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Abstract 

Although pathways are widely used for the analysis and representation of biological systems, their lack of clear                 

boundaries, their dispersion across numerous databases, and the lack of interoperability impedes the evaluation of               

the coverage, agreements, and discrepancies between them. Here, we present ComPath, an ecosystem that supports               

curation of pathway mappings between databases and fosters the exploration of pathway knowledge through several               

novel visualizations. We have curated mappings between three of the major pathway databases and present a case                 

study focusing on Parkinson’s disease that illustrates how ComPath can generate new biological insights by               

identifying pathway modules, clusters, and cross-talks with these mappings. The ComPath source code and              

resources are available at ​https://github.com/ComPath and the web application can be accessed at             

http​s ​://compath.scai.fraunhofer.de/​. 

Introduction 
The notion of pathways enables the representation, formalization, and interpretation of biological events or series of                

interactions. Cataloging biological knowledge into pathways reduces complexity from all possible interacting            

molecular entities to a set of well-studied and validated functional relationships between molecular entities              

culminating in biological processes. Several efforts have generated databases of pathways with varying specificity              

and granularity that comprise signaling cascades, metabolic routes, and regulatory networks from precise signatures              
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with no more than a couple of acting players to general pathways involving thousands of molecular players                 

(Kanehisa ​et al. ​, 2016; Fabregat ​et al ​., 2017; Slenter ​et al ​., 2017; Liberzon​ et al ​., 2011). 

Simplifying biology into pathways and representation as network models or mathematical models inevitably results              

in a loss of information such as spatiotemporal information or even entire biological entity types. The network                 

abstraction facilitates pathway visualization and interpretation thanks to the harmony between biological networks             

and systems: nodes correspond to molecular entities and edges to types of interactions occurring between them (e.g.,                 

inhibition, phosphorylation, etc.). Although networks can comprise a broad range of molecular types (e.g., proteins,               

chemicals, small molecules, etc.), they are generally reduced to the most direct outcome of our genetic makeup - the                   

genetic and protein levels - so that we can mechanistically understand their functionality. Thus, they are frequently                 

viewed and simplified to “gene sets”, the collection of all genes/proteins that constitute the pathway, due to the                  

major challenges of incorporating network topology and translating the variety of relationships into pathway              

analysis methods. 

While dedicated research groups and commercial entities with experienced curators have lead a majority of the                

efforts to compile, delineate, and store biological knowledge into pathway databases (Fabregat ​et al ​., 2017; Krämer                

et al ​., 2013), community and crowdsourced efforts have recently gained traction (Slenter ​et al ​., 2017; Kutmon ​et al ​.,                  

2016). Further, the variability in curation team composition, database scope (e.g., signaling pathways, gene              

regulatory networks, and metabolic processes), and curation guidelines led to the adoption of different (and in many                 

ways incompatible) schemata and formalisms such as Biological Pathway Exchange (BioPAX; Demir ​et al ​., 2010)               

and Systems Biology Markup Language (SBML; Hucka ​et al ​., 2003). These incompatibilities motivated the              

integration and harmonization of resources into pathway meta-databases such as Pathway Commons (Cerami ​et al ​.,               

2010) and PathCards (Belinky ​et al ​., 2015), which focus on integrating databases; iPath (Yamada ​et al ​., 2011),                 

which focuses on pathway visualization; and SIGNOR, which focuses on signaling pathways (Perfetto ​et al. ​, 2015). 

Even after integrating multiple pathway databases into a pathway meta-database, it is difficult to assess the                

agreements, discrepancies, redundancy, and the complementarity of their contents because of the lack of availability               

of pathway mappings (e.g., pathway A from resource X is equivalent to pathway B from resource Y) in the original                    

databases. These mappings are difficult to establish because of the arbitrary and overlapping nature of pathway                

boundaries as well as the absence of a common pathway nomenclature. Several controlled vocabularies have been                

generated as initial attempts to standardize pathway nomenclature (Petri ​et al ​., 2014; Iyappan ​et al ​., 2016), but most                  

pathway databases had already been established by the time these ontologies were published. Therefore,              

consolidating pathway knowledge is a persisting issue and it is still required to map pathways from different                 

resources together to improve database interoperability. 

