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ABSTRACT 24 

The ability to adapt one’s movements to changes in the environment is fundamental in 25 

everyday life, but this ability changes across the lifespan. Although often regarded as 26 

an ‘implicit’ process, recent research has also linked motor adaptation with ‘explicit’ 27 

learning processes. To understand how these processes contribute to differences in 28 

motor adaptation with age, we combined a visuomotor learning paradigm with 29 

cognitive tasks that measure implicit and explicit processes, and structural brain 30 

imaging. In a large population-based cohort from the Cambridge Centre for Ageing and 31 

Neuroscience (n=322, aged 18-89 years) we first confirmed that the degree of 32 

adaptation to an angular perturbation of visual feedback declined with age. There were 33 

no associations between adaptation and sensory attenuation, which has been previously 34 

hypothesised to contribute to implicit motor learning. However, interactions between 35 

age and scores on two independent memory tasks showed that explicit memory 36 

performance was a progressively stronger determinant of motor learning with age. 37 

Similarly, interactions between age and grey matter volume in the medial temporal 38 

lobe, amygdala and hippocampus showed that grey matter volume in these regions 39 

became a stronger determinant of adaptation in older adults. The convergent 40 

behavioural and structural imaging results suggest that age-related differences in the 41 

explicit memory system is a contributor to the decline in motor adaptation in older age. 42 

These results may reflect the more general compensatory reliance on cognitive 43 

strategies to maintain motor performance with age.   44 
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SIGNIFICANCE STATEMENT 45 

The central nervous system has a remarkable capacity to learn new motor skills and 46 

adapt to new environmental dynamics. This capacity is impaired with age, and in many 47 

brain disorders. We find that explicit memory performance and its associated medial 48 

temporal brain regions deteriorate with age, but the association between this brain 49 

system and individual differences in motor learning becomes stronger in older adults. 50 

We propose that these results reflect an increased reliance on cognition in order to 51 

maintain adaptive motor skill performance. This difference in learning strategy has 52 

implications for interventions to improve motor skills in older adults.  53 
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INTRODUCTION 54 

The sensorimotor system has a remarkable capacity to adapt to changes that occur both 55 

externally in the environment and internally in neuronal and musculoskeletal dynamics. 56 

Such adaptation is critical for learning new skills, and for adjusting previously learned 57 

movements in the face of new tasks (Scott, 2004; Franklin and Wolpert, 2011; Wolpert 58 

et al., 2011). For example, developmental and ageing processes that occur throughout 59 

the lifespan – from changes in muscle and joint physiology to neuronal degeneration in 60 

the nervous system – require constant adaptation. However, motor adaptation itself is 61 

impaired with age (Fernández-Ruiz et al., 2000; Buch et al., 2003; Seidler, 2007; King 62 

et al., 2013), which may put older people at increased risk of adverse events, such as 63 

falls (Tinetti et al., 1988; Rubenstein, 2006).  64 

 65 

To understand the effects of age on motor learning, optimal control theory proposes 66 

that during the execution of a voluntary movement, the central nervous system 67 

continuously simulates one’s interaction with the environment (for a review see 68 

Franklin and Wolpert, 2011). This may be achieved through an internal forward model, 69 

which learns to predict the sensory outcome of an action (Miall and Wolpert, 1996). 70 

An error signal between the predicted and actual sensory information leads to the 71 

update of the internal model, which facilitates better prediction and improved 72 

performance of future actions (Shadmehr et al., 2010). Updating an internal model is 73 

believed to be an implicit learning process, central to motor adaptation (Shadmehr et 74 

al., 2010; Wolpert et al., 2011).  75 

 76 

We previously suggested that this implicit process would be impaired in older adults as 77 

a result of reduced reliance on sensory feedback during movement with age (Wolpe et 78 
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al., 2016). Typically, a reduction in the precision of sensory afferents relative to 79 

predictive signals during movement leads to sensory attenuation (Bays et al., 2006). 80 

This attenuation is increased with age, with reduced precision of sensory signals and 81 

increased reliance on established internal models for motor control (Wolpe et al., 2016). 82 

Since the updating of one’s model depends on the relative precision of prediction and 83 

sensory signals (Wolpert et al., 2011), the imprecise sensory signals that occur with age 84 

would be less able to update the internal model (Lei and Wang, 2017). 85 

 86 

Although motor adaptation was once considered to be an archetype of implicit memory, 87 

an additional explicit learning process has been shown to contribute to motor adaptation 88 

