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Abstract

Clinical trials in Alzheimer’s disease need to enroll patients whose cognition will decline
over time, if left untreated, in order to demonstrate the efficacy of an intervention. Machine
learning models used to screen for patients at risk of progression to dementia should therefore
favor specificity (detecting only progressors) over sensitivity (detecting all progressors),
especially when the prevalence of progressors is low. Here, we explore whether such
high-risk patients can be identified using cognitive assessments and structural neuroimaging,
by training machine learning tools in a high specificity regime. A multimodal signature of
Alzheimer's dementia was first extracted from ADNI1. We then validated the predictive
value of this signature on ADNI1 patients with mild cognitive impairment (N=235). The
signature was optimized to predict progression to dementia over three years with low
sensitivity (55.1%) but high specificity (95.6%), resulting in only moderate accuracy (69.3%)
but high positive predictive value (80.4%, adjusted for a "typical" 33% prevalence rate of true
progressors). These results were replicated in ADNI2 (N=235), with 87.8% adjusted positive
predictive value (96.7% specificity, 47.3% sensitivity, 85.1% accuracy). We found that
cognitive measures alone could identify high-risk individuals, with structural measurements
providing a slight improvement. The signature had comparable receiver operating
characteristics to standard machine learning tools, yet a marked improvement in positive
predictive value was achieved over the literature by selecting a high specificity operating

point. The multimodal signature can be readily applied for the enrichment of clinical trials.
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Introduction

Alzheimer’s disease (AD), a leading cause of dementia, is marked by the abnormal
accumulation of amyloid § (Af) and hyperphosphorylated tau proteins in the brain, which
leads to widespread neurodegeneration. AD has a long prodromal phase, and it has been
difficult to predict which individuals will decline and experience AD dementia. While mild
cognitive impairment (MCI) puts individuals at risk, only a fraction (33.6% on average) of
MCI patients will develop dementia within a period of three years, as shown in a
meta-analysis of 41 studies [1]. Identifying MCI patients who will progress to AD dementia
with enough specificity has thus been a challenge for clinical trials [2]. This lack of
prognostic power may be due to individual variability. Different clinical phenotypes have
been described where patients will exhibit distinct cognitive deficits [3]. Previous work has
also characterized neuropathological subtypes based on the distribution of neurofibrillary
tangles [4], which correspond well to distinct patterns of brain atrophy [5]. Different subtypes
of brain atrophy have also been associated with different rates of progression to dementia [6].
The implications for prognosis are profound: only a subgroup of patients will experience a
sharp cognitive decline that can be reliably predicted. We therefore propose to identify a
subset of individuals with a homogenous signature of brain atrophy and cognitive deficits
who will progress to AD dementia with high precision.

There is a large field focused on using machine learning to automatically detect MCI
patients who will progress to AD dementia based on imaging and cognitive features. For
models combining structural MRI and cognition, state-of-the-art performance is 79%
accuracy (76% specificity, 83% sensitivity) [7]. Some groups have achieved higher
accuracies ranging from 82-97% when using other imaging methods, such as Af positron
emission tomography [8] or resting-state functional MRI [9]. Although this increase in
accuracy may suggest that A imaging and resting-state functional MRI are better features,
these imaging measures are more invasive, costly, and currently lack the large scale of
validation of tools that are already widely used in clinical settings, such as cognitive
assessments and structural MRI. Given the need to develop tools that will easily scale up in
clinical settings, we propose to focus on predictive models that use structural imaging and
cognition as features.

Models are typically trained to maximize accuracy, defined as the proportion of

subjects that were correctly identified, either as progressors or non-progressors. For
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enrichment in clinical trials, a more relevant metric is positive predictive value (PPV), which
is the proportion of subjects that actually progress to dementia when they have been
identified as such by the model. The PPV of a model is dependent on the baseline rate of
progression in the sample, with a typical rate (within three years or more) in MCI patients
being 33.6% [1]. Assuming a 33.6% baseline rate, it is possible to calculate the PPVs of
published models in the literature, based on reported sensitivity and specificity scores. The
adjusted PPV for models using cognitive and structural measures ranged from 50 to 75%
[7,8,10-16]. In other words, up to half of subjects who were identified as progressors by
published algorithms would not actually progress to dementia in a typical MCI sample. We
therefore aimed to adapt the training regimen of predictive models to favor specificity over
sensitivity, with the hypothesis that in this regime the models will identify progressors with
high PPV. We expected that optimizing for high specificity will result in a low number of
false positives, which is particularly important when the prevalence of progressors is low and
therefore the susceptibility of the predictive model to identify false positive progressors is
high.

The overall goal of this work was to develop a model to identify individuals who are
at high risk of progression to AD dementia with high PPV and specificity, using structural
MRI and cognitive features. We aimed to show that by training standard machine learning
tools in a high specificity regime, we can identify the most robust progressor MCI patients
with high confidence. We further wanted to assess whether those high risk individuals had
prodromal AD, by examining longitudinal cognitive decline, as well as Af and tau burden in
these individuals. We finally aimed to evaluate the complementarity of features derived from
cognition and atrophy patterns by examining the overlap of high risk individuals who were
identified as such by each modality. Although the complementarity of cognitive and
structural measures has been extensively studied for prognosis of dementia in a general MCI
population, the main contribution of this work is to examine their complementarity in the
specific context of a high risk signature which achieves high specificity and PPV, at the cost
of low sensitivity when the class of interest is relatively rare. Specific aims, as well as a

summary of experiments and the main results, are listed in Table 1.
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Table 1. Summary of objectives, experiments, and main findings

Specific objectives

Experiments

Main findings

1) Identify subtypes of brain
atrophy patterns

We used unsupervised clustering
on atrophy maps generated from
structural images in AD and CN
subjects.

Seven distinct patterns of atrophy
were identified, some of which
were strongly associated with a
diagnosis of AD (Figure 1b).

