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Summary

While genetic variation at chromatin loops is relevant for human disease, the relationships
between loop strength, genetics, gene expression, and epigenetics are unclear. Here, we
quantitatively interrogate this relationship using Hi-C and molecular phenotype data across cell
types and haplotypes. We find that chromatin loops consistently form across multiple cell types
and quantitatively vary in strength, instead of exclusively forming within only one cell type. We
show that large haplotype loop imbalance is primarily associated with imprinting and copy
number variation, rather than genetically driven traits such as allele-specific expression. Finally,
across cell types and haplotypes, we show that subtle changes in chromatin loop strength are
associated with large differences in other molecular phenotypes, with a 2-fold change in looping
corresponding to a 100-fold change in gene expression. Our study suggests that regulatory
genetic variation could mediate its effects on gene expression through subtle modification of
chromatin loop strength.
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Introduction

The three-dimensional (3D) architecture of the human genome is highly organized in the nucleus,
bringing distant genomic regions into close spatial proximity and enabling colocalization of
regulatory regions with their targets through chromatin looping®®. Disease associated distal
regulatory variation and expression quantitative trait loci (eQTLs) have been preferentially found
at loop anchors’, and thus could potentially act by affecting chromatin looping. Previous
studies examining the relationship between chromatin looping, cell types, genetic variation, and
molecular phenotypes (i.e. gene expression, epigenetic variation) have suggested that cell type
effects>!13 and genetic variation® could cause large changes in chromatin looping, eliciting
changes in molecular phenotypes. However, as chromatin structure has been shown to be an
evolutionarily stable trait'**°, and genetic variation usually exerts subtle effects on molecular
phenotypes'®, regulatory genetic variants are a priori more likely to modulate loop strength than
create or destroy loops. Quantitatively analyzing differential loop strength across cell types and
between phased genetic variants (haplotypes) could elucidate whether genetic variation could
modulate loop strength to the extent needed to affect molecular phenotypes. These analyses
could provide insight into mechanisms underlying disease associated distal regulatory variation
and help guide future studies aimed at understanding how genetic variants influence chromatin
structure.

Previous studies that identified large changes in chromatin looping have been limited in that they
did not differentiate between genetic effects and imprinting?®, relied on targeted capture
techniques, or examined only a handful of loci®. Chromatin loops within imprinted loci are
commonly cited>® as examples of genetic effects on looping despite it being known that the
allelic effects of imprinting are stronger and different from genetically driven allelic effects. The
extent to which regulatory genetic variants — outside of imprinted loci — affect chromatin looping
is therefore still unclear. Further, many targeted capture techniques (such as CTCF ChlA-PET®
and H3K27ac Hi-C ChIP'’) simultaneously measure either regulatory region activity or protein
binding with chromatin looping, and therefore could produce spurious functional associations by
conflating regulatory activity differences with differences in chromatin loop strength.
Independent measurement of molecular phenotypes and chromatin looping via CHiP-seq and Hi-
C, however, would enable the unbiased examination of the relationship between chromatin loop
and epigenetic changes. A phased collection of Hi-C and molecular phenotype data across two
cell types could therefore enable the study of the function of regulatory genetic and cell type
effects on chromatin loops.

In this study, we generated a resource of phased, high resolution Hi-C chromatin maps from
induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes (iPSC-CMs) from
seven individuals in a three-generation family, and phased previously published RNA-seq,

H3K27ac ChlP-seq, and 50X WGS data from the same individuals. We identified chromatin
loops, and quantitatively characterized cell type associated looping, finding that while loops
tended to be present in both cell types, some loops exhibited significantly increased strength
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within one cell type. These cell type associated loops (CTALS) were more likely to harbor distal
eQTLs, and were associated with the location and strength of differential molecular phenotypes.
Additionally, we found that small magnitude changes in chromatin loops were proportionally
associated with large changes in molecular phenotypes, with a 2-fold change in looping
corresponding to a 100-fold change in gene expression. We found that imbalanced chromatin
loops (ICLs) between haplotypes were not associated with large allelic imbalances in molecular
phenotypes, and were primarily located in imprinted regions or associated with copy number
variation; these results suggest that regulatory genetic variants are not associated with large
changes in chromatin loop strength. Finally, despite observing smaller differences in loop
strength across haplotypes than between cell types, we show that the relationship between loop
strength and molecular phenotypes is consistent between cell types and haplotypes, suggesting
that small loop differences are likely functionally relevant. Therefore, our study suggests that
regulatory genetic variation could mediate its effects on gene expression through subtle
modification of chromatin loop strength.

Results

Sample and data collection

Molecular data was obtained from iPSCs and their derived cardiomyocytes (iPSC-CMs) from
seven individuals in a three-generation family from iPSCORE (the iPSC collection for Omics
REsearch)!® (Figure 1A, Table S1A). Fibroblasts from these seven individuals were
reprogrammed using non-integrative Sendai virus vectors'®, from which eleven iPSC lines were
generated and subsequently differentiated into thirteen iPSC-CM samples using a monolayer-
based protocol®. From the eleven iPSC and thirteen iPSC-CM samples, we generated chromatin
interaction data via in situ Hi-C?. Additionally, from these and other iPSC and iPSC-CM samples
from the same seven individuals, we integrated functional genomic data that was generated as
part of a concurrent manuscript (RNA-seq, H3K27ac ChlP-seq, and ATAC-seq; Figure 1B and
Table S1B; see methods) which also describes the differentiation efficiency and quality of all
iPSC and iPSC-CM lines used in this study. Finally, we obtained single-nucleotide variants
(SNVs) and somatic and inherited copy-number variants (CNVs) for the seven individuals from
~45X whole-genome sequencing (WGS) and genotype arrays from previously published
work!®2,

Identification and characterization of chromatin loops in iPSCs and iPSC-CMs

We characterized the 3D chromatin structure of iPSCs and iPSC-CMs by identifying chromatin
loops in each cell type genome wide. From the in situ Hi-C data, we obtained 1.74 billion long-
range (=20kb) intra-chromosomal contacts after aligning and filtering ~6 billion Hi-C read pairs
across all twenty-four Hi-C samples (Figure S1A, Table S1C). We performed hierarchical
clustering of the contact frequencies by cell type across individuals and observed high
correlations within each cell type (Figure S1B). We therefore pooled the data within each cell
type to create the highest resolution chromatin maps in iPSCs and iPSC-CMs (or any other iPSC
derived cell type) to date (~2kb map resolution; Figure S1C). As loop calling algorithms often
identify distinct loops, and are dependent on the resolution parameters specified for their
analysis??, we called chromatin loops from these maps utilizing two algorithms (HICCUPS and
Fit-Hi-C) at multiple resolutions, identifying 17,567 loops in iPSCs (iPSC called loops), and
19,003 iPSC-CM loops (iPSC-CM called loops; Tables S1D-S1E). We examined the overlap of
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the loops between cell types and found that 37.1% of the total 26,679 loops were called in both
cell types (Figure 1C), which is consistent with previous work showing differential detection of
loops between cell types, but is lower than the overlap found when comparing high resolution
maps to those of lower resolution?. These data comprise the largest loop set from Hi-C data to
date, and provide a resource for the analysis of long range gene regulation across the genome.

To establish that the iPSC and iPSC-CM called loops showed functional properties consistent
with their identified cell type, we examined the distribution of H3K27ac and ATAC peaks,
CTCF motifs, and chromatin states (iPSC for iPSCs; fetal heart for iPSC-CMs, the most
epigenetically similar cell type) near loop anchors. In both cell types, we found enrichments for
active and bivalent chromatin states (Figures 1D & S1D), H3K27ac (Figure 1E left & S1E),
chromatin accessibility (Figure 1E middle & S1F), and CTCF motifs at loop anchors (Figure 1E
right). We next examined the types of chromatin states that were statistically significantly paired
together (Fisher’s Exact p < 0.05) and found two subnetworks, one with active chromatin states
and the other with repressed or bivalent chromatin, which were discrete in iPSC-CMs (Figure 1F)
and crossed over through the bivalent states in iPSCs (Figure S1G). These results indicate that
the identified chromatin loops include those with active regulatory interactions (e.g. promoter-
enhancer interactions), those with repressive interactions (e.g. polycomb complexes), and those
with other types of chromatin states at their anchors. As differentiation can be accompanied by
an increase in interactions among repressed regions'?, we next examined two physical
characteristics that may reflect higher order structure: the distance between the anchors of a loop
(loop size), and the number of distinct loops sharing an anchor with a loop (loop complexity).
We tested whether these physical characteristics were associated with functional characteristics
and observed that both loop size and loop complexity were associated with H3K27ac and
ATAC-seq signals (Figures 1G & 1H), with larger loops and more complex loops tending to be
repressed with lower functional activity, and smaller loops and less complex loops tending to be
active with high functional activity. Overall these analyses established the iPSC called loop set
and iPSC-CM called loop set for further analysis.

