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Abstract

Many previous studies on visual search have reported inter-trial effects, that is, observers
respond faster when some target property, such as a defining feature or dimension, or the
response associated with the target repeats versus changes across consecutive trial
episodes. However, what processes drive these inter-trial effects is still controversial.
Here, we investigated this question using a combination of Bayesian modeling of belief
updating and evidence accumulation modeling in perceptual decision-making. In three
visual singleton (‘pop-out’) search experiments, we explored how the probability of the
response-critical states of the search display (e.g., target presence/absence) and the
repetition/switch of the target-defining dimension (color/ orientation) affect reaction time
distributions. The results replicated the mean reaction time (RT) inter-trial and dimension
repetition/switch effects that have been reported in previous studies. Going beyond this,
to uncover the underlying mechanisms, we used the Drift-Diffusion Model (DDM) and the
Linear Approach to Threshold with Ergodic Rate (LATER) model to explain the RT
distributions in terms of decision bias (starting point) and information processing speed
(evidence accumulation rate). We further investigated how these different aspects of the
decision-making process are affected by different properties of stimulus history, giving rise
to dissociable inter-trial effects. We approached this question by (i) combining each
perceptual decision making model (DDM or LATER) with different updating models, each
specifying a plausible rule for updating of either the starting point or the rate, based on
stimulus history, and (ii) comparing every possible combination of trial-wise updating
mechanism and perceptual decision model in a factorial model comparison. Consistently
across experiments, we found that the (recent) history of the response-critical property
influences the initial decision bias, while repetition/switch of the target-defining dimension
affects the accumulation rate, likely reflecting an implicit ‘top-down’ modulation process.
This provides strong evidence of a disassociation between response- and dimension-

based inter-trial effects.
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Introduction

In everyday life, we are continuously engaged in selecting visual information to achieve
our action goals, as the amount of information we receive at any time exceeds the
available processing capacity. The mechanisms mediating attentional selection enable us
to act efficiently by prioritizing task-relevant, and deprioritizing irrelevant, information. Of
importance for the question at issue in the present study, the settings that ensure effective
action in particular task episodes are, by default, buffered by the attentional control system
and carried over to subsequent task episodes, facilitating performance if the settings are
still applicable and, respectively, impairing performance if they no longer apply owing to
changes in the task situation (in which case the settings need to be adapted accordingly).
In fact, in visual search tasks, such automatic carry-over effects may account for more of
the variance in the response times (RTs) than deliberate, top-down task set [1]. A prime
piece of evidence in this context is visual search for so-called singleton targets, that is,
targets defined by being unique relative to the background of non-target (or distractor)
items, whether they differ from the background by one unique feature (simple feature
singletons) or a unique conjunction of features (conjuction singletons): singleton search is
expedited (or slowed) when critical properties of the stimuli repeat (or change) across
trials. Such inter-trial effects have been found for repetitions/switches of, for example, the
target-defining color [2,3], size [4], position [5], and, more generally, the target-defining
feature dimension [6,7]. The latter has been referred to as the dimension repetition/switch
effect, that is: responding to a target repeated from the same dimension (e.g., color) is
expedited even when the precise target feature is different across trials (e.g., changing
from blue on one trial to red on the next), whereas a target switch from one dimension to
another (e.g., from orientation to color) causes a reaction time cost (‘dimension repetition
effect’, DRE) [8—10].

While inter-trial effects have been extensively studied, the precise nature of the processes
that are being affected remains unclear. Much of the recent work has been concerned
with the issue of the processing stage(s) at which inter-trial effects arise (for a review, see
[11]). Muller and colleagues proposed that inter-trial effects, in particular the dimension
repetition effect, reflect facilitation of search processes prior to focal-attentional selection
(at a pre-attentive stage of saliency computation) [10]. However, using a non-search
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paradigm with a single item presented at a fixed (central) screen location, Mortier et al.
[12] obtained a similar pattern of inter-trial effects — leading them to conclude that the DRE
arises at the post-selective stage of response selection. Rangelov and colleagues [13]
demonstrated that DRE effects can originate from distinct mechanisms in search tasks
making different task demands (singleton feature detection and feature discrimination):
pre-attentive weighting of the dimension-specific feature contrast signals and post-
selective stimulus processing — leading them to argue in favor of a 'multiple weighting
systems hypothesis'. Based on the 'priming of pop-out' search paradigm, a similar
conclusion [11] has also been proposed, namely, inter-trial effects arise from both
attentional selection and post-selective retrieval of memory traces from previous trials

[4,14], favoring a dual-stage account [15].

It is important to note that those studies adopted very different paradigms and tasks to
examine the origins of inter-trial effects, and their analyses are near-exclusively based on
differences in mean RTs. Although such analyses are perfectly valid, much information
about trial-by-trial changes is lost. Recent studies have shown that the RT distribution
imposes important constraints on theories of visual search [16,17]. RT distributions in
many different task domains have been successfully modeled as resulting from a process
of evidence accumulation [18,19]. One influential evidence accumulation model is the
drift-diffusion model (DDM) [20-22]. In the DDM, observers sequentially accumulate
multiple pieces of evidence, each in the form of a log likelihood ratio of two alternative
decision outcomes (e.g., target present vs. absent), and make a response when the
decision information reaches a threshold (see Figure 1). The decision process is governed
by three distinct components: a tendency to drift towards either boundary (drift rate), the
separation between the decision boundaries (boundary separation), and a starting point.
These components can be estimated for any given experimental condition and observer
by fitting the model to the RT distribution obtained for that condition and observer.

Estimating these components makes it possible to address a question that is related to,
yet separate from the issue of the critical processing stage(s) and that has received
relatively less attention: do the faster RTs after stimulus repetition reflect more efficient
stimulus processing, for example: expedited guidance of attention to more informative

parts of the stimulus, or rather a bias towards giving a particular one of the two alternative
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responses or, respectively, a tendency to require less evidence before issuing either
response. The first possibility, more efficient processing, would predict an increase in the
drift rate, that is, a higher speed of evidence accumulation. A bias towards one response
or a tendency to require less evidence would, on the other hand, predict a decreased
distance between the starting point and the decision boundary associated with that
response. In the case of bias, this would involve a shift of the starting point towards that
boundary, while a tendency to require less evidence would be reflected in a decrease of
the boundary separation. While response bias is more likely associated with changes at
the post-selective (rather than pre-attentive) processing stage, the independence of the
response selection and the attentional selection stage has been challenged [23].

For simple motor latencies and simple-detection and pop-out search tasks [24], there is
another parsimonious yet powerful model, namely the LATER (Linear Approach to
Threshold with Ergodic Rate) model [25,26]. Unlike the drift-diffusion model, which
assumes that evidence strength varies across the accumulative process, the LATER
model assumes that evidence is accumulated at a constant rate during any individual
perceptual decision, but that this rate varies randomly across trials following a normal
distribution (see Figure 1). Such a pattern has been observed, for instance, in the rate of
build-up of neural activity in the motor cortex of monkeys performing a saccade-to-target
task [27]. Similar to the DDM, the LATER model has three important parameters: the
ergodic rate (r), the boundary separation (6), and a starting point (S,). However, the
boundary separation and starting point are not independent, since the output of the model
is completely determined by the rate and the separation between the starting point and

the boundary; thus, in effect, the LATER model has only two parameters.

The evidence accumulation process can be interpreted in terms of Bayesian probability
theory [26,28]. On this interpretation, the 'linear approach to threshold with ergodic rate'
represents the build-up of the posterior probability that results from adding up the log
likelihood ratio (i.e., 'evidence') of a certain choice being the correct one and the initial
bias that derives from the prior probability of two choices. The prior probability should
affect the starting point S, of the evidence accumulation process: S, should be the closer
to the boundary the higher the prior probability of the outcome that boundary represents.
The drift rate, by contrast, should be influenced by any factor that facilitates or impedes
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efficient accumulation of task-relevant sensory evidence, such as spatial attentional

selection.

Threshold

Latency

Figure 1 lllustrations of the drift diffusion model (DDM, shown in blue) and the LATER model
(shown in red). The DDM assumes that evidence accumulates, from the starting point (S,), through
random diffusion in combination with a drift rate r until a boundary (i.e., threshold, 6) is reached.
The LATER model makes the same assumptions, except that the rate r is considered to be
constant within any individual trial, but to vary across trials (so as to explain trial-to-trial variability
in RTs).

The present study was designed to clarify the nature of the inter-trial effects for
manipulations of target presence and the target-defining dimension as well as inter-trial
dimension repetitions and switches. If inter-trial effects reflect a decision bias, this should
be reflected in changes of the decision boundary and/or the starting point. By contrast, if
inter-trial effects reflect changes in processing efficiency, which might result from
allocating more attentional resources (or 'weight') to the processing of the repeated
feature/dimension [6], the accumulation rate r should be changed. Note that neither the
DDM nor the LATER model provides any indication of how the initial starting point might
change across trials. Given that the inter-trial effects are indicative of the underlying trial-
by-trial dynamics, we aimed to further analyze trial-wise changes of the prior and the
accumulation rate, and examine how a new prior is learned when the stimulus statistics
change, as reflected in changes of the starting point to decision boundary separation
during the learning process.
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To address these inter-trial dynamics, we adopted the Dynamic Belief Model (DBM) [29].
The DBM has been successfully used to explain why performance on many tasks is better
when a stimulus matches local patterns in the stimulus history even in a randomized
design where it is not actually possible to use stimulus history for (better-than-chance)
prediction. Inter-trial effects arise naturally in the DBM. This is because the DBM assumes
a prior belief about non-stationarity, that is: participants are updating their beliefs about
the current stimulus statistics while assuming that these can change at any time. The
assumption of non-stationarity leads to something similar to exponential discounting of
previous evidence, that is, the weight assigned to previous evidence decreases
exponentially with the time (or number of updating events) since it was acquired.
Consequently, current beliefs about what is most likely to happen on an upcoming trial will
always be significantly influenced by what occurred on the previous trial, resulting in inter-
trial effects. Thus, here we combine a belief-updating model closely based on the DBM,
for modelling the learning of the prior, with the DDM and, respectively, the LATER model
for predicting RTs. A very similar model has previously been proposed to explain results
in saccade-to-target experiments [30]. We also consider the possibility that the evidence
accumulation rate as well as the starting point may change from trial to trial.

To distinguish between different possible ways in which stimulus history could have an
influence via updating of the starting point and/or the rate, we performed three visual
search experiments, using both a detection and a discrimination task and manipulating
the probability of target presence, as well as the target-defining dimension. Based on the
RT data, we then performed a factorial model comparison (cf. [31]), where both the
response history and the history of the target dimension can affect either the starting point
or the rate. The results show that the model that best explains both the effects of our
probability manipulation and the inter-trial effects is the one in which the starting point is
updated based on response history and the rate is updated based on the history of the

target dimension.