2a) Replicate previous findings
from works that used cognitive
and structural features to predict
progression to AD from MCI

2b) Train a model in a high
specificity regime to identify high
confidence AD subjects with a
high-risk signature

A linear support vector machine,
that was optimized for accuracy,
was trained on the following
features: 1) structural atrophy
patterns, 2) multi-domain
cognitive assessments, and 3) a
combination of both.

We used a two-stage algorithm to
ensure we were maximizing
specificity over sensitivity. We
trained on the following features:
1) structural atrophy patterns, 2)
multi-domain cognitive
assessments, and 3) a combination
of both.

The support vector machine
based on cognitive features had
higher predictive value than the
structural MRI signature, similar
to previous findings [7]. See
Figures 2 and 3.

The two-stage algorithm resulted
in a model that achieved high
specificity and high PPV, with
reduced sensitivity (Figure 2).
Three high-risk signatures were
generated (Figure 5).

3) Assess if the high-risk signature
generated by the two-stage
algorithm can identify progressors
in MCI subjects within a three
year period

We measured PPV, specificity,
sensitivity, and accuracy of the
model in predicting progressors in
two separate MCI cohorts.

The model achieved high
specificity and high PPV, again at
the cost of sensitivity and
accuracy (Figures 2 and 4).

4) Test the performance of the
two-stage algorithm against
standard algorithms

We compared the ROC
performance of the two-stage
algorithm against standard
algorithms (e.g. KNN, GNB,
SVM with a RBF kernel).

The performance of the two-stage
algorithm did not differ from
standard algorithms, in terms of
area under a ROC curve, but was
the only one to operate in a
high-specificity, low sensitivity
regime (Figure 3).

5) Validate whether this high-risk
signature represents a prodromal
phase of AD

We compared cognitive decline,
amyloid and tau burden in tagged
high-risk individuals against those
who were not.

Tagged high-risk individuals
experienced sharper cognitive
decline and higher levels of
amyloid and tau than non-tagged
individuals (Figure 4).

6) Assess the complementarity of
cognitive and structural measures

We examined whether there was
overlap in the subjects that were
identified by the three high-risk
signatures.

The majority of subjects that were
identified by the multimodal
high-risk signature had been
identified as such by the unimodal
cognitive and unimodal structural
signatures. The unimodal
cognitive signature identified the
majority of all high-risk subjects
(Figure 6).
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Materials and methods

Data

Data used in the preparation of this article were obtained from the Alzheimer's
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer's disease (AD). For up-to-date information,
see www.adni-info.org.

We took baseline T1-weighted MRI scans from the ADNI1 (228 CN, 397 MCI, 192
AD) and ADNI2 (218 CN, 354 MCI, 103 AD) studies. For a detailed description of MRI
acquisition details, see http://adni.loni.usc.edu/methods/documents/mri-protocols/. All
subjects gave informed consent to participate in these studies, which were approved by the
research ethics committees of the institutions involved in data acquisition. Consent was
obtained for data sharing and secondary analysis, the latter being approved by the ethics
committee at the CRIUGM. For the MCI groups, each individual must have had at least 36
months of follow-up for inclusion in our analysis. We also further stratified the MCI groups
into stable (sMCI), who never received any change in their diagnosis, and progressors
(pMCI), who received a diagnosis of AD dementia within 36 months of follow-up. pMCI
who progressed to AD dementia after 36 months were excluded. After applying these
inclusion/exclusion criteria, we were left with 280 and 268 eligible MCI subjects in ADNI1

and ADNI2 respectively.

Structural features from voxel-based morphometry

Images were processed with the Neurolmaging Analysis Kit (NIAK) version 0.18.1
(https://hub.docker.com/r/simexp/niak-boss/), the MINC toolkit (http://bic-mni.github.io/)
version 0.3.18, and SPMI2 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) under
CentOS with Octave (http://gnu.octave.org) version 4.0.2. Preprocessing of MRI data was

executed in parallel on the Cedar supercomputer (https://docs.computecanada.ca/wiki/Cedar),
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using the Pipeline System for Octave and Matlab (PSOM) [21]. Each T1 image was linearly
co-registered to the Montreal Neurological Institute (MNI) ICBM152 stereotaxic symmetric
template [22], using the CIVET pipeline [23], and then re-oriented to the AC-PC line. Each
image was segmented into grey matter, white matter, and CSF probabilistic maps. The
DARTEL toolbox [24] was used to normalize the grey matter segmentations to a predefined
grey matter template in MNI152 space. Each map was modulated to preserve the total
amount of signal and smoothed with a 8 mm isotropic Gaussian blurring kernel. After quality
control of the normalized grey matter segmentations, we were left with 621 subjects in
ADNII (out of 700, 88.7% success rate) and 515 subjects in ADNI2 (out of 589, 87.4%
success rate).

We extracted subtypes to characterize variability of grey matter distribution with the
CN and AD samples from ADNII. In order to reduce the impact of factors of no interest that
may have influenced the clustering procedure, we regressed out age, sex, mean grey matter
volume (GMYV), and total intracranial volume (TIV), using a mass univariate linear regression
model at each voxel. We then derived a spatial Pearson's correlation coefficient between all
pairs of individual maps after confound regression. This defined a subject x subject (377 x
377) similarity matrix which was entered into a Ward hierarchical clustering procedure
(Figure 1a). Based on visual inspection of the similarity matrix, we identified 7 subgroups
(Figure 1b). Each subtype was defined as the average map of each subgroup. For each
subject, we computed spatial correlations between their map and each subtype, which we call
weights (Figure la). The weights formed a n subject x m subtypes (n=377, m=7) matrix,
which was included in the feature space for all predictive models including voxel-based
morphometry (VBM) throughout this work. As in our previous works [20,25], we chose to
use weights, which can be interpreted as continuous measures for subtype affinity, over
discrete subtype membership because the latter is less informative as most individuals
express similarity to multiple subtypes [26]. Note that although we chose to present our
findings with 7 subtypes, we examined how the number of subtypes may impact our
subsequent predictions. There was no significant difference in model performance when we

changed the number of subtypes (see Table S1 in supplementary material).
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Figure 1. Subtyping procedure and resulting subtypes. a) A hierarchical clustering procedure
identified 7 subtypes, or subgroups, of individuals with similar patterns of grey matter topography
within the ADNI1 cohort of CN and AD subjects (top). A measure of spatial similarity, called subtype
weight, between a single individual’s grey matter volume map and the average of a given subtype was
calculated for all individuals and all subtypes (bottom). b) Maps of the 7 subtypes showing the
distribution of grey matter across all voxels relative to the average. CN* and AD* denote significant
associations between the subtype weights and diagnoses of cognitively normal (CN) or Alzheimer's
dementia (AD) respectively.

