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24  ABSTRACT

25  The ability to adapt one’s movements to changes in the environment is fundamental in
26  everyday life, but this ability changes across the lifespan. Although often regarded as
27  an ‘implicit’ process, recent research has also linked motor adaptation with ‘explicit’
28  learning processes. To understand how these processes contribute to differences in
29  motor adaptation with age, we combined a visuomotor learning paradigm with
30  cognitive tasks that measure implicit and explicit processes, and structural brain
31  imaging. In a large population-based cohort from the Cambridge Centre for Ageing and
32 Neuroscience (n=322, aged 18-89 years) we first confirmed that the degree of
33 adaptation to an angular perturbation of visual feedback declined with age. There were
34 no associations between adaptation and sensory attenuation, which has been previously
35  hypothesised to contribute to implicit motor learning. However, interactions between
36 age and scores on two independent memory tasks showed that explicit memory
37  performance was a progressively stronger determinant of motor learning with age.
38  Similarly, interactions between age and grey matter volume in the medial temporal
39 lobe, amygdala and hippocampus showed that grey matter volume in these regions
40 became a stronger determinant of adaptation in older adults. The convergent
41  behavioural and structural imaging results suggest that age-related differences in the
42  explicit memory system is a contributor to the decline in motor adaptation in older age.
43  These results may reflect the more general compensatory reliance on cognitive

44  strategies to maintain motor performance with age.
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45  SIGNIFICANCE STATEMENT

46  The central nervous system has a remarkable capacity to learn new motor skills and
47  adapt to new environmental dynamics. This capacity is impaired with age, and in many
48  brain disorders. We find that explicit memory performance and its associated medial
49  temporal brain regions deteriorate with age, but the association between this brain
50  system and individual differences in motor learning becomes stronger in older adults.
51  We propose that these results reflect an increased reliance on cognition in order to
52 maintain adaptive motor skill performance. This difference in learning strategy has

53  implications for interventions to improve motor skills in older adults.
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54 INTRODUCTION

55  The sensorimotor system has a remarkable capacity to adapt to changes that occur both
56  externally in the environment and internally in neuronal and musculoskeletal dynamics.
57  Such adaptation is critical for learning new skills, and for adjusting previously learned
58  movements in the face of new tasks (Scott, 2004; Franklin and Wolpert, 2011; Wolpert
59 etal., 2011). For example, developmental and ageing processes that occur throughout
60 the lifespan — from changes in muscle and joint physiology to neuronal degeneration in
61  the nervous system — require constant adaptation. However, motor adaptation itself is
62  impaired with age (Fernandez-Ruiz et al., 2000; Buch et al., 2003; Seidler, 2007; King
63 etal., 2013), which may put older people at increased risk of adverse events, such as
64  falls (Tinetti et al., 1988; Rubenstein, 2006).

65

66  To understand the effects of age on motor learning, optimal control theory proposes
67  that during the execution of a voluntary movement, the central nervous system
68  continuously simulates one’s interaction with the environment (for a review see
69  Franklin and Wolpert, 2011). This may be achieved through an internal forward model,
70 which learns to predict the sensory outcome of an action (Miall and Wolpert, 1996).
71  An error signal between the predicted and actual sensory information leads to the
72 update of the internal model, which facilitates better prediction and improved
73 performance of future actions (Shadmehr et al., 2010). Updating an internal model is
74  believed to be an implicit learning process, central to motor adaptation (Shadmehr et
75  al., 2010; Wolpert et al., 2011).

76

77  We previously suggested that this implicit process would be impaired in older adults as

78  aresult of reduced reliance on sensory feedback during movement with age (Wolpe et


https://doi.org/10.1101/353870
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/353870; this version posted June 22, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

