155-63. Epub 2015/12/01. doi: 10.1038/nbt.3391. PubMed PMID: 26619011,
PubMed Central PMCID: PMC4744099.

22. Porta-Pardo E, Kamburov A, Tamborero D, Pons T, Grases D, Valencia A, et al. Comparison of
algorithms for the detection of cancer drivers at subgene resolution. Nature methods. 2017;14(8):782-8.
Epub 2017/07/18. doi: 10.1038/nmeth.4364. PubMed PMID: 28714987.

23. Wong WC, Kim D, Carter H, Diekhans M, Ryan MC, Karchin R. CHASM and SNVBox: toolkit for
detecting biologically important single nucleotide mutations in cancer. Bioinformatics.
2011;27(15):2147-8. Epub 2011/06/21. doi: 10.1093/bioinformatics/btr357. PubMed PMID: 21685053;
PubMed Central PMCID: PMC3137226.

24. Li M, Kales SC, Ma K, Shoemaker BA, Crespo-Barreto J, Cangelosi AL, et al. Balancing Protein
Stability and Activity in Cancer: A New Approach for Identifying Driver Mutations Affecting CBL Ubiquitin
Ligase Activation. Cancer research. 2016;76(3):561-71. Epub 2015/12/18. doi: 10.1158/0008-5472.CAN-
14-3812. PubMed PMID: 26676746; PubMed Central PMCID: PMCPMC4738050.

25. Campbell BB, Light N, Fabrizio D, Zatzman M, Fuligni F, de Borja R, et al. Comprehensive Analysis
of Hypermutation in Human Cancer. Cell. 2017;171(5):1042-56 el10. Epub 2017/10/24. doi:
10.1016/j.cell.2017.09.048. PubMed PMID: 29056344; PubMed Central PMCID: PMCPM(C5849393.

26. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al.
Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell. 2018;173(2):371-85 e18.
Epub 2018/04/07. doi: 10.1016/j.cell.2018.02.060. PubMed PMID: 29625053.

27. Molina-Vila MA, Nabau-Moreto N, Tornador C, Sabnis AJ, Rosell R, Estivill X, et al. Activating
mutations cluster in the "molecular brake" regions of protein kinases and do not associate with
conserved or catalytic residues. Hum Mutat. 2014;35(3):318-28. Epub 2013/12/11. doi:
10.1002/humu.22493. PubMed PMID: 24323975.

28. Schaafsma GCP, Vihinen M. Large differences in proportions of harmful and benign amino acid
substitutions between proteins and diseases. Hum Mutat. 2017;38(7):839-48. Epub 2017/04/27. doi:
10.1002/humu.23236. PubMed PMID: 28444810.

29. Stehr H, Jang SH, Duarte JM, Wierling C, Lehrach H, Lappe M, et al. The structural impact of
cancer-associated missense mutations in oncogenes and tumor suppressors. Mol Cancer. 2011;10:54.

39


https://doi.org/10.1101/354506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/354506; this version posted April 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Epub 2011/05/18. doi: 10.1186/1476-4598-10-54. PubMed PMID: 21575214; PubMed Central PMCID:
PMCPMC(C3123651.

30. Chang MT, Bhattarai TS, Schram AM, Bielski CM, Donoghue MTA, Jonsson P, et al. Accelerating
Discovery of Functional Mutant Alleles in Cancer. Cancer Discov. 2018;8(2):174-83. Epub 2017/12/17.
doi: 10.1158/2159-8290.CD-17-0321. PubMed PMID: 29247016; PubMed Central PMCID:
PMCPM(C5809279.

31. Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, Kinzler KW, et al. Cancer-specific high-
throughput annotation of somatic mutations: computational prediction of driver missense mutations.
Cancer research. 2009;69(16):6660-7. Epub 2009/08/06. doi: 10.1158/0008-5472.CAN-09-1133. PubMed
PMID: 19654296; PubMed Central PMCID: PMCPM(C2763410.

32. Tokheim C, Karchin R. CHASMplus reveals the scope of somatic missense mutations driving
human cancers. 2019. doi: https://doi.org/10.1101/313296.

33. Douville C, Masica DL, Stenson PD, Cooper DN, Gygax DM, Kim R, et al. Assessing the
Pathogenicity of Insertion and Deletion Variants with the Variant Effect Scoring Tool (VEST-Indel). Hum
Mutat. 2016;37(1):28-35. Epub 2015/10/08. doi: 10.1002/humu.22911. PubMed PMID: 26442818;
PubMed Central PMCID: PMCPMC5057310.

34. loannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, et al. REVEL: An
Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am J Hum Genet.
2016;99(4):877-85. Epub 2016/09/27. doi: 10.1016/j.ajhg.2016.08.016. PubMed PMID: 27666373;
PubMed Central PMCID: PMCPMC5065685.

35. Mao Y, Chen H, Liang H, Meric-Bernstam F, Mills GB, Chen K. CanDrA: cancer-specific driver
missense mutation annotation with optimized features. PLoS One. 2013;8(10):e77945. Epub
2013/11/10. doi: 10.1371/journal.pone.0077945. PubMed PMID: 24205039; PubMed Central PMCID:
PMCPMC(C3813554.

36. Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ, et al. Predicting the
functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov
models. Hum Mutat. 2013;34(1):57-65. Epub 2012/10/04. doi: 10.1002/humu.22225. PubMed PMID:
23033316; PubMed Central PMCID: PMC3558800.

37. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational
heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214-8.
Epub 2013/06/19. doi: 10.1038/naturel2213. PubMed PMID: 23770567; PubMed Central PMCID:
PMCPM(C3919509.

38. Goncearenco A, Rager SL, Li M, Sang QX, Rogozin IB, Panchenko AR. Exploring background
mutational processes to decipher cancer genetic heterogeneity. Nucleic acids research.
2017;45(W1):W514-W22. Epub 2017/05/05. doi: 10.1093/nar/gkx367. PubMed PMID: 28472504;
PubMed Central PMCID: PMCPMC5793731.

39. Gorlov IP, Gorlova OY, Amos Cl. Relative effects of mutability and selection on single nucleotide
polymorphisms in transcribed regions of the human genome. BMC Genomics. 2008;9:292. Epub
2008/06/19. doi: 10.1186/1471-2164-9-292. PubMed PMID: 18559102; PubMed Central PMCID:
PMCPMC(C2442617.

40. Supek F, Minana B, Valcarcel J, Gabaldon T, Lehner B. Synonymous mutations frequently act as
driver mutations in  human cancers. Cell. 2014;156(6):1324-35. Epub 2014/03/19. doi:
10.1016/j.cell.2014.01.051. PubMed PMID: 24630730.

41. Ainscough BJ, Griffith M, Coffman AC, Wagner AH, Kunisaki J, Choudhary MN, et al. DoCM: a
database of curated mutations in cancer. Nat Methods. 2016;13(10):806-7. Epub 2016/09/30. doi:
10.1038/nmeth.4000. PubMed PMID: 27684579; PubMed Central PMCID: PMCPM(C5317181.

42. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al. ClinVar: public archive
of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42(Database

40


https://doi.org/10.1101/354506
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/354506; this version posted April 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

issue):D980-5. Epub 2013/11/16. doi: 10.1093/nar/gkt1113. PubMed PMID: 24234437; PubMed Central
PMCID: PMCPM(C3965032.

43. Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P. The IARC TP53 database: new
online mutation analysis and recommendations to users. Hum Mutat. 2002;19(6):607-14. Epub
2002/05/15. doi: 10.1002/humu.10081. PubMed PMID: 12007217.

44, Martelotto LG, Ng CK, De Filippo MR, Zhang Y, Piscuoglio S, Lim RS, et al. Benchmarking
mutation effect prediction algorithms using functionally validated cancer-related missense mutations.
Genome Biol. 2014;15(10):484. Epub 2014/10/29. doi: 10.1186/s13059-014-0484-1. PubMed PMID:
25348012; PubMed Central PMCID: PMC4232638.

45, Starita LM, Young DL, Islam M, Kitzman JO, Gullingsrud J, Hause RJ, et al. Massively Parallel
Functional Analysis of BRCA1 RING Domain Variants. Genetics. 2015;200(2):413-22. Epub 2015/04/01.
doi: 10.1534/genetics.115.175802. PubMed PMID: 25823446; PubMed Central PMCID: PMC4492368.
46. Mahmood K, Jung CH, Philip G, Georgeson P, Chung J, Pope BJ, et al. Variant effect prediction
tools assessed using independent, functional assay-based datasets: implications for discovery and
diagnostics. Hum Genomics. 2017;11(1):10. Epub 2017/05/18. doi: 10.1186/s40246-017-0104-8.
PubMed PMID: 28511696; PubMed Central PMCID: PMC5433009.