Cognitive features

We took baseline neuropsychological scores for each subject from several cognitive
domains: memory from the composite score ADNI-MEM [27], executive function from the
composite score ADNI-EF [28], language from the Boston Naming Test (BNT), visuospatial
from the clock drawing test, and global cognition from the Alzheimer's Disease Assessment
Scale-Cognitive (ADAS13). We chose measures that span multiple cognitive domains as it
has been suggested that the use of a combination of neuropsychological measures is likely the
best approach to predicting incipient dementia [29]. These scores were included as features

for the predictive models involving cognition. Thirteen subjects across both ADNI1 and
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ADNI2 (8 AD, 5 MCI) had to be excluded due to missing values in their cognitive
assessments. See Table 2 for demographic information of subjects who were included in

analyses.

Table 2. Demographic information for post-QC subjects in ADNI1 and ADNI2.

ADNI1 CN sMCI pMCI AD

N 205 88 147 165
Age = SD 76.1+5.0 74.0+ 7.6 743 +7.1 75.4+7.5
Female % 51.7 40.9 40.8 51.5
APOE4+ % 27.8 37.5 68.7 65.4
ADAS13 = SD 9.5+43 143+5.5 21.3+£53 28.6+7.1
MMSE + SD 29.1+1.0 27.7+1.7 267+ 1.7 23.4+2.0
ADNI2 CN sMCI pMCI AD

N 188 180 55 89
Age £ SD 72.8+6.1 70.8+ 7.3 72.1+7.1 74.4+7.8
Female % 54.0 47.8 49.1 46.1
APOE4+ % 294 35.6 65.4 71.3
ADAS13 = SD 9.1+42 11.8+£5.3 21.4+6.5 31.6 £8.7
MMSE + SD 20.1+£1.1 284+ 1.6 273+1.9 23.1+£23

ADAS13=Alzheimer’s Disease Assessment Scale - Cognitive subscale (13 items);

MMSE=Mini Mental State Examination

Prediction of high confidence AD dementia cases in ADNI1

We trained a linear support vector machine (SVM) model with a linear kernel, as
implemented by Scikit-learn [30] version 0.18 to classify AD vs CN from ADNII to get a
baseline prediction accuracy. We then used a two-step method to select an operating point for
the linear SVM to obtain a highly precise and specific classification [20]. This was done by
replicating the SVM prediction via subsampling and identifying the patients with highly
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robust prediction outcomes, i.e. who are consistently identified as true AD cases (true
positives) during testing, regardless of the training subsample. This approach was found, in
practice, to lead to a highly specific prediction, in addition to offering a guarantee of
robustness; see [20] for more information. Specifically here, a tenfold cross-validation loop
was used to estimate the performance of the trained model. Classes were balanced inversely
proportional to class frequencies in the input data for the training. A nested cross-validation
loop (stratified shuffle split with 50 splits and 20% test size, i.e. a random permutation
cross-validator was used to split the data into 50 training and test sets, where the size of the
test set was always 20% of the original sample size) was used for the grid search of the SVM
hyperparameter C (grid was 10?2 to 10' with 15 equal steps). We randomly selected
subsamples of the dataset, retaining a set percentage of participants in each subsample. For
each subsample, a separate SVM model was trained to predict AD or CN in ADNII. The
SVM training was replicated a number of times. Both the subsample size and the number of
subsamples were selected to maximize the positive predictive value of the prediction of
sMCI vs pMCI in ADNII, as described below. Predictions were made on the remaining
subjects that were not used for training, and, for each subject, we calculated a hit probability
defined as the frequency of correct classification across all SVM replications in which the test
set contained that subject. High confidence AD cases were defined as individuals with 100%
hit probabilities with the AD label. Next, we trained a logistic regression classifier [31], with
L1 regularization on the coefficients, to predict the high confidence AD cases. A stratified
shuffle split (500 splits, 50% test size) was used to estimate the performance of the model for
the grid search of the hyperparameter C (grid was 107 to 10" with 15 equal steps) on the
overall ADNI1 sample, and the same hyperparameters were used for all SVM replications.
We used the entire CN and AD sample from ADNII to obtain three highly predictive
signatures (HPS) (i.e. models), 1) one using VBM subtype weights as features (VBM only),
2) one using only cognitive features (COG only), 3) and one using the combination of VBM
subtype weights and cognitive features (VCOG). In all three signatures, age, sex, mean

GMYV, and TIV were also included as features.

Prediction of progression to AD dementia from the MCI stage in ADNI1
The logistic regression trained on AD vs CN was used to identify MCI patients who

have a HPS of AD dementia in ADNI1. Our hyperparameters for this logistic regression were
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optimized based on the number of subsamples and subsample size that produced the
maximum specificity and PPV for the classification of sMCI (n=89) vs pMCI (n=155) in
ADNII1, while maintaining a minimum of 30% sensitivity. We varied the number of
subsamples (100, 500, 1000) and subsample size (10%, 20%, 30%, 50%) to perturb the
model and identify subjects that had robust outcomes during the testing phase regardless of
the training subsample. We then re-trained our models to classify AD vs CN in ADNI1 with
these optimized hyperparameters. This was done for all three signatures. In brief, we used the
AD and CN sample from ADNII as a training set, and the MCI subjects from ADNII1 as a
validation set. The ADNI2 sample was then used as an independent replication (test) set, to
establish the performance of the two-stage model without further changes to the

hyperparameters.

