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Abstract 49 

Tobacco smoking is a risk factor for multiple diseases, including cardiovascular 50 

disease and diabetes. Many smoking-associated signals have been detected in the 51 

blood methylome, but the extent to which these changes are widespread to 52 

metabolically relevant tissues, and impact gene expression or cardio-metabolic 53 

health, remains unclear. 54 

We investigated smoking-associated DNA methylation and gene expression variation 55 

in adipose tissue from 542 healthy female twins with available well-characterized 56 

cardio-metabolic phenotype profiles. We identified 42 smoking-methylation and 42 57 

smoking-expression signals, where five genes (AHRR, CYP1A1, CYP1B1, CYTL1, 58 

F2RL3) were both hypo-methylated and up-regulated in smokers. We replicated and 59 

validated a proportion of the signals in blood, adipose, skin, and lung tissue datasets, 60 

identifying tissue-shared effects. Smoking leaves systemic imprints on DNA 61 

methylation after smoking cessation, with stronger but shorter-lived effects on gene 62 

expression. We tested for associations between the observed smoking signals and 63 

several adiposity phenotypes that constitute cardio-metabolic disease risk. Visceral 64 

fat and android/gynoid ratio were associated with methylation at smoking-markers 65 

with functional impacts on expression, such as CYP1A1, and in signals shared 66 

across tissues, such as NOTCH1. At smoking-signals BHLHE40 and AHRR DNA 67 

methylation and gene expression levels in current smokers were predictive of future 68 

gain in visceral fat upon smoking cessation. 69 

Our results provide the first comprehensive characterization of coordinated DNA 70 

methylation and gene expression markers of smoking in adipose tissue, a subset of 71 

which link to human cardio-metabolic health and may give insights into the wide-72 

ranging risk effects of smoking across the body. 73 
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Author Summary 77 

Tobacco smoking is the strongest environmental risk factor for human disease. Here, 78 

we investigate how smoking systemically changes methylome and transcriptome 79 

signatures in multiple tissues in the human body. We observe strong and coordinated 80 

epigenetic and gene expression changes in adipose tissue, some of which are 81 

mirrored in blood, skin, and lung tissue. Smoking leaves a strong short-lived impact 82 

on gene expression levels, while methylation changes are long-lasting after smoking 83 

cessation. We investigated if these changes observed in a metabolically-relevant 84 

(adipose) tissue had impacts on human disease, and observed strong associations 85 

with cardio-metabolic disease traits. Some of the smoking signals could predict future 86 

gain in obesity and cardio-metabolic disease risk in current smokers who 87 

subsequently go on to quit smoking. Our results provide novel insights into 88 

understanding the widespread health consequence of smoking outside the lung. 89 

  90 
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Introduction 91 

Tobacco smoking is a major environmental risk factor that predisposes an individual 92 

to chronic disease, cancer, and premature death (1, 2). Smoking directly affects 93 

exposed regions of the lung, causes damage in organs throughout the body, and 94 

results in DNA mutations that have been linked to cancer (3). The risk effects of 95 

smoking extend to multiple diseases, including cardiovascular and metabolic 96 

disease. Smoking cessation has also been linked to metabolic health, as it is 97 

associated with an increase in weight gain and in metabolic disease risk factors such 98 

as visceral fat (4).  99 

Persistent smoking has lasting effects on DNA methylation and many epigenome-100 

wide association studies (EWAS) have identified and replicated smoking differentially 101 

methylated signals across populations with the majority of results in whole blood 102 

samples (5-19), buccal cells (20), and lung tissue (21, 22). Most smoking methylation 103 

signals show lower levels of DNA methylation in smokers and variable dynamics 104 

upon cessation. Although some alterations persist over decades, smoking cessation 105 

can result in methylation levels reverting to those observed in non-smokers, where 106 

ex-smokers exhibit intermediate methylation levels between non-smokers and 107 

current-smokers (12, 15, 17, 23). Methylation levels correlate with the cumulative 108 

dose of smoking and are associated with time since smoking cessation (12, 15, 23, 109 

24). 110 

Smoking can also affect gene expression, for example as reported in human airway 111 

epithelium(25, 26), lung tissue (27), alveolar macrophages (28), and lung cancer 112 

tissue (29). However, few studies have examined DNA methylation and gene 113 

expression changes concurrently, and these studies were either conducted with low 114 

coverage genome assays (such as pyrosequencing (29) and HELP assay (7)) or 115 

targeted single genes of interest in small samples sizes (7, 29). 116 
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Here we performed the first combined genome-wide analysis of smoking-related 117 

methylation and gene expression changes across tissues, focusing on adipose 118 

tissue. We identify multiple genes that exhibit both methylation and expression 119 

changes within and across tissues, showing that smoking leaves a systemic imprint 120 

on epigenetic and expression variation in the human body. Our data suggest that 121 

smoking leaves a stronger impact on gene expression, while DNA methylation 122 

smoking changes are more stable over time. By linking our findings to key human 123 

phenotypes related to cardio-metabolic health, we identify several signals that could 124 

explain some of the widespread health consequences of smoking outside the lung.  125 

Results  126 

Integrated DNA methylation and gene expression analyses in adipose 127 

tissue 128 

Our study design is summarized in Figure 1. Both DNA methylation and gene 129 

expression profiles were explored in adipose tissue biopsies from 542 subjects, 130 

comprising 54 current smokers, 197 ex-smokers, and 291 never smokers. DNA 131 

methylation levels at 467,889 CpG sites from the Illumina Infinium 132 

HumanMethylation450 BeadChip were first compared between current smokers and 133 

never smokers. At a false discovery rate of 1% (P < 8.37 × 10-7) there were 42 134 

differentially methylated signals (smoking-DMS) or CpG-sites, and these were 135 

located in 29 unique genomic regions comprising of 28 genes and in 1 intergenic 136 

region (Figure 2a). Smoking-DMS are located predominantly in the gene body 137 

(47.6%), extended promoter region (38.1%), 3’UTR (4.7%), and intergenic regions 138 

(9.5%), representing an enrichment of signals in the gene body relative to array 139 

composition. Using ENCODE ChromHMM annotations (adipose nuclei) (30), we 140 

observed that 16 smoking-DMS (38%) were located at enhancers and 9 (21%) were 141 

in or near active transcription start sites (TSS), and of these 9 were flanking bivalent 142 

enhancers (n = 3) or TSS (n = 6). As expected, methylation levels of current smokers 143 
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were lower than those in non-smokers in the majority (90.5%) of the 42 signals 144 

(Table 1). 145 

Table 1. The 42 smoking differentially methylated sites in adipose samples 146 
(smoking-DMS). 147 

IlmnID CHR Location Gene Name Non-smoker 
β (mean ± SD) 

Current-
smoker 

β (mean ± SD) 
β coef. S.E. P-Value cis-meQTL S* 

cg05951221 2 233284402 2q37.1 0.255 ± 0.054 0.172 ± 0.040 -1.380 0.108 1.28×10-29 rs2853386; 3.87×10-8  

cg21566642 2 233284661 2q37.1 0.225 ± 0.040 0.167 ± 0.029 -1.347 0.122 1.87×10-23   

cg23680900 15 75017924 CYP1A1 0.202 ± 0.036 0.155 ± 0.030 -1.198 0.118 2.96×10-21  O 
cg14120703 9 139416102 NOTCH1 0.748 ± 0.045 0.693 ± 0.044 -1.172 0.118 1.44×10-20   

cg26516004 15 75019376 CYP1A1 0.696 ± 0.047 0.628 ± 0.058 -1.258 0.126 1.95×10-20  Y 

cg10009577 15 75018150 CYP1A1 0.068 ± 0.021 0.050 ± 0.016 -0.810 0.090 2.48×10-17  Y 

cg01985595 6 136479501 PDE7B 0.961 ± 0.025 0.936 ± 0.032 -1.015 0.119 1.09×10-15  Y 

cg22418620 5 172072885 NEURL1B 0.832 ± 0.049 0.765 ± 0.057 -1.077 0.127 1.63×10-15 rs57285944; 2.15×10-8 Y 
cg23160522 15 75015787 CYP1A1 0.622 ± 0.033 0.583 ± 0.044 -0.991 0.122 1.33×10-14  Y 

cg03636183 19 17000585 F2RL3 0.506 ± 0.040 0.473 ± 0.038 -0.826 0.103 1.80×10-14   

cg07992500 2 37896583 CDC42EP3 0.771 ± 0.051 0.719 ± 0.052 -1.087 0.141 1.88×10-13 rs7595854; 1.32×10-7  
cg12531611 6 11212619 NEDD9 0.909 ± 0.021 0.892 ± 0.024 -0.855 0.120 1.12×10-11  O 
cg03646542 5 172076155 NEURL1B 0.689 ± 0.037 0.654 ± 0.035 -0.880 0.133 1.87×10-10 rs7715699; 1.72×10-10 Y 

cg00353139 15 75017914 CYP1A1 0.034 ± 0.013 0.022 ± 0.010 -0.787 0.121 4.47×10-10 rs11072498; 2.47×10-6 Y 

cg21124714 11 72983097 P2RY6 0.736 ± 0.037 0.707 ± 0.033 -0.874 0.136 5.15×10-10  Y 
cg01940273 2 233284934 2q37.1 0.334 ± 0.045 0.302 ± 0.044 -0.679 0.105 8.93×10-10   

cg25648203 5 395444 AHRR 0.503 ± 0.044 0.459 ± 0.040 -0.825 0.132 1.30×10-9   

cg20408276 2 38300586 CYP1B1 0.548 ± 0.060 0.499 ± 0.059 -0.781 0.125 1.61×10-9  O 

cg20131897 12 52305332 ACVRL1 0.694 ± 0.034 0.673 ± 0.028 -0.693 0.116 5.61×10-9 rs1700159; 2.97×10-7 Y 