Hierarchical clustering approaches have been presented as a way of grouping similar pathways based on their                

corresponding gene sets in order to propose pathway mappings (Belinky ​et al. ​, 2015; Doderer ​et al ​., 2012). Though                  
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these approaches can systematically cluster pathways from multiple resources, there are some limitations to              

consider: first, the usual tradeoff between over/under-clustering (Daniels and Giraud-Carrier, ​2006), and second,             

pathway nomenclature and biological context are not considered by the clustering algorithm; it often leaves out                

equivalent pathways with low similarity and ignores the context of the pathway (e.g., cell/disease specificity).               

Nevertheless, these limitations can be overcome by following clustering and prioritization methods with the manual               

curation required to interpret the abstract concepts that inherent to pathway definitions (e.g., biological process,               

cellular location, condition, etc.). 

Though numerous algorithms (Khatri ​et al ​., 2012) and tools (Liberzon ​et al ​., 2011; Kuleshov ​et al. ​, 2016) have been                   

successfully applied to interpret experimental data through the context of pathway databases (Cary ​et al ​., 2005;                

Subramanian ​et al ​., 2005), there has not yet been a systematic comparison between the contents of various pathway                  

databases, an assessment of their overlaps and gaps, or an establishment of mappings.. Previous studies have only                 

focused on comparing a single or small set of well-established pathways across multiple resources (Bauer-Mehren ​et                

al​., 2009; Chowdhury and Sarkar, 2015). For example, a comparison focused on metabolic pathways revealed how a                 

set of five databases only agreed in a minimum core of the biochemistry knowledge (Stobbe ​et al ​., 2011). 

These studies demonstrate the need to connect insights provided by each pathway database to foster a greater                 

understanding of the underlying biology. Here, we present ComPath, a web application that integrates content from                

publicly accessible pathway databases, generates comparisons, enables exploration, and facilitates curation of            

inter-database mappings. 

Results 
We developed an interactive web application that enables users to explore, analyze, and curate pathway knowledge.                

Below, we present three case studies illustrating how it can be used for each of these purposes. The figures for each                     

were generated by interactive, dynamic views in the ComPath web application based on three major public pathway                 

databases: KEGG, Reactome, and WikiPathways (​Figure 1​). 
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Figure 1. ​The ComPath ecosystem has three main components: the pathway database plugins, the ComPath               

framework, and the ComPath web application. The ComPath framework mediates the communication between the              

plugins containing the pathway database information and the web application. 

Case Study I: Comparison of Pathway Databases 

Assessment of Gene Coverage 

Analysis of the overlaps between K ​yoto Encyclopedia of Genes and Genomes (KEGG), Reactome, and              

WikiPathways revealed that there are approximately 3800 common human genes shared between the three databases               

(​Figure 2A ​). While at least one common human gene was present in almost every pathway across each database, the                   

number of pathways with more common human genes diminishes much more quickly in WikiPathways and               
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Reactome (​Supplementary Figure S1​). This may be due to database properties such as pathway size (e.g., on                 

average, pathways contain 90 genes in KEGG, 50 in Reactome, and 42 in WikiPathways) or gene promiscuity (i.e.                  

genes functionally linked to many pathways) that might influence the results of analyses using pathway resources                

(​Supplementary Table 2​). For further investigation, the ComPath web application generates summary tables and              

creates several visualizations to enable exploration of the distributions of pathway size and gene memberships for                

each database, visualizations that present an overview of the database properties to help identify effects such as gene                  

promiscuity or differences the distribution of gene set sizes (​Figure 2B​). 