5
79  al., 2016). Typically, a reduction in the precision of sensory afferents relative to
80  predictive signals during movement leads to sensory attenuation (Bays et al., 2006).
81  This attenuation is increased with age, with reduced precision of sensory signals and
82  increased reliance on established internal models for motor control (Wolpe et al., 2016).
83  Since the updating of one’s model depends on the relative precision of prediction and
84  sensory signals (Wolpert et al., 2011), the imprecise sensory signals that occur with age
85  would be less able to update the internal model (Lei and Wang, 2017).
86
87  Although motor adaptation was once considered to be an archetype of implicit memory,
88  an additional explicit learning process has been shown to contribute to motor adaptation
89  (Mazzoni and Krakauer, 2006; Taylor and Ivry, 2011). This explicit process is proposed
90 to be supported by high-level cognitive strategies that counteract changes in the
91  environment (Taylor and Ivry, 2013). On this basis, reduced adaptation could result in
92  part from the age-related decline in the explicit (declarative) memory system (Langan
93  and Seidler, 2011; Trewartha et al., 2014).
94
95  Here we test the hypothesis that differences in sensory attenuation and explicit memory
96  contribute to the decline in motor adaptation with age. Participants were recruited from
97  a large population-derived cohort, aged 18-89 years, at the Cambridge Centre for
98  Ageing and Neuroscience (Cam-CAN; Shafto et al., 2014). Participants performed a
99  visuomotor rotation learning task (c.f. Buch et al., 2003), in which they moved a stylus-
100  controlled cursor to a visual target. We then introduced a 30° angular rotation of visual
101  feedback between the cursor and stylus location. Participants therefore needed to adapt
102 their movement to overcome this visuomotor rotation so as to reach the target. We

103 hypothesised that reduced adaptation with age is related to differences in both implicit
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104 and explicit processes, including sensory attenuation and declarative memory
105  performance. In addition, we performed whole-brain analyses of grey matter volume to
106  test the corollary hypothesis that differences in adaptation with age are differentially
107  related to grey matter in regions associated with explicit learning, including the
108  hippocampus and amygdala (Hamann et al., 2014; Mary et al., 2017); and regions
109  associated with implicit motor learning, such as the cerebellum, striatum and motor

110  cortex (Seidler et al., 2006; Galea et al., 2011; King et al., 2013).
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111 MATERIALS AND METHODS

112 Experimental design

113 From a population-based cohort of healthy adults, 322 participants completed a
114  visuomotor learning task (Cam-CAN; Shafto et al., 2014). They were asked to move a
115  cursor so as to hit a target (Fig. 1A). To do so, they grasped a stylus pen with their
116  dominant hand, and the position of the tip of the stylus was recorded using a digitising
117  touch pad (Bamboo CTH-661, Wacom Technology Corporation, Vancouver, WA) and
118  displayed as a red cursor (radius 0.25 cm) on a computer monitor. Participants viewed
119  the display in a semi-reflective mirror, such that the image appeared to be projected
120  onto the horizontal surface of the touch pad. In this way, the red cursor could track the
121 position of the stylus on the pad. The task was to move the cursor from a central ‘home’
122 position (white disc radius 0.5 cm) to hit one of four possible targets (yellow discs,
123 radius 0.5 cm). Targets were displayed 5 cm from the home position and target direction
124 was chosen from the set {0, 90, 180, 270°}, in a pseudo-random order, such that each
125  cycle of 4 trials contained each target direction. When participants successfully hit a
126  target, it burst and a tone was played to indicate that the trial was successful. If
127  participants failed to initiate movement within 1 sec; or to hit the target within 800 ms
128  after movement initiation, an error tone was played and the message “Too slow” was
129  displayed. Participants completed an initial familiarisation phase of 24 trials (6 cycles
130  of the 4 targets), during which they were permitted to see their hand and the stylus
131  through the mirror. In the main experiment, an occluder was placed behind the mirror
132 to prevent participants from seeing their hand.

133

134 The main experiment consisted of 192 trials which were divided into three phases.

135  During the pre-exposure phase, participants performed 24 trials (six cycles of four
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136 trials) in which the red cursor accurately represented the position of the stylus. During
137  the subsequent exposure phase, participants performed 120 trials (30 cycles) in which
138  the position of the cursor was rotated 30° clockwise relative to the central home
139  position. The introduction of the rotation required participants to adapt their movement
140 trajectories in order to successfully hit the targets. Finally, during the post-exposure
141  phase, participants performed 48 trials (12 cycles) with the perturbation removed, as in
142 the pre-exposure phase. The post-exposure phase required participants to ‘de-adapt’
143 their movement trajectories in order to hit the target.
144
145  Participants also completed two additional tasks that measure processes relevant for
146  implicit and explicit learning: 1) A Force Matching task, measuring sensory attenuation
147  as a proxy of the precision of forward models (n=311 complete datasets) (Wolpe et al.,
148  2016); 2) a Story Recall task, which is a verbal memory subtest of the Wechsler
149  Memory Scale measuring explicit memory (Shafto et al., 2014) (n=319). A smaller
150  subset of the participants (n=116) also completed an Emotional Memory task, which
151  had many more trials and so potentially provides a more sensitive measure of explicit
152  memory (Henson et al., 2016).
153
154  Behavioural statistical analysis
155 Motor adaptation on each trial was assessed by measuring the initial movement
156  trajectory error, which is considered to reflect the feedforward component of the
157 movement, before feedback becomes available. The trajectory error was calculated as
158 the difference between the target angle and the angle of the initial cursor movement
159  trajectory. The initial trajectory angle was calculated at 1 cm into the movement,