Quantification of differential chromatin looping between cell types

To determine if the chromatin loops called in only one of the cell types were specific to that cell
type, or whether they were also present in the other cell type but not called, we performed a
quantitative comparison of loop intensity between the cell types. For all loops, identified in either
one or both cell types, we compared the total normalized read count intensity (logz counts per
million, logCPM) of the interactions between both cell types. We observed that the majority of
loops that were called in both cell types (grey in Figure 2A) had high logCPMs in both cell types,
whereas the loops that were only called in a single cell type (blue or red in Figure 2A) tended to
have overall low logCPMs and often showed highly similar contact intensities between cell types.
We did not observe, however, loops with a high logCPM in one cell type, and a very low
IogCPM in the other. These results indicate that chromatin loops that were differentially called
between cell types were often of low logCPM intensity, and were therefore likely to be
inconsistently identified by the loop calling algorithms, and that the differences in loops between
cell types were not due to the establishment of novel loops in only one cell type. We therefore
identified loops that showed quantitative differences between iPSCs and iPSC-CMs by
comparing normalized read counts across cell types at each loop identified in either cell type
(edgeR gImQLFit g < 0.01; Figure 2B). This analysis resulted in four loop sets (Table S1F): 1)
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all loops called in any cell type (union loop set, total: 26,679), 2) loops with statistically higher
intensity in iPSCs (iPSC cell type associated loops; iPSC-CTALSs, total 2,906), 3) loops with
statistically higher intensity in iPSC-CMs (CM-CTALSs, total 2,915), and 4) loops that were not
statistically significantly different between the two cell types (non-CTALs, total 20,858).

CTALs are associated with regulatory changes during differentiation

Throughout differentiation, chromatin architecture has been reported to specialize and become
more cell type specifict2132, To determine whether quantitative differences in loop strength
were associated with functional and physical changes associated with differentiation, we
examined the physical and regulatory characteristics of CTALS. We observed that CM-CTALs
were overall significantly larger (Mann-Whitney p < 2.2x107%8; Figure 2C) and more complex
(Mann-Whitney p < 2.2x107%%; Figure 2D) than iPSC-CTALSs. Additionally, we found active
chromatin states to be preferentially enriched at smaller (Figure 2E) and less complex (Figure 2F)
loops. Next, we examined whether CTALS for each cell type were enriched for overlapping cell
type-specific regulatory regions (Figure 2G). For example, to test whether iPSC-CTALS were
more likely to harbor an iPSC-specific active promoter, we restricted the analysis to loops
overlapping an iPSC active promoter and tested whether the proportion of loops overlapping an
IPSC specific active promoter was higher within iPSC-CTALS than non-iPSC-CTALs. We found
iPSC-CTAL and CM-CTAL anchors to be enriched for differential active promoters, and iPSC-
CTAL anchors to be enriched for differential active enhancers (Figure 2G). These enrichments
suggest that CTALSs capture cell type specific chromatin dynamics. We also observed that iPSC-
CTAL anchors which overlapped iPSC bivalent chromatin to be more likely to overlap fetal
heart bivalent chromatin. Overall, these findings show that CTALs were enriched for cell type
specific functional and regulatory regions, and indicate that iPSC-CM differentiation is
associated with larger and more complex loops, consistent with increased polycomb repressed
looping®2.

Functional characterization of CTALS

To analyze the functionality of CTALS, we examined the relationship between loop strength and
eQTLs, differential gene expression, and differential epigenetics across cell types. We first
examined whether loops which colocalize iPSC-eQTLs (previously identified from a cohort
including these individuals®®) to their eGenes had stronger contact intensities within iPSCs that
iPSC-CMs. We found a strong enrichment (Mann Whitney-U p ~ 1x1072%) for iPSC contact
intensity above non eQTL-eGene loops (Figure 3A), indicating that loops with higher strength in
a cell type may be more likely to harbor functional genetic variation. Next, we examined whether
differential molecular phenotypes were preferentially located at CTAL anchors. We identified
differential H3K27ac peaks and genes using ChIP-seq and RNA-seq data generated from iPSC
and iPSC-CM samples from the same seven individuals (see methods). We obtained a total of
23,570 differential H3K27ac peaks (DE peaks) and 5,307 differential genes (DE genes) between
iPSCs and iPSC-CMs. We found that DE genes and DE peaks were preferentially located at
CTAL anchors (Fisher’s exact p < 0.05, Figure 3B) compared to the union loop set. Together,
these results suggest that cell type associated loop strength is relevant for other cell type
associated molecular phenotypes.

Next, we examined the quantitative association between loop strength and differential expression
or H3K27ac across cell types. We tested whether the fold change in contact intensity across cell
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types was in the direction of the cell type with higher differential expression or H3K27ac. We
found that across the union loop set, anchors overlapping DE genes expressed higher in iPSCs
had significantly higher contact intensities in iPSCs, while anchors overlapping DE genes
expressed higher in iPSC-CMs had significantly higher contact intensities in iPSC-CMs; similar
patterns were found for DE H3K27ac peaks (Mann-Whitney-U p < 0.05; Figure 3C i). To
establish that this association was due to differences in loop strength, rather than being driven by
loops that were differentially called between the two cell types, we examined whether this
association was still present within loops that were called in both cell types (i.e. the intersection
of iPSC-CM and iPSC called loops). We found that the statistically increased contact intensity
(Mann-Whitney-U p < 0.05) in the upregulated cell type remained within this set of loops,
though the extent of the differences in chromatin looping were smaller (Figure 3C ii). Thus, we
next examined whether these differences could be observed at non-CTALSs (i.e. loops with non-
significant differences across cell types) and found that these loops were still significantly
stronger in the expected direction when they overlapped a DE molecular phenotype at their
anchor (Figure 3C iii). These results suggest that subtle variation in chromatin looping across
cell types may be functional. Finally, to examine whether chromatin loops proportionally varied
with the strength of gene expression differences between cell types, we examined the correlation
between fold changes in gene expression and chromatin looping at loops with anchors
overlapping promoters of differentially expressed genes (Figure 3D). We observed a significant
correlation (r = 0.158, p < 1.6x10%) between the two phenotypes; however, the magnitudes at
which the phenotypes varied were quite different, with gene expression varying up to 250-fold,
and chromatin looping varying less than 3-fold. Overall, these results indicate that small
magnitude changes in chromatin looping may be functional as they are associated with large
magnitude changes in gene expression.

Haplotype-based interrogation of chromatin loops, gene regulation, and gene expression
To enable the functional characterization of haplotype-specific chromatin looping, we phased the
Hi-C, H3K27ac, and RNA-seq data to obtain haplotype-associated phenotype data (Tables S2-
S4). We first phased the WGS genotype data for these seven individuals using a combination of
Hi-C-based phasing and family structure, resulting in an average of 2.01M phased heterozygous
variants per individual (Figure S2A-C, see methods). Next, we assigned informative reads from
H3K27ac and RNA expression to each individual’s maternal or paternal haplotype using an
established method?*, and then identified significant ASE peaks or genes (FDR g < 0.05) within
each individual using a binomial test. We identified a total of 189 ASE peaks (mean 43 per
individual) in iPSCs and 618 ASE peaks (mean 119 per individual) in iPSC-CMs, and 2,582
ASE genes (mean 647 per individual) in iPSCs and 2,214 ASE genes (mean 503 per individual)
in iPSC-CMs.