Results

Experiments 1 and 2 both consisted of three equally long blocks. The frequency of pop-
out target presence (or absence) was varied across blocks in Experiment 1. In Experiment
7
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2, a target was always present, and the frequency of the target being a color-defined or,
alternatively, an orientation-defined singleton was varied across blocks. In Experiment 3,
target presence and absence were kept equally frequent, as were trials with color- and
orientation-defined singleton targets. One implication of this design is that the high-
frequency condition for one target condition (present/absent, color/orientation) was
implemented in the same block as the low-frequency condition for the other target
condition. So, in all figures and analyses of the effects of frequency, the high- and low-
frequency conditions are based on data collected in different blocks for each target
condition, while the data for the medium-frequency condition comes from the same block

for each target condition.

Error rates

Exp. 1 Exp. 2 Exp. 3

ermorrate
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Freqguencies in Blocks

Absent -# Color -l Orientation Present

Figure 2 Error rates in Experiments 1, 2, and 3, for all combinations of target frequency. Target
frequency is defined relative to the target condition, as the frequency with which that target
condition occurred within a given block. This means that, for a given frequency, the data from the
different target conditions do not necessarily come from the same block of the experiment. Error

bars show the standard error of the mean.

The singleton search was quite easy, with participants making few errors overall: mean
error rates were 1.5%, 2.5%, and 3.3% in Experiments 1, 2, and 3 respectively (Figure 2).
Despite the low average error rates, error rates differed significantly between blocks in
both Experiments 1 and 2 [F(1.34,14.78) = 11.50, p < 0.01,; = 0.51, BF = 8372, and

F(2,22) = 12.20, p < 0.001,n; = 0.53, BF = 3729, respectively]: as indicated by post-hoc
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comparisons (Supplement S1), error rates were higher in the low-frequency blocks
compared to the medium- and high-frequency blocks, without a significant difference
between the latter. In addition, in Experiment 1, error rates were overall higher for target-
present than for target-absent trials, that is, there were more misses than false alarms,
F(1,11) = 11.43,p < 0.01,n5 = 0.51, BF = 75. In contrast, there was no difference in error
rates between color and orientation targets in Experiment 2, F(1,11) =0.70,p =
0.42,BF = 0.33. In Experiment 3, there was no manipulation of target (or dimension)
frequency, but like in Experiment 1, error rates were higher on target-present than on
target-absent trials, t(11) = 4.25,p < 0.01, BF = 30.7; and similar to Experiment 2, there
was no significant difference in error rates between color and orientation targets, t(11) =
1.51,p = 0.16,BF = 0.71.

Mean Reaction times (RTs)

\ Exp. 1 Exp. 2 Exp. 3

0.604

RT (s)

e

0.25 0.50 075 0.25 0.50 0.75 025 0.50 0.75
Frequencies in Blocks

Absent -# Color - Orientation Present

Figure 3 Mean RTs in Experiments 1, 2, and 3, for all combinations of target condition and target
frequency. Target frequency is defined relative to the target condition, as the frequency with which
that target condition occurred within a given block. This means that for a given frequency, the data
from the different target conditions do not necessarily come from the same block of the

experiment. Error bars show the standard error of the mean.

Given the low error rates, we analyzed only RTs from trials with a correct response, though
excluding outliers, defined as trials on which the inverse RT (i.e., 1/RT) was more than
three standard deviations from the mean for any individual participant. Figure 3 presents
the pattern of mean RTs for all three experiments. In both Experiments 1 and 2, the main
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effect of frequency was significant [F(2,22) = 10.25,p < 0.001,n; = 0.48, BF = 73, and,
respectively, F(1.27,13.96) =29.83 , p <0.01,n; =0.73,BF =87 %10® ]. Post-hoc
comparisons (see Supplement S2) confirmed RTs to be faster in high-frequency
compared to low-frequency blocks, indicative of participants adapting to the stimulus
statistics in a way such as to permit faster responses to the most frequent type of trial
within a given block. In addition, in Experiment 1, RTs were faster for target-present than
for target-absent trials [F(1,11) = 5.94,p < 0.05,n; = 0.35, BF = 51], consistent with the
visual search literature. In contrast, there was no difference between color- and
orientation-defined target trials in Experiment 2, and no interaction between target
condition and frequency in either Experiment 1 or 2 (Supplement S2) — suggesting that

the effect of frequency is independent of the target stimuli.

Comparing the error rates depicted in Figure 2 and the mean RTs in Figure 3, error rates
tended to be lower for those frequency conditions for which RTs were faster. While this
rules out simple speed-accuracy trade-offs, it indicates that participants were adapting to
the statistics of the stimuli in a way that permitted faster and more accurate responding to
the most frequent type of trial within a given block, at the cost of slower and less accurate
responding on the less frequent trial type. A possible explanation of these effects is a shift
of the starting point of a drift-diffusion model towards the boundary associated with the
response associated with the most frequent type of trial; as will be seen below (in the
modeling section), the shapes of the RT distributions were consistent with this

interpretation.

Without a manipulation of frequency, Experiment 3 yielded a standard outcome: all three
types of trial yielded similar mean RTs, F(2,22) = 2.15,p = 0.14,BF = 0.71. This is
different from Experiment 1, in which target-absent RTs were significantly slower than
target-present RTs. This difference was likely obtained because the target-defining
dimension was kept constant within short mini-blocks in Experiment 1, but varied randomly
across trials in Experiment 3, yielding a dimension switch cost and therefore slower
average RTs on target-present trials (see modeling section for further confirmation of this

interpretation).
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Inter-trial effects
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Intertrial Response

Absent -# Color -#- Orientation Present

Figure 4 Inter-trial effects on mean RTs for all three experiments. Error bars show the standard

error of the mean.

Given our focus on inter-trial dynamic changes in RTs, we compared trials on which the
target condition was switched to trials on which it was repeated from the previous trial.
Figure 4 illustrates the inter-trial effects for all three experiments. RTs were significantly
faster on target-repeat than on target-switch trials, in all experiments: Experiment 1
[ F(1,11) = 6.13,p < 0.05,72 = 0.36,BF = 0.81 ], Experiment 2 [ F(1,11) =71.29,p <
0.001,7% = 0.87,BF = 2.6+ 107 ], and Experiment 3 [F(1,11) =32.68,p < 0.001,72 =
0.75, BF = 625]. Note that for Experiment 1, despite the significant target-repeat/switch
effect, the ‘inclusion’ BF (see Methods) suggests that this factor is negligible compared to
other factors; a further post-hoc comparison of repeat versus switch trials has a BF of
5.88, compatible with the ANOVA test. The target repetition effect in all three experiments
is consistent with trial-wise updating of an internal model (see the modeling section). The
target repetition/switch effect was larger for target-absent responses (i.e., comparing
repetition of target absence to a switch from target presence to absence) than for target-
present responses in Experiment 3 (interaction inter-trial condition x target condition,
F(1,11) = 14.80,p < 0.01,n; = 0.57, BF = 18), while there was no such a difference in
Experiment 1, F(1,11) = 2.55,p = 0.14, BF = 0.43, and also no interaction between target
dimension and inter-trial condition in Experiment 2, F(1,11) = 0.014,p = 0.91,BF = 0.76.
These findings suggest that, while the target repetition/switch effect as such is stable

across experiments, its magnitude may fluctuate depending on the experimental
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condition. The interaction between target condition and inter-trial condition seen in
Experiment 3, but not in Experiment 1, is likely attributable to the fact that color and
orientation targets were randomly interleaved in Experiment 3, so that target-present
repetitions include trials on which the target dimension did either repeat or change —
whereas the target dimension was invariably repeated on consecutive target-present trials
in Experiment 1. The effects of repeating/switching the target dimension are considered
further below.

Note that in all experiments, we mapped two alternative target conditions to two fixed
alternative responses. The repetition and switch effects described above may be partly
due to response repetitions and switches. To further examine dimension repetition/switch
effects when both dimensions were mapped to the same response, we extracted those
target-present trials from Experiment 3 on which a target was also present on the
immediately preceding trial. Figure 5 depicts the mean RTs for the dimension-repeat
versus -switch trials. RTs were faster when the target dimension repeated compared to
when it switched, F(1,11) = 25.06,p < 0.001,7; = 0.70, BF = 1905, where this effect was
of a similar magnitude for color- and orientation-defined targets [interaction target
dimension x dimension repetition, F(1,11) = 0.04,p = 0.84, BF = 0.33]. There was also no
overall RT difference between the two types of target [main effect of target dimension,
F(1,11) = 0.16,p = 0.69, BF = 0.34], indicating that the color and orientation targets were
equally salient. This pattern of dimension repetition/switch effects is in line with the
dimension-weighting account [8]. Of note, there was little evidence of a dimension
repetition benefit from two trials back, that is, from trial n-2 to trial n: the effect was very
small (3 ms) and not statistically significant [t(23)=0.81, p=0.43, BF=0.38].
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Figure 5 Dimension repetition/switch effect in Experiment 3. Mean RTs were significantly faster

when the target-defining dimension was repeated. Error bars show the standard error of the mean.

In addition to inter-trial effects from repetition versus switching of the target dimension,
there may also be effects of repeating/switching the individual target-defining features. To
examine for such effects, we extracted those trials on which a target was present and the
target dimension stayed the same as on the preceding trial, and examined them for (intra-
dimension) target feature repetition/switch effects. See Figure 6 for the resulting mean
RTs. In Experiments 1 and 3, there was no significant main effect of feature
repetition/switch [Exp. 1:F(1,11) = 0.30,p = 0.593,BF = 0.30, Exp. 3: F(1,11) =3.77,p =
0.078, BF = 0.76], nor was there an interaction with target dimension [Exp. 1: F(1,11) =
2.122,p = 0.17,BF = 0.44, Exp. 3: F(1,11) = 0.007,p = 0.93,BF = 0.38]. In contrast, in
Experiment 2 (which required an explicit target dimension response), RTs were
significantly faster when the target feature repeated compared to when it switched within
the same dimension, F(1,11) = 35.535,p < 0.001,n; = 0.764, BF = 13, and this effect did

not differ between the target-defining, color and orientation, dimensions, F(1,11) =
1.858,p = 0.2,BF = 0.57 . Note though that, even in Experiment 2, this feature
repetition/switch effect was smaller than the effect of dimension repetition/switch (20 vs.
54 ms, 1(11)=5.20, p<0.001, BF=122).
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Figure 6 Feature repetition/switch effects on mean RTs for all three experiments. Error bars show

the standard error of the mean.