160  relative to the start position (trials were excluded if the cursor moved less than 1 cm
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161  from the home position, affecting 0.76% of trials on average across participants).
162  Trajectory errors were averaged across each cycle of 4 trials to give a time series across
163 the 48 cycles (from 192 trials) of the experiment.
164
165  For each participant, trajectory errors across cycles in the exposure and post-exposure
166  phases were each fit with an exponential. The fitting algorithm (‘nlinfit’ function in
167  Matlab 2017a; MathWorks Inc. MA, USA) used iteratively reweighted least squares
168  with a bisquare weighting function. The curves were constrained as follows: the
169  exponential for the exposure phase started at 30° on cycle 1 with a variable final value
170 on cycle 30. For the post-exposure phase, the initial value on post-exposure cycle 1 is
171  constrained by the final level of exposure phase adaptation (exposure cycle 30) and
172 asymptote at zero.
173
174  The fitting therefore had three free parameters: 1) Final adaptation (in degrees), which
175  1is the difference between the angular perturbation of 30° and the fitted trajectory error
176  on the last cycle of the exposure phase (between 0° and 30°); 2) exponential time
177  constant for adaptation (in trials); 3) de-adaptation time constant (in trials). Based on
178  the fit, we also calculated: 1) final de-adaptation, which is the trajectory error on the
179  last cycle of the post-exposure phase. 2) Time to half adaptation, which is the time (in
180  cycles) to reach half the final adaptation; 3) Time to half de-adaptation (in cycles). Time
181  to half adaptation and de-adaption were chosen for the analyses as they were more
182  robust across subjects compared to the exponential time constants. Three participants
183  (aged 28, 48 and 58 years old) were excluded because their fitted final adaptation was

184 0 degrees, implying failure to understand or perform the task (> 5 SD from cohort
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185 mean). De-adaptation was assessed as the absolute ratio between final de-adaptation
186  and final adaptation.

187

188  To examine the contribution of processes supporting implicit and explicit learning to
189  age-related differences in motor adaptation, the data were entered into linear regression
190  models. Final adaptation was the dependent variable, and the independent variables
191  were: 1) sensory attenuation, measured as the overall mean force overcompensation
192  when directly matching the target forces (Wolpe et al., 2016); 2) explicit memory in
193  the Story Recall task, measured as the first principal component of the scores given by
194  the experimenter for retelling the story (1) immediately and (i1) 30-minutes after hearing
195  the story (Shafto et al., 2014). An additional exploratory analysis was performed using
196  declarative memory score from the Emotional Memory task. This score was measured
197  as the first principal component of (i) the total number of detail correct background
198  pictures, and (i1) the total number of detail and gist correct pictures — both measures
199  collapsed across emotional valence (Henson et al., 2016). Covariates of no interest
200  included mean trajectory error during the pre-exposure phase (accounting for individual
201  movement bias, e.g. see Buch et al., 2003), education (categories according to Table 1),
202  gender (categorical variable) and handedness (Edinburgh Handedness Score; Oldfield,
203 1971). All variables were z-scored before entering the regression analysis. Multiple
204  regression was performed as a path model using the Lavaan package (Rosseel, 2012)
205 in R (R Core Team, 2016), using Full Information Maximum Likelihood to account for
206  missing data. All statistical analyses were performed with a two-tailed alpha threshold
207  of 0.05, but given the large sample size, we focus on effect size, here reported as the
208  percentage of variance explained by the specific statistical contrast (R%; values less than