(Mazzoni and Krakauer, 2006; Taylor and Ivry, 2011). This explicit process is proposed 89 

to be supported by high-level cognitive strategies that counteract changes in the 90 

environment (Taylor and Ivry, 2013). On this basis, reduced adaptation could result in 91 

part from the age-related decline in the explicit (declarative) memory system (Langan 92 

and Seidler, 2011; Trewartha et al., 2014). 93 

 94 

Here we test the hypothesis that differences in sensory attenuation and explicit memory 95 

contribute to the decline in motor adaptation with age. Participants were recruited from 96 

a large population-derived cohort, aged 18-89 years, at the Cambridge Centre for 97 

Ageing and Neuroscience (Cam-CAN; Shafto et al., 2014). Participants performed a 98 

visuomotor rotation learning task (c.f. Buch et al., 2003), in which they moved a stylus-99 

controlled cursor to a visual target. We then introduced a 30º angular rotation of visual 100 

feedback between the cursor and stylus location. Participants therefore needed to adapt 101 

their movement to overcome this visuomotor rotation so as to reach the target. We 102 

hypothesised that reduced adaptation with age is related to differences in both implicit 103 
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and explicit processes, including sensory attenuation and declarative memory 104 

performance. In addition, we performed whole-brain analyses of grey matter volume to 105 

test the corollary hypothesis that differences in adaptation with age are differentially 106 

related to grey matter in regions associated with explicit learning, including the 107 

hippocampus and amygdala (Hamann et al., 2014; Mary et al., 2017); and regions 108 

associated with implicit motor learning, such as the cerebellum, striatum and motor 109 

cortex (Seidler et al., 2006; Galea et al., 2011; King et al., 2013).  110 
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MATERIALS AND METHODS 111 

Experimental design 112 

From a population-based cohort of healthy adults, 322 participants completed a 113 

visuomotor learning task (Cam-CAN; Shafto et al., 2014). They were asked to move a 114 

cursor so as to hit a target (Fig. 1A). To do so, they grasped a stylus pen with their 115 

dominant hand, and the position of the tip of the stylus was recorded using a digitising 116 

touch pad (Bamboo CTH-661, Wacom Technology Corporation, Vancouver, WA) and 117 

displayed as a red cursor (radius 0.25 cm) on a computer monitor. Participants viewed 118 

the display in a semi-reflective mirror, such that the image appeared to be projected 119 

onto the horizontal surface of the touch pad. In this way, the red cursor could track the 120 

position of the stylus on the pad. The task was to move the cursor from a central ‘home’ 121 

position (white disc radius 0.5 cm) to hit one of four possible targets (yellow discs, 122 

radius 0.5 cm). Targets were displayed 5 cm from the home position and target direction 123 

was chosen from the set {0, 90, 180, 270°}, in a pseudo-random order, such that each 124 

cycle of 4 trials contained each target direction. When participants successfully hit a 125 

target, it burst and a tone was played to indicate that the trial was successful. If 126 

participants failed to initiate movement within 1 sec; or to hit the target within 800 ms 127 

after movement initiation, an error tone was played and the message “Too slow” was 128 

displayed. Participants completed an initial familiarisation phase of 24 trials (6 cycles 129 

of the 4 targets), during which they were permitted to see their hand and the stylus 130 

through the mirror. In the main experiment, an occluder was placed behind the mirror 131 

to prevent participants from seeing their hand.  132 

 133 

The main experiment consisted of 192 trials which were divided into three phases. 134 

During the pre-exposure phase, participants performed 24 trials (six cycles of four 135 
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trials) in which the red cursor accurately represented the position of the stylus. During 136 

the subsequent exposure phase, participants performed 120 trials (30 cycles) in which 137 

the position of the cursor was rotated 30° clockwise relative to the central home 138 

position. The introduction of the rotation required participants to adapt their movement 139 

trajectories in order to successfully hit the targets. Finally, during the post-exposure 140 

phase, participants performed 48 trials (12 cycles) with the perturbation removed, as in 141 

the pre-exposure phase. The post-exposure phase required participants to ‘de-adapt’ 142 

their movement trajectories in order to hit the target.  143 

 144 

Participants also completed two additional tasks that measure processes relevant for 145 

implicit and explicit learning: 1) A Force Matching task, measuring sensory attenuation 146 

as a proxy of the precision of forward models (n=311 complete datasets) (Wolpe et al., 147 

2016); 2) a Story Recall task, which is a verbal memory subtest of the Wechsler 148 