To characterize haplotype-specific chromatin looping, we identified significantly imbalanced
chromatin loops (ICLs) genome wide. Within each cell type, we assigned informative Hi-C
contacts carrying a phased allele to each haplotype (Figure 4A) and examined allelic imbalance
across all loops. For each individual, we identified imbalance via a binomial test on a half normal
distribution (see methods), following which we combined the p-values across individuals with
Fisher’s method. This process identified 54 total ICLs: 27 from iPSCs, and 27 from iPSC-CMs.
Across the 54 ICLs, we observed similar maternal allele ratios in both cell types within each
individual which were highly correlated (0.73 < Pearson’s r < 0.97; example individuals in
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Figure 4B&C; all individuals in Figure S3A-B) which suggests that, while loop imbalance was
consistent across both cell types, we were limited in statistical detection of the imbalance due to
the sparsity of HiC data. Therefore, to increase power for these analyses, for each of the 26,679
chromatin loops in the union set, we pooled contacts for each individual across their
corresponding iPSCs and iPSC-CMs. We observed a median of 50 informative contacts per
individual per loop, which corresponds to 100% power to identify ICLs with an allelic imbalance
ratio of 70% or higher with o = 0.02 in an individual (Figure S3C), or at o = 2x10° when all
samples display similar imbalance and are combined with Fisher’s method meta-analysis. Within
each subject, a mean of 6.08% of all chromatin loops showed significant imbalance at p < 0.05
(binomial test on a half normal distribution; see methods), slightly higher than the statistically
expected 5% by chance; however, only a mean of 0.1% (26.6) were significant under FDR q <
0.05 in each individual (Figure 4D). To identify ICLs which were consistently imbalanced across
individuals, we again combined associations using a Fisher’s method meta-analysis for each loop,
and identified 7.49% of chromatin loops as ICLs at p < 0.05, indicating that consistent allelic
imbalance occurs more frequently than by chance; however, only 114 ICLs were significant after
multiple testing corrections at FDR ¢ < 0.05 (equivalent to p < 2x107°) even with the combined
cell type data, and the majority of these loops had small allelic differences (Figure 4E). These
results indicate that chromatin loops mainly exhibit subtle differences across haplotypes, as
across cell types, and suggest that large haplotype differences chromatin looping occur
infrequently.

ICLs are associated with imprinting and CNVs

We next examined whether the 114 genome-wide significant haplotype-specific chromatin loops
(i.e. ICLs) were statistically more likely to also be cell type specific loops (i.e. CTALS), or
overlap genomic features previously shown to be associated with differential chromatin looping
(imprinted genes?® and somatic and inherited CNVs?>2). We hypothesized that chromatin loops
that were variable across cell types may be more variable in general, and thus ICLs would be
more likely to be CTALs. We compared the proportion of ICLs that were also iPSC-CTALS,
CM-CTALs, iPSC called, or iPSC-CM called loops to the corresponding proportion of union
loops. However, we found no significant differences for any association (p > 0.05 for all tests;
Figure 5A), indicating that loops which varied between haplotypes were not more likely to vary
between cell types. We next compared the distribution of genomic features known to cause large
allelic differences within ICLs and the union loop set (Figure 5B). We observed that, compared
to the union loop set, ICLs were statistically more likely to contain imprinted genes (ICL: 10.5%;
all: 2.7%; Fisher’s exact p = 5.8x107°), and somatic (ICL: 7.0%, all: 1.0%; Fisher’s exact p =
1.8x107°) and inherited (ICL: 27.2%, all: 18.3%; Fisher’s exact p = 2.03x102) CNVs previously
identified in these samples?!. To examine whether these trends held across all levels of
imbalance significance, we quantified the extent of association of each genomic feature with
chromatin loop allelic imbalance as a function of ICL p-value. For imprinted genes, as the p-
value threshold increased, the odds ratio increased almost log-linearly, whereas CNV overlap
increased, but to a lesser extent (Figure 5C). These results suggest that genetic imprinting, and to
a lesser extent CNVs, may be a strong driver of allelic imbalanced chromatin looping.

We next examined whether ICLs were enriched for functional allele-specific differences at their
anchors by quantifying the enrichment for containing an ASE gene or ASE H3K27ac peak at
their anchors, or being a promoter-enhancer or eQTL-eGene loop. We found ASE peaks to be
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enriched at ICL anchors and being a promoter enhancer loop to be enriched (Fisher’s Exact p <
0.05; Figure 5D); notably, despite the increased percentage of eQTL-eGene loops in ICLs, as
only 7 eQTL-eGene loops were ICLs (585 eQTL-eGene loops in total), this increase was non-
significant. To determine whether regulatory genetic variation was associated with these
differences, we excluded the effects from imprinting and CNVs, and examined these associations
across a range of imbalance thresholds (Figure 5E). The removal of imprinted regions and CNVs
greatly attenuated the association and resulted in a loss of significance for the two molecular
phenotypes, and PE loop status, over almost all ranges of imbalance significance. These results
suggest chromatin loops vary across haplotypes much more subtly (i.e. allelic ratio <70%) than
gene expression or H3K27ac, and where variation is larger, it is mainly driven by imprinting
and/or CNVs rather than genetic variation. Overall, these results show that large allelic
imbalances in molecular phenotypes are restricted to chromatin loops primarily located in
imprinted regions or associated with copy number variation, and that regulatory genetic variants
are not associated with large changes in chromatin loop strength.

Small quantitative differences in looping are associated with large differences in molecular
phenotypes

We observed that differential loop strength was associated with differential molecular phenotype
strength across cell types (Figure 3), but not across haplotypes (Figure 5). To resolve this
discrepancy, we compared the relationship of loop strength and molecular phenotype strength
across haplotypes to the same relationship across cell types. We first compared the general
variability of chromatin loops outside of imprinted regions and CNVs across cell types (Figure
6A) to the differences across haplotypes (Figure 6B). We found that more chromatin loops
varied to a larger degree across cell types than across haplotypes, with ~35% of loops exhibiting
a logz fold change of 0.5 (1.4-fold) or higher across cell types, but only ~5% across haplotypes
(Figure 6C), consistent with haplotype associated differences being considerably smaller than
cell type associated differences. We therefore next examined the association between chromatin
loop strength and gene expression. Across cell types and haplotypes, we found a positive and
significant correlation between gene expression fold change and chromatin loop fold change;
notably, we found large changes in gene expression to be associated with small changes in
chromatin looping (Figure 6D). The slope of the association between haplotypes was also similar
to that observed across cell types, with a 2-fold change in chromatin loop strength corresponding
to a 100-fold change in gene expression. We next examined this same relationship between loop
strength and H3K27ac strength, and found significant associations across cell types and
haplotypes, though the fold changes between H2K27ac and looping were more similar ($=0.06)
than that of gene expression and looping (p =0.02). This consistency and magnitude difference
indicate that large differences in gene expression, and moderate changes in H3K27ac, are
associated with small differences in chromatin looping, and suggest that small changes in
chromatin looping are likely functionally relevant. Additionally, as the association between gene
expression and loop strength was consistent across haplotypes, these results suggest that genetic
variation could exert effects on gene expression through small modifications of loop strength.
Overall, these results suggest that genetic variation could mediate its effects on gene expression
by subtly modifying chromatin loop strength, as small changes in looping were associated with
large changes in molecular phenotypes.
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Discussion

Here, we provide a resource of phased molecular phenotype data in two cell types for seven
individuals who are a part of a three-generation family, and use this data to perform an in depth,
genome-wide, functional examination of changes in chromatin loop strength across cell types
and haplotypes. We find that chromatin loops, including those associated with differential
molecular phenotypes, are not uniquely present in a single cell type or on a single haplotype, but
instead show quantitative differences. We then show that, across cell types and haplotypes,
changes in chromatin loops are associated with proportionally similar changes in gene expression
and the epigenome, though the magnitude of changes are quite different, with a 2-fold change in
looping corresponding to a 100-fold change in expression and a 33-fold change in H3K27ac. The
depth of Hi-C reads at a given chromatin loop measures spatial proximity (i.e. the distance in 3D
space between two anchors), but is biased by factors dependent on the loop’s genomic
coordinates (number of restriction enzyme sites near the anchors, anchor GC content, and
mapping uniqueness)?’. These factors are held constant between cell types or haplotypes for a
given loop; our observed differences in loop strength are therefore likely to reflect true
differences in spatial proximity. Our work therefore suggests that small cell-type or haplotype
associated quantitative differences in spatial proximity may be associated with large changes in
gene expression and the epigenome. Additionally, while the phased data we provide is a resource
for future studies on the function of regulatory variation, the Hi-C maps are the highest
resolution maps for iPSCs and iPSC-CMs currently available and thus will be an important
resource for the prioritization of functional variants and their potential gene targets in these cell

types.