209  ~1.2% correspond to two-tailed p > 0.05). For the regression analyses, we report the
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210  raw as well as fully standardised path estimates. Plots were generated using ggplot2
211 (Wickham, 2009).
212
213 Structural neuroimaging protocol and analysis
214 A 3T Siemens TIM Trio with a 32-channel head coil was used to scan 310 participants
215 (12 participants declined MRI). Both a T1-weighted MPRAGE image (TR 2250 ms,
216  TE 2.99 ms, TI 900 ms, FA 9°, FOV 256 mm % 240 mm X 192 mm, isotropic 1 mm
217  voxels) and a T2-weighted SPACE image (TR 2800 ms, TE 408 ms, FOV 256mm x
218  256mm x 192mm; isotropic Imm voxels) were acquired. The MR data of eight
219  participants were not included in the analysis due to technical problems during scanning
220  or preprocessing problems. Together with the exclusion of three participants due to
221  outlying behavioural data (see above), 299 participants were included in the structural
222 imaging analyses.
223
224 The structural images were preprocessed for a Voxel-Based Morphometry analysis, as

225  previously described (Taylor et al., 2017) using SPM12 (www.fil.ion.ucl.ac.uk/spm) as

226  called by the automatic analysis batching system (Cusack et al., 2015). Multimodal
227  segmentation (using both T1- and T2-weighted images) was used to reduce age-biased
228  tissue priors. Diffeomorphic Anatomical Registration Through Exponentiated Lie
229  Algebra (DARTEL) approach was applied to improve inter-subject alignment
230  (Ashburner, 2007) as follows: segmented images were warped to a project-specific
231  template, and then affine-transformed to the Montreal Neurological Institute (MNI)
232 space, followed by modulation by the Jacobean of the combined transformations (to
233 preserve volume) and smoothing with an 8-mm full-width at half maximum Gaussian

234  kernel. A threshold of 0.15 was used on these images for the inclusion of grey matter
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235  voxels, as in previous analysis (Wolpe et al., 2016). Multiple regression analysis was
236  performed to create a statistical parametric map of differences in grey matter volume
237  in relation to adaptation. Adaptation and the (mean-corrected and orthogonalised)
238  interaction term between adaptation and age were included as the main covariates of
239  interest. Age, handedness (Edinburgh handedness score), gender (categorical variable),
240  education (categorical variables according to Table 1), mean pre-exposure trajectory
241  error and total intracranial volume were also included in the regression model. All
242 variables were z-scored before entering the regression analyses. Unless stated
243 otherwise, results of structural imaging analyses are reported at cluster-based p < 0.05,
244  Family-Wise-Error (FWE) corrected, with a cluster-forming threshold of p < 0.001.
245  The raw data and analysis code are available upon signing a data sharing request form

246  (http://www.mrc-cbu.cam.ac.uk/datasets/camcan/).
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247  RESULTS

248  Differences in motor learning with age

249  For each participant, we examined the initial movement trajectory error (Fig. 1B) for
250  each cycle across the three experimental phases. Although age was modelled as a
251  continuous variable in all the following analyses, for ease of visualisation, Figure 1C
252 illustrates participants’ trajectory errors for the cohort divided by age into three groups
253  of similar size. During the pre-exposure phase, there was a small but consistent counter
254 clockwise (negative angle) bias in trajectory errors across participants (absolute mean
255  bias less than 2°% #3158y =-11.793, p = 7.116e-27, R*= 0.552). In view of a trend for an
256  effect of age on bias (#317) =-1.933, p = 0.054, R*=0.012), we adjusted for individual

257  differences in pre-exposure error in line with previous studies (Buch et al., 2003).
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261  In the exposure and post-exposure phases, participants gradually adapted their initial
262  movement to the onset and offset of the 30° angular rotation (Fig. 1C) and improved
263  their performance in terms of target hit rate (Fig. 1D). For the exposure and post-
264  exposure phases, we fit the trajectory errors with separate exponential curves (Fig. 2A).
265  The key parameter to assess learning was ‘final adaptation’, i.e. the difference between
266  the 30° angular perturbation and fit trajectory error on the last cycle of the exposure
267  phase. Additional parameters of interest were ‘time to half adaptation’, i.e. the time (in
268  cycles) to reach half the final adaptation; and ‘final de-adaptation’ and ‘time to half de-
269  adaptation’ for the post-exposure phase. Across participants, the model fit the data well,
270  with a mean R* of 0.742 (SD = 0.177), which did not vary with age (r@17)=-0.100, p =
271 0.076, R*=0.010).