In summary, the results revealed RTs to be expedited when target presence or absence
or, respectively, the target-defining dimension (on target-present trials) was repeated on
consecutive trials. However, the origin of these inter-trial effects is unclear: The faster RTs
for cross-trial repetitions could reflect either more efficient stimulus processing (e.g., as a
result of greater ‘attentional ‘weight’ being assigned to a repeated target dimension) or a
response bias (e.g., an inclination to respond ‘target present’ based on less evidence on
repeat trials), or both. In the next section, we will address the origin(s) of the inter-trial
effects by comparing a range of generative computational models and determining which
parameters are likely involved in producing these effects. Because feature-specific inter-
trial effects, if reliable at all (they were significant only in Exp. 2, which required an explicit
target dimension response), were smaller than the inter-trial effects related to either target
presence/absence or the target-defining dimension (e.g., in Exp. 3, a significant
dimension-based inter-trial effect of 39 ms compares with a non-significant feature-based
effect of 11 ms), we chose to ignore the feature-related effect in our modeling attempt.

Dynamic Bayesian updating and inter-trial effects

Factorial comparison of multiple updating models

To identify the origins of the observed inter-trial effects, we systematically compared a
multiplicity of computational models using the factorial comparison method [31]. Given
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that both the DDM and the LATER model provide a good prediction of the RT distributions,
we consider the model of RT distributions as one factor (DDM vs. LATER).

Both models have the same parameters: the evidence accumulation rate (r), the initial
starting point (S,), and the decision threshold (). The DDM model has one additional
parameter: non-decision time (T,,.). Here we also added a non-decision time parameter to
the LATER model, and considered the presence versus absence of a non-decision time
as one factor (i.e., non-decision time fixed to zero vs. non-decision time as a free

parameter).

Table 1

A list of the levels and the associated parameters for each of the four factors.

FACTORS LEVELS PARAMETERS

NON-DECISION TIME Without None
With Tor

EVIDENCE DDM r,T,o

ACCUMULATION MODEL LATER r,T,o
No updating -

RDF-BASED UPDATING So full memory Bo

OR So with decay a, Bo

TDD-BASED UPDATING Binary rate K
Rate with decay o, A
Weighted rate o, A

One of the main purposes of the model comparison was to investigate through what
mechanisms response history and the history of the target dimension influence RTs. To
this end, we introduced the influence of the history of the ‘response-defining feature’ (RDF)
and of the ‘target-defining dimension’ (TDD) on updating of the parameters of the RT
distribution model as two separate factors. For each factor, we considered six different
forms of updating (factor levels). Error! Reference source not found. lists all factor levels

and the associated parameters for each of the four factors.
Level 1 (No update): RDF/TDD repetition/switch does not affect any model parameters.

Level 2 (S, with full memory): RDF/TDD repetition/switch updates the initial starting point
(So) according to the whole prior history. As suggested by [26] and [19], S, is determined

by the log prior odds of two decision outcomes (H vs. ~H):
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P(H
Sozlogl_( )

=P (1

Here we assume that the prior probability P(H), rather than being fixed, is updated trial-
wise according to Bayesian inference, because participants are learning the frequencies
of different stimulus properties (such as target present/absent or color/orientation) and
using this knowledge as a prior when making perceptual decisions. Thus, the posterior of

the prior is:
P(H¢|X;) < P(X:|H;)P(H,) (2)

This updating can be modeled by using a Beta distribution as the starting distribution on
the prior (a hyperprior) and updating after each trial using the Bernoulli likelihood. We
assume that participants were unbiased at the beginning of the experiment (i.e., the two
parameters of the Beta distribution initially had the same value f,) and gradually updated
their prior based on the trial history. The updating fully determines the starting point on
each trial based on the stimulus history and the shape of the starting distribution
(determined by f,); accordingly, the shape parameter of the starting distribution, g, is the

only free parameter. Figure 7 illustrates the updating.

For updating based on the RDF, a single prior p is being learned, representing the
probability of target-present trials (with the probability of a target-absent trial being 1 — p).
For updating based on the history of the TDD, we assume a separate prior is being learned

for each dimension.

This factor level contributes one parameter, f3,, to the model.
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Figure 7 Schematic illustration of prior updating and the resulting changes of the starting point.
The top panels show the hyperprior, i.e., the probability distribution on the frequency of target
present trials (p), and how it changes over three subsequent trials. The middle panels show the
current best estimate of the frequency distribution over target-present and -absent trials (i.e., p
and 1 —p). The best estimate of p is defined as the expected value of the hyperprior. The bottom
panels show a sketch of the evidence accumulation process where the starting point is set as the
log prior odds for the two response options (target- present vs. -absent), computed based on the
current best estimate of p. T,, and T, are the decision thresholds for target-present and -absent
responses, respectively, and p, and y, are the respective drift rates. The sketch of the evidence
accumulation process is based on the LATER model (rather than the DDM) and therefore shown
with a single boundary (that associated with the correct response). Note that the boundary
depicted for trial 2 (target absent) is not the same as those for (target-present trials) trials 1 and 3.
In the equivalent figure based on the DDM, there would have been two boundaries, and on trial 2,
the drift rate would have been negative and the starting point would have been closer to the upper
boundary than on the first trial. Note also that this figure illustrates updating with some memory
decay (see level 3). Without memory decay, the distribution on trial 3 would be exactly the same

as on trial 1.

Level 3 (S, with decay): Like at Level 2, S, is updated based on the history of the
RDF/TDD through Bayesian updating of the prior. In addition, we incorporated a forgetting
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mechanism based on the Dynamic Belief Model (DBM) [29]. That is, in addition to
Bayesian updating of the probability distribution on the prior H,, there was, on each ftrial,
a probability « with which the prior was redrawn from the starting distribution H,. This

forgetting mechanism was implemented through the following equation:
P(H¢|X¢—1) = aP(He_q|X;—1) + (1 —a)P(Hy)  (3)

This model is identical to the fixed no-updating model (Level 1) when «a equals 0, and is
identical to the model specified in Level 2 when a equals 1. For intermediate values of «,
the prior is partially reset to the initial prior on each trial. This factor level contributes two

parameters, a and g, to the model.

For factor levels 46, it is the evidence accumulation rate (r), rather than the starting point
(Sp), that is being updated from trial to trial. Updating could be based on either the RDF or
the TDD (in Experiment 2, these were the same), which we will refer to as the update
variable (UV). In each case, UV can have two possible values, u; and u,, namely, either
color and orientation or target-present and -absent, depending on which experiment is
being modelled.

Level 4 (Binary rate): The RDF/TDD repetition/switch updates the information
accumulation rate r in a step-wise manner, with the rate depending only on one-trial-back
changes of UV: the rate is scaled by a parameter k, whose value was either k, (0<k,<1)

when the UV changed between trials, or 1 when the UV repeated:

(1-8uvpuva_q)
Th = K, L ¢ (4)

where 8,y v, is the Kronecker delta function. When updating was performed based on

the target dimension, it only affected the rate on target-present trials that were immediately
preceded by a (target-present) trial with a target defined in a different dimension. This

factor level contributes one parameter, k, to the model.

Levels 5—6 were both designed to reduce the evidence accumulation rate after a UV
switch, just like factor Level 4, but allowing for an influence from more than one trial back.

Level 5 (Rate with decay): The RDF/TDD repetition/switch updates the rate r with a

memory decay, which was accomplished by reducing the rate whenever the (value of
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the) UV switched between trials, and increasing it when the UV repeated. Specifically,
the rate was scaled by k on each trial if updating was based on the RDF, or on each
target-present trial if it was based on the target-defining dimension. The starting value of
Kk was set to 1, and it was increased by A after each UV repetition, and decreased by A
after each UV switch. There was also a forgetting mechanism, the same as that
implemented at Level 3, such that trials further back had less influence:

T, =K, To
kY =k, + (_1)(1—5uvn,uvn_1) A (5)
Knt1 =a kg +(1—a),

where k, ., determines the amount of scaling of the rate on trial n+1 while k¥ is the value
of k after being updated based on the stimulus on trial n, and &y, ;v _, the Kronecker
delta function. When updating was based on the target-defining dimension, no increase
or decrease by A occurred on target-absent trials, while the forgetting step was still

performed. This factor level contributes two parameters, A and «, to the model.

Level 6 (Weighted rate): The RDF/TDD repetition/switch updates the rate r with a shared
weight resource. Level 6, like Level 5, allowed for an influence on the rate from more than
one trial back. Like at Levels 4 and 5, a separate rate was used for each value of the UV

(ro(i) for UV = u;, i = {1,2}). Just like at Levels 4 and 5, these rates were scaled based on
trial history. However, unlike Levels 4 and 5, the factors by which the two rates were
scaled summed to a constant value, as if there was a shared ‘weight’ resource. After a
trial on which a given value of the UV had occurred, some weight was moved to the scaling
factor associated with that value of the UV (i.e., the target dimension or the target-
present/absent status depending on whether the rule was used for TDD- or RDF-based
updating). This updating rule was inspired by the dimension-weighting account [6].

Specifically, the rate (") was scaled by k, where the summation of the scaling factor

was kept constant at 2, that is,
{réi) = Kr(li) _ro(i)' i={1,2} ©
K +K7(12) =2

n

®

n

where the scaling factor k., i = {1,2}, updates with the following rules,
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Kf) =1
Iy = K+ ()OO A (7)
iy =@k 4+ (- a)

Thus, after each trial, some amount of the limited resource determining the scaling of the
rate was moved to the scaling factor associated with the value of the UV that had occurred
on that trial. In addition, the same forgetting rule as that implemented at Level 5 was used.
When the updating was based on the target dimension, no scaling of the rate or updating
of k¥ was performed on target-absent trials, though the forgetting rule was still applied, just

like at Level 5.

This level contributes two parameters, A and «, to the model.

Model comparison

With the full combination of the four factors, there were 144 (2 x 2 x 6 x 6) models
altogether for comparison: non-decision time (with/without), evidence accumulation
models (DDM vs. LATER), RDF-based updating (6 factor levels), and TDD-based
updating (6 factor levels). We fitted all models to individual-participant data across the
three experiments, which, with 12 participants per experiment, yielded 5184 fitted models.
Several data sets could not be fitted with the full memory version of the starting point
updating level (i.e., Level 2) of the dimension-based updating factor, due to the parameter
updating to an extreme. We therefore excluded this level from further comparison.

Experiment 1: Target detection with variable ratios of target-present vs. -absent

trials

Figures 8-10 shows the mean relative Akaike Information Criteria (AlCs) for each of our
experiments. For each individual participant we found the best (lowest AIC) model, then
we subtracted the AIC of that model from the AIC for every model for that participant, and
finally we averaged this relative AIC across all participants. In Figure 8 the mean relative
AIC is shown for all models with a non-decision time component in Experiment 1 (recall
that the task in Experiment 1 was to discern whether a target was present or absent; the
ratio of target-present/absent trials was varied between blocks, and the target dimension,
color or orientation, changed only between shorter mini-blocks). The AIC is a measure of
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the quality of a model, taking into account goodness of fit (as measured by the likelihood)
and penalizing models with more free parameters, where lower AIC values indicate better
model performance. The mean relative AIC would be zero for a model if that model was
the best model for every participant; larger values indicate how much worse, on average
across participants, a given model performed compared to the best model. In this figure,
as well as in Figures 9 and 10 (Experiments 2 and 3), only models with a non-decision
time component have been included since these generally performed better, in AlC terms,
than models without a non-decision time (see Table S1 in Supplement S3). This was
particularly the case when the DDM was used for RT distribution modeling (and to a lesser
extent with the LATER model) — though, for each experiment, the model that achieved the
lowest AIC did include a non-decision time component, regardless of whether the LATER
or the DDM was used. In general, models using LATER for the RT distribution
outperformed those using DDM. Of note, though, the pattern across the other factors was
very similar; for instance, for the models with the lowest AlIC-, the (other) factor levels were
the same whether the DDM or the LATER model was used (see also Supplement S3 for

figures of the AICs for the models without a non-decision time component).
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Figure 8 Mean relative AICs as a function of the tested models in Experiment 1. For each
participant, the AIC of the best-performing model has been subtracted from the AIC for every
model, before averaging across participants. Error bars indicate the standard error of the mean.