Memory Scale measuring explicit memory (Shafto et al., 2014) (n=319). A smaller 149 

subset of the participants (n=116) also completed an Emotional Memory task, which 150 

had many more trials and so potentially provides a more sensitive measure of explicit 151 

memory (Henson et al., 2016).  152 

 153 

Behavioural statistical analysis 154 

Motor adaptation on each trial was assessed by measuring the initial movement 155 

trajectory error, which is considered to reflect the feedforward component of the 156 

movement, before feedback becomes available. The trajectory error was calculated as 157 

the difference between the target angle and the angle of the initial cursor movement 158 

trajectory. The initial trajectory angle was calculated at 1 cm into the movement, 159 

relative to the start position (trials were excluded if the cursor moved less than 1 cm 160 
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from the home position, affecting 0.76% of trials on average across participants). 161 

Trajectory errors were averaged across each cycle of 4 trials to give a time series across 162 

the 48 cycles (from 192 trials) of the experiment.  163 

 164 

For each participant, trajectory errors across cycles in the exposure and post-exposure 165 

phases were each fit with an exponential. The fitting algorithm (‘nlinfit’ function in 166 

Matlab 2017a; MathWorks Inc. MA, USA) used iteratively reweighted least squares 167 

with a bisquare weighting function. The curves were constrained as follows: the 168 

exponential for the exposure phase started at 30o on cycle 1 with a variable final value 169 

on cycle 30. For the post-exposure phase, the initial value on post-exposure cycle 1 is 170 

constrained by the final level of exposure phase adaptation (exposure cycle 30) and 171 

asymptote at zero.  172 

 173 

The fitting therefore had three free parameters: 1) Final adaptation (in degrees), which 174 

is the difference between the angular perturbation of 30° and the fitted trajectory error 175 

on the last cycle of the exposure phase (between 0° and 30°); 2) exponential time 176 

constant for adaptation (in trials); 3) de-adaptation time constant (in trials). Based on 177 

the fit, we also calculated: 1) final de-adaptation, which is the trajectory error on the 178 

last cycle of the post-exposure phase. 2) Time to half adaptation, which is the time (in 179 

cycles) to reach half the final adaptation; 3) Time to half de-adaptation (in cycles). Time 180 

to half adaptation and de-adaption were chosen for the analyses as they were more 181 

robust across subjects compared to the exponential time constants. Three participants 182 

(aged 28, 48 and 58 years old) were excluded because their fitted final adaptation was 183 

0 degrees, implying failure to understand or perform the task (> 5 SD from cohort 184 
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mean). De-adaptation was assessed as the absolute ratio between final de-adaptation 185 

and final adaptation.  186 

 187 

To examine the contribution of processes supporting implicit and explicit learning to 188 

age-related differences in motor adaptation, the data were entered into linear regression 189 

models. Final adaptation was the dependent variable, and the independent variables 190 

were: 1) sensory attenuation, measured as the overall mean force overcompensation 191 

when directly matching the target forces (Wolpe et al., 2016); 2) explicit memory in 192 

the Story Recall task, measured as the first principal component of the scores given by 193 

the experimenter for retelling the story (i) immediately and (ii) 30-minutes after hearing 194 

the story (Shafto et al., 2014). An additional exploratory analysis was performed using 195 

declarative memory score from the Emotional Memory task. This score was measured 196 

as the first principal component of (i) the total number of detail correct background 197 

pictures, and (ii) the total number of detail and gist correct pictures – both measures 198 

collapsed across emotional valence (Henson et al., 2016). Covariates of no interest 199 

included mean trajectory error during the pre-exposure phase (accounting for individual 200 

movement bias, e.g. see Buch et al., 2003), education (categories according to Table 1), 201 

gender (categorical variable) and handedness (Edinburgh Handedness Score; Oldfield, 202 

1971). All variables were z-scored before entering the regression analysis. Multiple 203 

regression was performed as a path model using the Lavaan package (Rosseel, 2012) 204 

in R (R Core Team, 2016), using Full Information Maximum Likelihood to account for 205 

missing data. All statistical analyses were performed with a two-tailed alpha threshold 206 

of 0.05, but given the large sample size, we focus on effect size, here reported as the 207 

percentage of variance explained by the specific statistical contrast (R2; values less than 208 

~1.2% correspond to two-tailed p > 0.05). For the regression analyses, we report the 209 
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raw as well as fully standardised path estimates. Plots were generated using ggplot2 210 

(Wickham, 2009).  211 

 212 

Structural neuroimaging protocol and analysis 213 

A 3T Siemens TIM Trio with a 32-channel head coil was used to scan 310 participants 214 