272

273  The magnitude of final adaptation is plotted against age in Figure 2B. We fit the
274  association between final adaptation and age with a linear model (the BIC difference
275  relative to a second-order polynomial model was 2.67 in favour of the linear model).
276  There was a significant negative correlation between age and final adaptation (r317) = -
277 0349, p = 1.353¢-10, R* = 0.122), suggesting that older adults adapted their initial
278  movement trajectory less than young adults. Examining the time-course of individual
279  adaptation, there was a small correlation between ‘time to half adaptation’ and age
280  (rzi7)=-0.1371, p = 0.0143, R* = 0.019), which became stronger when covarying for
281  final adaptation (partial correlation; r316) = -0.201, p = 3.101e-04, R* = 0.04). Similar
282  results were obtained when examining at the time constant from the exponential fit,
283  which together suggest that although older adults learned less than young adults overall,

284  they did so faster.
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286

287  In the post-exposure phase, participants ‘de-adapted’ to some degree, but remained
288  biased in the opposite direction to the experimental perturbation (see Figure 1C). Older
289  adults de-adapted less than young adults, with a significant negative correlation

290  between age and final de-adaptation (partial correlation with final adaptation covaried;
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291  r@is) =-0.23, p = 3.50e-05, R* = 0.053). The time-course for de-adaptation, however,
292 did not vary with age (r317) = -0.083, p = 0.138, R*=0.007).
293
294 Contribution of implicit and explicit processes to differences in motor learning
295  To study the potential processes underlying reduced motor adaptation with age, we
296  examined the link between final adaptation and individual differences in measures that
297  could support implicit and explicit learning. We used a measure of sensory attenuation,
298  reflecting the precision of internal models, which may support implicit motor learning
299  (Wolpeetal., 2016), and an explicit measure of declarative memory from a Story Recall
300 task (Shafto et al., 2014). We entered these measures into a linear regression model
301  with final adaptation as the dependent variable, sensory attenuation and declarative
302 memory as the independent variables, as well as their interaction with age, and
303  covariates of no interest (see Methods).
304
305  Table 2 summarises the results of the regression analysis. Sensory attenuation was not
306  asignificant predictor of adaptation (beta =-0.057, Z=-1.059, p = 0.289, betasandardised
307 =-0.057) and there was no age x attenuation interaction (beta = 0.04, Z = 0.815, p =
308  0.415, betasiandardised = 0.043; Fig. 3A). Declarative memory also showed no main effect
309  on adaptation (beta = -0.04, Z = -0.908, p = 0.364, betasuandardiseda = -0.055), but there
310  wasapositive age x declarative memory interaction (beta =0.087,Z2=2.123, p=0.034,
311 betasandardised = 0.112; Fig. 3B). An analogous interaction was also found with the
312  alternative and exploratory measure of declarative memory, from the Emotional
313  Memory task performed by a subset of participants: again, no main effect of declarative
314  memory was observed (beta = 0.093, Z=1.269, p = 0.204, betasandardiseda = 0.131), but

315  apositive age x declarative memory interaction emerged (beta =0.171, Z=2.607, p =
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316  0.009, betasandardisea = 0.22). These results suggest that sensory adaptation was more

317  positively correlated with explicit memory in older adults.
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319

320  Grey matter differences and reduced adaptation with age

321  We next performed a spatially-unbiased, whole-brain Voxel-Based Morphometry
322 analysis of grey matter volume. To identify brain areas where grey matter volume was
323 correlated with differences in adaptation across age, we examined the correlation with
324  the interaction of final adaptation % age. There was a significant positive correlation
325  between grey matter volume and adaptation x age in three clusters (Fig. 4A): one
326  encompassing the right middle and inferior temporal lobe (k = 1244, p = 0.020, FWE-
327  corrected) and two bilateral clusters that include the right (k =1254, p = 0.019, FWE-
328  corrected) and left (k= 1238, p = 0.020, FWE-corrected) hippocampus and amygdala.
329  This interaction indicates that grey matter volume in these regions was more positively
330  correlated with final adaptation in older, versus younger participants (Fig. 4B). Given
331  these regions’ involvement in explicit memory, these results are consistent with the
332 behavioural findings implicating a role for explicit memory in age-related differences
333  in motor learning. No significant negative correlation was found with adaptation x age.