cg21611682 11 68138269 LRP5 0.370 ± 0.041 0.336 ± 0.035 -0.734 0.124 8.10×10-9   

cg19405895 5 407315 AHRR 0.955 ± 0.014 0.942 ± 0.024 -0.768 0.128 8.38×10-9  Y 

cg05575921 5 373378 AHRR 0.713 ± 0.044 0.682 ± 0.039 -0.611 0.104 1.07×10-8 rs7731963; 3.97×10-8  

cg13531977 9 112013420 EPB41L4B 0.807 ± 0.035 0.833 ± 0.029 0.831 0.140 1.14×10-8  Y 

cg00512031 4 5021976 CYTL1 0.880 ± 0.026 0.855 ± 0.028 -0.760 0.129 1.23×10-8 chr4:5022470;1.42×10-9 Y 
cg25189904 1 68299493 GNG12 0.100 ± 0.043 0.064 ± 0.030 -0.771 0.131 1.48×10-8   

cg00378510 19 2291020 LINGO3 0.217 ± 0.059 0.181 ± 0.053 -0.781 0.134 1.53×10-8 rs12609156; 6.83×10-18  

cg11554391 5 321320 AHRR 0.065 ± 0.019 0.048 ± 0.014 -0.720 0.125 2.00×10-8   
cg01802380 13 107865407 FAM155A 0.845 ± 0.030 0.825 ± 0.037 -0.737 0.133 5.69×10-8 rs9520326; 1.52×10-12 Y 

cg14179389 1 92947961 GFI1 0.083 ± 0.030 0.063 ± 0.028 -0.665 0.122 1.07×10-7   

cg06644428 2 233284112 2q37.1 0.036 ± 0.018 0.024 ± 0.010 -0.704 0.130 1.61×10-7   

cg12081267 2 98486185 TMEM131 0.878 ± 0.038 0.858 ± 0.035 -0.650 0.122 1.97×10-7  Y 
cg02162897 2 38300537 CYP1B1 0.567 ± 0.060 0.520 ± 0.061 -0.674 0.127 2.89×10-7  O 

cg11555067 2 99081350 INPP4A 0.725 ± 0.047 0.700 ± 0.046 -0.717 0.138 3.18×10-7 rs3754893; 2.27×10-7  

cg04134818 5 148998446 FLJ41603 0.153 ± 0.026 0.133 ± 0.025 -0.690 0.132 3.26×10-7 rs11950259; 7.83×10-6 Y 

cg03976650 13 77456505 KCTD12 0.667 ± 0.061 0.612 ± 0.067 -0.754 0.143 3.56×10-7  Y 

cg22851561 14 74214183 C14orf43 0.422 ± 0.041 0.390 ± 0.040 -0.634 0.121 3.92×10-7   
cg10376100 1 236017278 LYST;MIR1537 0.923 ± 0.036 0.947 ± 0.030 0.615 0.117 4.03×10-7  Y 

cg04063216 2 14772482 FAM84A 0.071 ± 0.016 0.075 ± 0.019 0.441 0.085 4.39×10-7  Y 

cg16320419 3 5025570 BHLHE40 0.352 ± 0.052 0.315 ± 0.048 -0.699 0.135 4.88×10-7   
cg04135110 5 346695 AHRR 0.339 ± 0.061 0.384 ± 0.065 0.699 0.137 5.34×10-7 rs2672748; 3.42×10-17  
cg20109054 6 31804109 C6orf48;SNORD52 0.091 ± 0.026 0.072 ± 0.023 -0.659 0.130 7.85×10-7 rs3828922; 2.74×10-5  

cg16721845 11 68518800 MTL5 0.018 ± 0.008 0.014 ± 0.007 -0.530 0.106 8.37×10-7  Y 

IlmnID: Illumina probe ID; β (mean ± SD): mean and standard deviation of methylation levels in the non-smokers and 148 
current-smoker group; β coef.: beta coefficients from the linear mixed effect model, positive values mean a 149 
hypermethylation in the current-smokers and negative values mean a hypomethylation in the current-smokers; CHR: 150 
chromosome; Location: location of the CpG site (bp);  cis-meQTL: top significant cis-meQTL for the CpG site; S*: 151 
adipose tissue-specific effect. We compared our results to one of the biggest smoking-EWAS conducted in blood(19), 152 
probes not listed as their significant signals (on their Supplementary Table 2, FDR≤0.05) were recorded as “Y” in this 153 
table; probes with significant effects in blood in the opposite direction are recorded as “O”. 154 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 21, 2018. ; https://doi.org/10.1101/353581doi: bioRxiv preprint 

https://doi.org/10.1101/353581
http://creativecommons.org/licenses/by/4.0/


 9 

To assess the impact of potential confounders on these results we performed two 155 

follow-up analyses. First we considered the impact of adipose tissue cell type 156 

composition heterogeneity, by also analyzing these data within the reference-free 157 

EWAS framework (31). We observed that the 42 smoking-DMS remained significant 158 

at FDR of 5%, suggesting that cell composition within adipose tissue did not have a 159 

major impact on our findings (S1 Figure). Second, habitual smoking is strongly 160 

associated with alcohol consumption (32), and in our data current smokers and ex-161 

smokers have a higher alcohol intake compared to non-smokers (average alcohol 162 

intake = 5.96 (non-smokers), 10.03 (ex-smokers), and 11.67 (current smokers) 163 

grams per day, P = 1.06 × 10-5). Although our smoking analyses take into account 164 

alcohol consumption as a covariate, it is possible that the smoking-DMS in part 165 

capture alcohol consumption. To test for the co-occurrence of differentially 166 

methylated signals for smoking and alcohol consumption, we performed an alcohol-167 

EWAS adjusting for smoking to compare the results with the 42 smoking-DMS. We 168 

observed no significant association between alcohol consumption and methylation at 169 

genome-wide significance after adjusting for smoking in adipose tissue, and only 7 170 

smoking-DMS in AHRR (cg01802380, cg04134818, cg19405895), CYP1B1 171 

(cg19405895, cg20408276), FAM84A (cg04063216), and C6orf48 (cg20109054) 172 

surpassed nominal significance (P-values between 0.05 and 0.005).  173 

Next, RNA-sequencing profiles from the same tissue biopsy were compared between 174 

smokers and never smokers at the gene-based level using RPKM values across 175 

17,399 genes. At an FDR of 1% (P < 2.86 × 10-5) there were 42 differentially 176 

expressed signals (smoking-DES) or genes (Figure 2a), and 14 of these were up-177 

regulated in current smokers (Table 2). The most-associated expression signal was 178 

in CYP1A1 - a lung cancer susceptibility gene, which was also one of the 179 

differentially methylated signals (Figure 2a and 3).180 
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Table 2. The 42 smoking differentially expressed genes in adipose samples 181 
(smoking-DES). 182 
ID CHR Name β coef. S.E. P-value cis e-QTLs 
ENSG00000140465.7 15 CYP1A1 1.899 0.103 5.37×10-51 rs35213055; 1.53×10-6   
ENSG00000138061.7 2 CYP1B1 1.373 0.131 2.83×10-21  
ENSG00000144331.14 2 ZNF385B -1.257 0.134 1.53×10-18 rs9288034; 8.33×10-5   
ENSG00000179151.6 15 EDC3 1.167 0.129 3.10×10-17  
ENSG00000063438.12 5 AHRR 1.059 0.149 6.03×10-12  
ENSG00000175267.8 16 VWA3A 0.932 0.139 2.18×10-10  
ENSG00000170381.7 7 SEMA3E -0.821 0.137 8.35×10-9 chr7:83264879;1.22×10-

10  ENSG00000170891.6 4 CYTL1 0.807 0.142 2.82×10-8  
ENSG00000187486.5 11 KCNJ11 -0.859 0.148 3.27×10-8  
ENSG00000168280.11 2 KIF5C -0.813 0.145 4.74×10-8  
ENSG00000006016.5 19 CRLF1 0.769 0.146 2.53×10-7 chr19:18717389; 

2.63×10-6 ENSG00000127533.2 19 F2RL3 0.782 0.147 2.89×10-7  
ENSG00000149294.11 11 NCAM1 -0.715 0.135 3.03×10-7 rs17510563; 2.01×10-7 
ENSG00000120693.9 13 SMAD9 -0.733 0.140 4.76×10-7  
ENSG00000169116.7 4 PARM1 -0.686 0.133 6.76×10-7  
ENSG00000154330.6 9 PGM5 -0.716 0.147 1.72×10-6  
ENSG00000162430.12 1 SEPN1 -0.663 0.137 1.82×10-6  
ENSG00000154721.9 21 JAM2 -0.667 0.136 2.23×10-6  
ENSG00000177303.4 17 CASKIN2 -0.669 0.140 2.90×10-6  
ENSG00000157404.10 4 KIT 0.708 0.150 3.31×10-6  
ENSG00000161544.4 17 CYGB 0.621 0.131 3.42×10-6  
ENSG00000154065.9 18 ANKRD29 -0.684 0.144 3.49×10-6  
ENSG00000176907.3 8 C8orf4 -0.714 0.151 3.56×10-6  
ENSG00000168032.4 3 ENTPD3 -0.674 0.140 3.86×10-6 rs34158576; 7.60×10-6 
ENSG00000162367.6 1 TAL1 -0.665 0.142 4.17×10-6  
ENSG00000180785.8 11 OR51E1 -0.655 0.142 6.82×10-6 rs11033126; 3.78×10-10 
ENSG00000164010.9 1 ERMAP -0.690 0.154 9.50×10-6  
ENSG00000068078.12 4 FGFR3 -0.643 0.143 9.68×10-6 rs744658; 9.68×10-8 
ENSG00000246223.4 14 C14orf64 -0.633 0.142 1.44×10-5 rs75700090; 2.00×10-5 
ENSG00000145506.9 5 NKD2 0.616 0.140 1.46×10-5  
ENSG00000161649.7 17 CD300LG -0.648 0.147 1.48×10-5  
ENSG00000163873.5 1 GRIK3 -0.643 0.146 1.50×10-5  
ENSG00000053747.9 18 LAMA3 -0.652 0.148 1.57×10-5  
ENSG00000183733.6 2 FIGLA 0.406 0.093 1.57×10-5  
ENSG00000164736.5 8 SOX17 -0.629 0.144 1.64×10-5  
ENSG00000106078.12 7 COBL -0.680 0.155 1.65×10-5  
ENSG00000120156.14 9 TEK -0.610 0.140 1.67×10-5  
ENSG00000178726.5 20 THBD -0.612 0.141 2.00×10-5  
ENSG00000177675.4 12 CD163L1 0.635 0.148 2.40×10-5  
ENSG00000136828.13 9 RALPGS1 -0.646 0.151 2.60×10-5  
ENSG00000135914.4 2 HTR2B 0.613 0.144 2.82×10-5  
ENSG00000090530.5 3 LEPREL1 -0.617 0.145 2.86×10-5 rs6768989; 1.10×10-9 
ID: Ensemble ID; CHR: chromosome; β coef.: beta coefficients from the linear mixed effect model, positive values 183 
reflect higher expression in current-smokers and negative values represent lower expression in current-smokers 184 