The response-based updating rules are mapped onto the x-axis (RDF-based updating), while the
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dimension-based updating rules are indicated by different colors (TDD-based updating). The left-
hand panel presents the results for the DDM, the right-hand panel for the LATER model. Only
models with a non-decision time component are included in the figure. Models without a non-
decision time component generally performed worse, and the best-fitting model included a non-

decision time component (see also Table S2 in Supplement S4).

Importantly, in Experiment 1, for target presence/absence switches/repetitions, which (in
Experiment 1) were equivalent to response switches/repetitions, the best-fitting model
turned out to be that which updates the initial starting point with partial forgetting. For the
dimension switch/repetition, by contrast, the various updating rules yielded comparable
results, though no other rule was better than the no-update rule. The latter is unsurprising
given that, in Experiment 1, the dimensions were separated in different mini-blocks, that
is, effectively there was no dimension switch condition (except for the infrequent changes

between mini-blocks).

Experiment 2: Dimension discrimination with variable ratios of color vs. orientation

targets

Figure 9 depicts the mean relative AlCs, averaged across all participants, for all models
with a non-decision time component in Experiment 2, in which there was a target present
on each trial and the task was to report the dimension of the target, color versus
orientation, which changed randomly from trial to trial, and the ratio of color to orientation
target trials was varied between blocks. Similar to Experiment 1, models using LATER did
overall better than those using DDM. The best factor level for response-based updating
involved updating of the initial starting point with partial forgetting. And the best factor level
for updating based on the target dimension turned out to be updating of the accumulation
rate with partial forgetting (i.e., Level 5, "rate with decay", of the dimension-based updating

factor).
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Figure 9 Mean relative AICs as a function of the tested models in Experiment 2. For each
participant, the AIC of the best-performing model has been subtracted from the AIC for every
model, before averaging across participants. Error bars indicate the standard error of the mean.
The response-based updating rules are mapped onto the x-axis (RDF-based updating), while the
dimension-based updating rules are indicated by different colors (TDD-based updating). The left-
hand panel presents the results for the DDM, the right-hand panel for the LATER model. Only
models with a non-decision time component are included in the figure. Models without a non-
decision time component generally performed worse, and the best-fitting model included a non-

decision time component (see also Table S2 in Supplement S4).

Experiment 3: Standard pop-out search task with equal target-present vs. -absent
trials

Experiment 3 used a standard pop-out search detection task (target-present vs. -absent
response), with color and orientation targets (on target-present trials) randomly mixed
within blocks. Like Experiments 1 and 2, the LATER model and the response-based
updating of the initial starting point outperformed the other model variants (see Figure 10).
For dimension switches/repetitions, again a form of accumulation rate updating won over
the other factor levels. The top two models both involved rate updating, with a slightly
superior AIC score for the model implementing a weighting mechanism with a memory of

more than one ftrial back ('Weighted rate') compared to the model in which the rate
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updating was based only on whether the dimension was repeated/switched compared to
the previous trial ('binary rate’).

To summarize: For all three experiments, the best models, in AIC terms, were based on
the LATER rather than the DDM and used updating of the starting point with partial
forgetting based on the response. For the two experiments in which color and orientation
targets were randomly interleaved within each block, that is, in which dimension switching
occurred, the best model involved updating of the evidence accumulation rate based on
the dimension. A complementary analysis based on individual participants’ fits
(Supplement S4) supports the same conclusions.
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Figure 10 Mean relative AICs as a function of the tested models in Experiment 3. For each
participant, the AIC of the best-performing model has been subtracted from the AIC for every
model, before averaging across participants. Error bars indicate the standard error of the mean.
The response-based updating rules are mapped onto the x-axis (RDF-based updating), while the
dimension-based updating rules are indicated by different colors (TDD-based updating). The left-
hand panel presents the results for the DDM, the right-hand panel for the LATER model. Only
models with a non-decision time component are included in the figure. Models without a non-
decision time component generally performed worse, and the best-fitting model included a non-

decision time component (see also Table S2 in Supplement S4).
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Prediction of RTs and model parameter changes

To obtain a better picture of the best model predictions, we plotted predicted versus
observed RTs in Figure 11. Each point represents the average RT over all trials from one
ratio condition, one trial condition, and one inter-trial condition in a single participant. There
are 144 points each for Experiments 1 and 2 (12 participants x 3 ratios x 2 trial conditions
x 2 inter-trial conditions) and 108 for Experiment 3 (12 participants x 3 trial conditions x 3
inter-trial conditions). The predictions were made based on the best model for each
experiment, in terms of the average AIC (see Figures 8, 9, and 10). The r?2 value of the
best linear fit is 0.85 for Experiment 1, 0.86 for Experiment 2, and 0.98 for Experiment 3,
and 0.89 for all the data combined.

exp
Exp. 1
== Exp. 2
Exp. 3

predicted mean RT

T v : : :
0.4 0.5 0.6 0.7 0.8
measured mean RT

Figure 11 Scatterplot of predicted vs. observed mean RTs for all experiments, participants, ratio
conditions, and inter-trial conditions, for each experiment. Lines show the corresponding linear
fits.

Figure 12 presents examples of how the starting point (S,) and rate were updated
according to the best model (in AIC terms) for each experiment. For all experiments, the
best model used starting point updating based on the response-defining feature (Figure
12A, C, E, left panels). In Experiments 1 and 2, the trial samples shown were taken from
blocks with an unequal ratio; so, for the starting point, the updating results are biased
towards the (correct) response on the most frequent type of trial (Figure 12A, C). In

Experiment 3, the ratio was equal; so, while the starting point exhibits a small bias on most
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trials (Figure 12E), it is equally often biased towards either response. Since, in a block
with unequal ratio, the starting point becomes biased towards the most frequent response,
the model predicts that the average starting point to boundary separation for each
response will be smaller in blocks in which that response is more frequent. This predicts
that RTs to a stimulus requiring a particular response should become faster with
increasing frequency of that stimulus in the block, which is what we observed in our
behavioral data. In addition, since, after each trial, the updating rule moves the starting
point towards the boundary associated with the response on that trial, the separation
between the starting point and the boundary will be smaller on trials on which the same
response was required on the previous trial, compared to a response switch. This predicts
faster RTs when the same response is repeated, in line with the pattern in the behavioral
data. The forgetting mechanism used in the best models ensures that such inter-trial
effects will occur even after a long history of previous updates.

In Experiment 1, the best model did not use any updating of the drift rate, but a different
rate was used for each dimension and for target-absent trials (Figure 12B). In Experiment
2 the best model updated the rate based on the ‘Rate with decay’ rule described above.
The rate is increased when the target-defining dimension is repeated, and decreased
when the dimension switches, across trials, and these changes can build up over
repetitions/switches, though with some memory decay (Figure 12D). Since the target
dimension was (also) the response-defining feature in Experiment 2, the rate updating
would contribute to the ‘response-based’ inter-trial effects. In Experiment 3, the best model
involved the ‘Weighted rate’ rule. Note that the rate tends to be below the baseline level
(dashed lines) after switching from the other dimension, but grows larger when the same
dimension is repeated (Figure 12F). This predicts faster RTs after a dimension repetition

compared to a switch, which is what we observed in the behavioral data.
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Figure 12 Examples of the updating of the starting point (s0) and the rate. Left panels A, C, and
E show examples of starting point updating for a representative sample of trials from typical
participants from Experiments 1-3. Panels B, D, and F show updating of the rate for the same trial
samples (from the same participants); the dashed lines represent the baseline rates before scaling
for target-absent, color target, and orientation target trials (i.e., the rate that would be used on
every trial of that type if there was no updating). In each case, updating was based on the best

model, in terms of average AIC, for that experiment.

Discussion

In three experiments, we varied the frequency distribution over the response-defining
feature (RDF) of the stimulus in a visual pop-out search task, that is, target presence
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versus target absence (Experiments 1 and 3) or, respectively, the dimension, color versus
orientation, along which the target differed from the distractors (Experiment 2). In both
cases, RTs were overall faster to stimuli of that particular response-defining feature that
occurred with higher frequency within a given trial block. There were also systematic inter-
trial ‘history’ effects: RTs were faster both when the response-defining feature and when
the target-defining dimension repeated across trials, compared to when either of these
changed. Our results thus replicate previous findings of dimension repetition/switch
effects [6,9].

In contrast to studies on ‘priming of pop-out’ (PoP) [3,32—-34], we did not find significant
feature-based repetition/switch effects (consistent with [6]), except for Experiment 2 in
which the target dimension was also the response-defining feature. The dimension
repetition/switch effects that we observed were also not as ‘long-term’ compared to PoP
studies, where significant feature ‘priming’ effects emerged from as far as eight trials back
from the current trial. There are (at least) two differences between the present study and
the PoP paradigms, which likely contributed to these differential effect patterns. First, we
employed dense search displays (with a total of 39 items, maximizing local target-to-non-
target feature contrast), whereas PoP studies typically use much sparser displays (e.g.,
in the ‘prototypical’ design of Maljkovic & Nakayama [3,32-34], 3 widely spaced items:
one target and two distractors). Second, the features of our distractors remained constant,
whereas in PoP studies the search-critical features of the target and the distractors are
typically swapped randomly across trials. There is evidence indicating that, in the latter
displays, the target is actually not the first item attended on a significant proportion of trials
(according to [35], on some 20% up to 70%), introducing an element of serial scanning
especially on feature swap trials on which there is a tendency for attention (and the eye)
to be deployed to a distractor that happens to have the same (color) feature as the target
on the previous trial (for eye movement evidence, see, e.g., [36,37]). Given this happens
frequently, feature checking would become necessary to ensure that it is the (odd-one-
out) target item that is attended and responded to, rather than one of the distractors. As a
result, feature-specific effects would come to the fore, whereas these would play only a
minor role when the target can be reliably found based on strong (local) feature contrast
[38]. For this reason, we opted to start our modeling work with designs that, at least in our
hand, optimize pop-out (see also [39]), focusing on simple target detection and ‘non-
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compound’ discrimination tasks in the first instance. Another difference is that we used
simple detection and ‘non-compound’ discrimination tasks in our experiments, while PoP
experiments typically employ ‘compound’ tasks, in which the response-defining feature is
independent of the target-defining feature. We do not believe that the latter difference is
critical, as reliable dimension repetition/change effects have also been observed with
compound-search tasks (e.g., [40]), even though, in terms of the final RTs, these are
weaker compared to simple response tasks because they are subject to complex
interactions arising at a post-selective processing stage (see below and [41,42]).