Exploration of Pathways 

While the previous views produced gene-centric summaries of the contents of pathway databases, ComPath also               

enables the exploration of pathway similarity landscape using Clustergrammer.js (Fernandez ​et al ​., 2017). ​Figure              

2C illustrates how this view can identify clusters of pathways based on their similarity and then elucidate the                  

hierarchical relationships between the ​Metabolic pathway, the largest KEGG pathway, and other more high-granular              

KEGG metabolic pathways (e.g., ​alpha-Linolenic acid metabolism, Lipoic acid metabolism, and ether lipid             

metabolism ​)​.  

 

Figure 2​. ​A) An Euler diagram summarizing the human gene-centric coverage of KEGG, Reactome, and               

WikiPathways compared to the universe of all genes from HGNC (more details in ​Supplementary Table 1​). ​B)                 

Histogram views present gene promiscuity or pathway size distributions. ​C) The pathway similarity landscape of               

KEGG visualized as a heatmap. 

Case Study II: Identification of pathway modules, overlaps, and interplays using pathway            

enrichment 

ComPath couples classic pathway enrichment analysis (Kuleshov ​et al ​., 2016; Reimand ​et al ​., 2016; Pathan ​et al ​.,                 

2015; Huang ​et al ​., 2007) with pathway-centric visualizations to identify modules, investigate overlaps, and cluster               

pathways. This case study demonstrates their use to investigate the roles of the pathways related to established                 

genetic associations in the context of Parkinson's disease (PD). 
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Pathway enrichment with Fisher's exact test using a gene panel associated with PD reviewed by Brás ​et al ​. (the gene                    

set will be referenced as PDgset) yielded over 300 pathways containing at least one of the panel's genes (​Figure                   

3A ​). We discarded pathways with fewer than two genes from PDgset, that were larger than 300 genes, or that were                    

not found to be statistically significant (false discovery rate > 5%) after applying multiple hypothesis testing                

correction with the Benjamini-Yekutieli method under dependency (Benjamini and Yekutieli, 2001). 

Three views were used to assist in the interpretation of the remaining 29 enriched pathways: a pathway network                  

view was used to identify pathway modules, a pathway overlap view was used to explore the intersections and                  

cross-talks between pathways, and a pathway dendrogram view was used for clustering.  

The pathway network view renders a pathway-to-pathway network in which nodes represent pathways and weighted               

edges represent their corresponding gene set similarities in a similar fashion to PathwayConnector (Minadakis ​et al ​.,                

2018). For the PDgset, this visualization helped us to define six different modules (i.e., groups of pathways) by                  

removing edges with a weight lower than 0.2 (​Figure 3B​). The largest module (labelled as M ​1​) contained pathways                  

related to the processes of endocytosis and vesicle transport, both of which are putatively disrupted in PD (Perrett ​et                   

al. ​, 2015). M ​2 comprised pathways related to PTK6 signaling such as the Reactome pathway, ​PTK6 promotes                

HIF1A stabilization, ​whose high pathway enrichment significance (q-value=0.0005), as well as its role in regulating               

another PDgset gene, ATP13A2 (Rajagopalan ​et al. ​, 2016), suggests that it may be linked to PD. ATP13A2 is                  

directly responsible for Kufor-Rakeb syndrome (Gusdon ​et al. ​, 2012), a rare juvenile form of PD, and participates in                  

two other PD mechanisms: lysosomal iron storage and mitochondrial stress. Because pathways related to these two                

mechanisms (i.e., ​Lysosome pathway ​from KEGG, ​Pink/Parkin mediated mitophagy ​from Reactome, and ​Mitophagy             

pathway ​from both KEGG and Reactome; M ​4​) were also enriched by pathway enrichment analysis, we investigated                

the role of ATP13A2 in PD further.  