Comparison of the FDR 1% genome-wide significant smoking-DMS and smoking-185 

DES showed coordinated changes at 5 genes comprising 14 CpG-sites, and these 186 

included AHRR, CYP1A1, CYP1B1, CYTL1, and F2RL3 (Figure 2a). CpG-sites 187 

within AHRR, CYP1B1, and F2RL3 were located in the gene-body, whereas CpG-188 

sites in or near CYP1A1 and CYTL1 were located 200 kb to 1500 kb away from the 189 
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transcription start sites. In all cases genes were up-regulated in current smokers, and 190 

in the majority of cases (93%) current smokers showed lower methylation levels 191 

compared to non-smokers. These predominantly negative correlations between 192 

methylation and expression at these five genes suggested regulatory effects (Table 3, 193 

Figure 2b). The methylation-expression correlations at some of these CpG sites 194 

were only observed in smokers and overall correlations were stronger in smokers 195 

compared to non-smokers. 196 

Table 3. Five smoking-induced differentially methylated and expressed genes 197 
in adipose samples 198 
Gene Name IlmnID CHR Location ID r P-value 

CYP1B1 cg20408276 2 38300586 ENSG00000138061.7 -0.171 1.39×10-3 

CYTL1 cg00512031 4 5021976 ENSG00000170891.6 -0.176 1.03×10-3 

AHRR cg25648203 5 395444 ENSG00000063438.12 -0.167 1.80×10-3 

AHRR cg19405895 5 407315 ENSG00000063438.12 -0.134 1.29×10-2 

AHRR cg05575921 5 373378 ENSG00000063438.12 -0.060 0.2633 

AHRR cg11554391 5 321320 ENSG00000063438.12 -0.216 5.37×10-5 

AHRR cg04135110 5 346695 ENSG00000063438.12 0.279 1.31×10-7 

AHRR cg24980413 5 346987 ENSG00000063438.12 0.252 2.10×10-6 

CYP1A1 cg23680900 15 75017924 ENSG00000140465.7 -0.329 3.94×10-10 

CYP1A1 cg26516004 15 75019376 ENSG00000140465.7 -0.298 1.70×10-8 

CYP1A1 cg10009577 15 75018150 ENSG00000140465.7 -0.266 5.22×10-7 

CYP1A1 cg23160522 15 75015787 ENSG00000140465.7 -0.299 1.48×10-8 

CYP1A1 cg00353139 15 75017914 ENSG00000140465.7 -0.222 3.22×10-5 

F2RL3 cg03636183 19 17000585 ENSG00000127533.2 -0.130 0.0159 
IlmnID: Illumina probe ID; CHR: chromosome; Location: Ilumina probe location (bp); ID: Ensemble ID; r: Spearman’s 199 
correlation coefficients between methylation and gene expression data (n = 345). 200 

To compare the impact of smoking on DNA methylation and gene expression within 201 

the same analysis framework and at a comparable scale, we used methylation and 202 

expression changes at these 5 overlapping genes (14 CpG sites) to predict a 203 

subject’s smoking status. We split the overall dataset into training and validation sets 204 

of equal size, and report here the average AUC values from 1,000 validation sets. 205 

The combination of 14 smoking-DMS levels and 5 smoking-DES levels resulted in 206 

reasonable discrimination (AUC (area under curve): 0.865). Compared to prediction 207 

results based on 14 smoking-DMS levels alone (AUC: 0.888), smoking-DES levels 208 
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are better predictors (all 5 genes, AUC: 0.951). This suggests that smoking leaves a 209 

greater impact on gene expression levels, compared to DNA methylation levels at 210 

these overlapping genes. A similar high predictive value can be achieved by using 211 

gene expression levels at just a single gene, CYP1A1 (AUC: 0.952) (Figure 2c).  212 

CYP1A1 was the peak smoking differentially expressed gene, with differentially 213 

methylated signals in the promoter, and negative correlation in methylation and 214 

expression (Figure 3a). 215 

Adipose-specific and tissue-shared smoking signals  216 

To test if the effects of smoking are shared across tissues, we first compared our 217 

adipose findings to results from whole blood samples. To this end, we tested for 218 

association between smoking and whole blood genome-wide DNA methylation (in 219 

569 individuals) and gene expression profiles (in 237 individuals), comparing current 220 

smokers with never smokers. In blood, genome-wide significant results at FDR 1% 221 

for smoking DMS and DES overlapped at four genes (S1 Table). Altogether, 222 

comparison of FDR 1% significant smoking-DMS results across the adipose and 223 

whole blood datasets identified 14 CpG-sites that were genome-wide differentially 224 

methylated in both blood and adipose tissue (Figure 4a). The 14 tissue-shared CpG 225 

sites fell in 8 genes, including GNG12, GFI1, AHRR, NOTCH1, LRP5, C14orf43, 226 

LINGO3, F2RL3, and in the 2q37.1 intergenic region (Table 4). All of these sites 227 

were previously reported as smoking differentially methylated sites in blood in 228 

previous studies (5-18), and include AHRR - the most robustly replicated smoking-229 

methylation signal (Figure 5a). DNA methylation changes in two genes (AHRR and 230 

F2RL3) that exhibit both expression and methylation smoking-associated effects in 231 

adipose tissue, were also present in blood (Figure 4c and 5b).  232 

  233 
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Table 4. Tissue-shared smoking-induced differentially methylation sites 234 

IlmnID CHR Location Gene Name 
Adipose  Blood 

β 
coef. S.E. P-value  β 

coef. S.E. P-value 

cg25189904 1 68299493 GNG12 -0.771 0.131 1.48×10-8  -0.974 0.109 6.92×10-18 

cg14179389 1 92947961 GFI1 -0.665 0.122 1.07×10-7  -0.404 0.087 4.74×10-6 

cg06644428 2 233284112 2q37.1 -0.704 0.13 1.61×10-7  -0.864 0.092 1.76×10-19 

cg05951221 2 233284402 2q37.1 -1.380 0.108 1.28×10-29  -1.471 0.079 3.65×10-60 

cg21566642 2 233284661 2q37.1 -1.347 0.122 1.87×10-23  -1.491 0.080 9.67×10-61 

cg01940273 2 233284934 2q37.1 -0.679 0.105 8.93×10-10  -1.415 0.084 3.17×10-52 

cg11554391 5 321320 AHRR -0.72 0.125 2.00×10-8  -0.694 0.099 8.10×10-12 

cg05575921 5 373378 AHRR -0.611 0.104 1.07×10-8  -1.672 0.074 2.45×10-80 

cg25648203 5 395444 AHRR -0.825 0.132 1.30×10-9  -0.937 0.093 3.50×10-22 

cg14120703 9 139416102 NOTCH1 -1.172 0.118 1.44×10-20  -0.352 0.073 1.84×10-6 

cg21611682 11 68138269 LRP5 -0.734 0.124 8.10×10-9  -0.874 0.091 4.23×10-20 

cg22851561 14 74214183 C14orf43 -0.634 0.121 3.92×10-7  -0.500 0.096 5.24×10-7 

cg03636183 19 17000585 F2RL3 -0.826 0.103 1.80×10-14  -1.478 0.078 3.59×10-62 

cg00378510 19 2291020 LINGO3 -0.781 0.134 1.53×10-8  -0.466 0.089 2.37×10-7 
IlmnID: Illumina probe ID; CHR: chromosome; Location: Ilumina probe location (bp); β coef.: beta coefficients from 235 
the linear mixed effect model, positive values mean a hypermethylation in the non-smokers and negative values 236 
mean a hypermethylation in the current-smokers. 237 

We sought to validate the observed tissue-shared methylation effects at the 14 CpG-238 

sites in additional 168 lung and 195 skin tissue samples (S2 Table). In lung tissue 239 

from lung cancer subjects, we validated 3 of the 14 CpG-sites in the intergenic region 240 