Statistical test of differences in model performance

We wused Monte-Carlo simulations to generate confidence intervals on the
performance (i.e. accuracy, PPV, specificity and sensitivity) of both linear SVM and HPS
models for their predictions of AD vs CN and pMCI vs sMCI. Taking the observed
sensitivity and specificity, and using similar sample sizes to our experiment, we replicated the
number of true and false positive detection 100000 times using independent Bernoulli
variables, and derived replications of PPV, specificity and sensitivity. By comparing these
replications to the accuracy, sensitivity, specificity and PPV observed in both models, we
estimated a p-value for differences in model performance [32]. A p-value smaller than 0.05
was interpreted as evidence of a significant difference in performance, and 0.001 as strong
evidence. We also used this approach to compare the performance of the combined features
(VCOQG) to the models containing VBM features (VBM) or cognitive features (COG) only.
Note that, based on our hypotheses regarding the behaviour of the HPS model, the tests were
one-sided for increased accuracy, specificity and PPV, and one-sided for decreased
sensitivity.

To assess the performance of the HPS models against standard machine learning
algorithms, we used four algorithms (SVM with a RBF kernel, K nearest neighbors, random
forest, and Gaussian naive Bayes) to train models to classify AD vs CN in the ADNI1
dataset. We then tested and validated these models on classifying AD vs CN in ADNI2 and
finally pMCI vs sMCI in both ADNI1 and ADNI2 separately. See the supplementary material
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for details of the implementations of these latter algorithms. We then generated ROC curves
and calculated the area under the curve (AUC) for each model and classification (AD vs CN;

pMCI vs sMCI) in both ADNI1 and ADNI2.

Statistical tests of association of progression, AD biomarkers, and risk factors in
high confidence MCI subjects

Based on the classifications resulting from the linear SVM and HPS models, we
separated the MCI subjects into three different groups: 1) High confidence, subjects who
were selected by the HPS model as hits, 2) Low confidence, subjects who were selected by
the linear SVM model as hits but were not selected by the HPS model, and 3) Negative,
subjects who were not selected as hits by either algorithm.

In order to validate whether the high confidence subjects represented individuals who
were in a prodromal phase of AD, we tested if this subgroup was enriched for progression to
dementia, APOE4 carriers, females, and subjects who were positive for A and tau
pathology. Positivity of AD pathology was determined by CSF measurements of A 1-42
peptide and total tau with cut-off values of less than 192 pg/mL and greater than 93 pg/mL
respectively [33]. We implemented Monte-Carlo simulations, where we selected 100000
random subgroups out of the original MCI sample. By comparing the proportion of
progressors, APOE4 carriers, females, AfS-positive, and tau-positive subjects in these null
replications to the actual observed values in the HPS subgroup, we estimated a p-value [32]
(one sided for increase). A p-value smaller than 0.05 was interpreted as evidence of a
significant enrichment, and 0.001 as strong evidence.

One-way ANOVAs were used to evaluate differences between the HPS groupings
with respect to age. Post-hoc Tukey's HSD tests were done to assess pairwise differences
among the three classes (high confidence, low confidence, negative). These tests were
implemented in Python with the SciPy library [34] version 0.19.1 and StatsModels library
[35] version 0.8.0.

To explore the impact of HPS grouping on cognitive trajectories, linear mixed effects
models were performed to evaluate the main effects of and interactions between the HPS
groups and time on ADAS13 scores up to 36 months of follow-up. The models were first fit

with a random effect of participant and then were fit with random slopes (time | participant) if
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ANOVAs comparing the likelihood ratio suggested a significant improvement in model fit.
All tests were performed separately on the ADNII and ADNI2 datasets. These tests were

implemented in R version 3.3.2 with the library nlme version 3.1.128 [36].

Public code, data availability and reproducibility

The code wused in this experiment is available on a GitHub repository
(https://github.com/SIMEXP/vcog_hps ad) and zenodo
(https://doi.org/10.5281/zenodo.1444081).

We shared a notebook replicating all the machine learning experiments, starting after
the generation of VBM subtypes. However, in order to protect the privacy of the study
participants, we could not share individual subtype weights alongside other behavioural data
and diagnostic information. We thus created parametric (Gaussian) bootstrap simulations,
based on group statistics alone, that will allow interested readers to replicate results similar to
those presented in this manuscript, using the exact same code and computational environment
that were used on real data, but with purely synthetic data instead. The notebook can be

executed online via the binder platform (http:/mybinder.org), and runs into a docker

container

(https://mybinder.org/v2/gh/SIMEXP/vcog_hps ad/master?filepath=%2Fvcog_hpc predictio

n_simulated data.ipynb), built from a configuration file that is available on GitHub

(https://github.com/SIMEXP/vcog_hps_ad/blob/master/Dockerfile). The container itself is

available on Docker Hub (https://hub.docker.com/r/simexp/vcog_hps_ad/). The simulated

data was archived on figshare

(https://figshare.com/articles/Simulated cognitive_and structural MRI data from ADNI/71
32757).