To better understand the basis of the effects we obtained, we analyzed the shape of the
RT distributions, using the modified LATER model [26] and the DDM [21,22]. Importantly,
in addition to fitting these models to the RT distribution across trials, we systematically
compared and contrasted different rules of how two key parameters of the LATER/DDM
models — the starting point (S,) or the rate (r) of the evidence accumulation process —
might be dynamically adapted, or updated, based on trial history. We assumed two
aspects of the stimuli to be potentially relevant for updating the evidence accumulation
parameters: the response-defining feature (RDF) and the target-defining dimension (TDD;
in Experiment 2, RDF and TDD were identical). Thus, in our full factorial model
comparison, trial-by-trial updating was based on either the response-defining feature or
the target dimension (factor 1), combined with updating of either the starting point or the
rate of evidence accumulation (factor 2), with a number of different possible updating rules
for each of these (6 factor levels each). An additional factor (factor 3) in our model
comparison was the evidence accumulation model used to predict RT distributions: either
the DDM or the LATER model. Finally, to compare the DDM and LATER models on as
equal terms as possible, we modified the original LATER model by adding a non-decision
time component. Thus, the fourth and final factor concerned whether a non-decision time

component was used or whether the non-decision time was fixed to zero.

Our model assumes that the starting point (S, ) is updated based on the observer’s current
estimate of the probabilities of the response alternatives, which may depend on trial
history. The assumption that the starting point is set based on the prior probabilities of the
two alternative responses is consistent with a Bayesian framework of evidence

accumulation, in which evidence is accumulated from the starting log prior odds until a
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threshold level is reached on the posterior odds before a decision is made [19,26,43]. Our
model assumes that the relative frequency of the two alternative values of the RDF (target-
present vs. -absent in Experiments 1 and 3, color vs. orientation target in Experiment 2)
is learned from trial history. Since there is always some uncertainty about the frequency,
the range of plausible values, given the trial history, is represented by a probability
distribution. On the first trial, this distribution is set to a Bernoulli distribution, with a single
parameter representing a prior belief about how frequently the two values of the RDF will
occur before encountering the first search display. This probability distribution is then
updated according to Bayes’ rule on each trial. Note that, on its own, such Bayesian
updating would converge on a stable estimate and then not change much — which would
predict the size of the inter-trial effects to decrease over the course of an experiment.
However, we did not observe such a decrease in any of our experiments (see Supplement
S5). For this reason, in addition to the Bayesian updating rule described above, we
introduced a learning rule based on the Dynamic Belief Model [29], which assumes there
is some fixed probability on each trial that the stimulus frequencies will change and which
therefore, in addition to the Bayesian updating, involves a ‘forgetting’ step that serves to
reduce the weight of old information relative to the most recent one. This model allows for
rapid adaptation to a change even after a long period without any change; and,
importantly, it does not predict a decrease of the inter-trial effect magnitude over the

course of an experiment.

Considering the data from each experiment individually, we found that the best model
(with the lowest AIC) used updating of the starting point, with partial forgetting (i.e., the
learning rule from the DBM), based on the history of the response-defining feature of the
stimulus array. This updating can explain both the effect of RDF frequency on RTs and
the response-based inter-trial effects. The updating would result in the starting point being,
on average, closer to the threshold associated with the most frequently required response
in each trial block, predicting the effect of frequency on RTs. And response-based inter-
trial effects arise in the model because, after each trial, the starting point is moved closer
to the threshold associated with the response that was required on that trial, reducing the
starting point to boundary separation if that response is again required on the next trial.
The forgetting mechanism ensures that the magnitude of the starting point shifts, and
therefore the predicted inter-trial effects, do not shrink towards zero over the course of the
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1000 plus trials in our experiments (in line with our data, which revealed no evidence of
such a shrinkage; see Supplement S5). Some form of forgetting mechanism is likely to be

important for adapting to a changing environment [29].

It might be argued that the frequency effects and response-based inter-trial effects on the
mean RTs might, potentially, be equally well explained by trial-to-trial adaptations of the
rate of evidence accumulation. However, this would have predicted a different RT
distribution, and our model comparison did not favor models in which the rate was updated
based on response history. We therefore conclude that the most likely explanation of
response-based inter-trial effects is that observers became biased towards the response
to which they assigned a higher subjective probability, and that these probabilities were
particularly sensitive to what happened on the most recent trials. Of course, our starting
point updating model with partial forgetting, which is closely inspired by the Dynamic Belief
Model [29], is only one plausible way in which the learning of response probabilities can
be implemented and linked to response biases, and other implementations remain
possible. Note also that, in the present study, the feature that was critical for target
detection was the same as that determining the response, which did not allow us to
dissociate response repetition from target repetition effects. Further work is required to
examine for such a disassociation using what is known as a ‘compound’ search task [44].

As to the dimension-based updating factor, in our model comparison, the best models
differed among the three experiments. For Experiment 1, the best model did not include
dimension-based updating, most likely because this experiment did not involve random
dimension switching (switching occurred only between the last trial of one mini-block and
the first trial of the next block, which were separated by a performance feedback screen).
In Experiments 2 and 3, in which random dimension switching did occur within trial blocks,
the best models involved updating of the evidence accumulation rate, though with
somewhat different updating rules. For both experiments, the best model involved a rule
that increased the rate when the target dimension repeated across trials and decreased
it when the dimension changed. In Experiment 2, a partial memory of this increase or,
respectively, decrease is then carried over to the next trial, regardless of whether the
target on that trial is defined in the same or a different dimension to the preceding trial.
We termed this ‘rate with decay’ rule. The best model for Experiment 3, on the other hand,
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used an updating rule which assumes that a different rate is associated with each
dimension, where, after each trial, the rate for the dimension that defined the target on
that trial is increased, and that for the other dimension is decreased by an equivalent
amount. This ‘weighted rate’ rule is inspired by the dimension-weighting account [6],
according to which potential target-defining dimensions share the same, limited attentional
‘weight’ resource. The two rules are similar but make significantly different predictions, for
instance, when a long sequence of repeats is followed by a switch, or when a long
sequence of switches occurs. The ‘rate with decay’ rule predicts the rate to be higher after
a sequence of repeats followed by a single switch, compared to a switch following a run
of switches — a pattern actually seen in Experiment 2 (see Supplement S6). The ‘weighed
rate’ rule, by contrast, makes the opposite prediction — consistent with the pattern seen in
Experiment 3 (see Supplement S6).

Recall that, in Experiment 2, the target dimension was also the response-determining
feature. As a consequence, (repeatedly) switching the dimension and the response may
give rise to a cost that carries over across trials by slowing the (executive) act of selecting
the appropriate motor response on a given trial. This may be the case because, with
choice responses, some ‘event file’ buffering the requisite S—R link might be carried over
across trials and affect the speed of response decisions (see ‘episodic-retrieval theory’
below). On switch trials (‘S’), the old rule no longer applies, that is, it needs to be inhibited
and replaced by a new association, where the mismatch with the old setting slows
response selection. On repeated switch trials (e.g., ‘SSS’), the link relevant on the current
trial (trial n; the same association as on trial n-2) might still be inhibited (from trial n-7, on
which the rule was found to be inappropriate), slowing responses relative to switch trials
preceded by repeated trials (e.g., ‘RRS’) where the association required on trial n is
different from trial n-2 and would, thus not be inhibited on trial n-7. Assuming that the
evidence accumulation in favor of a particular target dimension feeds more or less directly
into the process of making a response decision, inhibition of an S—R link might narrow the
whole ‘pipeline’ of perceptual and response-related evidence accumulation, explaining
why the best dimension-based updating rule in Experiment 2 involved updating of the rate.
This account of the cost on repeated switch trials would be consistent with the ‘negative
priming’ literature (e.g., [45]).
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No such cost would arise in Experiment 3, in which the dimension was not response-
defining — rather, all trials with a target present (in whatever dimension it was defined)
required one and the same, simple target detection response. Accordingly, dimension
switches were not associated with a response switch, and so there would be no need for
an updating of the S—R association after switch trials (consistent with evidence that
dimensional target identity is not explicitly encoded in simple singleton detection tasks;
see [9]). In this situation, on the dimension-weighting account, each repetition would mean
that increasingly more weight is assigned to the repeated dimension and consequently
less weight to the alternative dimension, which will be the target dimension on the switch
trial at the end (RRS). Consequently, on that trial, the rate of evidence accumulation (for
a target in the alternative dimension) is slowed relative to an SSS sequence (where the
dimension on trial n had received a weight increase, rather than a decrease, on trial n-2).
Thus, the fact the best model for that experiment involved the ‘weighted rate’ rule would
lend support to ‘dimension weighting’ as the best account of dimension repetition/switch

effects when there is no concurrent response switching.

Importantly, the ‘weighted rate’ and ‘rate with decay’ rules both involve updating of the
rate of evidence accumulation (rather than of the starting point). The model comparison
thus clearly supports the hypothesis that the dimension repetition benefit derives from
more efficient stimulus processing, rather than a response bias. Convergent evidence
comes from recent studies of visual search examining event-related potentials, in which
dimension-specific RT inter-trial effects were reflected in the latency and amplitude of the
early sensory processing N1 [46] and the N2pc component. The N2pc is commonly taken
to reflect processes of spatial-attentional selection [41,47]. Thus, in light of the present
model comparison, the fact that repetitions versus changes of the target-defining
dimension across trials shortened the N2pc latencies would support the notion that
dimension repetition increases the rate of salience accumulation for attentional target

selection.

Our model comparison revealed that employing the LATER model for predicting RT
distributions did a better job explaining the data than using the DDM. Note, though, that
to keep the computational demands at a manageable level, we used a closed-form
approximation of the RT distribution predicted by the DDM [48]. This approximation does
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not capture all features implemented in most computational realizations of the DDM,;
perhaps critically, it does not allow for trial-to-trial variability of the non-decision time.
Applied to the present data, a DDM implementation with added trial-to-trial variability of
the non-decision time might have significantly improved the performance of this model
(whereas it would likely have made less of a difference to the LATER model) — thus
reducing the difference in AIC between the LATER model and the DDM. Adding trial-to-
trial variability of the non-decision time to the future model implementations may also be
important theoretically, as it may be possible to explain some of this variability by adding
updating rules that operate on the non-decision time. Critically though, for all the other
factors in our model comparison, the best-performing levels turned out the same, whether
the DDM or the LATER model was used.