2q37.1 (cg21566642 and cg05951221) and in the AHRR gene (cg05575921) at a 241 

Bonferroni-corrected P-value of 3.57×10-3. Four of the 14 CpG-sites validated in skin 242 

tissue biopsies from healthy subjects (33) in the intergenic region 2q37.1 243 

(cg05951221, cg06644428, and cg21566642) and in AHRR (cg05575921). 244 

Furthermore, the majority (n = 13) of the 14 tissue-shared CpG-sites had lower 245 

methylation levels in smokers compared to non-smokers in both lung and skin 246 

methylation datasets, indicating a consistent direction of effect even if the association 247 

did not surpass significance. The smoking-DMS effect sizes observed across tissues 248 

were similar for CpG-sites in the 2q37.1 region, while the smoking effect was much 249 

greater in blood at cg05575921 in AHRR (see Table 4, Figure 4b). 250 
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In contrast to the methylation results, gene expression signals showed minimal 251 

evidence for tissue-shared impacts. Comparing our FDR 1% genome-wide smoking-252 

DES across adipose and blood datasets showed that only AHRR was significantly 253 

up-regulated in smokers across both tissues (Figure 5c). AHRR was the only signal 254 

that showed both differential methylation and expression changes across all of the 255 

datasets that we explored in this study, including blood, adipose, skin, and lung 256 

tissue.  257 

A proportion of our smoking-DMS and most of our smoking-DES results appear to be 258 

adipose-specific. However, the sample size of the datasets used to explore tissue-259 

specificity in gene expression was much lower compared to that used for 260 

methylation, therefore power to detect tissue-shared effects differs across the data 261 

types. Furthermore, we are limited by access to available multi-tissue datasets for 262 

follow up, and further investigation of published findings reveals that some of our 263 

smoking adipose-specific signals have previously been detected in other tissues. For 264 

example, one of our peak results at CYP1A1 showed methylation changes only in 265 

adipose tissue and not in blood (Figure 4), but has previously been reported as a 266 

smoking-methylation signal in blood (19), lung tissue (29, 34), cord blood (35), and 267 

placenta (36, 37). Unlike the persistent tissue-shared effects identified in other 268 

smoking-DMS such as signals in AHRR and 2q37.1, we found that smokers have 269 

lower CYP1A1 methylation levels in adipose, skin, and lung tissue, but not in blood 270 

(19), placenta, and cord blood samples (35), overall suggesting that smoking may 271 

have contrasting effects, resulting in hyper- or hypo-methylation in different tissues 272 

(Figure 4b). A similar contrast in direction of smoking methylation effects is observed 273 

at smoking-DMS in NEDD9 and CYP1B1 across adipose tissue and in blood (Table 274 

1). 275 
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Replication of adipose smoking methylation signals 276 

We pursued replication of the adipose-tissue smoking-DMS in an independent 277 

dataset of 104 participants from the LEAP cohort, within the New England Family 278 

Study (mean age 47 years, mean BMI 30.9, 48% male), described in detail 279 

elsewhere (38).  These individuals were not affected with common diseases and had 280 

available adipose biopsy methylation profiles for 46 current smokers and 58 non-281 

smokers. We found that the smoking-methylation direction of association was 282 

consistent at all 42 adipose smoking-DMS (S3 Table), and 25 of these also 283 

surpassed nominal significance in the replication dataset (P = 0.05). At a more 284 

stringent threshold the replication signal was significant at 13 sites, surpassing 285 

Bonferroni adjusted P-value for the replication analysis (P =1.19 × 10-3).  286 

Signatures of smoking cessation  287 

We next assessed the effect of smoking cessation on the observed adipose DNA 288 

methylation and gene expression signals in ex-smokers from the discovery cohort. 289 

Here, we considered reversal for smoking methylation or expression signals to revert 290 

back to levels observed in non-smokers. We quantified the number of subjects who 291 

reverted to 25% of the change in methylation towards non-smokers, and estimated 292 

the proportion of subjects who reverted over time (in smoking-quit years), using the 293 

same approach in gene expression (see Methods).   294 

We explored reversal patterns in adipose tissue at both the 42 smoking-DMS (S2 295 

Figure) and 42 smoking-DES (S3 Figure), and focused on the five differentially 296 

methylated and expressed genes (14 CpG sites), where the average number of 297 

smoking-quit years was 24.8 (± 13.21) years among 190 ex-smokers. Overall, a rapid 298 

rate of reversal was observed in the first 10 years after smoking cessation, after 299 

which only subtle changes were detected in both methylation and gene-expression. 300 
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In the expression adipose data ex-smokers showed a >50% reversal rate one year 301 

after smoking cessation and reached >85% reversal after 10 years (S3 Figure). In 302 

comparison slower reversal was observed in the methylation dataset (S2 Figure). 303 

Among the 14 CpG sites only three (2 at AHRR and 1 at CYP1A1) showed a 50% 304 

reversal rate one year after cessation, while the remaining signals showed between 305 

17% to 33% reversal (Figure 3b and 5c, S3 Figure). Even after >40 years of 306 

smoking cessation, a proportion of smoking-DMS (n = 12; 29%) showed less than 307 

40% reversal (S3 Figure). This suggests that smoking leaves a longer lasting 308 

influence on DNA methylation levels than on gene expression levels after smoking 309 

cessation. 310 

Controlling for genetic variation 311 

Previous studies have shown heritable impacts on smoking behavior and nicotine 312 

addiction (39-42). We explored the impact of genetic variation on the identified 313 

smoking methylation signals. Of the 42 smoking-DMS, 14 CpG-sites had genome-314 

wide significant meQTLs in cis in adipose tissue (Table 1). Of the 14 tissue-shared 315 

smoking-DMS, 2 in 2q37.1 and one in LINGO3 had meQTLs in cis in adipose tissue, 316 

and 3 in AHRR and 1 in F2RL3 had meQTLs in cis in blood samples. 317 

Given our observed genetic influences on smoking-DMS, we asked if previously 318 

reported genetic variants associated with smoking behavior (41) or nicotine 319 

metabolism (42) could impact DNA methylation levels in adipose tissue. We first 320 

focused on common genetic variants that were previously associated with smoking 321 

phenotypes in the largest smoking genetic association study to date (n = 15,907) 322 

(41). We observed that all genetic variants previously strongly linked to smoking 323 

behavior (14 SNPs) (41) had an impact on adipose DNA methylation levels in cis (S4 324 

Table). We then explored a recently reported association between a cluster of SNPs 325 

on chromosome 19 and nicotine metabolism, where the same genetic variants were 326 
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also associated with whole blood DNA methylation levels in the same genomic region 327 

(42). We replicate the chromosome 19 meQTL findings in our adipose DNA 328 

methylation data in genes CYP2A7, ENGL2, and LTBP4 (S5 Table), suggesting that 329 

these are strong genetic impacts on DNA methylation that are shared across tissues. 330 

Taken together, these genetic-methylation association results provide additional 331 

support for the hypothesis that some of the observed genetic impacts on smoking 332 

behavior and nicotine metabolism may be mediated by DNA methylation. 333 

Impacts on cardio-metabolic health and disease risk     334 

Given the wide-ranging effects of smoking on human disease, we explored the links 335 

between the identified adipose methylation and expression smoking signals and 336 

phenotypes that are major risk factors for cardio-metabolic disease. Three metabolic 337 

disease risk phenotypes - total fat mass (TFM), visceral fat mass (VFM), and 338 

android-to-gynoid fat ratio (AGR) - were profiled using Dual X-ray absorptiometry in 339 

288 subjects with adipose methylation and expression profiles. We assessed the 340 

association of the 42 smoking-DMS and 42 smoking-DES with these adiposity 341 

phenotypes using a two-fold approach.  342 

First, we tested for association between adipose methylation levels at the 42 343 

smoking-DMS and the three phenotypes, adjusting for covariates including age, BMI 344 

and smoking. We observed that smoking-DMS in CYP1A1 and NOTCH1 were 345 

significantly associated with measures of cardio-metabolic disease risk. Methylation 346 

levels at three CpG-sites in CYP1A1 were significantly associated with VFM and 347 

AGR, either as main-effects (cg23160522 and VFM, beta = 1.35×10-3, SE = 3.03×10-348 

3, P = 4.35×10-7; cg23680900 and AGR, beta = -1.59, SE = 0.44, P = 6.58×10-6) or 349 

taking into account interactions (cg10009577 and AGR, P = 5.50×10-4), where 350 

smokers and non-smokers have different patterns of association between DNA 351 

methylation at CYP1A1 cg10009577 and AGR (Figure 3c). Probe cg10009577 is 352 
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located in the CYP1A1 promoter, suggesting gene regulatory impacts on CYP1A1 353 

expression levels. Correspondingly, we observed a nominally significant association 354 

between CYP1A1 gene expression and VFM (Figure 3c), where smokers and non-355 

smokers have different patterns of association (P = 0.042). A significant negative 356 

association between DNA methylation levels and AGR was also observed with 357 

cg14120703 in NOTCH1 (beta = -1.80, SE = 0.43, P = 1.07×10-7). We pursued 358 

replication of these associations in an independent sample of 69 younger Finnish 359 

twins with adipose tissue Illumina 450K methylation profiles. We replicated the 360 

overall negative association between CYP1A1 cg10009577 and AGR (Discovery 361 

sample beta = -0.95, SE = 0.31; Replication sample beta = -0.58, SE = 0.25, P = 362 

0.02), and observed a similar direction of interaction effects, which did not reach 363 

nominal significance in the replication sample (S5 Table).  364 

We performed similar analyses with the 42 smoking-DES and observed main effects 365 

at F2RL3 on the 3 phenotypes (VFM beta = -1.5×10-3, SE = 3.78×10-4, P = 7.8×10-4; 366 

AGR beta = 2.3, SE = 0.56, P = 4.5×10-5; TFM beta = 1.6×10-3, SE = 3.9×10-4, P = 367 

5.8×10-5), and OR51E1 on VFM (beta = -1.5×10-3, SE = 3.78×10-4, P = 7.8×10-4) and 368 

AGR (beta = -2.85, SE = 0.51, P = 3.1×10-8). We did not observe significant evidence 369 

for interaction effects in the gene expression results. 370 

In the second set of phenotypic analyses, we explored the role of the 42 smoking-371 