The simulation included the following 16 variables: age, sex, mean grey matter
volume, total intracranial volume, 5 cognitive assessment scores and 7 VBM subtype weights
from both ADNI1 and ADNI2. Subjects that had missing values for these variables were
discarded from the simulation, leaving N=1115 subjects. We stratified the population into 12
subgroups: the four clinical labels (AD, pMCI, sMCI, CN), each further subdivided by the
three prediction subclasses identified in this paper (negative, low confidence, high

confidence). For each subgroup, we estimated the average and covariance matrices between

12


https://paperpile.com/c/lVrWC9/rioo5
https://github.com/SIMEXP/vcog_hps_ad
https://doi.org/10.5281/zenodo.1444081
https://mybinder.org/
https://mybinder.org/v2/gh/SIMEXP/vcog_hps_ad/master?filepath=%2Fvcog_hpc_prediction_simulated_data.ipynb
https://mybinder.org/v2/gh/SIMEXP/vcog_hps_ad/master?filepath=%2Fvcog_hpc_prediction_simulated_data.ipynb
https://github.com/SIMEXP/vcog_hps_ad/blob/master/Dockerfile
https://hub.docker.com/r/simexp/vcog_hps_ad/
https://figshare.com/articles/Simulated_cognitive_and_structural_MRI_data_from_ADNI/7132757
https://figshare.com/articles/Simulated_cognitive_and_structural_MRI_data_from_ADNI/7132757
https://doi.org/10.1101/352344
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/352344; this version posted March 8, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

the 16 variables of interest. We then generated a number of multivariate normal data points
that matched the number of subjects found in each subgroup, using the empirical mean and
covariance matrix of each subgroup. Finally, the range of the simulated data was clipped to
the range of the original real data, and the simulated sex data points were binarized by nearest
neighbour.

The statistics from the predictive model in the original implementation are similar to
that of the simulated data. The model predicted the progression of dementia from MCI in
ADNII1 with a PPV of 93.1% (specificity of 93.2%) on real data. This coincides with a 93.3%
PPV (specificity of 94.3%) that we get when using the simulated data. Similarly, with the
ADNI2 dataset the model achieved a 81.3% PPV (specificity of 96.7%) from the real data
and a 75.7% PPV (specificity of 95.0%) from the simulated data.

Results

Subtypes of brain atrophy

Subtype 1 was characterized by reduced relative GMV in the occipital, parietal and
posterior temporal lobes. Subtype 2 displayed reduced relative GMV across the cortex,
except for the medial parts of the parietal and occipital lobes and the cingulate. Subtype 3 had
increased relative GMV in the medial and lateral temporal lobes, insula, and striatum.
Subtype 4 had decreased relative GMV in the temporal lobes, inferior parietal lobes, posterior
cingulate, and the prefrontal cortices. Subtype 5 was characterized by greater relative GMV
in the temporal lobes, while Subtype 6 had the opposite pattern of reduced relative GMV in
the temporal lobes. Subtype 7 displayed greater relative GMV in the parietal lobes, posterior
lateral temporal lobes, medial temporal lobes, and medial occipital lobes. See Figure 1b for
surface representations of the subtypes. Diagnosis (CN, sMCI, pMCI, AD) accounted for a
substantial amount of variance in subtype weights for subtypes 1 (F=8.51, p=1.30 X 107%), 2
(F=10.32, p=1.00 X 10°), 4 (F=14.53, p=2.60 X 10°), 5 (F=13.86, p=6.77 X 107), 6
(F=34.27, p=2.57 X 102", and 7 (F=37.02, p=5.85 X 10%). Post-hoc t-tests showed AD
subjects had significantly higher weights compared to CN (Figure 1b) for subtypes 1 (t=2.88,
p=0.02), 2 (t=4.05, p=3.0 X 10*), 4 (t=4.83, p<1.0 X 10*), and 6 (t=7.86, p=<1.0 10,

making these subtypes associated with a diagnosis of AD. CN subjects had significantly

13


https://doi.org/10.1101/352344
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/352344; this version posted March 8, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

higher weights compared to AD for subtypes 5 (t=-4.86, p<1.0 X 10*) and 7 (t=-6.95, p<1.0

X 10, making these subtypes associated with a cognitively normal status.

Prediction of AD dementia vs cognitively normal individuals

The linear SVM model trained using the VCOG features achieved 94.5% PPV (95.6%
specificity, 93.9% sensitivity, 94.9% accuracy) when classifying AD vs CN in ADNII1. Such
high performance was expected given the marked cognitive deficits associated with clinical
dementia. COG features only actually reached excellent performance as well (97.6% PPV,
98.0% specificity, 96.4% sensitivity, 97.3% accuracy), while using VBM features only
yielded markedly lower performances (86.4% PPV, 89.3% specificity, 79.6% sensitivity,
84.8% accuracy) (see Figures 2 and ROC analysis in Figure 3). Note that the performance
metrics in ADNI1 were estimated through cross-validation, and represent an average
performance for several models trained on different subsets of ADNI1. We then trained a
model on all of ADNII, and estimated its performance on an independent dataset, ADNI2.
Using VCOG predictors, the ADNI1 model reached 92.0% PPV (96.3% specificity, 92.0%
sensitivity, 94.5% accuracy), when applied on ADNI2 AD vs CN data. Again the
performance was comparable with COG predictors only (92.2% PPV, 96.3% specificity,
94.3% sensitivity, 95.6% accuracy), and VBM features only achieved lower performance
(57.3% PPV, 79.8% specificity, 56.7% sensitivity, 72.3% accuracy) (see Figures 2 and ROC
analysis in Figure 3). Note that PPV is dependent on the proportion of patients and controls
for a given sensitivity and specificity. Since the ADNI2 sample had a substantially smaller
proportion of AD subjects compared to ADNII, the resulting PPV was reduced. When we
adjusted the baseline rate of AD subjects in ADNI2 to the same rate in ADNI1, the PPVs
were 95.2%, 95.3%, and 70.2% for the VCOG, COG, and VBM models respectively.