334
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For completeness, we looked at the correlation between grey matter volume and
adaptation, independently of age. Here, there was a trend for a positive correlation
between adaptation and grey matter volume in the ventral striatum (k= 879, p = 0.061,
FWE-corrected; peak voxel in the nucleus accumbens at [-14, -3, -10]). No significant
negative correlation was found, however, in a lenient threshold of p < 0.001
uncorrected, a small cluster was found in the cerebellum (k = 192; peak voxel at [8, -

50, -42]).
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344  DISCUSSION

345  The results of the current study suggest that the reduction of motor adaptation as we
346  grow older is related to individual differences in explicit memory, but not in sensory
347  attenuation. Across participants, reduced grey matter in brain structures of the medial
348  temporal lobe, including the hippocampus and amygdala, was associated with reduced
349  motor adaptation. These results contrast with the classical view of motor learning as a
350  pure implicit learning process.

351

352  No association between sensory attenuation and motor adaptation

353  In the classical interpretation of motor learning, an internal forward model predicts the
354  sensory consequences of one’s movement (Shadmehr et al., 2010; Wolpert and
355  Flanagan, 2010). A discrepancy between sensorimotor prediction and feedback
356  (sensory prediction error) enables the internal model to be updated. We hypothesised
357  that this implicit process would contribute to reduced degree of adaptation seen with
358 age in in our study and in previous studies (McNay and Willingham, 1998; Buch et al.,
359  2003; Bock, 2005). Specifically, as ageing leads to reduced reliance on ‘noisy’ sensory
360 information, reflected in increased sensory attenuation (Wolpe et al., 2016), internal
361 models would become progressively less sensitive with age to differences between
362  sensory prediction and feedback.

363

364  We found that differences in attenuation did not explain reduced adaptation with age.
365  These findings, coupled with the structural imaging results, suggest that the processes
366  underlying individual differences in adaptation with age differ from those underlying
367  altered sensorimotor integration (Wolpert et al., 2011; Wolpe et al., 2016). Further, the

368 absence of an association between sensory attenuation and motor learning across
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369  participants is surprising, considering the theoretical link between these measures
370  (Wolpe etal., 2016). This null result may be because the measure of sensory attenuation
371  reflects the precision-dependent down-weighting of haptic and proprioceptive
372  feedback, whereas our motor adaptation task relied heavily on visual feedback.
373  Attenuation might be related to adaptation in other tasks, with for example a physical
374  force field perturbation, rather than virtual perturbation.
375
376  Contribution of explicit memory to reduced motor learning with age
377 Inrecent years, evidence has emerged for the contribution of explicit learning strategies
378  to motor adaptation (Taylor and Ivry, 2012). For example, individual differences in
379  cognitive abilities have been linked with motor adaptation, such as working memory
380  capacity in young (Anguera et al., 2010) and older adults (McNay and Willingham,
381 1998; Langan and Seidler, 2011; Uresti-Cabrera et al., 2015). In our study, there was
382  anincreased association between declarative memory performance and adaptation with
383  age. This suggests that the decline in explicit memory with age (Henson et al., 2016)
384  contributes to reduced motor adaptation. Although the behavioural effect size was not
385 large, a similar effect was observed with another explicit memory task in a subset of
386  our cohort, and builds on three key observations. First, when an experimental
387  perturbation is small and gradual, emphasising implicit processes, older adults adapt
388  their movement as well as young adults (Buch et al., 2003). Second, when young and
389  old participants are matched by explicit knowledge of the perturbation, age-related
390 differences largely dissipate (Heuer and Hegele, 2008). Third, explicit memory
391  performance has been linked to reduced motor learning with age, but specifically in the
392  ‘fast’ learning process (Trewartha et al., 2014).