Unlike previous studies®®, we stratified our haplotype analyses by whether the genomic regions
were known to undergo imprinting. We found that allelic imbalance at chromatin loops over 70%
was strongly enriched for imprinted regions. While the allelic imbalance outside of imprinted
regions were small in magnitude, they were correlated with large changes in other molecular
phenotypes, suggesting that the regulatory genetic variants at these loci could exert subtle
changes in loop strength that may be responsible for alteration of gene expression. The
identification of these causal variants, however, is likely to be challenging as we found
chromatin loops to show very minor deviations from allelic imbalance of 50%, even in the case
of large differences in associated molecular phenotypes. For example, for a gene with an ASE of
98%, the expected chromatin loop imbalance would be ~52%, which would require ~2,000X
coverage to obtain an uncorrected p-value of 0.05. Therefore, it may be practically infeasible to
identify specific variants that alter chromatin structure through the genome-wide identification of
chromatin loop QTLs with Hi-C. For the validation of specific variants, future studies seeking to
study whether genetic variants are associated with chromatin loop imbalance should consider
using an unbiased targeted loop capture assay with higher sensitivity than Hi-C.

Finally, our work provides some insight into the ongoing question of whether changes in
chromatin looping cause changes in gene expression, or if changes in gene expression cause
changes in looping!211-131517.2829 "It has been established that the creation of new chromatin
loops can alter gene expression®®, however is has been less clear whether altering gene
expression results in meaningful changes in chromatin loops!*!23!, Evaluating whether
chromatin loop changes are meaningful requires an understanding of the scale at which
functional changes in chromatin loops occur. As our findings suggest that subtle changes are
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functional, we believe these discordant interpretations could have arisen from studies either not
being sufficiently powered to detect small effects, or from discounting small changes as
nonfunctional. Our work therefore provides a foundation for future studies to quantitatively
examine how changes in looping elicit changes in expression (or vice versa) and suggests that
studies designed to detect small magnitude changes in chromatin loop variability may be needed
to delineate the relationship between chromatin loop imbalance and gene expression.
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Figure 1. Chromatin contact maps and loops in iPSC and iPSC-CM. (A) Pedigree of the
seven individuals used in this study. Cell icons below each subject indicate the number of iPSC
lines and iPSC-CM samples used in the Hi-C experiments. iPSC lines are shown in blue, iPSC-
CM samples are shown in red. (B) Schematic showing the data types used in this study depicting
how they colocalize at loop anchors. (C) Venn diagrams showing the number of chromatin loops
unique and common to both cell types. (D) Heatmap showing enrichment of regulatory regions
near iPSC-CM called loop anchor centers. The 15 ROADMAP chromatin states of fetal heart
tissue (E083) were used, and the log2 odds ratio of enrichment is indicated by color for each 2kb
interval across an 80kb window. (E) Density plots showing distribution of epigenetic marks and
motifs relative to the center of loop anchors. Normalized tag densities from H3K27ac ChlIP-seq
(left) and ATAC-seq (middle) are shown for loops called in iPSC-CM. Grey regions below the
peak signals indicate the results from 1,000 null loop sets. CTCF motif frequency per kb (right)
is shown for loops called in iPSCs (blue) or iPSC-CMs (red). (F) Network diagram showing two
discrete subnetworks of fetal-heart chromatin states at iPSC-CM called loops, with edges
connecting statistically significant pairs of chromatin states found at opposing. The thickness of
the edge indicates the odds ratio of significance, and the presence or absence of an edge indicates
statistical significance. (G-H) Density plots showing distribution of epigenetic marks and motifs
relative to the center of loop anchors stratified by loop size (G) or loop complexity (H). Average
normalized tag densities from H3K27ac ChlP-seq (left) or ATAC-seq (right) around loop
anchors are shown.
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Figure 2: Differential chromatin states and sizes in CTALSs recapitulate changes in looping
across differentiation. (A-B) Scatterplots showing contact frequency in counts per million
(CPM) of all loops identified in either iPSCs or iPSC-CMs. The solid black lines indicate the
function y = x. (A) Points are colored to indicate loops called in only iPSC (blue), or iPSC-CM
(red), or both (gray). (B) Points are colored to indicate loops with significantly increased loop
strength in iPSCs (iPSC-CTAL,; blue), iPSC-CMs (CM-CTAL,; red), or neither (non-CTAL,;
gray). (C-D) Violin plots showing distributions of loop size (C), and loop complexity (D) for
CTALs. (E-F) Heatmap showing enrichment of regulatory regions near iPSC-CTAL (left) and
CM-CTAL (right) at loop anchor centers with loops stratified by (E) size or (F) complexity. The
15 ROADMAP chromatin states of iPSC (E020) or fetal heart tissue (E083) were used, and the
logz odds ratio of enrichment is indicated by color. CTALs broken down by size into 100kb
windows (E), or complexity (F). (G) Heatmap of log2(odds ratio) from a Fisher’s exact tests for
enrichments of differential chromatin states across CTAL anchors. White cells indicate a non-
significant Fisher’s Exact test (FDR q > 0.05)
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Figure 3. Quantitative variation in chromatin loops is associated with differential gene
expression and H3K27ac across cell types: (A) Scatterplot showing iPSC vs. iPSC-CM contact
frequencies in counts per million (CPM) for all union loops. The black line indicates the y = x
function. Background points indicate iPSC-CTALSs (blue), non-CTALs (grey), and CM-CTALSs
(red). Overlaid on this are points indicating iPSC eQTL-eGene containing loops (teal). The
boxplot in the lower right corner of the scatter plot shows the difference between iPSC and iPSC-
CM CPMs at each non-eQTL loop (grey) or eQTL loop (teal). Positive values indicate a loop has
higher CPM in iPSCs, and negative values indicate a loop has higher CPM in iPSC-CM. The p-
value was calculated from a Mann-Whitney U test. (B) Barplot showing the percent of CTALSs
(green) or union loops (blue) which overlap differentially expressed genes or H3K27ac peaks. P-
values were found via a Fisher’s Exact test for the underlying counts of differentially expressed
genes or peaks between union loops and CTALSs. (C) Boxplots of the logz>(fold change) of
contact intensity at chromatin loops, with positive indicating strong in iPSCs and negative
indicating stronger in iPSC-CMs, for all loops (i), loops called in both cell types (ii), or non-
CTALs (iii) with anchors overlapping differentially expressed genes or H3K27ac peaks with
higher expression or counts in iPSCs (blue), higher expression or counts in iPSC-CMs (red), or
not overlapping a DE gene or peak (grey). P-values were found via a Mann-Whitney U test. (D)
Boxplot showing the logz(fold change) of chromatin loop intensity for chromatin loops
overlapping a differentially expressed gene, binned by the logz(fold change) of the gene. For
both expression and chromatin looping, positive indicates stronger counts in iPSCs, and negative
indicates stronger counts in iPSC-CMs. The Pearson correlation and p-value shown were
calculated on the raw underlying data.
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Figure 4. Identification of haplotypic differences of chromatin conformation: (A) Schematic
showing approach to quantify chromatin loop imbalance within each individual. Examples for
two different individuals are shown. Variants were phased using Hi-C and family structure (see
methods), and each contact was assigned to its corresponding haplotype based on the phase of
heterozygous SNVs it contained. (B-C) Scatter plot showing comparison between iPSC and
iPSC-CM maternal haplotype frequencies for one of the seven individuals at ICLs identified in
either (B) iPSCs or (C) iPSC-CMs. Linear regression correlation and p-value are reported for
each cell type. Similar plots for all 7 subjects are in Figure S3. (D) Barplot showing the percent
of loops associated with haplotypic imbalance at p < 0.05 shown in teal, with those also q < 0.05
shown in purple. Bars are shown for each individual separately (left 7 bars), or for the results of a
Fisher’s method meta-analysis p-value (combined; right most bar). A dashed line is drawn at 5%
to indicate the number of ICLs expected by chance to be significant at p < 0.05. (E) Volcano plot
showing the logio(p-value) vs the logz(fold change) for each loop with the combined data.
Significant points (ICLs) are shown in teal.
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Figure 5. Functional characterization of haplotypic differences in chromatin conformation:
(A) Barplot showing the percent of union loops (green) or ICLs (blue) contained within each
loop-set. (B) Barplot showing the percent of union loops (green) or ICLs (blue) containing the
given genomic feature within it (i.e. the genomic feature overlapped the region between the start
of the first anchor and the end of the second anchor). P-values were found via a Fisher’s exact
test. (C) Line plot showing odds ratio from a Fisher’s exact test for ICL enrichment above the
union set for containing an imprinted gene (blue) or containing either an inherited or somatic
CNV (red) as a function of the —logio of the ICL imbalance p-value. Large circles indicate that
the test was significant after Bonferroni correction, and small circles indicate a non-significant
association. (D) Barplot showing the percent of union loops (green) or ICLs (blue) overlapping
the given genomic feature at an anchor. P-values were found via a Fisher’s exact test. (E) Line
plot showing odds ratio from a Fisher’s exact test for ICL enrichment above the union set for
containing the labelled feature as a function of the —logio of the ICL imbalance p-value, for either
all loops (solid lines), or loops that do not contain an imprinted gene or CNV (dashed lines).
Large circles indicate that the test was significant after Bonferroni correction, and small circles
indicate a non-significant association.
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Figure 6: Comparison of chromatin loop, gene expression, and H3K27ac variability across
cell types and haplotypes. (A-B) Scatterplots showing (A) contact frequency in counts per
million (CPM) across cell types or (B) read counts across haplotypes of all union loops colored
by CTAL status. The solid bold lines indicate the function y = x, and other lines indicate absolute
fold changes of log2(0.5), logz(1), and logz(1.5). (C) Percent of loops with at least the shown
logz(Fold Change) or across cell types (blue) or haplotypes (green). (D-E) Boxplot showing the
logz(fold change) of chromatin loop intensity for chromatin loops overlapping a (D)
differentially expressed or ASE gene, or (E) differential or ASE H3K27ac peak, binned by the
logz(fold change) of the (D) gene or (E) peak. Boxes are shown for cell type comparisons in teal,
and haplotype comparisons in purple, linear regressions are plotted with dashed lines, and beta’s
and p-values are shown and colored from the raw data in each data set independently. For all
data, positive fold change indicates stronger counts in iPSCs, and negative fold change indicates
stronger counts in iPSC-CMs.
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Methods