DMS and 42 smoking-DES on weight gain after smoking cessation. Recent studies 372 

have reported not only a gain in weight on smoking cessation, but also an associated 373 

increase in visceral fat (4). We considered adiposity phenotypes in 246 of the 374 

individuals in our study at two time-points, where time point 1 was the initial DNA 375 

methylation profiling and phenotype measurement, and time point 2 was a phenotype 376 

measurement on average five years later. We found that current smokers who go on 377 

to quit smoking over this five year interval show a gain in adiposity across all 378 
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phenotypes (Figure 6a) and this effect is also observed in individuals who quit within 379 

up to four years at time point 1. However, our data suggests that this gain in adiposity 380 

is not long lasting, because we do not observe this effect in the group of ex-smokers 381 

who had quit for >5 years at time point 1. In comparison, there were no major 382 

phenotype changes within constant smokers or never-smokers across the two time 383 

points. 384 

We tested if the 42 smoking-DMS and 42 DES in adipose tissue could predict future 385 

changes in adiposity upon smoking cessation, focusing on visceral fat as the major 386 

cardio-metabolic disease risk factor. Based on the phenotype results (Figure 6a), we 387 

compared two groups of individuals: first, the combined group (n = 18) of current 388 

smokers at the time of methylation profiling (time-point 1) who subsequently quit 389 

smoking (n = 5), and individuals who had quit within 1-4 years at time-point 1 (n = 390 

13); and second, the combined group (n = 228) of ex-smokers who had quit for >5 391 

years at time point 1 (n = 92), as well as constant smokers (n = 12) and never-392 

smokers (n = 124) across the two time points. We assessed the impact of 393 

methylation or expression at the 42 smoking-DMS (S4 Figure) and 42 smoking-DES 394 

(S5 Figure) on future changes in visceral fat, selecting results that showed 395 

significantly different patterns of association in the two groups of 18 and 228 396 

subjects. 397 

After Bonferroni correction for multiple testing we found one DMS and one DES 398 

significantly associated with future changes in visceral fat, where a strong association 399 

effect was only observed in the group 18 subjects. This group consists of current 400 

smokers who go on to quit smoking (n = 5) and recent ex-smokers who remain ex-401 

smokers (n = 13), and where all subjects exhibit a gain in adiposity over time. The 402 

first signal was observed in cg16320419 in BHLHE40 (methylation by group 403 

interaction term P = 1.3×10-4), where methylation levels in current smokers or recent 404 
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ex-smokers explain 35.5% of the variation in future gain in visceral fat (Figure 6b). 405 

The second signal was observed in AHRR (gene expression by group interaction 406 

term P = 4.7×10-5), where gene expression levels in current smokers or recent ex-407 

smokers explain 44% of the variation in future gain in visceral fat (Figure 6c). The 408 

results were similar after correcting for smoking years and years since smoking 409 

cessation. 410 

 411 

Discussion 412 

Tobacco smoking is a major disease risk factor. Our study is the first to identify 413 

smoking-associated DNA methylation and gene expression changes in adipose 414 

tissue in humans. Approximately 30% of the identified smoking-methylation signals 415 

showed significant coordinated changes in gene expression levels in 5 genes, giving 416 

insights into the cascade of molecular events that are triggered in response to 417 

smoking, toxin exposure, and nicotine metabolism. At least a third of smoking-418 

methylation signals (in 9 genomic regions) were shared across tissues, showing that 419 

smoking leaves tissue-shared signatures. Given that our target tissue was adipose, 420 

we considered the impact of the identified smoking methylation and expression 421 

signals on cardio-vascular and metabolic disease risk. Significant associations were 422 

observed between visceral fat and android-to-gynoid fat ratio and several smoking-423 

methylation and expression markers. Furthermore, methylation and expression levels 424 

at BHLHE40 and AHRR in current smokers or recent ex-smokers were predictive of 425 

future gain in visceral fat observed after smoking cessation. Our findings provide a 426 

first comprehensive assessment of methylation and expression changes related to 427 

smoking in adipose tissue, with insights for cardio-metabolic health and disease risk. 428 
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Coordinated smoking methylation and expression changes overlapped at five genes 429 

(AHRR, CYP1A1, CYP1B1, CYTL1, and F2RL3), which include well-known and 430 

strongly replicated smoking-methylation signals, such as AHRR and F2RL3. Some of 431 

these genes have previously been linked to human phenotypes. For example, GWAS 432 

associations have been reported with multiple diseases and traits, such as drinking 433 

behavior (CYTL1) (43), cystic fibrosis severity (AHRR) (44), caffeine consumption 434 

(CYP1A1) (45), and diastolic blood pressure (CYP1A1) (46); and methylation levels 435 

at AHRR have been linked to multiple phenotypes including lung function (47) and 436 

BMI (48). At the five overlapping genes methylation levels were predominantly 437 

negatively correlated with expression levels. CpG sites in AHRR, CYP1B1, and 438 

F2RL3 were located on the gene-body, whereas those in CYTL1 and CYP1A1 were 439 

in the promoter. Our results are consistent with the expectation that promoter-based 440 

CpG-sites negatively associate with gene expression (49-51). Studies have reported 441 

both positive and negative correlations between methylation and expression for CpG-442 

sites in the gene body (52-55). DNA methylation sites in the gene body that are 443 

negatively associated with expression levels may be located in alternative promoters 444 

that regulate the expression of particular isoforms. 445 

CYP1A1, or cytochrome P4501A1, is a lung cancer susceptibility gene. Although in 446 

our data CYP1A1 smoking-signals appear adipose-specific, independent studies 447 

have reported links to smoking in multiple tissues. CYP1A1 smoking-associated 448 

methylation signals are present in lung in the fetus (56) and in adults (29, 34). In 449 

adults, effects are observed in normal lung tissue from lung cancer patients at both 450 

the CYP1A1 promoter (34) and enhancer (29), which is also differentially methylated 451 

between normal tissue and lung tumor tissue (29). A recent large-scale meta-452 

analysis of smoking methylation signals in blood also reported a moderate effect at 453 

CYP1A1 (19). Maternal tobacco use was also associated with alterations in promoter 454 

methylation of placental CYP1A1 and these changes were correlated with CYP1A1 455 
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gene expression and fetal growth restriction (57). Furthermore, CYP1A1 gene 456 

expression is down-regulated by AHRR. CYP1A1 is inducible by agonists of the aryl 457 

hydrocarbon receptor (AhR), which include environmental pollutants and components 458 

of cigarette smoke. Following activation of AhR by an agonist in the cytoplasm, the 459 

AhR-ligand complex translocates to the nucleus, where it dimerises with the aryl 460 

hydrocarbon receptor nuclear translocator (ARNT) (58). This heterodimer binds to 461 

the xenobiotic response element (XRE) site of CYP1A1 in the upstream enhancer 462 

region, which activates transcription. CYP1A1 metabolizes drug molecules and 463 

environmental pollutants, including polycyclic aromatic hydrocarbons, dioxin and 464 

benzo(α)pyrene, into highly reactive intermediates. These derivatives can bind to 465 

DNA and form adducts, which may contribute to carcinogenesis (59). AhR, in 466 

complex with xenobiotic compounds and ARNT, induces CYP1A1 expression, which 467 

subsequently detoxifies toxic components of cigarette smoke. AHRR suppresses 468 

AhR expression through binding to ARNT. Hypomethylation of AHRR and associated 469 

increased AHRR expression may therefore reduce cellular responses to smoking 470 

through CYP1A1 (60).    471 

In addition to CYP1A1, other smoking signals that we identify in this study have also 472 

been previously linked to lung cancer. CYP1B1 differentially methylated effects have 473 

been reported for smoking, for lung cancer and for age at cancer diagnosis in non-474 

small cell lung carcinoma (NSCLC) samples (61). Several of our smoking signals 475 

were previously reported to be differentially methylated in lung adenocarcinoma 476 

tumor and matched non-tumor tissue (62). These included two of our top smoking-477 

DMS, CYTL1 and ACVRL1, and seven of our top smoking-DES, CYTL1, JAM2, 478 

CYGB, TAL1, GRIK3, SOX17, and TEK.  479 

In line with previous studies we observe that genetic variation can impact the 480 

smoking-DMS, with potential implications for genotype influences on the rates of 481 
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toxin elimination and nicotine metabolism in the human body. Importantly, we 482 

observe that all of the major smoking genetic variants detected in the largest smoking 483 

GWAS to date appear to influence DNA methylation levels in cis. These findings 484 

strongly suggest that DNA methylation may mediate some of the effects of genetic 485 

influences on smoking behavior, toxin elimination, or nicotine metabolism. We also 486 

replicate results from a genome-wide association study of nicotine metabolite ratio, 487 

identifying a 4.2Mb region on chromosome 19q13 where GWAS SNPs were also 488 

associated with DNA methylation levels (42). Taken together, these findings 489 

suggests some of the observed genetic impacts on smoking behavior and nicotine 490 

metabolism may be mediated by DNA methylation, and that such effects are robust 491 

and shared across tissues. 492 

Our analyses specifically in ex-smokers show variability in the extent of signal 493 

reversal over time, which is consistent with previous findings. We observe an overall 494 

trend towards at least partial reversal at most of the identified smoking-associated 495 

signals. Importantly, our study is the first to show that this trend is also observed in 496 

gene expression levels. Our findings suggest that smoking has a longer-lasting 497 

influence on the methylome compared to the transcriptome, where the majority of 498 

reversal effects occur within the first year after smoking cessation. 499 

The smoking-methylation signals were assessed for association with adiposity 500 

phenotypes that constitute major cardio-metabolic disease risk. Significant 501 

associations were observed between visceral fat mass and android-to-gynoid fat ratio 502 

with methylation levels at smoking-markers with functional impacts on gene 503 

expression, such as CYP1A1 with replication, and in signals that were shared across 504 

tissues, such as NOTCH1. Associations were also detected with smoking-DES. 505 

These results may help improve our understanding of how smoking impacts 506 

metabolic health, and to explore this further we considered smoking effects on future 507 
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changes in metabolic phenotypes on smoking cessation. Visceral fat has a strong 508 

association with obesity-related cardio-metabolic diseases, such as type 2 diabetes 509 

and cardiovascular disease (63, 64) and is a major cardio-metabolic disease risk 510 

factor. At smoking markers BHLHE40 and AHRR DNA methylation and gene 511 

expression levels in current smokers were predictive of future gain in visceral fat 512 

observed after smoking cessation. Although the sample size of current smokers who 513 

go on to quit smoking in our data is modest, these findings provide an interesting 514 

insight into potential molecular mechanisms mediating environmental effects on 515 

cardio-metabolic disease risk, and require replication in larger samples.  516 

A limitation to our study is partial correction for the influence of expected covariates. 517 