(12 participants declined MRI). Both a T1-weighted MPRAGE image (TR 2250 ms, 215 

TE 2.99 ms, TI 900 ms, FA 9°, FOV 256 mm × 240 mm × 192 mm, isotropic 1 mm 216 

voxels) and a T2-weighted SPACE image (TR 2800 ms, TE 408 ms, FOV 256mm × 217 

256mm × 192mm; isotropic 1mm voxels) were acquired. The MR data of eight 218 

participants were not included in the analysis due to technical problems during scanning 219 

or preprocessing problems. Together with the exclusion of three participants due to 220 

outlying behavioural data (see above), 299 participants were included in the structural 221 

imaging analyses. 222 

 223 

The structural images were preprocessed for a Voxel-Based Morphometry analysis, as 224 

previously described (Taylor et al., 2017) using SPM12 (www.fil.ion.ucl.ac.uk/spm) as 225 

called by the automatic analysis batching system (Cusack et al., 2015). Multimodal 226 

segmentation (using both T1- and T2-weighted images) was used to reduce age-biased 227 

tissue priors. Diffeomorphic Anatomical Registration Through Exponentiated Lie 228 

Algebra (DARTEL) approach was applied to improve inter-subject alignment 229 

(Ashburner, 2007) as follows: segmented images were warped to a project-specific 230 

template, and then affine-transformed to the Montreal Neurological Institute (MNI) 231 

space, followed by modulation by the Jacobean of the combined transformations (to 232 

preserve volume) and smoothing with an 8-mm full-width at half maximum Gaussian 233 

kernel. A threshold of 0.15 was used on these images for the inclusion of grey matter 234 
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voxels, as in previous analysis (Wolpe et al., 2016). Multiple regression analysis was 235 

performed to create a statistical parametric map of differences in grey matter volume 236 

in relation to adaptation. Adaptation and the (mean-corrected and orthogonalised) 237 

interaction term between adaptation and age were included as the main covariates of 238 

interest. Age, handedness (Edinburgh handedness score), gender (categorical variable), 239 

education (categorical variables according to Table 1), mean pre-exposure trajectory 240 

error and total intracranial volume were also included in the regression model. All 241 

variables were z-scored before entering the regression analyses. Unless stated 242 

otherwise, results of structural imaging analyses are reported at cluster-based p < 0.05, 243 

Family-Wise-Error (FWE) corrected, with a cluster-forming threshold of p < 0.001. 244 

The raw data and analysis code are available upon signing a data sharing request form 245 

(http://www.mrc-cbu.cam.ac.uk/datasets/camcan/).  246 
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RESULTS 247 

Differences in motor learning with age 248 

For each participant, we examined the initial movement trajectory error (Fig. 1B) for 249 

each cycle across the three experimental phases. Although age was modelled as a 250 

continuous variable in all the following analyses, for ease of visualisation, Figure 1C 251 

illustrates participants’ trajectory errors for the cohort divided by age into three groups 252 

of similar size. During the pre-exposure phase, there was a small but consistent counter 253 

clockwise (negative angle) bias in trajectory errors across participants (absolute mean 254 

bias less than 2º; t(318) = -11.793, p = 7.116e-27, R2 = 0.552). In view of a trend for an 255 

effect of age on bias (t(317) = -1.933, p = 0.054, R2 = 0.012), we adjusted for individual 256 

differences in pre-exposure error in line with previous studies (Buch et al., 2003). 257 

 258 

 259 

 260 
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In the exposure and post-exposure phases, participants gradually adapted their initial 261 

movement to the onset and offset of the 30º angular rotation (Fig. 1C) and improved 262 

their performance in terms of target hit rate (Fig. 1D). For the exposure and post-263 

exposure phases, we fit the trajectory errors with separate exponential curves (Fig. 2A). 264 

The key parameter to assess learning was ‘final adaptation’, i.e. the difference between 265 

the 30º angular perturbation and fit trajectory error on the last cycle of the exposure 266 

phase. Additional parameters of interest were ‘time to half adaptation’, i.e. the time (in 267 

cycles) to reach half the final adaptation; and ‘final de-adaptation’ and ‘time to half de-268 

adaptation’ for the post-exposure phase. Across participants, the model fit the data well, 269 

with a mean R2 of 0.742 (SD = 0.177), which did not vary with age (r(317) = -0.100, p = 270 

0.076, R2 = 0.010).  271 

  272 

The magnitude of final adaptation is plotted against age in Figure 2B. We fit the 273 

association between final adaptation and age with a linear model (the BIC difference 274 

relative to a second-order polynomial model was 2.67 in favour of the linear model). 275 

There was a significant negative correlation between age and final adaptation (r(317) = -276 