Subject enrollment

The seven individuals used in this study were recruited as part of the iPSCORE project®®. This
recruitment was approved by the Institutional Review Boards of the University of California, San
Diego and The Salk Institute (Project no. 110776ZF), and consent forms were received from
each subject. Subject information including sex, age, and ethnicity were collected during
recruitment (Table S1A). Skin biopsy was performed to obtain fibroblasts for iPSC
reprogramming, and blood samples were collected for whole genome sequencing.

iPSC derivation, iPSC-CM differentiation, and sample collection

Cell line derivation and differentiation were performed as described in Benaglio et al. [in review].
From the seven individuals, fibroblast samples from skin biopsies were reprogrammed using
non-integrative Cytotune Sendai virus (Life Technologies)'® following the manufacturer’s
protocol. Each independent reprogramming resulted in one or more iPSC clones of the subject.
At passages 12-13, genomic integrity of at least one iPSC clone per subject was assessed using
[llumina HumanCoreExome arrays, and pluripotency of iPSCs was assessed for most clones in
this study by flow cytometry of the pluripotency markers SSEA4 and TRA-1-818. iPSCs of each
clone were harvested between passages 12 to 40, resulting in a total of 38 iPSC samples used in
this study (Table S1B). Each iPSC clone was then used to generate multiple independent iPSC-
CM differentiations using a monolayer protocol?®, resulting in a total of 27 iPSC-CM samples
used in this study. Among these iPSC-CM samples, 11 of them were subjected to purification via
4 mM Sodium L-Lactate at Day 15 after the start of differentiation and collected at Day 25%; one
IPSC-CM sample was subjected to lactate purification at Day 11 and collected at Day 16; the rest
of the iPSC-CM samples were not subjected to lactate purification and collected at Day 15

(Table S1B). Across all molecular assays detailed below, lactate purified and non-lactate purified
iIPSC-CM samples showed similar profiles; we therefore combined data across the two protocols.
Single-nucleotide variants (SNVs) and copy-number variants (CNVs) of these individuals were
obtained from ~40X whole-genome sequencing (WGS) results described in iPSCORE (dbGaP id:
phs001325.v1.p1) and by DeBoever et. al.?.

Hi-C data generation

For each of the 11 iPSC and 13 iPSC-CM Hi-C samples, we performed in situ Hi-C on 2-5
million cells. Hi-C libraries were prepared using in situ Hi-C as previously described?. Briefly,
cells were crosslinked at a final concentration of 1% formaldehyde and quenched using 200 mM
glycine. Crosslinked cells were then lysed and nuclei were digested with 100U Mbol overnight
at 37°C. Next, fragmented ends were biotinylated for 90min at 37°C, and the sample was diluted
and proximity ligated for 4 hours at room temperature. Crosslinks were reversed by the addition
of SDS, ProteinaseK, and NaCl, and allowed to incubate overnight at 68°C. Samples were then
purified by ethanol precipitation, resuspended in 100uL 1X Elution Buffer, fragmented using a
Covaris S2 instrument, and size selected using AmpureXP beads. Subsequently, biotinylated
ligation junctions were pulled down using T1 Streptavidin beads. Hi-C libraries were prepared
using streptavidin beads by performing end-repair, dA-tailing, and adapter ligation, following
which PCR amplification and purification was performed. The resulting libraries were sequenced
on an Illlumina HiSeq 4000 machine to obtain 150bp paired-end reads.
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RNA-Seq data generation

RNA-seq data was obtained from the Benaglio et. al [in review] manuscript. Specifically, total
RNA was isolated using the Qiagen RNAeasy Mini Kit from frozen RTL plus pellets, including
on-column DNAse treatment step. RNA was eluted in 60 pl RNAse-free water and run on a
Bioanalyzer (Agilent) to determine integrity. Concentration was measured by Nanodrop.
Illumina Truseq Stranded mRNA libraries were prepared and sequenced on HiSeq2500, to an
average of 40 M 100 bp paired-end reads per sample. RNA-Seq reads were aligned using
STAR® with a splice junction database built from the Gencode v19 gene annotation®*. Transcript
and gene-based expression values were quantified using the RSEM package (1.2.20)*° and
normalized to transcript per million bp (TPM).

ChlIP-Seq data generation and peak calling

We used the H3K27ac data published in Benaglio et. al [in review]. For H3K27ac, 2 x 10° fixed
cells were lysed in 60 pl of MAGNify™ Chromatin Immunoprecipitation System Lysis Buffer
(Thermo Scientific) and sonicated using Bioruptor 200 (Diagenode) for 35-45 min of 30 sec
on/30 sec off cycles. H3K27ac antibodies (Abcam ab4729, lots GR183922-2 (1.75 ug) or
GR184333-2 (1 pg)) were coupled for 2 hours to ProteinG Dynabeads (Thermo Scientific), and
used for overnight chromatin immunoprecipitation in IP buffer (1% Triton-X, 0.1% DOC, 1x TE,
1x Roche Complete Proteinase Inhibitor tablets (RCPI)). Beads were washed five times with
washing buffer (50 mM Hepes pH 8, 1% NP-40, 0.7% DOC, 0.5M LiCl, 1mM EDTA and 1x
RCPI) and once with TE buffer. For transcription factors, 1-2 x 107 cells were lysed in 300 pl
RIPA buffer (1xPBS, 1% NP-40, 0.5% DOC, 0.1% SDS, RCPI) and sonicated for 70-80 min
with instrument and setting as above. Five ug of SRF antibody (Santa Cruz Biotechnology, sc-
335x, lot 11014) were incubated with Dynabeads for 2 hours and washed with BSA 0.5% in PBS.
Chromatin was diluted to 1 ml of RIPA buffer and added to the beads for overnight IP. Five
washes were performed with washing buffer (100 mM Tris pH 7.5, 500 mM LiCl, 1% NP-40, 1%
DOC and 1x RCPI), followed by one wash with TE. DNA was eluted and reverse crosslinked
overnight in elution buffer (10 mM Tris-HCI pH 8, 1 mM EDTA, 1% SDS) at 65°C. DNA was
purified using Qiagen MinElute PCR Purification kit, quantified by Qubit (Thermo Scientific)
and submitted to library preparation and barcoding using KAPA Hyper Library preparation kit
(KAPA Biosystems). Libraries were sequenced on an Illumina HiSeq2500 or a HiSeq4000 to an
average of 35 M 100 bp paired-end reads per sample.

ChIP-Seq reads were mapped to the hgl9 reference using BWAS54. Duplicate reads, reads
mapping to blacklisted regions from ENCODE, reads not mapping to chromosomes chrl-chr22,
chrX, chrY, and read-pairs with mapping quality Q <30 were filtered. Peak calling was
performed using MACS2% (‘macs2 callpeak -f BAMPE -g hs -B --SPMR --verbose 3 --cutoff-
analysis --call-summits -q 0.01”) using pooled BAM from all iPSC or iPSC-CM samples for each
ChIP-Seq antibody and with reads derived from sonicated chromatin not subjected to IP (i.e.
input chromatin) from a pool of samples used as a negative control.