47. Ng PK, Li J, Jeong KJ, Shao S, Chen H, Tsang YH, et al. Systematic Functional Annotation of
Somatic Mutations in Cancer. Cancer Cell. 2018;33(3):450-62 e10. Epub 2018/03/14. doi:
10.1016/j.ccell.2018.01.021. PubMed PMID: 29533785; PubMed Central PMCID: PMCPM(C5926201.

48. Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, et al. COSMIC: somatic cancer
genetics at high-resolution. Nucleic Acids Res. 2017;45(D1):D777-D83. Epub 2016/12/03. doi:
10.1093/nar/gkw1121. PubMed PMID: 27899578; PubMed Central PMCID: PMC5210583.

49. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of
complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. Epub
2013/04/04. doi: 10.1126/scisignal.2004088. PubMed PMID: 23550210; PubMed Central PMCID:
PMCPMC4160307.

50. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell
Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature.
2012;483(7391):603-7. Epub 2012/03/31. doi: 10.1038/nature11003. PubMed PMID: 22460905;
PubMed Central PMCID: PMCPMC3320027.

51. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI
database of genetic variation. Nucleic Acids Res. 2001;29(1):308-11. Epub 2000/01/11. PubMed PMID:
11125122; PubMed Central PMCID: PM(C29783.

52. Evans P, Avey S, Kong Y, Krauthammer M. Adjusting for background mutation frequency biases
improves the identification of cancer driver genes. |IEEE Trans Nanobioscience. 2013;12(3):150-7. Epub
2013/05/23. doi: 10.1109/TNB.2013.2263391. PubMed PMID: 23694700; PubMed Central PMCID:
PM(C3989533.

53. Liu X, Wu C, Li C, Boerwinkle E. dbNSFP v3.0: A One-Stop Database of Functional Predictions and
Annotations for Human Nonsynonymous and Splice-Site SNVs. Hum Mutat. 2016;37(3):235-41. Epub
2015/11/12. doi: 10.1002/humu.22932. PubMed PMID: 26555599; PubMed Central PMCID:
PMCPMC4752381.

54. Douville C, Carter H, Kim R, Niknafs N, Diekhans M, Stenson PD, et al. CRAVAT: cancer-related
analysis of variants toolkit. Bioinformatics. 2013;29(5):647-8. Epub 2013/01/18. doi:
10.1093/bioinformatics/btt017. PubMed PMID: 23325621; PubMed Central PMCID: PMCPM(3582272.

41


https://doi.org/10.1101/354506
http://creativecommons.org/licenses/by-nc-nd/4.0/

-LogoMutability

bioRxiv preprint doi: https://doi.org/10.1101/354506; this version posted April 1, 2019. The ¢
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the
aCC-BY-NC-ND 4.0 International license.

* K

yyright holder for this preprin
eprint in perpetuity. It is mad@available under

Not Observed Observed

* K

Not Observed

Observed


https://doi.org/10.1101/354506
http://creativecommons.org/licenses/by-nc-nd/4.0/

To ©
To

UMAngeniy° 6o

>EEAImgeInN°tboT-

42
©

“ oce ooo— [
“w ecocoo— NN

< LO O

- "PISqein iyt 6o -

_ Q-5
<T%
—c
%S0
8z°
D.m4
col
o582
237
mmdc
&z
Q&>
£ 50
D)
880

Qew L L]
< o
o=
®=
S5
°
e
o3
kS
>0
oS
—_ D
.wa
=2
L=
unur.B
=S
..I.W
=
£ -
)
o
X
[a
o8
25
o

4.5

199409

O


https://doi.org/10.1101/354506
http://creativecommons.org/licenses/by-nc-nd/4.0/

1.00

0.75

0.50

Cumulative Probability

0.25

0.00

1.00

0.75

0.50

Cumulative Probability

U.20

0.00

o)

On
%)

(@)

-LogoMutability

O
o

""Missense

" Nonsense
WiSilent

0.0

o
o @) @)

-
z3 s
0Sg
zZo
03>
. AR
o<q
=D D
m 555
S8

0.0
-LogoMutability

B Missense Nonsense Silent
®
5 @
&
2 55
=
8
5
=
—
o
J. 6
6.5
-T T -
0 1 2z 3+ 0 1 2 3+ 0 1 2 3+
D Missense Nonsense Silent