Note that, while we tested a large number of possible models, there potentially are other
models that might perform even better. In particular, a model that allows several updating
rules to operate at once would likely perform somewhat better than our winning model. In
the present study, we limited our comparisons to parsimonious models with one updating
rule based on the RDF and one based on the TDD, assuming that manipulation of the
RDF or the TDD only affects one distinctive process that is reflected in either the starting
point Sp or the accumulation rate r. However, it remains possible that the RDF and/or the
TDD influence RTs through more than one mechanism in parallel — in which case our
model comparison would have identified only that mechanism which accounts for the
largest portion of the inter-trial effects. In future work, it will be interesting to determine
whether a model which permits the RDF and/or the TDD to operate through more than

one mechanism can explain the data significantly better.

In our model, we treated target-absent trials similar to target-present trials, given that pop-
out targets are detected efficiently (based on spatially parallel search), that is: with pop-
out targets, a target-presence versus -absence decision can be made by setting a single
threshold on the search-guiding overall-saliency map [49]. Indeed, our model predicts RTs
well on both target-absent and target-present trials. However, deciding that a target is
absent in a non-pop-out search task may be quite different. In a non-pop-out search
display, every item in the search display would in principle need to be processed to
(reliably) arrive at a correct target-absent decision [50], though some process terminating
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the search (and triggering a target-absent decision) prior to exhaustive scanning of all
display items may also be involved [16,51]. In any case, to model non-pop-out search, a
more complex model may be required in which multiple stages of evidence accumulation
typically occur before a response is triggered, corresponding to checking individual items
to determine whether or not they are the target.

While we examined a number of different updating rules in our model comparison, we are
not suggesting that these covered all possibilities; that is, we cannot rule out that there
may be updating rules that would perform even better. While our winning model was
based on the Dynamic Belief Model [29], a very similar model has been proposed by
Anderson and Carpenter [30], which also involves a combination of Bayesian updating
and forgetting of old trials, and this could have served as an equally good starting point
for our model. Another, similar model was proposed by Mozer et al. [52]. Unlike the
present model, this does not involve a hyperprior on the stimulus category probability with
Bayes’ rule; rather, it updates the probability more directly, using a weighted-averaging
rule, with the weight assigned to older trials decaying exponentially. This rule is close to
the forgetting rule of the Dynamic Belief Model. Mozer et al. [52] showed that their model
can qualitatively reproduce the pattern of results from a number of ‘priming of pop-out’
and visual search experiments [3,4,52,53]. Different to our model, the model of Mozer et
al. learns conditional probabilities, which they argued was essential for explaining
interactions between the inter-trial effects for different features of the stimuli in some of
the experiments they modeled. While learning of conditional probabilities was not
necessary to explain the results from the three experiments reported here, any more
complete model of inter-trial effects in visual search may well need to incorporate
conditional probabilities to provide a truly general account. Another noteworthy difference
to our model is that the model of Mozer et al. only included the learning of probabilities
without specifying how these learned probabilities influence the perceptual decision
process. Consequently, they could not make quantitative predictions about RTs and their
distributions. In contrast, our model makes quantitative predictions because it combines
a Bayesian updating rule with a model of the perceptual decision process (either DDM or
LATER).

35


https://doi.org/10.1101/353003
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/353003; this version posted June 21, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Another modeling framework that has previously been applied to explaining inter-trial
effects in visual search is the ‘Theory of Visual Attention’ (TVA) [54]. TVA models the rate
at which visual categorizations of the type “object x has feature /" are made and encoded
into visual short-term memory (mediating overt responses). Each visual object receives
an attentional weight, which is the product of the strength of the sensory evidence that the
object belongs to category i and the current importance of attending to category i, referred
to as the ‘pertinence’ of the category, summed over all relevant visual categories (i.e.,
categories for which there is sensory evidence). The scaling factors in our dimension-
weighted rate updating rule, representing the current weight or importance assigned to
each dimension, play a similar role to the pertinence values in TVA. Asgeirsson et al.
[55,56] have shown that color priming effects in visual search can be well explained by
TVA, by assuming that the pertinence of a given feature increases or decreases when the
target or, respectively, a distractor possesses that feature. Similarly, our dimension-
weighted rate rule assumes that the scaling factor increases for a given dimension when
the target is defined in this dimension, and decreases when the target is defined in a
different dimension. Our finding that this was the best rule for explaining performance in
Experiment 3 is thus broadly consistent with the TVA-based model proposed by
Asgeirsson et al. [48,49]. However, our model also differs from theirs in a number of
respects. First, in our model, the scaling factors were associated with dimensions rather
than individual features (recall that, in our paradigms, feature-specific inter-trial effects are
relatively unsubstantial compared to dimension-specific effects; see also [6]). Second, the
model of Asgeirsson et al. only considered effects from a single trial back, while our
dimension-weighted rate rule can model longer-term effects (of course, it would be
possible to combine TVA with a similar rule to take longer-term inter-trial history into
account). Third, unlike the model of Asgeirsson et al., our model did not include ‘spatial
weights’ associated with potential target locations. Asgeirsson et al. showed that their
TVA-based model performed better when taking spatial weighting into account. Note,
though, that spatial weighting is likely to be more important with sparse displays and a
limited set of locations (six in Asgeirsson et al.), compared to the dense displays used in
our experiments [57]. Finally, by modelling full RT distributions, we could make a
distinction between two different ways in which the speed of a perceptual decision could

be increased: by increasing the rate at which relevant sensory evidence accumulates or
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by decreasing the amount of evidence required to make a decision (through a shift of the
starting point). TVA does not make any equivalent distinction.

Another framework for understanding inter-trial effects in visual search is offered by the
episodic-retrieval account [14,58] — though the evidence for this account derives
exclusively from compound-search tasks not investigated here. Huang et al. [4] argued
that repetition effects in visual search are well explained by episodic-retrieval theory,
based on the finding that repetition of a task-irrelevant feature (in their experiments: color)
speeded search only when the target-defining feature (size) was also repeated
(participants had to respond to the orientation of a size-defined target, irrespective of the
target color). When the target-defining feature changed, RTs were slower if the task-
irrelevant feature was repeated. The episodic-retrieval account can explain this pattern by
assuming that participants retrieve an episodic memory trace of the target from the
previous trial, which influences a post-selective process of verifying whether a candidate
target is the actual target. If the retrieved memory trace completely matches the target on
the current trial, the decision will be fast; by contrast, a partial match (i.e., a target of the
same size but a different color) gives rise to ‘inconsistency’ and may thus be slower to
process than a complete mismatch, explaining the interaction between repetition of target-
defining and task-irrelevant features in the study of Huang et al. [4]. A similar result was
reported by Tollner et al. [46], though for two task-relevant target attributes. They
observed a partial-repetition cost when the response-defining feature (target orientation)
changed across trials while the target-defining dimension (color or shape) was repeated.
However, the latency of the N2pc was affected only by repetition/switch of the target-
defining dimension, independently of whether the response-defining feature
repeated/changed — leading Tollner et al. to conclude that at least one critical component
of the target repetition/switch effect arises at a (pre-attentive) stage of saliency coding,
leading up to target selection. The partial-repetition effect, by contrast, arises at a post-
selective stage where the response-defining target feature is analyzed and a response
decision is determined. This process is modulated by ‘linked expectancies’ between the
dimension and the response: when the dimension is repeated, the system expects the
response to be repeated as well, yielding a cost when the response actually changes. —

Our best-fitting model, while predicting a RT cost when the dimension or the response
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changes (compared to when both are repeated), does not predict a larger cost when either
one or the other changes, compared to when both change (instead, the dimension and
response change costs would be additive). To account for such partial-repetition cost
effects, further modeling work is required based on RT performance in simple-detection
and compound-search tasks that make the same demands with regard to target selection,
but different demands with regard to response selection (i.e., simple detection of a target-
defining attribute vs. discrimination of a separate, response-defining feature), as well as
RT performance in a non-search task that makes no demands on target selection, but
similar demands to compound search on response selection (along the lines of [12]). RTs
could then be modeled, for instance, as a series of two diffusion processes (one for target
selection and one for response selection), where parameters of the second process (r, 6,
or S,) might be set conditional upon repetition/switch of the target-defining attribute. Such
a model might then also be able to account for partial-repetition costs attributable to
completely (detection- and response-) irrelevant target attributes [4], over and above
those caused by relevant features [46], perhaps by making updating based on irrelevant
features conditional on relevant features [52].

In conclusion, we found that RTs in pop-out visual search are faster when the response
required on a given trial occurred frequently in the recent past, and particularly when the
same response is repeated from the previous trial. By performing a factorial model
comparison, we showed that these effects are best explained by updating of the starting
point of an evidence accumulation process, that is, they reflect a bias towards a response
that is more likely to occur, given the recent history. We also found that reaction times are
faster when the target-defining dimension is repeated, even when this is unrelated to the
response. Our model comparison showed that this effect is best explained by trial-to-trial
updating of the evidence accumulation rate. This suggests that dimension
repetition/switch effects do not reflect a response bias, but rather reflect more efficient

processing when the same dimension is repeated.
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Methods
Experiment 1

Participants

Twelve subjects participated in Experiment 1 (eight females; age range 20 and 33 years).
All had normal or corrected-to-normal vision and naive to the purpose of the experiment.
All participants gave informed consent prior to the experiment. The study was approved
by the LMU Department of Psychology Ethics Committee and conformed to the Helsinki

Declaration and Guidelines.
Apparatus and Stimuli

Stimuli were presented on a CRT monitor (screen resolution of 1600 x 1200 pixels; refresh
rate 85 Hz; display area of 39x29 cm). Participants were seated at a viewing distance of
about 60 cm from the monitor. All stimuli were presented using Matlab (The
Mathworks) and Psychtoolbox [59,60].

Each stimulus display consisted of 39 bars, arranged around three concentric circles (see
Figure 13). The distractors were turquoise-colored vertical bars (CIE [Yxy]: 44.9, .0.23,
0.34). When a target was present, it was always on the middle circle. Targets were bars
that differed from the the distractors in terms of either color or orientation, but never both.
Color targets were either green (CIE [Yxy]: 45.8, 0.29, 0.57) or purple (CIE [Yxy]: 41.5,
0.29, 0.24), while orientation targets were tilted 30° clockwise or counterclockwise from
the vertical. The search display subtended approximately 7.5° x 7.5° of visual angle and

each individual bar had a size of approximately 0.5° x 0.1°.

39


https://doi.org/10.1101/353003
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/353003; this version posted June 21, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Figure 13 Example of visual search display with an orientation target.
Procedure

The experiment consisted of 30 blocks of 40 trials, divided into three equally long sections
with different proportions of target-present (and, correspondingly, target-absent) trials:
75% [target-absent: 25%], 50% [50%], and 25% [75%]. A text message informed
participants about the current proportion of target-present trials at the start of each block.
Alternating trial blocks presented exclusively color targets or orientation targets, on target-
present trials. The task was to report as quickly and accurately as possible whether a
target was present or absent, using the left and right mouse buttons, respectively. Each
trial started with the presentation of a fixation dot for 700-900 ms followed by the stimulus
display, which was displayed until the participant responded. After the response, there
was another 400-600 ms delay before the next trial started with the presentation of the
fixation dot, so the total interval from response on one trial to presentation of the search
display on the next trial was 1100-1500 ms.