ATAC-Seq data generation and peak calling

We used the data published in Benaglio et. al [in review]. Specifically, the ATAC-Seq protocol
has been adapted from Buenrostro et al.*’. Frozen nuclear pellets of 5 x 10* cells each were
thawed on ice, suspended in 50 pL transposition reaction mix (2.5 puL Tn5 transposase in 1x TD
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buffer, lllumina Cat# FC-121-1030), and incubated for 30 min at 37°C. Reactions were purified
using Qiagen MinElute kit, eluted in 10 uL water and amplified using the KAPA real-time
library amplification kit (KAPA Biosystems) with barcoded adaptors. PCR reactions were
terminated after 10 to 13 cycles and purified using AmPure XP beads (Beckman Coulter).
Samples were size selected using SPRIselect beads (Beckman Coulter) to a size range of 150 to
850 kbp and sequenced on an Illumina HiSeq2500 to an average depth of 30 M 100 bp paired
end reads.

ATAC-Seq reads were aligned using STAR to hg19 and filtered using the same protocol as for
ChIP-Seq. In addition, to restrict the analysis to regions spanning only one nucleosome, we
required an insert size no larger than 140 bp, as we observed that this improved sensitivity to call
peaks and reduced noise. Peak calling was performed using MACS2 on merged BAM files of
IPSC and iPSC-CM meta-samples with the command ‘macs2 callpeak --nomodel --nolambda --
keep-dup all --call-summits -f BAMPE -g hs’, and peaks were filtered by enrichment score (q <
0.01).

Creation and analysis of Hi-C contact maps

For each sample, Hi-C reads were first aligned to human reference genome hg19 using BWA-
MEM (version 0.7.15) with default parameters. Forward and reverse reads from the paired-end
data were aligned independently to allow for identification of split reads that represent ligations
between two genomic loci due to spatial proximity?. Paired-end reads were then reconstructed,
processed, and filtered using the Juicer pipeline®, resulting in the removal of: unmapped reads,
abnormal split reads (split reads that cause ambiguous positioning of the contact), read pairs
within the same restriction enzyme fragment, low mapping quality read pairs (MAPQ < 30), and
duplicate reads. Subsequently, read pairs that were less than 2kb apart were removed to avoid
self-ligated fragments. These filtered read pairs (contacts) were subsequently used to generate
chromatin contact maps for each sample via Juicer. To create Hi-C contact maps on a per
individual basis, contacts were pooled across all samples of a particular cell type for each
individual, and to create maps of iPSC and iPSC-CM, contacts were pooled across individuals
within the respective cell type. These processes resulted in a set of binary .hic files, which were
utilized to obtain raw and Knight-Ruiz (KR)*® normalized counts as well as normalization
vectors of contact frequency matrices via Juicebox command line tools*! at various resolutions
used throughout this study.

Correlation of Hi-C contact maps between samples

The KR normalized contact matrices of each sample were retrieved from the .hic files at various
resolutions (100kb, 250kb, 500kb, and 1Mb) using Juicebox*!. The contact matrices were then
vectorized in order to calculate Pearson’s correlation between each of the samples in R.
Hierarchical clustering analyses of the Pearson’s correlation were performed in R using hclust
with default settings and (1- Pearson’s correlation) as dissimilarity height.

Identification of chromatin loops

Chromatin loops in iPSC and iPSC-CM were called using both Fit-Hi-C*? and HICCUPS?*! as
summarized in Figure S4A. For Fit-Hi-C, loops were called in meta-fragment resolutions that
each contained a fixed number of consecutive restriction enzyme (RE) fragments, ranging from
10 to 30 RE fragments. Loop calling procedures for each resolution are summarized in Figure

22


https://doi.org/10.1101/352682
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/352682; this version posted July 9, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

S4B. First, significant interactions (FDR ¢ < 0.01) were identified through jointly modeling the
contact probability using raw contact frequencies and KR normalization vectors with the Fit-Hi-
C algorithm (Step 1). Next output of Fit-Hi-C was pruned by requiring that: 1) the interaction
itself was significant; 2) for each anchor of the interaction, 3 of the 5 immediately upstream or
downstream bins from the opposing anchor were significant (Step 2). We then merged high-
confidence interactions within 20kb using pgltools* (Step 3), discarded interactions that did not
have any other interactions within 20kb, and retained the most significant call at each interaction
event (Step 4).

For HICCUPS, loops were called using fixed-size bin resolutions from 5kb to 25kb at 1kb bin
size intervals using parameters summarized in Table S1G. Briefly, default parameters of peak
size (p) and window size (i) were used to call loops at 5kb and 10kb resolutions provided by
HICCUPS*. For 6kb, 7kb, 8kb, and 9kb resolutions, the values of these two parameters were
interpolated from the 5kb and 10kb values, and rounded to the closest integer. For resolutions
greater than 10kb, the default 10kb parameters were used. Following loop calling, as performed
by Rao & Huntley et al.?, for resolutions from 5kb to 10kb, loops within 20kb were merged using
pgltools. For resolutions above 10kb, loops within twice the size of the anchor were merged
using pgltools. At each merging event, the loop call with the most statistical significance
provided from HICCUPS output was retained.

We next intersected loop calls across all resolutions within each calling method, retaining the
highest-resolution call at each intersection event, and filtered loops to loops present in 3
HICCUPS resolutions, or 7 Fit-Hi-C resolutions, as these loops visually appeared to best
represent the underlying Hi-C data (Figure S4C). We found a large number of loops that
overlapped between Fit-Hi-C and HICCUPS (Figure S4D); however, many loops were unigue to
only one caller (Figure S4E). We therefore intersected the loops across calling methods,
retaining the loop with the smallest total anchor size at each intersection event (Figure S4F),
resulting in iPSC called and iPSC-CM called loop sets.

Creation of the union loop set

To create the union loop set, we used pgltools merge to find all loops from the iPSC call set and
IPSC-CM call set with both anchors within 20kb. This process led to merge events of 1, 2, or 3
loops, which were resolved as follows: 1) if there was only 1 loop present within 20kb (ie, only 1
loop set had a call), this loop was retained, 2) if there were 2 loops present within 20kb, the loops
were merged by pgltools merge, 3) if there were 3 loops present, pgltools closest was used to
identify which two loops were closest together; these two loops were merged, and the third loop
was retained as its original call.

Identification of cell type associated loops (CTALYS)

Raw contact frequencies for union loops were obtained by intersecting the filtered read pairs
from the 11 iPSC and 13 iPSC-CM Hi-C samples with the union loop set using pgltools. These
raw contact frequencies were used as input in edgeR**, normalized using trimmed mean of M-
values (TMM), and compared between the 11 iPSC and 13 iPSC-CM samples using quasi-
likelihood F-test. The significant differential loops were determined by FDR adjusted g < 0.01.
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Creation of null loop sets for functional comparisons

As chromatin loops, and genome annotations such as chromatin states, are highly structured and
depend on genomic distance both between their own anchors and other chromatin loops, we used
permutation to test for functional enrichment within chromatin loops and at loop anchors. We
generated 1000 null loop sets for both the iPSC called and iPSC-CM called loop sets to use for
statistical analysis, as genome-wide background levels of genomic traits may not accurately
represent a true random distribution of paired-genomic loci. The null loops were generated for
each chromosome by: 1) removing the gap regions on the human reference genome obtained
from UCSC genome browser (https://genome.ucsc.edu/) and updating the loop positions
according to this “no-gap-genome”; 2) sliding the loop positions on the “no-gap-genome” for a
consistent random distance d such that 2Mb < d < chromosome size - 2Mb for each null set; and
3) gap regions were added back to the genome, null loop positions were updated back to hg19. In
step 2, when loop positions moved beyond the chromosome size after rotation, loops were
instead moved to the beginning of the chromosome. Null loops with anchors overlapping a gap
region were removed (an average of 0.5% loops were removed in each cell type).

Distribution of normalized H3K27ac ChlP-seq and ATAC-seq tag frequencies, and CTCF
motifs at anchors

The findMotifsGenome.pl script from HOMER (v4.7) was used to determine enriched motifs at
loop anchors, using the entire size of the anchor as the search space. To identify the distribution
frequencies of a given motif, or of H3K27ac ChlP-seq and ATAC-seq reads, annotatePeaks.pl
with bin size of 500bp and window size of 50kb was used for each set of loops.