These include first, alcohol consumption, which co-occurs with smoking. In our co-518 

occurrence analyses, none of the alcohol-associated CpG sites reached genome-519 

wide significance after adjusting for smoking. In a previous alcohol EWAS in blood, 520 

Liu et al. (65) also found that the effect size of the majority alcohol-DMS was not 521 

affected by smoking status suggesting that despite their co-occurrence, smoking and 522 

alcohol impact DNA methylation in different aspects. A related question is optimal 523 

correction for cell composition in adipose tissue. Since we only had access to 524 

subcutaneous adipose tissue biopsies, rather than isolated cell subtypes, we 525 

corrected for cell composition by using the analytical approach within the reference-526 

free EWAS (31) framework and found that the majority of results remained largely 527 

unchanged. However, it is possible that this does not fully capture the effect of a 528 

heterogeneous population of cells as a confounder. Some of the smoking-DMS such 529 

as BHLHE40, which was also found to be predictive of future gain in visceral fat, may 530 

reflect cell-specific methylation profiles. BHLHE40 was previously reported to be 531 

hypo-methylated in activated NK cells (but not in naive NKs, T and B-cells) (66) and 532 

a similar trend was observed for AHRR (66). One interpretation of these findings is 533 

that some smoking signals are cell subtype specific (67, 68), potentially reflecting a 534 
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selective enhancement of activated cells, because smoking can also induce changes 535 

in blood count (69). In adipose tissue, this particular effect may be represented as an 536 

infiltration of activated NK cells, and this infiltration may increase with obesity, 537 

diabetes, and smoking. On the other hand, the relative abundance of NK DNA 538 

compared with adipose DNA in adipose tissue is minimal therefore these effects 539 

should be minimal. Future studies are needed to assess the impact of these potential 540 

confounding effects, using for example histological and immunological staining of 541 

adipose tissue.  542 

Conclusion 543 

Our results show that smoking can impact DNA methylation and gene expression 544 

levels in adipose tissue. To our knowledge, this is the first study that performed 545 

genome-wide analyses of smoking in adipose tissue DNA methylation and gene 546 

expression profiles. The key results were that first, smoking leaves a signature on 547 

both the methylome and transcriptome with overlapping signals, second, smoking 548 

methylation signals tend to be tissue-shared effects, third, smoking has a longer 549 

lasting influence on DNA methylation levels than on gene expression after smoking 550 

cessation, and forth, specific smoking methylation and expression signals are 551 

associated with metabolic disease risk phenotypes as well as future weight gain after 552 

smoking cessation. 553 

Materials and methods 554 

Study population and sample collection: TwinsUK 555 

The adipose tissue samples were obtained from 542 female twins who were recruited 556 

as part of the MuTHER study (Multiple Tissue Human Expression Resource) in 557 

TwinsUK cohort. The TwinsUK cohort was established in 1992 to recruit MZ and DZ 558 
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same-sex twins (70). All twins in the current study are Caucasian females and 559 

ascertained to be free from severe disease when the samples were collected. The 560 

542 twins included 84 MZ pairs, 112 DZ pairs, and 150 singletons. Details of biopsy 561 

procedures and sample descriptions are described previously (71). The 562 

subcutaneous adipose tissue samples for methylation and expression profiling were 563 

obtained from the same punch biopsies in the subjects' abdominal region, and 564 

immediately stored in liquid nitrogen. Both DNA and RNA were extracted from the 565 

adipose tissue for genome-wide methylation and expression profiling. To explore 566 

tissue-shared effects, peripheral blood samples from 789 and 362 subjects for 567 

genome-wide methylation and expression profiling, respectively, were collected from 568 

twins in TwinsUK. From the 542 subjects, 200 and 222 subjects donated blood 569 

samples for methylation and expression profiling, respectively. Blood samples and 570 

adipose tissues were collected during the subject’s visit to the clinic. 571 

Replication and validation samples 572 

Replication sample for 42 smoking-DMS: USA  573 

The first replication sample included 104 participants from the New England Family 574 

Study, the LEAP cohort (mean age 47 years (range: 44-50), mean BMI 30.9 (range: 575 

19.43-54.24), 48% male; see S6 Table), described in detail elsewhere(38).  The 576 

individuals are of mixed ancestry (63.5% white) and were not affected with disease. 577 

There were 46 current smokers and 58 non-smokers. Subcutaneous adipose tissue 578 

samples in these participants were collected from the upper outer quadrant of the 579 

buttock, followed by DNA extraction, and Infinium HumanMethylation450 BeadChip 580 

array profiling as previously described(36). Replication analyses were performed 581 

using a linear regression model adjusting for age, gender, BMI, and batch effect.  582 
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Replication sample for cardio-metabolic health and disease risk 583 

phenotype analyses: Finland 584 

The second replication sample included 69 Finnish twins (mean age 31 years, 585 

mean BMI 27.5, 44.9% male; see S6 Table), who were recruited as a part of the 586 

Finnish twin cohort. The Finnish twin cohort has been previously described in 587 

detail (72, 73). The sample included 34 full MZ twin pairs and 21 current smokers. 588 

DNA methylation profiling was measured by Infinium HymanMethylation450 589 

BeadChip array and TFM and AGR were determined by DEXA. Replication 590 

analyses were performed using a linear mixed effect regression model adjusting 591 

for age, gender, BMI, family, batch effect, and alcohol intake. Sample 592 

characteristics of the replication cohorts are shown in S6 Table. 593 

Validation sample for tissue-shared effects: lung tissue (74)  594 

The first validation dataset included 168 lung cancer female subjects (mean age 65 595 

years; see S7 Table), which is a subset of a multicenter cohort of 450 subjects with 596 

non-small cell lung cancer (GEO dataset: GSE39279) (74). In the validation analysis, 597 

we selected only female subjects who had smoking records (129 smokers and 39 598 

non-smokers) and used a linear regression model to test for the effect of smoking on 599 

methylation, adjusting for age, cancer stage (1 to 4), and cancer type 600 

(adenocarcinoma or squamous). DNA methylation data were measured by Infinium 601 

HumanMethylation450 BeadChip and BMIQ normalization was performed prior to 602 

analysis.  603 

Validation sample 2 for tissue-shared effect: skin tissue (33) 604 

The second validation dataset included 195 skin tissue samples from twins (mean 605 

age 59 years; see S7 Table), and these subjects are part of TwinsUK. This analysis 606 
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included 37 current smokers and 158 never smokers cancer-free female subjects 607 

only. The TwinsUK skin samples and the evaluation of DNA methylation in the 608 

samples are described elsewhere (33). We performed the analysis using a LME 609 

model adjusting for age, BMI, alcohol consumption, batch effect, family structure and 610 

zygosity. Sample characteristics of the two validation cohorts are shown in S7 611 

Table. 612 

Phenotype collection 613 

During a subject’s clinical visit, basic demographic information was collected, with 614 

onsite measurements such as height and weight, DEXA measurements, and clinical 615 

assessments. Smoking was determined from a self-reported questionnaire. There 616 

was longitudinal self-reported data on the smoking status of each subject, since twins 617 

regularly visit the research clinic. Smoking status was defined in 3 categories: current 618 

smokers, ex-smokers, and non-smokers. Current smokers were defined as those 619 

subjects who consistently smoked cigarettes (and have not stopped at any point) 620 

according to their longitudinal records up to the clinical visit when the adipose tissue 621 

biopsy was obtained. Ex-smokers were individuals who have successfully (and 622 

consistently) reported to have quit smoking cigarettes for at least three months prior 623 

to the adipose tissue biopsy. Non-smokers were individuals who never smoked 624 

according to the longitudinal questionnaire records. Other phenotypes such as age, 625 

body mass index (BMI), and alcohol consumption were also collected during the 626 

clinical visit. The alcohol consumption data were summarized as units per week, and 627 

then converted to grams/day (one unit of alcohol in the UK is defined as 7.9 grams 628 

(75)). 629 
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Infinium HumanMethylation450 BeadChip data  630 

The Infinium HumanMethylation450 BeadChip (Illumina Inc, San Diego, CA) was 631 

used to measure DNA methylation in both adipose and blood samples. Details of 632 

experimental approaches have been previously described (71, 76). At each CpG site, 633 

the methylation levels are characterized as a finite bounded quantitative trait ranging 634 

between 0 and 1, and represented as beta values. To correct for technical issues 635 

caused by the two Illumina probe types and two-color channels, the beta mixture 636 

quantile dilation (BMIQ) method (77) and background correction were performed for 637 

each sample. DNA methylation probes that mapped incorrectly or to multiple 638 

locations in the reference sequence were removed. Probes with more than 1% of 639 

subjects with detection P-value > 0.05 were also removed. All the probes are with 640 

non-missing values in blood samples and less than 1% missing subjects in adipose 641 

samples. Probes located on chromosomes X and Y were removed from the analysis. 642 

To check for sample swaps, we compared 65 single nucleotide polymorphism (SNP) 643 

markers on the array to genotypes for each subject, and removed subjects with 644 

incomparable genotypes. The methylation levels were normalized to N(0,1) prior to 645 

analysis.  646 

RNA-sequencing data 647 

Twin adipose RNA-seq quality control and identification of batch effects have been 648 

previously discussed (78, 79). In brief, the sequenced paired-end reads (49 bp) were 649 

mapped to the human genome (GRCh37) by Burrows-Wheeler Aligner (BWA) 650 

software v0.5.9 (80), then genes were annotated as defined by protein coding in 651 