0.349, p = 1.353e-10, R2 = 0.122), suggesting that older adults adapted their initial 277 

movement trajectory less than young adults. Examining the time-course of individual 278 

adaptation, there was a small correlation between ‘time to half adaptation’ and age 279 

(r(317) = -0.1371, p = 0.0143, R2 = 0.019), which became stronger when covarying for 280 

final adaptation (partial correlation; r(316) = -0.201, p = 3.101e-04, R2 = 0.04). Similar 281 

results were obtained when examining at the time constant from the exponential fit, 282 

which together suggest that although older adults learned less than young adults overall, 283 

they did so faster.  284 
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 285 

 286 

In the post-exposure phase, participants ‘de-adapted’ to some degree, but remained 287 

biased in the opposite direction to the experimental perturbation (see Figure 1C). Older 288 

adults de-adapted less than young adults, with a significant negative correlation 289 

between age and final de-adaptation (partial correlation with final adaptation covaried; 290 
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r(316) = -0.23, p = 3.50e-05, R2 = 0.053). The time-course for de-adaptation, however, 291 

did not vary with age (r(317) = -0.083, p = 0.138, R2 = 0.007).  292 

 293 

Contribution of implicit and explicit processes to differences in motor learning 294 

To study the potential processes underlying reduced motor adaptation with age, we 295 

examined the link between final adaptation and individual differences in measures that 296 

could support implicit and explicit learning. We used a measure of sensory attenuation, 297 

reflecting the precision of internal models, which may support implicit motor learning  298 

(Wolpe et al., 2016), and an explicit measure of declarative memory from a Story Recall 299 

task (Shafto et al., 2014). We entered these measures into a linear regression model 300 

with final adaptation as the dependent variable, sensory attenuation and declarative 301 

memory as the independent variables, as well as their interaction with age, and 302 

covariates of no interest (see Methods).  303 

 304 

Table 2 summarises the results of the regression analysis. Sensory attenuation was not 305 

a significant predictor of adaptation (beta = -0.057, Z = -1.059, p = 0.289, betastandardised 306 

= -0.057) and there was no age × attenuation interaction (beta = 0.04, Z = 0.815, p = 307 

0.415, betastandardised = 0.043; Fig. 3A). Declarative memory also showed no main effect 308 

on adaptation (beta = -0.04, Z = -0.908, p = 0.364, betastandardised = -0.055), but there 309 

was a positive age × declarative memory interaction (beta = 0.087, Z = 2.123, p = 0.034, 310 

betastandardised = 0.112; Fig. 3B). An analogous interaction was also found with the 311 

alternative and exploratory measure of declarative memory, from the Emotional 312 

Memory task performed by a subset of participants: again, no main effect of declarative 313 

memory was observed (beta = 0.093, Z = 1.269, p = 0.204, betastandardised = 0.131), but 314 

a positive age × declarative memory interaction emerged (beta = 0.171, Z = 2.607, p = 315 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 22, 2018. ; https://doi.org/10.1101/353870doi: bioRxiv preprint 

https://doi.org/10.1101/353870
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 
0.009, betastandardised = 0.22). These results suggest that sensory adaptation was more 316 

positively correlated with explicit memory in older adults. 317 

 318 

 319 

Grey matter differences and reduced adaptation with age 320 

We next performed a spatially-unbiased, whole-brain Voxel-Based Morphometry 321 

analysis of grey matter volume. To identify brain areas where grey matter volume was 322 

correlated with differences in adaptation across age, we examined the correlation with 323 

the interaction of final adaptation × age. There was a significant positive correlation 324 

between grey matter volume and adaptation × age in three clusters (Fig. 4A): one 325 

encompassing the right middle and inferior temporal lobe (k = 1244, p = 0.020, FWE-326 

corrected) and two bilateral clusters that include the right (k =1254, p = 0.019, FWE-327 

corrected) and left (k = 1238, p = 0.020, FWE-corrected) hippocampus and amygdala. 328 

This interaction indicates that grey matter volume in these regions was more positively 329 

correlated with final adaptation in older, versus younger participants (Fig. 4B). Given 330 

these regions’ involvement in explicit memory, these results are consistent with the 331 

behavioural findings implicating a role for explicit memory in age-related differences 332 

in motor learning. No significant negative correlation was found with adaptation × age.  333 

 334 
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For completeness, we looked at the correlation between grey matter volume and 335 

adaptation, independently of age. Here, there was a trend for a positive correlation 336 

between adaptation and grey matter volume in the ventral striatum (k = 879, p = 0.061, 337 