393
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394  Rather than a single learning process, a two-state model has been suggested to better
395  explain motor adaptation (Smith et al., 2006), in which there are two learning processes
396  occurring in parallel with a fast and a slow learning rate. The fast learning process has
397  been associated with explicit learning strategies (McDougle et al., 2015), including
398  explicit memory in general (Keisler and Shadmehr, 2010) and in old age in particular
399  (Trewartha et al., 2014). Further, increased awareness to visuomotor perturbations has
400  been linked to an increased early adaptation (Werner et al., 2015). Both our findings
401  that learning was faster in older adults, and the increased association between
402  adaptation and declarative memory in old age, together suggest that older adults rely
403  more on an explicit learning strategy with a fast learning rate.
404
405  Different strategies for motor learning with age
406  In younger adults, it has been suggested that individuals with better explicit memory
407  rely more on explicit learning during motor adaptation, in order to optimise adaptation
408  capacity (Christou et al., 2016). However, considering the substantial decline in explicit
409  memory with age (Henson et al., 2016), why would older adults rely on a strategy that
410  would lead to their reduced learning? To propose an answer to this question, we
411  consider the mechanisms underlying implicit and explicit learning for motor adaptation.
412
413  In contrast to implicit motor learning which is driven by sensory prediction error (see
414  above), the explicit component of motor learning is proposed to be mainly driven by
415  the task performance error — that is, the difference between the target and sensory
416  feedback (Taylor and Ivry, 2013). A careful consideration of movement adaptation and
417  target hit rate (see Figure 1C and Figure 1D) shows that unlike older adults, younger

418  participants continued to adapt their movement trajectories even after performance had
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419  reached ceiling level (in terms of successfully reaching the target). In other words,
420  young, but not older adults, continue to adapt in the absence of (explicit) task
421  performance error, possibly owing to the persistence of (implicit) sensory prediction
422  error. This behavioural discrepancy may be due to differential use of ‘cost functions’
423  with age (Marblestone et al., 2016): whereas younger participants optimise movement
424  in terms of metabolic expenditure, jerk or torque change (Todorov and Jordan, 2002;
425  Todorov, 2004), older adults may be more sensitive to performance error signals (Levy-
426  Tzedek, 2017) in order to maximise immediate task success.

427

428  The tighter coupling between task success and motor adaptation in older adults in our
429  study may also speak to increased reliance on a ‘model-free’ strategy for learning. In
430  addition to the ‘model-based’ approach discussed thus far, computational models have
431  described an additional ‘model-free’ approach for learning in general (Daw et al.,
432 2005), and for motor learning in particular (Huang et al., 2011; [zawa and Shadmehr,
433 2011; Cashaback et al., 2017). In model-free learning, actions are selected so as to
434  maximise the predicted value of reward that is learned through trial and error (Daw et
435  al., 2005). It is computationally efficient, and dependent on dopaminergic signalling of
436  reward prediction error that is distinct from sensory prediction error (Palidis et al.,
437  2018). Model-free learning can indeed account for different behavioural phenomena in
438  motor adaptation, including savings (faster relearning) that is intact in older individuals
439  (Seidler, 2007; Huang et al., 2011). Moreover, a model-free strategy for motor learning
440  is likely to become more prominent when sensory precision is reduced (Izawa and
441  Shadmehr, 2011), as occurs in age (Wolpe et al., 2016; Lei and Wang, 2017). Taken

442  together, model-free learning may remain preserved relative to model-based learning
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443  for motor adaptation in old age (c.f. Sharp et al., 2016, but see Chowdhury et al., 2013),
444  however, this remains to be directly tested in future studies.
445
446  Increased association between explicit memory system and motor learning with
447  age
448  Complementing our behavioural data, bilateral hippocampal and amygdala grey matter
449  volumes were positively associated with adaptation, more so with increasing age. As
450  the medial temporal lobe and hippocampus play a central role in declarative memory,
451  these imaging results underscore the behavioural associations, between explicit
452  memory and motor adaptation through the lifespan. The association is consistent with
453  the notion of increased reliance on cognitive resources in old age for maintaining motor
454  performance (Seidler et al., 2010), e.g. as seen during normal walking (Mirelman et al.,
455  2017). Whether these interactions indeed reflect a (compensatory) behavioural (Seidler
456  and Carson, 2017) and functional (Tsvetanov et al., 2016) reliance on cognition, or
457  simply the larger variability in explicit memory with age remains to be validated.
458
459  The anterior part of the hippocampus identified in our study supports the learning of
460 new environmental layouts (Maguire et al., 2000), encoding the Euclidean distance to
461  one’s goal (Howard et al., 2014). This goal distance signal is speculatively analogous
462  to the performance error signal for mediating explicit motor learning (Taylor and Ivry,
463  2011). Similar performance error signals have been found in the adjacent amygdala
464  (Gemba et al., 1986), which enhances learning of highly arousing or rewarding action-
465  outcome associations (Cador et al., 1989; Fastenrath et al., 2014).