GENCODE v10 (81). Samples were excluded if they failed during library preparation 652 

or sequencing. Samples were only considered to have good quality if more than 10 653 

million reads were sequenced and mapped to exons. The gene expression levels 654 

were quantified per gene, estimated as RPKM values (reads per kilobase of 655 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 21, 2018. ; https://doi.org/10.1101/353581doi: bioRxiv preprint 

https://doi.org/10.1101/353581
http://creativecommons.org/licenses/by/4.0/


 30 

transcript per million mapped reads) and rank normal transformed prior to analysis. 656 

The genotype of each subject was used for identity checks in case of accidental 657 

sample swaps. After removing genes located on chromosomes X and Y, and non-658 

coding transcripts, 17,399 genes were included in the gene expression analysis. 659 

Genotype data  660 

Genotypes were available for all subjects in study. Genotyping of the larger TwinsUK 661 

dataset was performed using HumanHap300, HumanHap610Q, HumanHap1M Duo 662 

and HumanHap1.2M Duo 1M arrays. Imputation was done in two datasets 663 

separately, and subsequently merged with GTOOL. Genotype data were pre-phased 664 

using IMPUTE2 without a reference panel, then using the resulting haplotypes to 665 

perform fast imputation from 1000 Genome phase1 dataset (82, 83). We used 1000 666 

Genomes Phase I (interim) as reference set, based on a sequence data freeze from 667 

23 Nov 2010; the phased haplotypes were released Jun 2011. After imputation, 668 

SNPs were filtered at a MAF > 5%. 669 

Differential methylation and expression analyses 670 

Principal component analysis (PCA) was used to identify potential batch effects. The 671 

association of smoking status with adipose methylation was examined using a linear 672 

mixed effect regression model (LMER) adjusting for batch effects (plate, position on 673 

the plate, bisulfite conversion levels, and bisulfite conversion efficiency), age, BMI, 674 

and alcohol consumption, family and zygosity structure. In blood samples, the 675 

association was tested adjusting for batch effects (plate and position on the plate), 676 

age, BMI, alcohol consumption, and 7 cell count estimations (plasma blast, 677 

CD8pCd28nCD45Ran, CD8 naïve, CD4T, NK, monocytes, and granulocytes), family 678 

and zygosity structure. The blood cell counts were calculated from the Horvath online 679 

calculator (84). A linear mixed effect regression model was applied as the data 680 
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contained MZ and DZ twins. Family structure and zygosity were coded as random-681 

effect terms, while all the other covariates were included as fixed-effect terms. 682 

Similarly, in the RNA-seq data analysis, the association of smoking status with 683 

expression levels was examined using LME adjusting for age, BMI, alcohol 684 

consumption (grams/day), GC mean, primer index, clinic visit date, family structure, 685 

and zygosity. Family structure, zygosity, primer index, and clinic visit date were taken 686 

as random-effect, and all the other covariates were included as fixed terms. For each 687 

CpG site, a full model that regressed all of the covariates was compared to a null 688 

model that excluded smoking status. The models were compared using the ANOVA 689 

F statistic. A genome-wide significance level was set at 1% false discovery rate for all 690 

analyses. 691 

In order to account for mixtures of cell types in adipose tissue, we performed a 692 

EWAS using the reference-free approach proposed by Houseman et al (31). The 693 

method is similar to surrogate variable analysis (SVA) and independent surrogate 694 

variable analysis (ISVA), which is used to adjust for technical errors (e.g. batch 695 

effect) and confounders. In addition, the reference-free approach also includes a 696 

bootstrap step to account for the correlation in the structure of standard errors. Using 697 

this approach, we can estimate direct epigenetic effects that account for cell-698 

compositions and use bootstrap-based P-values to assess their significance. Due to 699 

the limitation that the reference-free approach can currently only be applied to 700 

datasets of unrelated individuals, we used 251 unrelated individuals from the original 701 

542 twins and compared the top results between two EWASs. 702 

To identify tissue-shared smoking differentially methylated signals across adipose 703 

and whole blood datasets, we compared the genome-wide FDR 1% signals across 704 

adipose and whole blood DNA methylation analyses. In whole blood samples we 705 

tested for association between smoking status and DNA methylation levels at 706 
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452,874 CpG sites in 86 current- and 481 non-smokers in blood. We compared the 707 

FDR 1% adipose DMS to 2,782 CpG sites that were associated with smoking in 708 

blood at FDR 1% (P = 1.14×10-5). We used a previously published lung cancer DNA 709 

methylation dataset (74) to further explore tissue-specificity at the 14 tissue-shared 710 

CpG-sites identified in both adipose and blood. We also checked smoking effects at 711 

the 14 tissue-shared CpG sites in 196 female subjects with skin tissue biopsies (33) 712 

applying a Bonferroni adjusted P-value of 3.6×10-4 as the significance threshold.  713 

ROC analysis 714 

The sensitivity and specificity were calculated using receiver operative curve (ROC). 715 

The ROC analysis was performed using the pROC package (85) with the ‘lme’ 716 

function for logistic regression, where outcomes are categorized as smokers and 717 

non-smokers. We then used the ‘predict’ function to predict the expected probabilities 718 

under different combinations of predicting factors (methylation levels of 14 CpG sites 719 

and expression levels at 5 genes), and the ‘roc’ function to predict the sensitivity and 720 

specificity and draw the area under the curve.  We selected 27 smokers and 145 721 

non-smokers as a training set to construct a logistic model for smoking status 722 

classification, and then used the remaining set of 173 subjects (27 smokers) as a 723 

validation set, in which we obtained the AUC values. We repeated this procedure 724 

1,000 times and report the average AUC values across 1,000 validation sets. 725 

Smoking cessation analyses 726 

We quantified ‘reversal’ time by estimating the time (in smoking-quit years) required 727 

for ex-smokers to revert to 25% of the change in methylation towards non-smokers. 728 

For example, at cg05575921 in AHRR, the median level of methylation residual is -729 

0.234 in smokers and 0.037 in non-smokers, resulting in a 0.271 methylation change. 730 

Therefore, ex-smokers who reached methylation levels of -0.031, were classified as 731 
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subjects who “reversed”. We quantified the proportion of subjects who reversed 732 

within different quit years. For example, at cg05575921, 6 ex-smokers quit for less 733 

than 1 year, but only one had methylation reverting to 25% of the methylation change 734 

towards non-smokers, therefore, the reversible rate is 16.7%. We quantified reversal 735 

at the gene expression level using the same approach. 736 

Methylation QTL (meQTL) analyses 737 

Genome-wide meQTL analyses were performed testing for the association between 738 

common genetic variants and DNA methylation at CpG-sites in the 542 adipose 739 

tissue samples. We considered meQTLs at CpG-sites where at least one SNP was 740 

significantly associated with DNA methylation in cis (P = 5×10-5, as described in 741 

Grundberg et al. (71)), reporting the most significant SNP per CpG-site. In total, 742 

methylation levels of 102,461 CpG sites were associated with genetic factors in cis, 743 

and 25,531 sites in trans.  744 

We tested the adipose meQTLs first by fitting a LME model regressed all the 745 

identified covariates, then performed a linear regression of the residuals on the SNPs 746 

using the MatrixeQTL R package (86). Results from meQTL analyses are presented 747 

at a P-value of 10-5 for the smoking-DMS, the smoking-DES, and at the smoking 748 

GWAS genetic variants. For meQTL analyses replicating the results from Loukola et 749 

al. (42) we applied a different threshold. Loukola et al. (42) conducted a genome-750 

wide association study of nicotine metabolite ratio, identifying many strongly 751 

associated SNPs in a 4.2Mb region on chromosome 19q13. Among the 158 CpG 752 

sites within that region, 16 CpG sites showed statistically significant association with 753 

173 SNPs. We compared our meQTLs findings to those from Loukola et al. (42) at a 754 

modified Bonferroni significance threshold of 1.81×10-5 (=0.05/16×173), and 755 

replicated meQTLs in 5 CpG sites (in CYP2A7, ENGL2, and LTBP4 genes) (S5 756 

Table). 757 
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Direct comparison between methylation and gene expression levels 758 

We compared the 542 subjects’ adipose methylation and gene expression levels at 759 

the five overlapping genes identified in the two genome-wide association analyses. 760 

Both the methylation and expression data were first adjusted for the covariates, and 761 

Spearman’s correlation test was then performed on the residuals. 762 

Metabolic disease risk phenotype analyses  763 

We studied the impacts of smoking methylation signals on obesity and metabolic 764 

phenotypes. We explored 288 subjects (42 smokers and 246 nonsmokers) who had 765 

available DEXA profiles at or within up to 1 year of the adipose tissue biopsy. We 766 

compared the DNA methylation signals at the 42 smoking-DMS against adiposity 767 

phenotypes visceral fat mass, trunk fat, and android-to-gynoid fat ratio, adjusting for 768 

BMI. A significance level was set at a Bonferroni adjusted threshold of P= 5.7×10-4. 769 

We used a similar approach to test for phenotype associations with the 42 smoking-770 

DES. To further investigate the effect of 42 smoking-DMS and 42 smoking-DES on 771 

weight gain after smoking cessation, the adiposity phenotype differences were 772 

obtained at two time-points (mean difference years = 5.1). We tested for correlations 773 

between the differences and methylation or expression levels at time point 1.  774 

We used the R statistical software (https://www-r-project.org/) for all analyses and 775 

figures, and the regional plots were generated using the coMET package (87). 776 
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Data availability 782 

Most of the datasets analysed in the current study are available under ArrayExpress 783 

accession number E-MTAB-1866 and EGA accession number EGAS00001000805 784 

(adipose methylation and expression), GEO accession number GSE39279 (lung 785 

methylation (74)), and GEO accession number GSE90124 (skin methylation (33)). 786 