Determining enrichment of chromatin states at loop anchors

For each of the ROADMAP tissues®, the core 15-chromatin-state models were obtained as BED
format from http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state,
and the states were separated into their original 200bp bins. To determine the enrichment of each
chromatin state at a loop anchor, we compared the proportion of 200bp bins in the state of
interest on the loop anchor, to the genome-wide background level of the bins via Fisher’s exact
test. A significance level of p < (0.05/ 15) was considered significant.

Identification of differential H3K27ac peaks and differentially expressed genes

To identify differential H3K27ac peaks and genes, we first used featureCounts* to get the
number of reads for each assay from each gene from gencode v19, or from each peak identified
by merging all the H3K27ac data together. Next, we used DEseq2 v1.10.1*" with default
parameters to identify differential peaks and genes with a logz(fold change) >2 and an FDR
corrected g-value < 0.05.

Enrichment of cell type specific regulatory regions at CTALS

To determine if cell type specific regulatory regions were enriched at CTALS, for each cell type,
we first split the union loop set into CTALSs and non-CTALs. Next, we examined whether the
proportion of CTALS overlapping a cell type specific regulatory region was statistically larger
than the proportion of non-CTALSs. For example, to test whether iPSC-CTALS were more likely
to harbor an iPSC-specific active promoter, we restricted the analysis to loops overlapping an
IPSC active promoter, and tested whether the proportion of loops overlapping an iPSC specific
active promoter was higher within CTALS than non-CTALs. For all analyses, we used Roadmap
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E020 (iPSC) for iPSCs, and Roadmap E083 (fetal heart) for iPSC-CMs. We define an anchor as
overlapping a cell type specific regulatory region as an anchor which overlaps the region in the
tested cell type (E020 for iPSC-CTALSs and E083 for CM-CTALS), but does not overlap the
region in the other cell type (E083 for iPSC-CTAL comparisons, E020 for CM-CTAL
comparisons).

Phasing genomes

To obtain accurately phased genotypes for each sample, we performed initial phasing using the
Hi-C data, and then subsequently utilized family structure to identify, and fix or remove,
haplotyping errors (point errors). We first determined the initial phased genotypes for each
individual, at each site at least one individual was heterozygous, by analyzing the HiC data with
Haploseq*®. Next, as Haploseq only identifies heterozygous sites, we filled in missing genotype
data with unphased genotypes from iPSCORE WGS variant calls for these individuals (Figure
S2A). To determine the corresponding parental haplotype for each child haplotype (parent-child
haplotype combination), we identified the average concordance between each child haplotype,
and each of the four parental haplotypes, in 1MB bins chromosome by chromosome, and
identified the best matching parent-child haplotype combination for each child chromosome.
Within each parent-child haplotype combination, we identified meiotic recombinations within
the parent so that we could identify and fix point errors across the genome (Figure S2B). We
identified recombinations by finding the extreme points from the following scoring function: for
a given child haplotype C1, haplotypes from a single parent PH1 and PH2, and N heterozygotic
sites across the genome in the child,

N (1 if C;= PH1;and C; +# PH2;
Score = Z{—l if C; = PH2;and C; # PH1,;
i=1 0 otherwise

We then split each parent-child haplotype combination into crossover blocks at each crossover
position so that each child SNV could be compared to both matching parental haplotypes
simultaneously, and fixed switch errors according to Mendelian inheritance. Additionally, if any
member of the family was unphased at the site, we phased these variants to follow Mendelian
inheritance, generating switch error free genotypes (Figure S2C). After phasing each trio
individually, we re-evaluated Mendelian inheritance across all seven individuals, and removed
any sites where Mendelian inheritance was violated, as these indicated genotyping errors in one
or more individuals.

Identification of genome-wide imbalanced chromatin loops

To identify Imbalanced Chromatin Loops (ICLs), we phased contacts from each chromatin loop
in the union loop set across cell types, and identified allelic imbalance that was statistically
significant at a genome wide threshold. We first identified all contacts within 25kb of a loop,
kept those containing at least one heterozygous SNV, and discarded those with no heterozygous
SNVs. We then assigned contacts to their matching haplotype when all heterozygous SNV's
matched a single haplotype, and discarded other contacts. Next, at each loop, we calculate a Z
score via a binomial approximation to a normal distribution from the major and minor allele
counts, and then calculated a p-value from a half-normal distribution for each person. To obtain a
single p-value for imbalance of each loop, we use Fisher’s method to obtain a meta-p-value
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across all 7 individuals. Finally, to identify genome-wide significant ICLs, we use the
Benjamini-Hochberg FDR correction to obtain a g-value, and identified loops with a g-value <
0.05 as genome-wide significant ICLs.

Calculation of power to detect ICLs

To determine the power to identify chromatin loop imbalance at different allelic imbalance
fractions, we calculated Z scores as above using parameters for numbers of contacts (ranging
from 5-100 in steps of 5), allelic imbalance fractions (from 0.55-0.95 in steps of 0.05). We then
calculated the power from a half-normal distribution using alpha thresholds ranging from 1x10™
to 9x10™ for any integer 2 < x < 6 within each individual. We then calculated the alpha threshold
from a meta p-value obtained from combining seven individuals displaying the same imbalance
via Fisher’s method.

ASE gene and peak identification

To identify genes and peaks exhibiting genome wide significant allele-specific expression (ASE)
from RNA-seq or ChlP-seq data, within each cell type, for each individual, we pooled all
samples by cell type, applied WASP* to reduce reference allele mapping bias, and then used
MBASED?* (R package version 1.4.0) to obtain allelic ratios and p-values for each gene and
peak for each individual, and identified significant genes or peaks as those with an FDR
corrected g-value < 0.05.

Chromatin loop set enrichment, and genomic feature enrichment, for ICLs

To identify chromatin loops containing imprinted genes or CNVs, we utilized the pgltools
“findLoops” function to create a bed file from the union loop set, and then used bedtools™®
“intersect” function to obtain all loops containing the genomic characteristic. To identify ASE
genes overlapping chromatin loop anchors, we utilized pgltools “intersect] D’ function. To
identify eQTLs polymorphic in the family with eGenes connected by a chromatin loop, we
created a set of all eQTL-eGene pairs with empirical p < 0.05 from DeBoever et al.?! in the PGL
format, and utilized pgltools “intersect” to find loops within 20kb of the eQTL-eGene pair. For
each genomic feature, we performed a Fisher’s exact test across multiple chromatin loop
imbalance p-value thresholds to determine if the genomic feature was enriched in ICLs over the
union loop set. To obtain a p-value threshold ICL set, we filtered all chromatin loops to those
exhibiting allelic imbalance with a p-value less than or equal to the threshold.

Determining concordance between loop and molecular phenotype imbalance

To examine the relationship between molecular phenotype (RNA-seq and H3K27ac ChlP-seq)
allelic imbalance and chromatin loop imbalance, we compared allelic differences in molecular
phenotype data to chromatin loop imbalance frequencies in iPSC-CM data. We first removed
chromatin loops containing imprinted genes or CNVs. Next, for each union chromatin loop, we
utilized the aforementioned allelic imbalance data; for each molecular phenotype, we pooled the
iPSC-CM reads from all samples for each individual, applied WASP* to reduce reference allele
mapping bias, and used MBASED to obtain major allele frequencies of each gene/peak. We then
identified the most imbalanced SNV in each gene/peak, and used the SNV’s phase to determine
the maternal allele frequency of the gene/peak. We then converted maternal allele frequencies to
fold changes by dividing the maternal allele frequency by the paternal allele frequency for both
molecular phenotypes, and the chromatin loop data.

26


https://doi.org/10.1101/352682
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/352682; this version posted July 9, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

References

1 Duggal, G., Wang, H. & Kingsford, C. Higher-order chromatin domains link eQTLs with
the expression of far-away genes. Nucleic Acids Res 42, 87-96, doi:10.1093/nar/gkt857
(2014).

2 Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles
of chromatin looping. Cell 159, 1665-1680, doi:10.1016/j.cell.2014.11.021 (2014).

3 Grubert, F. et al. Genetic Control of Chromatin States in Humans Involves Local and
Distal Chromosomal Interactions. Cell 162, 1051-1065, doi:10.1016/j.cell.2015.07.048
(2015).

4 Jin, F. et al. A high-resolution map of the three-dimensional chromatin interactome in
human cells. Nature 503, 290-294, doi:10.1038/nature12644 (2013).

5 Tang, Z. et al. CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin
Topology for Transcription. Cell 163, 1611-1627, doi:10.1016/j.cell.2015.11.024 (2015).