Identification of high confidence AD cases for prediction

The VCOG HPS model achieved 99.2% PPV (99.5% specificity, 77.6% sensitivity,
89.7% accuracy) in classifying high confidence AD subjects in ADNI1. These performance
scores were estimated by cross-validation of the entire two-stage process (training of SVM,
estimation of hit probability, identification of HPS). However, the hyperparameters of the

two-stage model were optimized on classifying pMCI vs sMCI in ADNII, as described
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previously. We next trained a single model on all of ADNII1, which we applied on an
independent sample (ADNI2). The ADNI1 AD VCOG HPS model reached 98.6% PPV
(99.5% specificity, 79.5% sensitivity, 93.1% accuracy) on ADNI2. As was previously
observed with the conventional SVM analysis, the VCOG HPS model had similar
performance to the COG HPS model (ADNI1: 100% PPV, 100% specificity, 87.3%
sensitivity, 94.2% accuracy; ADNI2: 98.7% PPV, 99.5% specificity, 88.6% sensitivity,
96.0% accuracy), and outperformed the VBM HPS model (ADNI1: 92.3% PPV, 96.1%
specificity, 54.6% sensitivity, 77.2% accuracy; ADNI2: 65.2% PPV, 91.5% specificity,
33.3% sensitivity, 72.7% accuracy); see Figure 2. When adjusted to the same baseline rate of
AD subjects as ADNII1, the PPVs in ADNI2 were 99.2%, 99.3%, and 76.7% for the VCOG,
COG, and VBM HPS models respectively.

AD vs CN M rrr— TE— TE—
T
— ELI = o = o
1.0 1.0 1.0 1.0
0.8
.08 > >0.8 0.8
— — b—
z< E 206 = > Model
8E 5 = = a )
<Ef gos o4 g0.6 206 Linear SVM
< & & = HPS
. 0.2 b.d - mm SVM 0.95
0.0
0.8
>0.8 Fry ;0.8 0.8
%ﬁ E '50'6 = = Model
2% Zos 204 206 0.6 Linear SVM
< 9 & mmm HPS
A 0.2 Bl &l m SVM 0.95
0.0
NG G G ¢} €] (CY O (€3
NS o N Rlox & o 4P & o e
Modality Modality Modality Modality
pMCI vs sMCI
| e —— |
g T g, £ Fx FB T 1 & B
0.8
c =08 2 20.8 ~0.38
=S © 506 S 3
ZT = = = 2 Model
2= Zos 204 506 >0.6 Linear SVM
= < ] & a mm HPS
0.4 0.2 0.4 0.4 mm SVM 0.95
0.0
10 = 107 &0 10 A 10 S
0.8
5.0.8 > >08 ~0.8
3 = 2
P 206 Y b Model
22 §O.6 20.4 $0.6 EO.G Linear SVM
< & & o mm HPS
b 0.2 i il EEE SVM 0.95
0.0
Modality Modality Modality Modality

15


https://doi.org/10.1101/352344
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/352344; this version posted March 8, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 2. Accuracy, specificity, sensitivity, and positive predictive value (PPV) for different
classifiers: linear SVM, highly predictive signature (HPS), and the linear SVM thresholded at 0.95
(SVM 0.95), for the classifications of patients with AD dementia (AD) and cognitively normal
individuals (CN) and patients with mild cognitive impairment who progress to AD (pMCI) and stable
MCI (sMCI) in ADNII1 and ADNI2. VBM represents the model trained with VBM subtypes, COG
represents the model trained with baseline cognitive scores, and VCOG represents the model trained
with both VBM subtypes and cognition. Positive predictive value was adjusted (PPV (adj)) for a
prevalence of 33.6% pMCI in a sample of MCI subjects for both ADNII and ADNI2 MCI cohorts.
Significant differences are denoted by * for p<0.05 and ** for p<0.001).

High confidence prediction of progression to AD dementia

When using the full VCOG features, 87 MCI patients were selected as high
confidence in ADNII, out of which 81 (93.1% PPV) were pMCI within 36 months of
follow-up. This represented a large, significant increase over the baseline rate of progressors
in the entire ADNI1 MCI sample (37.4%) (p<0.001). This was also a significant increase
over the SVM's predictions, where 83.9% of subjects that it had labeled as hits were true
progressors (p<0.001). When adjusted to a 33.6% baseline rate of progressors, more typical
of MCI populations, the PPV of high confidence subjects for prognosis of dementia was
80.4% (93.2% specificity, 55.1% sensitivity, 69.3% accuracy).

We replicated these analyses in the MCI sample from ADNI2 (N=235). Using VCOG
features, 32 subjects were identified as high confidence, 26 of which progressed to AD
dementia within 36 months follow-up (81.2% PPV, specificity of 96.7%, sensitivity of
47.3%, 85.1% accuracy, 87.8% PPV adjusted to a 33.6% baseline rate). This represented a
significantly higher prevalence than the 30.6% baseline rate in the entire ADNI2 MCI cohort
(p<0.001). This was also a significant increase over the SVM's predictions, where 67.8% of
subjects it had labeled as hits were true progressors (p<0.001).

As 1n the classifications of AD vs CN, the VCOG HPS model tended to have higher
performance compared to the VBM HPS (ADNIIL: 89.9% specificity, 42.9% sensitivity,
60.5% accuracy, 87.7% PPV, 68.2% adjusted PPV; ADNI2: 90.1% specificity, 47.3%
sensitivity, 80.2% accuracy, 59.1% PPV, 70.7% adjusted PPV) in classifying pMCI vs sMCI.
The VCOG HPS also had similar performance compared to the COG HPS (ADNI1: 87.5%
specificity, 64.6% sensitivity, 73.2% accuracy, 89.6% PPV, 72.3% adjusted PPV; ADNI2:
95.0% specificity, 56.4% sensitivity, 86.0% accuracy, 77.5% PPV, 85.1% adjusted PPV) for
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distinguishing between pMCI and sMCI. Notably, the VCOG features lead to higher PPV
than VBM and COG features taken independently, both in ADNII1 and ADNI2. That increase
was large and significant between VCOG and VBM (up to 17%) and marginal and
non-significant between VCOG and COG (up to 8%); see Figure 2.