FWE-corrected; peak voxel in the nucleus accumbens at [-14, -3, -10]). No significant 338 

negative correlation was found, however, in a lenient threshold of p < 0.001 339 

uncorrected, a small cluster was found in the cerebellum (k = 192; peak voxel at [8, -340 

50, -42]). 341 

 342 

  343 
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DISCUSSION 344 

The results of the current study suggest that the reduction of motor adaptation as we 345 

grow older is related to individual differences in explicit memory, but not in sensory 346 

attenuation. Across participants, reduced grey matter in brain structures of the medial 347 

temporal lobe, including the hippocampus and amygdala, was associated with reduced 348 

motor adaptation. These results contrast with the classical view of motor learning as a 349 

pure implicit learning process.  350 

 351 

No association between sensory attenuation and motor adaptation 352 

In the classical interpretation of motor learning, an internal forward model predicts the 353 

sensory consequences of one’s movement (Shadmehr et al., 2010; Wolpert and 354 

Flanagan, 2010). A discrepancy between sensorimotor prediction and feedback 355 

(sensory prediction error) enables the internal model to be updated. We hypothesised 356 

that this implicit process would contribute to reduced degree of adaptation seen with 357 

age in in our study and in previous studies (McNay and Willingham, 1998; Buch et al., 358 

2003; Bock, 2005). Specifically, as ageing leads to reduced reliance on ‘noisy’ sensory 359 

information, reflected in increased sensory attenuation (Wolpe et al., 2016), internal 360 

models would become progressively less sensitive with age to differences between 361 

sensory prediction and feedback.  362 

 363 

We found that differences in attenuation did not explain reduced adaptation with age. 364 

These findings, coupled with the structural imaging results, suggest that the processes 365 

underlying individual differences in adaptation with age differ from those underlying 366 

altered sensorimotor integration (Wolpert et al., 2011; Wolpe et al., 2016). Further, the 367 

absence of an association between sensory attenuation and motor learning across 368 
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participants is surprising, considering the theoretical link between these measures 369 

(Wolpe et al., 2016). This null result may be because the measure of sensory attenuation 370 

reflects the precision-dependent down-weighting of haptic and proprioceptive 371 

feedback, whereas our motor adaptation task relied heavily on visual feedback. 372 

Attenuation might be related to adaptation in other tasks, with for example a physical 373 

force field perturbation, rather than virtual perturbation. 374 

 375 

Contribution of explicit memory to reduced motor learning with age 376 

In recent years, evidence has emerged for the contribution of explicit learning strategies 377 

to motor adaptation (Taylor and Ivry, 2012). For example, individual differences in 378 

cognitive abilities have been linked with motor adaptation, such as working memory 379 

capacity in young (Anguera et al., 2010) and older adults (McNay and Willingham, 380 

1998; Langan and Seidler, 2011; Uresti-Cabrera et al., 2015). In our study, there was 381 

an increased association between declarative memory performance and adaptation with 382 

age. This suggests that the decline in explicit memory with age (Henson et al., 2016) 383 

contributes to reduced motor adaptation. Although the behavioural effect size was not 384 

large, a similar effect was observed with another explicit memory task in a subset of 385 

our cohort, and builds on three key observations. First, when an experimental 386 

perturbation is small and gradual, emphasising implicit processes, older adults adapt 387 

their movement as well as young adults (Buch et al., 2003). Second, when young and 388 

old participants are matched by explicit knowledge of the perturbation, age-related 389 

differences largely dissipate (Heuer and Hegele, 2008). Third, explicit memory 390 

performance has been linked to reduced motor learning with age, but specifically in the 391 

‘fast’ learning process (Trewartha et al., 2014). 392 

 393 
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Rather than a single learning process, a two-state model has been suggested to better 394 

explain motor adaptation (Smith et al., 2006), in which there are two learning processes 395 

occurring in parallel with a fast and a slow learning rate. The fast learning process has 396 

been associated with explicit learning strategies (McDougle et al., 2015), including 397 

explicit memory in general (Keisler and Shadmehr, 2010) and in old age in particular 398 

(Trewartha et al., 2014). Further, increased awareness to visuomotor perturbations has 399 

been linked to an increased early adaptation (Werner et al., 2015). Both our findings 400 

that learning was faster in older adults, and the increased association between 401 

adaptation and declarative memory in old age, together suggest that older adults rely 402 

more on an explicit learning strategy with a fast learning rate.  403 

 404 

Different strategies for motor learning with age 405 

In younger adults, it has been suggested that individuals with better explicit memory 406 

rely more on explicit learning during motor adaptation, in order to optimise adaptation 407 

capacity (Christou et al., 2016). However, considering the substantial decline in explicit 408 

memory with age (Henson et al., 2016), why would older adults rely on a strategy that 409 

would lead to their reduced learning? To propose an answer to this question, we 410 

consider the mechanisms underlying implicit and explicit learning for motor adaptation.  411 