ATP13A2 is activated by phosphatidylinositol(3,5)bisphosphate, a particular phosphatidylinositol involved in M ​3           

pathways (phosphatidylinositol metabolism and signaling pathways). Because this activation leads to a reduction in              

mitochondrial stress and α-synuclein toxicity, two hallmarks of PD, ATP13A2 has been proposed as a therapeutic                

target (Holemans ​et al. ​, 2015). Ultimately, the exploration of the similarities and cross-talks between these three                

modules suggests further investigation of the candidate PD gene ATP13A2. Ultimately, this view complements              

pathway enrichment in the identification of pathway modules, exploration pathway cross-talks, and prioritization of              

genes for further study. 
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Figure 3. ​A) ​Results of pathway enrichment using the PDgset as input using the ComPath pathway enrichment                 

wizard. We would like to remark that enrichment results might change over time since ComPath regularly updates                 

their underlying pathway databases. In order to promote reproducibility, the current version of the databases is                
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displayed in the ComPath overview page and older versions can be provided upon request. ​B) The Pathway Network                  

Viewer displays the similarity around a selection of pathways. ​C) The Pathway Overlap View depicts the overlaps                 

and intersection of pathways enriched from the PDgset. 

While the pathway network viewer provides an overview of the different modules and their cross-talks, it does not                  

reveal information about their contained pathways' boundaries and intersections. Therefore, we implemented the             

pathway overlap view; an interactive Euler diagram that allows exploration of pathway demarcations (​Figure 3C ​).               

We employed this view to identify the set of genes common to all pathways in M ​5​, a module comprising the two                     

Alzheimer's disease (AD) and two PD pathways from KEGG and WikiPathways. Subsequently, we used the               

ComPath pathway enrichment wizard to investigate in which pathways the common five genes identified (APAF1,               

CASP3, CASP9, CYCS, and SNCA) participate. The analysis revealed that they are predominantly involved in               

apoptosis, an important process in both AD and PD pathophysiology (Obulesu​ et al ​., 2014; Tatton​ et al ​., 2003).  

The third visualization renders the results of the hierarchical clustering approach described in Chen ​et al ​. in the form                   

of a dendrogram, enabling deterministic pathway grouping based on gene set similarity. We used this view in the                  

PDgset example to assign the pathways without module membership to the closest module (​Supplementary Figure               

S2​). The dendrogram proposed merging three previously unassigned pathways into M ​2 (i.e., ​Allograft Rejection,              

MAPK Signaling pathway, ​and Rasp1 signaling pathway ​)​. Additionally, the resulting dendrogram from clustering             

revealed hierarchical relationships between pathways (e.g., ​Pink/Parkin Mediated Mitophagy is a subset of the              

Reactome ​Mitophagy pathway), information that can be used to establish pathway mappings, as we show in the                 

following case study. 

Case Study III: Establishing mappings between pathway databases 

ComPath, as well as other tools, have demonstrated the benefits of integrating pathway knowledge from diverse                

resources to improve biological functional analysis (Cerami ​et al ​., 2010; Belinky ​et al ​., 2015; Kuleshov ​et al.,                 

2016). However, even after overcoming the technical hurdle of harmonizing different formats used by different               

databases, these integrative approaches must be complemented by mappings at a pathway level in order to have                 

cross references between databases; thus, improving their interoperability. Such information could then be used to               

first link related pathways and then investigate their interplays, explore the consistency of their boundaries, calculate                

their discrepancies and agreements, or simply contextualize the knowledge around a certain biological process. 

In order to address this, ComPath introduces a curation environment in which users from the scientific community                 

can propose and maintain a collection of established mappings between pathways from various databases. This               

laborious task is facilitated by the interactive visualizations (i.e., a dendrogram view and a similarity landscape                

heatmap) presented in the previous case studies as well as dedicated pathway pages where the content, descriptions,                 

references, and the established mappings can be examined (​Figure 4A ​). Furthermore, ComPath suggests the most               

similar pathways based on this information so users can propose new mappings. This new mappings are included                 
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into the mapping catalog that serves as a search interface as well as a distribution platform for mappings (​Figure                   

4B​). In addition, the mapping catalog promotes community engaging incorporating a voting system where              

authenticated users can agree or disagree on mappings; this way, proposed mappings with a net sum of votes greater                   

than 3 are automatically registered as accepted. 