6 Schoenfelder, S. et al. The pluripotent regulatory circuitry connecting promoters to their
long-range interacting elements. Genome Res 25, 582-597, doi:10.1101/gr.185272.114
(2015).

7 Won, H. et al. Chromosome conformation elucidates regulatory relationships in

developing human brain. Nature 538, 523-527, doi:10.1038/nature19847 (2016).

8 Krijger, P. H. & de Laat, W. Regulation of disease-associated gene expression in the 3D
genome. Nat Rev Mol Cell Biol 17, 771-782, doi:10.1038/nrm.2016.138 (2016).

9 Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome.
Nature 489, 57-74, doi:10.1038/nature11247 (2012).

10 Maurano, M. T. et al. Systematic localization of common disease-associated variation in
regulatory DNA. Science 337, 1190-1195, doi:10.1126/science.1222794 (2012).

11 Hug, C. B., Grimaldi, A. G., Kruse, K. & Vaquerizas, J. M. Chromatin Architecture
Emerges during Zygotic Genome Activation Independent of Transcription. Cell 169, 216-
228 €219, d0i:10.1016/j.cell.2017.03.024 (2017).

12 Bonev, B. et al. Multiscale 3D Genome Rewiring during Mouse Neural Development.
Cell 171, 557-572 €524, doi:10.1016/j.cell.2017.09.043 (2017).

13 Siersbaek, R. et al. Dynamic Rewiring of Promoter-Anchored Chromatin Loops during
Adipocyte Differentiation. Mol Cell 66, 420-435 €425, doi:10.1016/j.molcel.2017.04.010
(2017).

14 Fudenberg, G. & Pollard, K. Chromatin features constrain structural variation across
evolutionary timescales. bioRxiv, d0i:10.1101/285205 (2018).

15 Chambers, E. V., Bickmore, W. A. & Semple, C. A. Divergence of mammalian higher
order chromatin structure is associated with developmental loci. PLoS Comput Biol 9,
e1003017, doi:10.1371/journal.pcbi.1003017 (2013).

16 Consortium, G. T. et al. Genetic effects on gene expression across human tissues. Nature
550, 204-213, doi:10.1038/nature24277 (2017).

17 Mumbach, M. R. et al. Enhancer connectome in primary human cells identifies target
genes of disease-associated DNA elements. Nat Genet 49, 1602-1612,
d0i:10.1038/ng.3963 (2017).

27


https://doi.org/10.1101/352682
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/352682; this version posted July 9, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

18 Panopoulos, A. D. et al. iPSCORE: A Resource of 222 iPSC Lines Enabling Functional
Characterization of Genetic Variation across a Variety of Cell Types. Stem Cell Reports 8,
1086-1100, doi:10.1016/j.stemcr.2017.03.012 (2017).

19 Ban, H. et al. Efficient generation of transgene-free human induced pluripotent stem cells
(iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A 108,
14234-14239, doi:10.1073/pnas.1103509108 (2011).

20 Lian, X. et al. Directed cardiomyocyte differentiation from human pluripotent stem cells
by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc 8,
162-175, d0i:10.1038/nprot.2012.150 (2013).

21 DeBoever, C. et al. Large-Scale Profiling Reveals the Influence of Genetic Variation on
Gene Expression in Human Induced Pluripotent Stem Cells. Cell Stem Cell 20, 533-546
€537, doi:10.1016/j.stem.2017.03.009 (2017).

22 Forcato, M. et al. Comparison of computational methods for Hi-C data analysis. Nat
Methods 14, 679-685, doi:10.1038/nmeth.4325 (2017).

23 Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation.
Nature 518, 331-336, doi:10.1038/nature14222 (2015).

24 Mayba, O. et al. MBASED: allele-specific expression detection in cancer tissues and cell
lines. Genome Biol 15, 405, doi:10.1186/s13059-014-0405-3 (2014).

25 Franke, M. et al. Formation of new chromatin domains determines pathogenicity of
genomic duplications. Nature 538, 265-269, doi:10.1038/nature19800 (2016).

26 Lupianez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic
rewiring of gene-enhancer interactions. Cell 161, 1012-1025,
doi:10.1016/j.cell.2015.04.004 (2015).

27 Yaffe, E. & Tanay, A. Probabilistic modeling of Hi-C contact maps eliminates systematic
biases to characterize global chromosomal architecture. Nat Genet 43, 1059-1065,
doi:10.1038/ng.947 (2011).

28 Ghavi-Helm, Y. et al. Enhancer loops appear stable during development and are
associated with paused polymerase. Nature 512, 96-100, doi:10.1038/nature13417 (2014).

29 Rubin, A. J. et al. Lineage-specific dynamic and pre-established enhancer-promoter
contacts cooperate in terminal differentiation. Nat Genet 49, 1522-1528,
d0i:10.1038/ng.3935 (2017).

30 Morgan, S. L. et al. Manipulation of nuclear architecture through CRISPR-mediated
chromosomal looping. Nat Commun 8, 15993, doi:10.1038/ncomms15993 (2017).

31 Tan-Wong, S. M. et al. Gene loops enhance transcriptional directionality. Science 338,
671-675, doi:10.1126/science.1224350 (2012).

32 Tohyama, S. et al. Distinct metabolic flow enables large-scale purification of mouse and
human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12, 127-137,
d0i:10.1016/j.stem.2012.09.013 (2013).

33 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21,
doi:10.1093/bioinformatics/bts635 (2013).

34 Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE
Project. Genome Res 22, 1760-1774, doi:10.1101/gr.135350.111 (2012).

35 Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data
with or without a reference genome. BMC Bioinformatics 12, 323, doi:10.1186/1471-
2105-12-323 (2011).

28


https://doi.org/10.1101/352682
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/352682; this version posted July 9, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

36 Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137,
doi:10.1186/gb-2008-9-9-r137 (2008).

37 Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J.
Transposition of native chromatin for fast and sensitive epigenomic profiling of open
chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10, 1213-1218,
doi:10.1038/nmeth.2688 (2013).

38 Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
ArXiv e-prints 1303 (2013). <http://adsabs.harvard.edu/abs/2013arXiv1303.3997L>.

39 Durand, N. C. et al. Juicer Provides a One-Click System for Analyzing Loop-Resolution
Hi-C Experiments. Cell Syst 3, 95-98, doi:10.1016/j.cels.2016.07.002 (2016).

40 Knight, P. A. & Ruiz, D. A fast algorithm for matrix balancing. Ima J Numer Anal 33,
1029-1047, doi:10.1093/imanum/drs019 (2013).

41 Durand, N. C. et al. Juicebox Provides a Visualization System for Hi-C Contact Maps
with Unlimited Zoom. Cell Syst 3, 99-101, doi:10.1016/j.cels.2015.07.012 (2016).

42 Ay, F., Bailey, T. L. & Noble, W. S. Statistical confidence estimation for Hi-C data
reveals regulatory chromatin contacts. Genome Res 24, 999-1011,
doi:10.1101/gr.160374.113 (2014).

43 Greenwald, W. W. et al. Pgltools: a genomic arithmetic tool suite for manipulation of Hi-
C peak and other chromatin interaction data. BMC Bioinformatics 18, 207,
d0i:10.1186/s12859-017-1621-0 (2017).

44 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics 26, 139-
140, doi:10.1093/bioinformatics/btp616 (2010).

45  Roadmap Epigenomics, C. et al. Integrative analysis of 111 reference human epigenomes.
Nature 518, 317-330, doi:10.1038/nature14248 (2015).

46 Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for
assigning sequence reads to genomic features. Bioinformatics 30, 923-930,
doi:10.1093/bioinformatics/btt656 (2014).

47 Love, M. L., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
for RNA-seq data with DESeq2. Genome Biol 15, 550, doi:10.1186/s13059-014-0550-8
(2014).

48 Selvaraj, S., J, R. D., Bansal, V. & Ren, B. Whole-genome haplotype reconstruction
using proximity-ligation and shotgun sequencing. Nat Biotechnol 31, 1111-1118,
d0i:10.1038/nbt.2728 (2013).

49 van de Geijn, B., McVicker, G., Gilad, Y. & Pritchard, J. K. WASP: allele-specific
software for robust molecular quantitative trait locus discovery. Nat Methods 12, 1061-
1063, doi:10.1038/nmeth.3582 (2015).

50 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics 26, 841-842, doi:10.1093/bioinformatics/btq033 (2010).

29


http://adsabs.harvard.edu/abs/2013arXiv1303.3997L
https://doi.org/10.1101/352682
http://creativecommons.org/licenses/by-nc-nd/4.0/