-Log1 oM Utablllty

&
5 @
©
6
6.5
®
0 1 2 3+ 0 1 2 3+ 0 1 2 3+

Observed Mutation Frequency



https://doi.org/10.1101/354506
http://creativecommons.org/licenses/by-nc-nd/4.0/

Number of Genes

Missense

Nonsense

Silent

RSPO2
ARHGAP26
MSN
SFRP4
ICF7L2

P2RY8
RAD21

CDC73
SMAD2

00 04 08

00 04 .8

Correlation Coefficient

Observed Mutations

ARHGAP26
R?-0.32

21607 1.26-05 2.86-07 1.26-05
E
801 1ps3 ©  9casps®
R?-0.78 ° R?=0.24
1
25607 1.26-05 4.46-07 1.26-05
E

1.4e-05 1.3e-06 1.4e-05

Mutability


https://doi.org/10.1101/354506
http://creativecommons.org/licenses/by-nc-nd/4.0/

¥ = : S - w S = . L p L] v L] : . B ] .
- = el - i " 'S ¥ & £l i - L™ - s
[ E ' &
2 i - & 5 ’ . i : - a - M .
E 5 - & - ™~
- . T - i - I o - - . . ~ I — - l l"" 1 . . l I
- il . & 1 i e i
* B el - el | ] i Ll ] L R Ll - el ] L] ] Ll
- = - =il - _— B K . | =

bioRxiv preprint doi: https://doi.org/10.1101/354506; this version posted April 1, 2819. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to @isplay the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 Internationajilicense.

-Logw Mutablllty

0 1 2 3+

0 1 2 3+

Oncogene 1SG

e - - - - » - - - - e - - - e - - e - - W - i - o i - - = H - - = - e - - - = - -
p K 1‘1 1 - 1 4 i =3 - K 3 i b p N *1 i - 'dI i " - Y = = " o *'p =
- '.1 -+ " " B 3 4 E B - = Y -+ - - i i " - w - o - - i + " B B - & - g “ ..u‘

- LS E l ¥ - - - . B - ¥ # . - L . - ok b y # E # . . . . o 4 l . . . - l
o - Ll - £ - ] - k) - L] L -

. . [ . .: ] I n - l-+ .Illl 11 . » E l - - ' L w --I I -"ll - -‘ L l - 1 ] I 1 . I . > l L A -. 1 - - l|
a - - o - . -
i W i B N y . o’ = B S - . " " - - ] - - B . o -* B i i d - K = . o | » Il a & "
=B TS - B - - e - 1 & 4 ! = - L - - e - u - -y - & —

. 1 “ TT

0 1 2 3+ 0 1 2 3+ 0 1 2 3+

0 1 2 3+

Oncogene 1SG Oncogene 1SG


https://doi.org/10.1101/354506
http://creativecommons.org/licenses/by-nc-nd/4.0/

-L0910MUtabili

3
(U
-~
-
—

-
o
O
-

bioRxiv preprint doi: https://doi.org/10.1101/354506; this version posted April 1, 2019. The copyright
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint i
aCC-BY-NC-ND 4.0 International license.

o

S

int (which was not
e available unde

o

)

Neutral

Neutral

Non-neutral

Non-neutral



https://doi.org/10.1101/354506
http://creativecommons.org/licenses/by-nc-nd/4.0/

Expected codon mutabiity 3>

P

Tos
C

Nucleotide

mutabity

(per Mb)

.

c

o

T

Codon

mutabilty

(per Mb)

aa

on

~o

(-

oo

ay

o

s

i

vt

hon

oo

G

s

so

T

I

™

i

o ;gmcrsmscrscmmcmmmcmcmccrsevcrsomcmrvocsm’.sscausoc.carscmemccmccm&mmsmm

Rk Muston e | ExpoctedMunbity  ObserwednWGS Pase * Drver SttusPrediction
2 ey Mmese 10908 ” et i

3 ol M 21906 ” essess D

© pAgsl  Mserse 27608 s Sisett D

S plessiGn Msese 4437 s Tare8 Dar

T pladdng  Misese 64207 s 5ete D

8 Ao M 3007 3 S0e9 D

T pAGEIOR Mimerse 10005 s Stses D

0 pSenssie  Misese 78267 s mes D

. -

o Obsoned inumors Fornil v [ St ratsions

@ Obsenved in tmors(Passenger)

60 T2 % 716 701 4 757 T30 T3 158 790 748 745 748 76N 7ok 1o 180 7

B Misense mutstions

T T 0

\CCCCRCCACGTACEAG
e 817 a5y 625 605
[}


https://doi.org/10.1101/354506
http://creativecommons.org/licenses/by-nc-nd/4.0/