Experiment 2

Participants

Twelve new participants took part in Experiment 2 (six females; age range 18 and 33
years). All had normal or corrected-to-normal vision and were naive as to the purpose of
the experiment. All participants gave informed consent before the experiment. The study
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was approved by the LMU Department of Psychology Ethics Committee and conformed
to the Helsinki Declaration and Guidelines.

Apparatus and Stimuli
The same equipment and stimuli were used as in Experiment 1.
Procedure

The procedure was the same to Experiment 1, except that instead of reporting whether a
target was present or absent, participants had to report whether the target differed from
distractors in terms of color or orientation. As in Experiment 1 there were three sections,
each consisting of 10 blocks of 40 trials. Unlike in Experiment 1, a target was present on
every trial and it was the proportion of color (or, respectively, orientation) targets that
differed between the three sections, using the same ratios of 75% [orientation: 25%], 50%
[50%], and 25% [75%]. Also unlike in Experiment 1, participants were not informed in
advance of what that the proportion of color trials would be in any section of the
experiment, nor were they informed that this proportion would differ across the different

sections of the experiment.

Experiment 3

Participants

12 participants took part in Experiment 3 (six females; age range 23 and 33 years). All
had normal or corrected-to-normal vision and were naive as to the purpose of the
experiment. All participants gave informed consent before the experiment. The study was
approved by the LMU Department of Psychology Ethics Committee and conformed to the
Helsinki Declaration and Guidelines.

Apparatus and Stimuli

The same equipment and stimuli were used as in Experiment 1.
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Procedure

As in Experiment 1, participants had to report on each trial whether a target was present
or absent. However, the procedure differed from Experiment 1 in two important ways.
First, in Experiment 3, the target-present/absent ratio was fixed at 50% throughout the
whole experiment. Second, color targets and orientation targets were interleaved within
each block. We used a De Bruijn sequence generator [61,62] to obtain a trial sequence
where each of the four possible target types (i.e., purple, green, left-tilted, and right-tilted)
were equally often followed by each target type (including itself) and were also equally
often followed by a target-absent trial as by a target-present trial. Having such a trial
sequence within each block requires 65 trials per block instead of 40 as in Experiments 1
and 2.

Bayes factors

Bayesian ANOVA and associated post-hoc tests were performed using JASP 0.86
(http://www.jasp-stats.org) with default settings. All Bayes factors for main effects and
interactions in the ANOVA are ‘inclusion’ Bayes factors calculated across matched
models. Inclusion Bayes factors compare models with a particular predictor to models that
exclude that predictor. That is, they indicate the amount of change from prior inclusion
odds (i.e., the ratio between the total prior probability for models including a predictor and
the prior probability for models that do not include it) to posterior inclusion odds. We used
inclusion Bayes factors calculated across matched models meaning that models that
contain higher order interactions involving the predictor of interest were excluded from the
set of models on which the total prior and posterior odds were based. Inclusion Bayes
factors provide a measure of the extent to which the data support inclusion of a factor in
the model. Bayesian t-tests were performed using the ttestBF function of the R package

‘BayesFactor’ with the default setting (rscale="medium?”).

Modelling

To find the model that best explained our data, we performed a factorial model
comparison. Full descriptions of the four factors and their levels are given in the modelling
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section. Here we describe the general procedure used for the model fitting, which was the

same for all models.

Each model consisted of an evidence accumulation model: either the LATER model or
the DDM, and two updating rules, each of which specified how one parameter of the
evidence accumulation model should change from trial to trial, based on the stimulus
history. There was one such updating rule for the starting point and one for the evidence
accumulation rate, and in each case one of the factor levels specified that no updating at
all should take place. For the DDM, we used a closed-form approximation [48], adding a
scaling parameter that determined the size of the random component of the drift diffusion
model. This was necessary since our rule for updating the starting point made the scale

non-arbitrary.

Models were fitted using maximum likelihood, using the R function ‘constrOptim’ to find
minimum value of the negative log likelihood. Error trials and outliers were excluded from
the calculation of the likelihood, but were included when implementing the updating rules.
Outliers were defined as trials with reaction times more than 1.5 interquartile ranges below

the mean or longer than 2 seconds.

To make sure we found the best possible fit for each combination of factor levels, we used
an inner and an outer optimization process. The inner optimization process was run for
each combination of parameters that was tested by the outer optimization process, to find
the best possible values of the inner parameters for those values of the outer parameters.
The inner parameters were the parameters of the evidence accumulation model itself,
except for the non-decision time which was an outer parameter (because one level of one
of the factors specified that the non-decision time should be fixed to zero). For the LATER
model, the inner parameters were the starting point boundary separation, and the mean
and standard deviation of the distribution for the rate. For the DDM, the inner parameters
were the starting point boundary separation, the rate, and the scaling parameter. These
parameters could differ between target absent trials, as well as between the two different
target dimensions, meaning that there were nine inner parameters for Experiments 1 and
3 and six for Experiment 2 (where there were no target absent trials). The outer

parameters were the non-decision time (when this wasn't fixed to zero), and 0 to 2
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parameters for each updating rule (see the modelling section for details). This means that
models could have 0 to 5 outer parameters in total depending on the factor levels.
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Supplementary Analyses

S1. Statistical tests of error rates

Post-hoc comparisons of the error rates among blocked target frequencies revealed that
fewer errors were made in high- as compared to medium- and low-frequency blocks,
t(11) =1.7,p >03,BF =12 , and, respectively, t(11) =3.72,p < 0.01,BF = 248
(Bonferoni-corrected p-value), and in medium as compared to low-frequency blocks,
t(11) = 3.21,p < 0.05,BF = 53 (Bonferoni-corrected p-value), in Experiment 1; and
similarly in high- relative to medium- and low-frequency blocks, t(11) = 2.07,p =
0.15,BF = 16, and, respectively, t(11) = 4.92,p < 0.001, BF = 228 (Bonferoni-corrected
p-value), and in medium- relative to low-frequency blocks, t(11) = 2.85,p < 0.05,BF =

7.9 (Bonferoni-corrected p-value), in Experiment 2.

There was no interaction between target condition and frequency in either Experiment 1
or Experiment 2, F(2,22) = 0.83,p = 0.45, BF = 0.24, and, respectively, F(1.28,14.04) =
0.76 (Huynh-Feldt Corrected degrees of freedom), p = 0.43, BF = 0.29 — suggesting the

effect of the frequency of a condition within a block is independent of the target stimuli.

S2. Statistical tests of mean RTs

In Experiment 1, RTs were significantly faster in the high-frequency compared to both the
low- and medium-frequency blocks [ t(11) =3.96,p < 0.01,BF =5.57 x10* , and,
respectively, t(11) = 3.88,p < 0.01,BF = 32.6 (Bonferroni-corrected p-values)], while
there was no significant difference between the medium- and low-frequency blocks,
[t(11) = 0.086,p > 0.9,BF = 0.22]. Similarly, in Experiment 2, RTs were significantly
faster in the high-frequency compared to the low- and medium-frequency blocks [t(11) =
7.72,p < 0.001,BF = 2.78 10> , and, respectively, t(11) =3.66,p < 0.01,BF =90
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(Bonferroni-corrected p-values)], and also faster in the medium- compared to the low-
frequency block [t(11) = 4.06,p < 0.01, BF = 455 (Bonferroni-corrected p-value)].

Bayesian repeated-measures ANOVAs showed that there was no difference between
trials with color- and orientation-defined targets in Experiment 2, F(1,11) = 0.45,p =
0.52,BF = 0.26. Interestingly, there was no interaction between target condition and
frequency in either Experiment 1 or 2 [ F(2,22) =2.44,p=0.11,BF =0.39, and,
respectively, F(2,22) = 0.87,p = 0.43,BF = 0.31] — suggesting that the effect of the

frequency is independent of the target stimuli.

S3. Modeling results without non-decision time

Figures S1, S2, and S3 depict the mean AICs, averaged across all participants, for all
models without a non-decision time (NDT) component for Experiments 1, 2, and 3
respectively. Error! Reference source not found. shows the differences in AlIC between
models without and with a non-decision time component. Compared to models with a non-
decision time component (see the Modeling section in the main text), the average AICs
were in general higher, that is, the models without a NDT component performed worse.
Nevertheless, the dependence of the AIC on the other factors is very similar: in particular,
the best combination of the other factor levels, for each experiment, is the same whether
models without or with a NDT component are considered. One noticeable difference is
that without a NDT component, the difference in AIC between models using the DDM and
those using the LATER model is larger. Thus, while a NDT component is important for
providing a good model fit, both for the DDM and for the LATER model, it appears that the
LATER model can to some extent compensate for not including such a component
through adjustment of the other parameters.
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Figure S1 Mean relative AICs as a function of the tested models in Experiment 1. For each
participant, the AIC of the best-performing model has been subtracted from the AIC for every
model, before averaging across participants. Error bars indicate the standard error of the mean.
The response-based updating rules are mapped on the x-axis, the dimension-based updating
rules are indicated by different colors. The left panel depicts results for the DDM, the right panel

for the LATER model. Only models without a non-decision time component are included in the
figure.
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Figure S2 Mean relative AICs as a function of the tested models in Experiment 2. For each

participant, the AIC of the best-performing model has been subtracted from the AIC for every
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model, before averaging across participants. Error bars indicate the standard error of the mean.
The response-based updating rules are mapped on the x-axis, the dimension-based updating
rules are indicated by different colors. The left panel depicts results for the DDM, the right panel

for the LATER model. Only models without a non-decision time component are included in the
figure.
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Figure S3 Mean relative AlICs as a function of the tested models in Experiment 3. For each
participant, the AIC of the best-performing model has been subtracted from the AIC for every
model, before averaging across participants. Error bars indicate the standard error of the mean.
The response based updating rules are mapped on the x-axis while the dimension based updating
rules are mapped to different colors. The left panel contains results for the DDM while the right

panel contains results for the LATER model. Only models without a non-decision time component
are included in the figure.

Table S1 Means (and associated standard errors) of the differences in AICs between models

without and with a non-decision time component.

Experiment 1 Experiment 2 Experiment 3

No updating Best model No updating Best model No updating Best model

LATER 6.1(3.3) 20.4(4.9) 17.6(6.6)  39.6 (9.5) 34.0 (12.4) 54.3 (17.3)

DDM

115.8 (12.9)

153.0 (13.6)

149.1 (23.6)

185.7 (22.4)

199.4 (37.1)  230.0 (38.4)
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Note: The “No updating” columns show the differences for models without any updating, while
the “Best model” columns show the differences when using the updating models for which the
lowest AIC was obtained.