466
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Taken together, the behavioural and imaging results suggest that across the lifespan,
adults gradually come to rely more on explicit learning strategies, driven by
performance error, in order to maintain success even on a motor adaptation task.
Although our study focussed on healthy adults, a gradual increase in the importance of
explicit memory for motor learning across the lifespan may also inform the

development of more efficient neurorehabilitation programmes at different ages.
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TABLES AND FIGURES

Table 1. Summary of participant demographics across age decades.

Age | N | Gender | Handedness Education*
M/F R/L None GCSE A Levels University

18-29 33 13/20 30/3 0 5 6 22
30-39 46 24/22 40/6 0 2 7 37
40-49 60 28/32 51/9 1 7 4 48
50-59 46 25/21 41/5 3 5 15 23
60-69 55 31/24 50/5 3 10 14 28
70-79 53 22/31 49/4 6 8 9 30
80-89 29 16/13 28/1 5 4 12 8
Total 322  159/163 289/33 18 41 67 196

*Categorised according to the British education system: ‘none’ = no education over
the age of 16 years; ‘GCSE’ = General Certificate of Secondary Education;
‘A Levels’ = General Certificate of Education Advanced Level;

‘University’ = Undergraduate or graduate degree.
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672  Table 2. Summary of multiple regression analysis for predicting final adaptation.

Final adaptation

Variable B estimate B SE z-value p-value
Age -0.349 0.058 -5.991 <0.001
Education 0.137 0.053 2.566 0.01
Gender 0.086 0.051 1.684 0.092
Handedness 0.172 0.051 3.336 0.001
Pre-exposure bias -0.135 0.052 -2.619 0.009
Declarative -0.040 0.044 -0.908 0.364
memory

Sensory -0.057 0.054 -1.059 0.289
attenuation

Declarative 0.087 0.041 2.123 0.034

memory * age

Sensory 0.04 0.049 0.815 0.415
attenuation * age

673 R2=0.212; SE = mean standard error; Covariates of interest shaded.
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674  Figure ]

675  Visuomotor rotation learning task. A. Illustration of the task in which participants
676  moved a stylus-controlled cursor so as to hit a target. The target appeared pseudo-
677  randomly in one of four locations on the screen (once in each of the four-trial cycles).
678  Participants could not see their hand, and the visual feedback of the cursor was either
679  veridical (pre-exposure and post-exposure phases) or rotated by 30 degrees (exposure
680  phase) relative to the stylus. B. Participant movement adaptation was assessed by
681  looking at the changes in their initial trajectory error O, calculated 1 cm after starting
682  the movement C. Mean trajectory error across the experimental cycles (=1 standard
683  error shaded). Dashed vertical lines separate the phases: pre-exposure (left), exposure
684  (middle) and post-exposure (right). For illustration purposes only, data has been split
685  into three age groups of similar size (‘young’ = 18-45 years, N=106; ‘middle’ = 41-65
686  years, N=106; ‘old’ = 66-89 years, N=107), although all analyses were performed with

687  age as a continuous variable. D. Same ac (C) but for target hit rate.
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688  Figure 2
689  Final adaptation across age. A. Example of the model fit in a representative participant.
690  The model consisted of two sequential exponential curves, fit with a robust bisquare
691  weight function. The main parameter of interest was ‘final adaptation’. B. Correlation
692  between final adaptation and age (with marginal histograms). Solid line indicates the

693  linear regression fit with 95% confidence interval (grey shade).
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694  Figure 3

695  Explicit memory performance and motor adaptation by age. A. Illustration of the
696  positive interaction between age and declarative memory scores from the Story Recall
697  task in relation to final adaptation. Age groups as in Figure 1. Solid line indicates the
698 linear regression fit with 95% confidence interval (grey shade). B. As in (A), but for

699  declarative memory score from the Emotional Memory task.
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700  Figure 4

701  Structural imaging results. A. Sagittal sections (numbers indicating x coordinate),
702 showing three significant clusters (yellow) where there was a significant (p < 0.05,
703  FWE-corrected) positive interaction between final adaptation and age in relation to grey
704  matter volume. These clusters included bilateral hippocampus and amygdala as well as
705  right medial and inferior temporal lobe. B. Illustration of the positive interaction from
706  (A). Mean grey matter volume extracted from peak voxel for illustration of interaction.

707  Groups split by age as in Figure 1.
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