Additional individual-level data are not permitted to be shared or deposited due to the 787 

original consent given at the time of data collection. However, access to these 788 

genotype and phenotype data can be applied for through the TwinsUK data access 789 

committee. For information on access and how to apply 790 

http://www.twinsuk.ac.uk/data-access/submission-procedure/. 791 
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List of Figures 803 

Figure 1. Study design. Epigenome-wide and transcriptome-wide associations 804 

studies were performed in 345 adipose tissue samples, identifying 42 smoking-DMS 805 

and 42 smoking-DES where 5 genes (14 CpG sites) overlapped. The 42 smoking-806 

DMS were replicated in 104 independent subjects from the US, and the 14 smoking-807 

DMS were further validated in blood, skin and lung tissue for tissue-shared effects. 808 

DNA methylation and gene expression profiles at the 42 smoking-DMS and 42 809 

smoking-DES were tested for smoking cessation reversibility in 197 ex-smokers. 810 

Heritability and QTL analyses testing genetic and environmental influences on 811 

methylation in the 542 adipose samples were also carried out. The final set of 812 

analyses focused on exploring the link between the 42 smoking-DMS and 42 813 

smoking-DES with cardio-metabolic phenotypes. Phenotype associations with 814 

smoking-DMS were replicated in 69 Finnish twins. The last set of analyses explored 815 

the potential of methylation and gene expression levels at smoking-DMS and 816 

smoking-DES to predict future long-term changes in adiposity phenotypes in 817 

individuals who go on to quit smoking. 818 

Figure 2. Coordinated smoking-associated DNA methylation and gene-819 

expression changes in adipose tissue. (a) Manhattan plots of genome-wide 820 

results for methylation (upper panel) and gene expression (lower panel) association 821 

with smoking in 345 adipose samples. Smoking-DMS and smoking-DES are 822 

indicated above the 1% FDR line (green dashed line), and are classified by direction 823 

of effect for smokers who have higher (red dots) or lower (blue dots) methylation or 824 

expression levels compared to the non-smokers. Genes highlighted by purple blocks 825 

represent 5 smoking-induced differentially methylated and expressed genes. (b) 826 

Methylation – expression correlation at 5 genes with coordinated smoking-DMS and 827 

smoking-DES. Pairwise Spearman’s correlation coefficients between methylation and 828 
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gene expression levels for 54 smokers (red bars) and 291 non-smokers (blue bars). 829 

Asterisk indicates significance at P < 0.05. (c) Discrimination of current and never 830 

smokers using gene expression levels at the 5 overlapping genes. Receiver 831 

operating characteristic (ROC) curves are shown for the following combinations of 832 

predictors: CYP1A1 gene expression level (red) and 5 smoking-DES (black) in the 833 

full dataset as an illustrative example, including AUC values from the full dataset. 834 

Figure 3. Smoking-associated DNA methylation and gene expression patterns 835 

at CYP1A1. (a) coMET plot describing the genomic region of epigenome-wide 836 

association between smoking and CYP1A1 methylation (top panel), along functional 837 

annotation of the region (middle panel), and pattern of co-methylation at the 34 CpG 838 

sites of CYP1A1 (bottom panel). (b) Coordinated DNA methylation and gene 839 

expression changes with respect to smoking cessation. Methylation (at cg23680900) 840 

and gene expression levels are shown for 5 smoking status categories: current 841 

smokers (red); subjects who quit within 1 year, subjects who quit between 1 to 5 842 

years, and subjects who quit over 5 years at the time of methylation sampling (grey); 843 

and never smokers (blue).  X-axis labels include the proportion of subjects who 844 

reverted in each smoking quit year category. (c) CYP1A1 methylation associations 845 

with adiposity phenotypes, visceral fat mass (VFM) and android-to-gynoid fat ratio 846 

(AGR). DNA methylation levels at 3 CpG sites (cg23160522, cg23680900, and 847 

cg10009577 in CYP1A1) are shown against adiposity phenotypes in current (red) 848 

and never smokers (blue). 849 

Figure 4. Tissue-shared and adipose-specific smoking signals. (a) Tissue-850 

shared DNA methylation effects across adipose tissue and whole blood. The bar-plot 851 

shows the -log10 P-value of the 42 smoking-DMS in adipose samples (blue), and the 852 

corresponding P-value in the blood samples (red bars). Gene names in bold denote 853 

significantly associated genes in both tissues. (b) Tissue-shared and tissue-specific 854 
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DNA methylation effects for adipose tissue, whole blood, skin, and lung cancer 855 

tissues at 2q37.1, AHRR, and CYP1A1. Each bar represents the coefficient estimate 856 

from smoking-EWAS with standard error bars. Positive values indicate a 857 

hypermethylation in current smokers. Colors reflect tissues, with coefficients in 858 

adipose (blue), blood (red), skin (grey), and lung tissue (yellow). N.S. indicates non-859 

significance. (c) Examples of smoking effects that are tissue-shared and tissue-860 

specific across adipose (blue) and blood (red) samples in our datasets, including 861 

adipose-specific (CYP1A1 in our dataset) and tissue-shared (2q37.1 and F2RL3) 862 

smoking-DMS.  863 

Figure 5. Tissue-shared smoking-associated DNA methylation and gene 864 

expression patterns at AHRR.  (a) coMET plot of the association between 66 865 

AHRR CpG sites and smoking. Top panel shows the -log10P-value of the association, 866 

the middle panel shows genomic annotation, and the lower panel shows co-867 

methylation patterns based on Spearman correlation coefficients. (b) Tissue-shared 868 

and tissue-specific signals across CpG-sites in the AHRR gene region in adipose 869 

(blue) and blood samples (red). (c) DNA methylation and gene expression levels with 870 

respect to smoking cessation. Methylation and gene expression levels are shown for 871 

5 different smoking status categories: current smokers (red); subjects who quit within 872 

1 year, subjects who quit between 1 to 5 years, and subjects who quit over 5 years at 873 

the time of methylation sampling (grey); and never smokers (blue). X-axis labels 874 

include the proportion of subjects who reverted in each smoking quit year category. 875 

Figure 6. Smoking-DMS and smoking-DES relate to future changes in visceral 876 

fat mass on smoking cessation. (a) Adiposity phenotype changes over a 5-year 877 

time-period between time point 1 (2007-2008) and time point 2 (2012-2013). 878 

Adiposity phenotypes include BMI, total fat mass (TFM), android-to-gynoid fat ratio 879 

(AGR), and visceral fat mass (VFM). Phenotype changes are shown for 5 categories 880 
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of subjects: current smokers at the two time points (S-S, n = 12), current smokers at 881 

time point 1 who quit smoking by time point 2 (S-E, n = 5), former smokers (who quit 882 

smoking within 1-5 year) at time point 1 who remain former smokers at time point 2 883 

(E1-E5, n = 13), former smokers who quit >5 years at time point 1 who remain former 884 

smokers at time point 2 (E5+, n = 92), and non-smokers at both time points (N-N, n = 885 

124). (b) Left panel shows the association between DNA methylation levels at 886 

cg16320419 in BHLHE40 and future changes in visceral fat mass in 18 subjects in 887 

categories S-S and S-E (red points), and all remaining subjects (grey points). Right 888 

panel shows methylation cessation patterns at cg16320419 in BHLHE40. (c) 889 

Association between DNA methylation (left panel, red points) and gene expression 890 

(right panel, blue points) in AHRR with future changes in visceral fat mass in 18 891 

subjects in categories S-S and S-E, and all remaining subjects (grey points). 892 
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Supporting information 

Supplementary Figures 

S1 Figure. Scatterplot of correlations between EWAS -log10P-values from the linear 

mixed effect model used in the current discovery study (y-axis) and results from 

Reference-free EWAS approach proposed by Houseman et al. (x-axis) (31). 

S2 Figure. Smoking cessation and adipose DNA methylation profiles. DNA 

methylation levels at the 42 smoking-DMS and smoking status in 542 adipose 

samples. Subject groups include current smoker, subjects who quit smoking within 

one year, subjects who quit between 1 to 5 years, subjects who quit smoking more 

than 5 years, and subjects who never smoked. Fourteen CpG-sites located in genes 

with both smoking-DMS and smoking-DES are denoted with asterisks. 

S3 Figure. Smoking cessation and adipose gene expression profiles. Gene 

expression levels at the 42 smoking-DES and smoking status in 542 adipose 

samples. Subject groups include current smoker, subjects who quit smoking within 

one year, subjects who quit between 1 to 5 years, subjects who quit smoking more 

than 5 years, and subjects who never smoked. Five genes with both smoking-DMS 

and smoking-DES are denoted with asterisks. 

S4 Figure. Association between DNA methylation levels at the 42 smoking-DMS and 

future change in visceral fat mass (VFM) in 18 (red solid dots) and 228 subjects (grey 

hollow dots).  

S5 Figure. Association between gene expression levels at the 42 smoking-DES and 

future change in visceral fat mass (VFM) in 18 (blue solid dots) and 228 subjects 

(grey hollow dots).   
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Supplementary Tables 

S1 Table. Four smoking-induced differentially methylated and expressed genes in 

blood samples. 

S2 Table. Validation of the 14 smoking-DMS in 168 lung cancer tissues (74) and 195 

skin tissues (33).  

S3 Table. Replication of the 42 smoking-DMS in the LEAP cohort (38) with 104 

smokers and non-smokers. 

S4 Table. Previously-identified smoking genetic variants and their impacts on DNA 

methylation and gene expression in adipose tissue.  

S5 Table. DNA methylation QTL (meQTLs) analyses at the chromosome 19 region 

from Loukola et al. (42), showing replication in TwinsUK adipose tissue samples. 

S6 Table. Characteristics of TwinsUK and LEAP cohort (38). 

S7 Table. Characteristics of 168 lung cancer (74) and 195 skin samples (33). 
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