 

Figure 4. A) The pathway info view introduces basic pathway information such as its participating molecular                

entities, references, or mappings and enables automatic mapping suggestions based on different similarity metrics.              
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Furthermore, the mappings of the selected pathway can be visualized with a dynamic view that enables exploration                 

of multiple levels of its hierarchy (​Supplementary Figure S3​). ​B) ​The mappings view allows users to browse                 

established mappings, propose new mappings, and give feedback on putative mappings. 

 

 

Figure 5. ​Venn diagram illustrating the overlaps of equivalent pathways between KEGG, Reactome, WikiPathways 

resulting from the curation exercise. Note: the number of overlapping pathways in the Venn diagram do not exactly 

match the number of equivalent mappings since there are equivalent pathways within WikiPathways that, when 

mapped to another database, could have more than one equivalent pathway. For example, there are two equivalent 

Wnt signaling pathways ​ in WikiPathways that are both mapped to their corresponding Reactome pathway. This is 

resolved to a unique in the Venn diagram. A list of intra-database equivalent pathways is presented in the 

Supplementary Table 3. 

After an exhaustive investigation of all possible mappings between pathways in KEGG, Reactome, and              

WikiPathways (see Methods), we identified 58 equivalencies between KEGG and Reactome, 64 between Reactome              

and WikiPathways, and 55 between KEGG and WikiPathways. Of these equivalent pathways, 21 are shared               

between the three resources (​Figure 5 and Supplementary Table 4​). We also identified 247 hierarchical               

relationships between KEGG and Reactome, 597 between KEGG and WikiPathways, and 564 between Reactome              

and WikiPathways. After considering these, approximately 26% of KEGG, 70% of Reactome, and 35% of               

WikiPathways did not share any mappings with any other database (​Supplementary Figure S4​). The high               

uniqueness observed in Reactome could be attributed to several factors: its small pathway sizes, its high granularity,                 

and its high coverage of HGNC (​Figure 2A ​). 
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The results of this curation effort are distributed at ​https://github.com/ComPath/resources and           

https://compath.scai.fraunhofer.de/ so they can be revised, updated, and exploited by the research community hoping              

that this work serves as a first endeavor towards unifying pathway knowledge. 

Discussion 
The lack of a lingua franca in systems biology hampers the harmonization that would enable the exploration of the                   

coverage, agreements, or discrepancies in the pathway knowledge. Harmonizing this information is an important              

step to better comprehend and model biology as well as improve the bioinformatics pipelines that utilize this                 

knowledge to elucidate biological insights. As a first step towards closing this gap, we have implemented an                 

environment capable of accommodating the pathway knowledge from multiple databases in order to facilitate its               

exploration and analysis through a web application. The flexibility of ComPath enables the incorporation of               

additional databases as well as dynamic update of its resources; the latter of which is often neglected, but can have a                     

significant effect on derived analyses (Wadi ​et al ​., 2016). Additionally, an embedded curation interface allow users                

to curate and establish mappings between pathways. Accordingly, we used ComPath to conduct extensive curation               

work to link the pathways from three major pathway databases in order to evaluate their similarities and differences.                  

This mapping catalog serves as a first effort towards unifying and linking pathway information across databases that                 

can later be adopted by the original databases or to create ontologies that store these mappings. Finally, we plan to                    

update the source database biannually as well as curating mappings for newly added pathways. 

The common genes between KEGG, Reactome, and WikiPathways covered the majority of pathways, indicating              

that their pathway knowledge is partially biased towards this shared gene set, even while there are still thousands of                   

genes that have not yet been functionally annotated to pathways. Furthermore, our curation effort revealed that a                 

surprisingly low number of pathways (21) were equivalent between KEGG, Reactome, and WikiPathways. On the               

other hand, the number of mapped pathways increased significantly when the hierarchical mappings were              

considered, revealing the inconsistent granularity employed to delineate pathway boundaries.  