S4. Model comparison based on individual participants

Another way of comparing the models is by picking the best model, in terms of AIC, for
each participant and counting how often each level of each factor appears in the resulting
list. Table S2 summarizes the results of such an analysis. The table has four sections
corresponding to the different factors of our factorial model comparison: RT distribution
model, non-decision time, response-based updating, and dimension-based updating.
Almost all the best-fitting models were based on the LATER model, rather than the DDM
— consistent with the analyses based on average AIC values above. Also, nearly all best-
fitting models included a non-decision time parameter. Inclusion of a non-decision time is,
of course, unsurprising for (the best-fitting) models based on the DDM. Standard versions
of the LATER, by contrast, have hardly ever included a non-decision time component. Our
results suggest that adding such a component improves the fit to the data sufficiently to

motivate this extra parameter.

For the response-based updating, almost all the best-fitting models were based on
updating of the starting point, rather than the rate. In addition, most of these models
included updating with forgetting, although for the data from Experiment 2, the model that
used updating with full memory was the best-fitting model for almost as many participants.
Recall that in Experiment 2, response repetitions/switches coincided with dimension
repetitions/switches, so that there may have been ‘cross-talk’ between the two. The
relatively good performance of the full-memory updating rule may be a consequence of
such cross-talk; alternatively, it may be related to the explicit dimension (color vs.
orientation) discrimination task in Experiment 2, which may have caused the memory of
responses on previous trials to decay more slowly, compared to the simple-detection
(target-present vs. -absent) task used in Experiments 1 and 3.

Finally, for the dimension-based updating, the best-fitting models differed among
experiments. In Experiment 1, no version of dimension-based updating improved the fits

sufficiently to motivate the extra parameter(s). For Experiments 2 and 3, by contrast, the
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various rate-based updating models most frequently provided the best account of the data.
Given that the dimension only varied between mini-blocks in Experiment 1 (rather than
varying randomly within each block, as in Experiments 2 and 3), it is little surprising that
dimension-based updating played no significant role in modeling the data from Experiment
1. With regard to Experiment 2, it is less clear why the ‘rate with decay’ model consistently
outperformed the other two rate-based updating models, while the ‘binary rate’ and
‘weighted rate’ models performed better in Experiment 3. There are two important
differences between Experiments 2 and 3. First, the former used a dimension
discrimination task, the later a detection task. Also, there were no target-absent trials in
Experiment 2, whereas 50% of the trials were 'target-absent' in Experiment 3, so that
dimension-based updating would affect only half of the trials. This could perhaps explain
why it was worth the extra parameter to have a longer memory than a single trial back for
dimension-based updating in Experiment 2, but not in Experiment 3 (where the ‘binary
rate’ model, with a memory of only a single trial back but one less parameter, most
frequently provided the best fit to the data). The better performance of the ‘Rate with
decay’, compared to the ‘weighted rate’, version of rate updating in Experiment 2 is harder
to explain with the present design; it may well have to do with the use of a discrimination
(rather than a detection) task or the absence of no-target trials, but this requires further

investigation.

Overall, the results of this form of model comparison closely matched those of comparing
models based on the average AIC values: the factor levels that show up most frequently
in the list of the best-fitting models are identical to those with the lowest average AICs,
with just one exception: the ‘binary rate’ level would be preferred over the ‘weighted rate’
for dimension-based updating in Experiment 3. Importantly both the ‘binary rate’ and
‘weighted rate’ updating rules involve updating of the evidence accumulation rate, even
though they differ in that the ‘weighted rate’ rule has a memory of more than one trial back.
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Table S2 Model comparison across individual participants

Models Exp.1 Exp.2 Exp.3
RT distribution model: DDM 0 0 0
RT distribution model: LATER 12 12 12
Without non-decision time 1 2 1
With non-decision time 11 10 11
Response: No update 0 0 0
Response: SO with full memory 1 5 1
Response: SO with decay 10 7 10
Response: Binary rate 0 0 0
Response: Rate with decay 1 0 1
Response: Weighted rate 0 0 0
Dimension: No update 7 0 0
Dimension: SO with decay 0 0 3
Dimension: Binary rate 0 1 7
Dimension: Rate with decay 2 11 0
Dimension: Weighted rate 3 0 2
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S5. The role of the forgetting rule in the inter-trial effects

Our starting point updating rule, ‘SO with full memory’, predicts that inter-trial effects would
decrease in magnitude over the course of an experiment, as the precision of the prior
increases and new evidence consequently has less of an effect. The ‘SO with decay’ rule,
on the other hand, does not make this prediction, and our model comparison results
clearly show that this rule explains the data better. In this section, we tested whether the
size of inter-trial effects do, in fact, decrease over time, in order to confirm whether this
difference in predictions is the reason why the ‘SO with decay’ rule performed better. We
did this by splitting the sequence of trials in half for each participant and experiment and
calculating inter-trial effects for repetition versus switch of the response-defining feature
separately for the early and late half of each experiment (see Figure S4). In each
experiment inter-trial effects were, in fact, slightly larger in the second half, although these
differences were not statistically significant (Exp. 1: F(1,11)=2.28, p=0.16, BF=0.46 ; Exp.
2: F(1,11)=3.00, p=0.11, BF=0.50; Exp. 3: F(1,11)=0.45, p=0.52, BF=0.39). This
contradicts the predictions of the ‘SO with full memory’ rule and explains why the ‘S0 with

decay’ rule performed better.

Exp. 1 Exp. 2 Exp. 3
0.5751 ==
0.550 T 1 {
1 art

® 0525 P P
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0.450 : ; . : ~ .
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intertrial response

Figure S4 Effects of response feature repetition/switch on mean RTs in the early and late half of

each experiment. Error bars show the standard error of the mean.

S$6. Comparison of drift rate updating rules in inter-trial effects
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As pointed out in the Discussion section, our two different drift rate updating rules with a
memory of more than a single trial back — ‘rate with decay’ and ‘weighted rate’ — are in
general quite similar, but make opposite predictions regarding two types of sequences: a
sequence of repeats followed by a switch (i.e., {R, ..., R, S}) and an equally long sequence
of only switches ({S,...S,S}).

The ‘rate with decay’ rule predicts a higher rate after the {R, ..., R, S} sequence compared
to the {S, ..., S, S} sequence, because, according to this rule, repeating a dimension
always increases the rate on future trials regardless of dimension. The ‘weighted rate’
rule, by contrast, predicts that the rate should be particularly low after the {R, ..., R, S}
sequence, because each repetition means more weight is assigned to the repeated
dimension and consequently less weight to the other dimension which will be the target
dimension after the switch at the end.

Because the ‘rate with decay’ for dimension-based updating best explained the data in
Experiment 2, while the ‘weighted’ rate rule best explained the data in Experiment 3, we
tested whether RTs after the kind of sequences of dimension repetition and switch differ
in the predicted way between these experiments. In particular, we compared RTs after
sequences of two dimension repeats and one switch (RRS) with RTs after a sequence of
three switches (SSS).

0.561
. 0.521 P
;: - Exp. 2
14 & Exp.3
0.48

0.441 E

RRS
intertrial sequence

o
o 4
o

Figure S5 Mean RTs on switch trials at the end of different sequences of dimension repetitions

(R) and switches (S) in Experiments 2 and 3. Error bars show the standard error of the mean.
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Figure S5 shows the mean RTs at the end of these different sequences. In Experiment 2,
RTs were significantly faster at the end of the RRS compared to the SSS sequence
(t(11)=2.69, p<0.05), matching the prediction of the ‘rate with decay’ rule; in Experiment
3, by contrast, RTs were significantly faster at the end of the SSS compared to the RRS
sequence (1(11)=2.3, p<0.05), following the prediction of the ‘(dimension-) weighted rate’
rule. Note that, in Experiment 2, the dimension was also the response-defining feature
(RDF). Accordingly, the RTs for the different sequences of dimension repeats and
switches could also have been influenced by starting-point updating based on the RDF.
However, this is unlikely to explain the faster RTs at the end of RRS compared to SSS
sequences, because the winning starting-point updating rule would make the opposite
prediction. This implies that the effect of rate updating must have been greater than that
of starting-point updating in Experiment 2, at least with regard to effects from more than
one trial back (e.g., memory decay may have been slower for rate updates compared to
starting-point updates). In addition, because the dimension was the RDF in Experiment 2,
the rate updating based on dimension history in the winning model may partially reflect an
effect of repetition/switch of the whole S—R link, rather than of just the dimension itself.
This could explain the differential patterns seen in Experiment 2 vs. Experiment 3 (see

main text for an elaboration of this argument).

S7. Model fits to RT distributions

The LATER model in general fitted the RT distributions somewhat better than the DDM.
In order to allow the reader to judge the quality of the fits for each model and the nature
of the deviations, we here provide figures (Figure S6-S13) of individual subject RT
distributions for each experiment, separately for color targets, orientation targets and
target absent trials, and the LATER model and DDM fit to each distribution. We show
these fits for models with no updating, because the effects of the updating rules only
become relevant when taking trial history into account and do not improve the fit to the
overall distributions, but with a non-decision time. The predictions of the DDM and the
LATER model are in general quite similar, but the DDM tends to have a somewhat longer

“tail”.
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Figure S6 RT distributions for individual participants and model fits, without updating but with a
non-decision time, for target absent trials in Experiment 1. The red line shows the fit of the
LATER model while the green line shows the fit of the DDM.
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Figure S7 RT distributions for individual participants and model fits, without updating but with a
non-decision time, for orientation target trials in Experiment 1. The red line shows the fit of the
LATER model while the green line shows the fit of the DDM.
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Figure S8 RT distributions for individual participants and model fits, without updating but with a
non-decision time, for color target trials in Experiment 1. The red line shows the fit of the LATER

model while the green line shows the fit of the DDM.
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Figure S9 RT distributions for individual participants and model fits, without updating but with a
non-decision time, for color target trials in Experiment 2. The red line shows the fit of the LATER

model while the green line shows the fit of the DDM.
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Figure S10 RT distributions for individual participants and model fits, without updating but with a
non-decision time, for orientation target trials in Experiment 2. The red line shows the fit of the
LATER model while the green line shows the fit of the DDM.
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Figure S11 RT distributions for individual participants and model fits, without updating but with a
non-decision time, for target absent trials in Experiment 3. The red line shows the fit of the
LATER model while the green line shows the fit of the DDM.
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Figure 812 RT distributions for individual participants and model fits, without updating but with a
non-decision time, for orientation target trials in Experiment 3. The red line shows the fit of the
LATER model while the green line shows the fit of the DDM.
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Figure S13 RT distributions for individual participants and model fits, without updating but with a
non-decision time, for color target trials in Experiment 3. The red line shows the fit of the LATER
model while the green line shows the fit of the DDM.
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