 412 

In contrast to implicit motor learning which is driven by sensory prediction error (see 413 

above), the explicit component of motor learning is proposed to be mainly driven by 414 

the task performance error – that is, the difference between the target and sensory 415 

feedback (Taylor and Ivry, 2013). A careful consideration of movement adaptation and 416 

target hit rate (see Figure 1C and Figure 1D) shows that unlike older adults, younger 417 

participants continued to adapt their movement trajectories even after performance had 418 
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reached ceiling level (in terms of successfully reaching the target). In other words, 419 

young, but not older adults, continue to adapt in the absence of (explicit) task 420 

performance error, possibly owing to the persistence of (implicit) sensory prediction 421 

error. This behavioural discrepancy may be due to differential use of ‘cost functions’ 422 

with age (Marblestone et al., 2016): whereas younger participants optimise movement 423 

in terms of metabolic expenditure, jerk or torque change (Todorov and Jordan, 2002; 424 

Todorov, 2004), older adults may be more sensitive to performance error signals (Levy-425 

Tzedek, 2017) in order to maximise immediate task success.  426 

 427 

The tighter coupling between task success and motor adaptation in older adults in our 428 

study may also speak to increased reliance on a ‘model-free’ strategy for learning. In 429 

addition to the ‘model-based’ approach discussed thus far, computational models have 430 

described an additional ‘model-free’ approach for learning in general (Daw et al., 431 

2005), and for motor learning in particular (Huang et al., 2011; Izawa and Shadmehr, 432 

2011; Cashaback et al., 2017). In model-free learning, actions are selected so as to 433 

maximise the predicted value of reward that is learned through trial and error (Daw et 434 

al., 2005). It is computationally efficient, and dependent on dopaminergic signalling of 435 

reward prediction error that is distinct from sensory prediction error (Palidis et al., 436 

2018). Model-free learning can indeed account for different behavioural phenomena in 437 

motor adaptation, including savings (faster relearning) that is intact in older individuals 438 

(Seidler, 2007; Huang et al., 2011). Moreover, a model-free strategy for motor learning 439 

is likely to become more prominent when sensory precision is reduced (Izawa and 440 

Shadmehr, 2011), as occurs in age (Wolpe et al., 2016; Lei and Wang, 2017). Taken 441 

together, model-free learning may remain preserved relative to model-based learning 442 
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for motor adaptation in old age (c.f. Sharp et al., 2016, but see Chowdhury et al., 2013), 443 

however, this remains to be directly tested in future studies. 444 

 445 

Increased association between explicit memory system and motor learning with 446 

age 447 

Complementing our behavioural data, bilateral hippocampal and amygdala grey matter 448 

volumes were positively associated with adaptation, more so with increasing age. As 449 

the medial temporal lobe and hippocampus play a central role in declarative memory, 450 

these imaging results underscore the behavioural associations, between explicit 451 

memory and motor adaptation through the lifespan. The association is consistent with 452 

the notion of increased reliance on cognitive resources in old age for maintaining motor 453 

performance (Seidler et al., 2010), e.g. as seen during normal walking (Mirelman et al., 454 

2017). Whether these interactions indeed reflect a (compensatory) behavioural (Seidler 455 

and Carson, 2017) and functional (Tsvetanov et al., 2016) reliance on cognition, or 456 

simply the larger variability in explicit memory with age remains to be validated.  457 

 458 

The anterior part of the hippocampus identified in our study supports the learning of 459 

new environmental layouts (Maguire et al., 2000), encoding the Euclidean distance to 460 

one’s goal (Howard et al., 2014). This goal distance signal is speculatively analogous 461 

to the performance error signal for mediating explicit motor learning (Taylor and Ivry, 462 

2011). Similar performance error signals have been found in the adjacent amygdala 463 

(Gemba et al., 1986), which enhances learning of highly arousing or rewarding action-464 

outcome associations (Cador et al., 1989; Fastenrath et al., 2014).  465 

 466 
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Taken together, the behavioural and imaging results suggest that across the lifespan, 467 

adults gradually come to rely more on explicit learning strategies, driven by 468 

performance error, in order to maintain success even on a motor adaptation task. 469 