Although the absence of topological pathway information in ComPath is an irrefutable limitation in this study,                

gene-centric approaches enable a reduction of complexity in pathway comparison as well as integration of resources                

which do not provide topology information (Belinky ​et al ​., 2015). Furthermore, recent studies revealed significant               

differences across a large sample of topology-based pathway analysis methods (Ihnatova, ​et al ​., 2018), and               

highlighted that gene sets alone might be sufficient to detect an enriched pathway under realistic circumstances                

(Bayerlová ​et al ​., 2015). Hence, even if the abstraction of pathways as gene sets might not exploit all the existing                    

pathway information, it is sufficient to drive an investigation of the pathway knowledge. 

The established inter-database mappings allowed to link pathways from three major databases, opening the door               

towards a better integration of the pathway knowledge. In the future, these links can be used to complement and fill                    

11/18 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 3, 2018. ; https://doi.org/10.1101/353235doi: bioRxiv preprint 

https://github.com/ComPath/resources
https://compath.scai.fraunhofer.de/
https://doi.org/10.1101/353235
http://creativecommons.org/licenses/by-nd/4.0/


 

pathway knowledge as well as to conduct a precise evaluation of equivalent or related pathways by exploiting the                  

available format converters such as the converter from Reactome to WikiPathways (Bohler ​et al. ​, 2016).               

Furthermore, ComPath have been designed to accommodate multiple types of molecular entities participating in              

pathways (i.e. Reactome chemical information); thus, enabling to replicate the analyses presented with lipid or               

metabolite databases such as LIPEA (Acevedo ​et al ​., 2018) or HMDB (Wishart ​et al ​., 2017). 

In summary, we demonstrated that ComPath serves as an exploratory, analytic, and curation framework for pathway                

databases. Furthermore, we showed how the ComPath web application can complement enrichment approaches to              

elucidate and prioritize pathways and genes related to interesting biological phenomenon. Finally, we hope that the                

implementation of a curation ecosystem and the first mapping efforts conducted in this work pave the way towards                  

unifying the pathway knowledge. 

Methods 

Implementation 

ComPath Framework 

At its core, ComPath is a framework for integrating pathway and gene set databases. We defined a set of guidelines                    

for implementing wrappers around the processes of downloading data, transforming it into a common data model,                

and making queries. These guidelines are encoded in an abstract class with the Python programming language such                 

that new plugins can be quickly implemented for new resources. Each implementation must have a mapping                

between genes and pathways as well as functions for exporting pathways as gene sets, performing pathway                

enrichment analysis, and performing reasoning/inference over pathway hierarchies. 

Compath Plugins 

We implemented plugins for four major public pathway databases: KEGG, Reactome, WikiPathways, and MSigDB              

(Kanehisa ​et al ​., 2016; Fabregat ​et al ​., 2017; Slenter ​et al ​., 2017; Liberzon ​et al ​., 2011). They can be used                    

individually as a way of extracting, updating, and exploring the pathways contained within the database.               

Additionally, they can be used jointly in the ComPath web application where the pathways from multiple databases                 

are integrated for their exploration, analysis, and curation. 

ComPath Web Application 

The web application was implemented in the Python programming language using the Flask microframework and a                

suite of its extensions. The compatibility between Flask and the data models defined in all pathway plugins allows                  

the integration and harmonization of the pathway knowledge in an extensible manner. To illustrate the flexibility of                 

ComPath, we have included plugins for the Alzheimer’s disease and Parkinson’s disease gene sets associated with                
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disease-specific mechanisms from NeuroMMSig (Domingo-Fernández ​et al ​., 2017) in the public version of the              

ComPath web (​https://compath.scai.fraunhofer.de/​). 

ComPath leverages a variety of state-of-the-art libraries for visualization and exploration of pathway knowledge. We               

chose Bootstrap for the design of the website since its responsive design retains full compatibility across all devices.                  

Interactive visualizations are generated using several Javascript libraries, including D3.js, Clustergrammer.js           

(Fernandez ​et al ​., 2017), and Cytoscape.js (Franz ​et al ​., 2015). 