Trade-off between sensitivity and specificity of different algorithms

The HPS models consistently outperformed the linear SVM classifiers with respect to
specificity (p<0.001) in the classifications of AD vs CN and pMCI vs sMCI in both ADNI1
and ADNI2, regardless of the features that the models contained. The HPS also had greater
PPV (p<0.05) adjusted for a typical prevalence of 33.6% pMCI in a given sample of MCI
subjects [1]. However, these increases in specificity and PPV for the HPS model came at a
significant cost of reduced sensitivity compared to the linear SVM classifier, across all
models in both ADNI1 and ADNI2 (p<0.05) (Figure 2). Note that this shift towards lower
sensitivity and higher specificity and PPV could be achieved by adjusting the threshold of the
SVM analysis (see Figure 2 and ROC analysis in Figure 3), and is not unique to the two-stage
procedure we implemented. This trade-off between sensitivity and specificity is universal
across machine learning algorithms and similar results can be achieved by adjusting the
prediction threshold of different strategies. As shown by the ROC curves and AUC values in
Figure 3, other machine learning algorithms (SVM with a radial basis function kernel, K
nearest neighbors, random forest, and Gaussian naive Bayes) also performed similarly to the
HPS. Thus, the value of the HPS is in the selection of a threshold point in order to operate in

a high specificity regime.
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Figure 3. Receiver operating characteristic (ROC) curves for various machine learning algorithms
with different features (VBM for VBM subtypes only, COG for cognitive features only, VCOG for a
combination of VBM subtypes and cognitive features). Algorithms included a support vector machine
with a radial basis function kernel (RBF SVM), K nearest neighbors (KNN), random forest (RF),
Gaussian naive Bayes (GNB), a support vector machine with a linear kernel representing the first
stage (Linear SVM) of the two-stage predictive model, and the two-stage highly predictive signature
(HPS). TPR refers to true positive rate, FPR refers to false positive rate, and AUC refers to area under
the curve.

Characteristics of MCI subjects with a highly predictive VCOG signature of AD
High confidence MCI subjects with the VCOG signature were more likely to be
progressors (Figure 4a) compared to low confidence subjects and negative subjects (ADNII1:

p<0.001; ADNI2: p<0.001). High confidence MCI subjects were also more likely to be
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APOEA4 carriers (Figure 4b) (ADNII1: p<0.005; ADNI2: p<0.05). There was no difference in
sex across the HPS groupings in the MCI subjects of either the ADNI1 or ADNI2 cohorts
(Figure 4c). This was consistent with the whole sample, where there were equal proportions
of progressors across both sexes in each dataset (ADNI1: »’=0.015, p=0.90; ADNI2:
¥*=0.0002, p=0.99). The high confidence class was also significantly enriched for AB-positive
subjects in ADNI1 (p<0.05). However, this result was not replicated in the ADNI2 MCI
subjects (Figure 4d). Similarly with tau, we found a significant increase in tau-positive
subjects in the high confidence group of ADNII (p<0.05), but not in ADNI2 (Figure 4e). We
found a significant age difference across the HPS classes in ADNI2 (F=5.68, p<0.005), where
the high confidence subjects were older than the Negative subjects by a mean of 4.4 years.
However, age did not differ across the HPS classes in ADNI1 (Figure 4f). Finally, high
confidence subjects had significantly steeper cognitive declines compared to the low
confidence and negative groups (Figure 4g): there were significant interactions between the
HPS groupings and time in ADNII: (high confidence =-0.147, t=-7.56, p<0.001; low
confidence pB=-0.055, t=-2.46, p<0.05) and ADNI2 (high confidence (=-0.194, t=-8.69,
p<0.001; low confidence p=-0.072, t=-3.31, p=0.001). The high confidence subjects in
ADNII and ADNI2 respectively gained 1.8 and 2.3 more points each year on the ADAS13
compared to the low confidence and negative groups. Note that higher scores on the
Alzheimer’s Disease Assessment Scale - Cognitive subscale (13 items) (ADAS13) represent

worse cognitive function.

19


https://doi.org/10.1101/352344
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/352344; this version posted March 8, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ADNI1 ADNI2
w
a) é
@ 32.7% 68.0% 93.1% 8.5% 51.9% 81.2%
g
o
b) =
g 44.9% 62.0% 67.8% 39.8% 37.0% 62.5%
<
c) -
@
g 39.8% 34.0% 46.0% 48.3% 40.7% 53.1%
i
o) LA
=]
—‘;{ 55.2% 88.2% 92.0% 65.4% 84.6% 68.4%
=
<

33.3% 58.8% 64.0% 31.2% 50.0% 55.6%

&
V10,

&
U

Negative Low High Negative Low High
confidence  confidence confidence confidence
f) Age g) Cognition
100 60 group x time interaction | Classification
90 E iz Bt Negative
Z o 80 -%— = g 40 o Low confidence
é‘ 2 70 o < e High confidence
R < 20
60| T
50 0
100 60 group x time interaction | Classification
0.05
90 A Negative
o 30 40 e Low confidence
z 2 ) . )
) 2’ 70 g e High confidence
< < 20 .
60
0

0 6 12 24 36

Ve
Month

50 5 p
Nega \,0‘” cO i (:jh com-

Figure 4. Characteristics of MCI subjects with the VCOG signature in ADNI1 and ADNI2. We show
the percentage of MCI subjects who a) progressed to dementia, were b) APOE4 carriers, c) female, d)
positive for A measured by a cut-off of 192 pg/mL in the CSF [22], and e) positive for tau measured
by a cut-off of 93 pg/mL in the CSF [22] in each classification (High confidence, Low confidence,
and Negative). f) Age and g) cognitive trajectories, measured by the Alzheimer's Disease Assessment
Scale - Cognitive subscale with 13 items (ADAS13), across the three classes. Significant differences
are denoted by * for family-wise error rate-corrected p<0.05.
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COG, VBM and VCOG highly predictive signatures

The COG signature was mainly driven by scores from the ADAS13, which measures
overall cognition, ADNI-MEM, a composite score that measures memory [27], and
ADNI-EF, a composite score that measures executive function [37] (coefficients were 5.49,
-4.80 and -2.50 respectively). In this model, sex, age, mean GMV, and TIV contributed very
little, relative to the cognitive features (Figure 5b). Note that these coefficients should be
interpreted as pseudo z-scores as the features had been normalized to zero mean and unit
variance.