Although our study focussed on healthy adults, a gradual increase in the importance of 470 

explicit memory for motor learning across the lifespan may also inform the 471 

development of more efficient neurorehabilitation programmes at different ages.  472 
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TABLES AND FIGURES 665 

Table 1. Summary of participant demographics across age decades. 666 

 667 

Age N Gender 
M/F 

Handedness 
R/L 

Education* 
None GCSE A Levels University 

18-29 33 13/20 30/3 0 5 6 22 

30-39 46 24/22 40/6 0 2 7 37 

40-49 60 28/32 51/9 1 7 4 48 

50-59 46 25/21 41/5 3 5 15 23 

60-69 55 31/24 50/5 3 10 14 28 

70-79 53 22/31 49/4 6 8 9 30 

80-89 29 16/13 28/1 5 4 12 8 

Total 322 159/163 289/33 18 41 67 196 

*Categorised according to the British education system: ‘none’ = no education over 668 

the age of 16 years; ‘GCSE’ = General Certificate of Secondary Education;  669 

‘A Levels’ = General Certificate of Education Advanced Level;  670 

‘University’ = Undergraduate or graduate degree.  671 
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Table 2. Summary of multiple regression analysis for predicting final adaptation. 672 

R2=0.212; SE = mean standard error; Covariates of interest shaded.  673 

   
Final adaptation 

 

 

 
Variable 
 

 
b estimate 

 
b SE 

 
z-value 

 
p-value 

 
Age 

 
-0.349 

 
0.058 

 
-5.991 

 
< 0.001 

 
Education 

 
0.137 

 
0.053 

 
2.566 

 
0.01 

 
Gender 
 

 
0.086 

 
0.051 

 
1.684 

 
0.092 

Handedness 
 

0.172 0.051 3.336 0.001 

Pre-exposure bias 
 

-0.135 0.052 -2.619 0.009 

Declarative 
memory 
 

-0.040 0.044 -0.908 0.364 

Sensory 
attenuation 
 

-0.057 0.054 -1.059 0.289 

Declarative 
memory * age 
 

0.087 0.041 2.123 0.034 

Sensory 
attenuation * age 
 

0.04 0.049 0.815 0.415 
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Figure 1 674 

Visuomotor rotation learning task. A. Illustration of the task in which participants 675 

moved a stylus-controlled cursor so as to hit a target. The target appeared pseudo-676 

randomly in one of four locations on the screen (once in each of the four-trial cycles). 677 

Participants could not see their hand, and the visual feedback of the cursor was either 678 

veridical (pre-exposure and post-exposure phases) or rotated by 30 degrees (exposure 679 

phase) relative to the stylus. B. Participant movement adaptation was assessed by 680 

looking at the changes in their initial trajectory error qE, calculated 1 cm after starting 681 

the movement C. Mean trajectory error across the experimental cycles (±1 standard 682 

error shaded). Dashed vertical lines separate the phases: pre-exposure (left), exposure 683 

(middle) and post-exposure (right). For illustration purposes only, data has been split 684 

into three age groups of similar size (‘young’ = 18-45 years, N=106; ‘middle’ = 41-65 685 

years, N=106; ‘old’ = 66-89 years, N=107), although all analyses were performed with 686 

age as a continuous variable. D. Same ac (C) but for target hit rate.  687 
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Figure 2 688 

Final adaptation across age. A. Example of the model fit in a representative participant. 689 

The model consisted of two sequential exponential curves, fit with a robust bisquare 690 

weight function. The main parameter of interest was ‘final adaptation’. B. Correlation 691 

between final adaptation and age (with marginal histograms). Solid line indicates the 692 

linear regression fit with 95% confidence interval (grey shade).  693 
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Figure 3 694 

Explicit memory performance and motor adaptation by age. A. Illustration of the 695 

positive interaction between age and declarative memory scores from the Story Recall 696 

task in relation to final adaptation. Age groups as in Figure 1. Solid line indicates the 697 

linear regression fit with 95% confidence interval (grey shade). B. As in (A), but for 698 

declarative memory score from the Emotional Memory task.  699 
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Figure 4 700 

Structural imaging results. A. Sagittal sections (numbers indicating x coordinate), 701 

showing three significant clusters (yellow) where there was a significant (p < 0.05, 702 

FWE-corrected) positive interaction between final adaptation and age in relation to grey 703 

matter volume. These clusters included bilateral hippocampus and amygdala as well as 704 

right medial and inferior temporal lobe. B. Illustration of the positive interaction from 705 

(A). Mean grey matter volume extracted from peak voxel for illustration of interaction. 706 

Groups split by age as in Figure 1.  707 
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