We implemented a RESTful API documented with an OpenAPI specification that can be accessed through the                

ComPath instance released at ​https://compath.scai.fraunhofer.de/apidocs ​. The API enables users to          

programmatically extract mapping information and perform queries using different genes or pathways identifiers. 

Code Availability 

The source code for ComPath and its plugins can be found on GitHub (​https://github.com/ComPath and               

https://github.com/Bio2BEL​) under the MIT license. Both the plugins and the web application can be installed with                

PyPI (​https://pypi.org​), the main packaging system for Python. Furthermore, we have included a Dockerfile to               

enable reproducing the ComPath environment with Docker (​https://www.docker.com/)​. Finally, documentation is           

included in each GitHub repository and it is also accessible at Read the Docs (​https://readthedocs.org​). 

Methods 

Estimating Pathway Similarity 

While a variety of indices (e.g., Jaccard, Sørensen–Dice, Tversky) have been used to assess the similarity between                 

sets, the Szymkiewicz-Simpson coefficient (Equation 1) is most appropriate for comparing sets widely varying in               

size. Similarly to previous studies, we have chosen this index to not only calculate pathway similarity but also reveal                   

contained pathways (i.e., when most of the nodes from a small pathway are in a larger pathway) to indicate potential                    

hierarchical relationships (Chen ​et al., ​ 2014, Pita-Juarez ​et al ​., 2018; Belinky ​et al ​., 2015; Katiyar ​et al ​., 2018). 

 S  (X ,Y )
 

=  |X⋂Y |
min(|X |,|Y |)  

Equation 1. ​The Szymkiewicz-Simpson coefficient calculates the similarity between two sets (X and Y) where 0 ≤ 

S ≤ 1. The similarity is the size of the intersection of the two sets divided by the size of the smaller. 

Curation of Pathway Mappings 

Here, we describe the curation procedure we used in order to systematically generate equivalency and hierarchical                

mappings between the human pathways originating from KEGG, Reactome, and WikiPathways. Here, it is              

important to note that we have only focused on generating mappings for the pathways originating from each of the                   

three resources, not their imported pathways from other databases (e.g., WikiPathways imported Reactome             

pathways that are evidently equivalent to the ones in Reactome). First, we define two types of mappings: 
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1. equivalentTo​. An undirected relationship denoting both pathways refer to the same biological process. The              

requirements for this relationship are: 

○ Scope ​: both pathways represent the same biological pathway information. 

○ Similarity ​: both pathways must share at minimum of one overlapping gene. 

○ Context ​: both pathways should take place in the same context (e.g., cell line, physiology). 

2. isPartOf​. A directed relationship denoting the hierarchical relationship between the pathway 1 (child) and              

2 (parent). The requirements are: 

○ Subset Scope ​: The subject (pathway 1) is a subset of pathway 2 (e.g., Reactome pathway               

hierarchy).  

○ Similarity ​: same as above. 

○ Context: ​ same as above. 

We generated all possible mappings between pathways in each database (KEGG-WikiPathways, KEGG-Reactome,            

and WikiPathways-Reactome) and prioritized them based on the follow two independent metrics that have been               

proposed to calculate pathway similarity (Belinky ​et al ​., 2015): 

1. Lexical similarity between each pair of pathways' names was calculated using the Levenshtein distance              

(Levenshtein, 1966). 

2. Content similarity between each pair of pathways' genes was calculated using the previously described              

Szymkiewicz-Simpson coefficient. 

After prioritization, our three curators from different areas of expertise (neuroscience, medicine, and biology)              

independently evaluated both similarities and the scope and context included in the pathway descriptions to assign                

the mapping types and to remove false positives. Furthermore, we investigated possible intra-database mappings              

within KEGG and WikiPathways since these resources do not yet contain hierarchical relationships. Finally, our               

curators combined the results and re-evaluated them to generate a consensus mapping file. It is available at                 

https://github.com/ComPath/resources ​ under the MIT License. 
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