Almost all grey matter subtypes contributed to the VBM signature. Mean GMYV,
subtype 1 (reduced relative GMV in the occipital, parietal and posterior temporal lobes) and
subtype 6 (reduced relative GMV in the temporal lobes, notably the medial temporal regions)
had the highest weights in the model (coefficients were -5.07, 4.87, and 3.98 respectively)
(Figure 5¢). We had anticipated the larger contribution of these two subtypes as they have
been described in previous AD subtyping work [5,17-19].

The ADASI13, memory (ADNI-MEM) and executive function (ADNI-EF) scores
contributed the most to the VCOG signature (coefficients were 6.27, -7.43 and -3.95
respectively, Figure 5a). Of the VBM features, subtypes 2, 3 and 7 contributed the most to the
signature (coefficients were 1.36, -2.12 and -2.83 respectively). Subtypes 1 and 6, which had
the highest positive weights in the VBM HPS model, were given marginal weights in the
VCOG HPS model, which is potentially indicative of redundancy with COG features. Note
that the weights for subtypes 3 and 7 were negative in the model, which means that predicted
AD and pMCI cases had brain atrophy patterns that were spatially dissimilar to those
subtypes.
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Figure 5. Coefficients of the high confidence prediction a) VCOG HPS model, b) COG HPS model, c)
VBM HPS model. ADAS13=Alzheimer’s Disease Assessment Scale - Cognitive, MEM=ADNI-MEM
score; EXEC=ADNI-EF score, BNT=Boston Naming Test, CLOCK=clock drawing test, VBM
1-7=VBM subtype weights, GMV=mean grey matter volume, TIV=total intracranial volume.

Comparison of COG, VBM and VCOG high confidence subjects

We found substantial overlap of subjects labeled as high confidence in the MCI
cohorts across the VBM, COG and VCOG signatures (Figure 6). There were very few
subjects that were labeled as high confidence exclusively by the VCOG signature. As to be
expected, the majority of subjects labeled as high confidence by the VCOG signature
(ADNI1: 97.7%; ADNI2: 100%) were also labeled as high confidence by either the VBM
only or COG only signatures or both. Of the subjects that were labeled as high confidence by
the VBM only signature, 23.6% and 55.2% in ADNII and ADNI2 respectively were
identified exclusively by the VBM HPS. There were relatively few subjects (7 and 2 subjects
in ADNI1 and ADNI2 respectively) that were captured by VBM and VCOG but missed by
the COG HPS. The COG HPS actually identified the majority of all high confidence subjects
across the three signatures (ADNII1: 106 of 132 total subjects, ADNI2: 40 of 65 total
subjects). From Figure 6, we can see that the VCOG HPS acts as a refinement of the COG
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signature, as the VCOG HPS captures a subset of subjects that were labeled by the COG
HPS.

Out of the high confidence subjects labeled by all three signatures, 97.9% and 93.7%
from ADNII and ADNI2 respectively progressed to dementia (Supplementary Table S2).
These subjects had worse cognition based on the MMSE and higher proportions of APOE4
carriers, A positive and tau positive individuals, compared to the baseline rates in all MCI
subjects. Of the high confidence subjects who were labeled only by the VBM model, 70.6%
and 43.4% from ADNI1 and ADNI2 respectively were progressors. This group of subjects
had less Af and tau positive individuals compared to the baseline rates. Of the high
confidence subjects who were labeled only the COG model, 70.4% and 57.1% from ADNII
and ADNI2 respectively progressed to dementia. This group appeared to have a greater
proportion of A positive individuals compared to the baseline rates in both ADNI1 and
ADNI2 cohorts. The majority of these COG high confidence subjects were also male. Given
the distinct characteristics among the exclusively COG, exclusively VBM, and VCOG high
confidence subjects, these groups may represent subgroups with different risks for AD
dementia. As it appears that a greater proportion of pMCI is captured when cognitive and
structural MRI features are combined, these findings may support joining multiple modalities
together in order to achieve higher positive predictive value. However, these results are

qualitative and of an exploratory nature due to low sample sizes.

v (0 7\ \ o van a7\ D coa

Figure 6. Venn diagram depicting the number of MCI subjects labeled as high confidence by the
VBM, COG, and VCOG HPS models in ADNI1 and ADNI2.
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Discussion

We developed a MRI and cognitive-based model to predict AD dementia with high
PPV and specificity. Specifically, our two-stage predictive model reached 93.2% specificity
and 93.1% PPV (80.4% when adjusted for 33.6% prevalence of progressors) in ADNI1 when
classifying progressor vs stable MCI patients (within 3 years follow-up). We replicated these
results in ADNI2 where the model reached 96.7% specificity and 81.2% PPV (87.8%
adjusted PPV). With respect to specificity and PPV, these results are a substantial
improvement over previous works combining structural MRI and cognition on the same
prediction task, that have reported up to 76% specificity and 65% PPV (adjusted for 33.6%
prevalence of progressors) [7]. Finally, our results also reproduced our past work which
developed a model that optimizes specificity and PPV [20]. However, it appears that a
combination of structural and functional MRI measures may lead to an improved prediction
as two studies have reported 90-100% PPV with these measures [9,20], with the limitation of
smaller sample sizes (56 total MCI subjects in [20], 86 total MCI subjects in [9]) due to the
limited availability of functional MRI data in ADNI. Our proposed signature is based on
widely available measures, and can be readily tested in many clinical trials. Functional MRI
measures, by contrast, are only gaining traction in large clinical studies, and will at the
minimum require more time to get widely adopted, if the very high PPVs are replicated in
larger samples.

An ideal model to predict conversion to AD dementia would have both high
sensitivity and specificity. However, the pathophysiological heterogeneity of clinical
diagnosis will prevent highly accurate prediction linking brain features to clinical trajectories.
We argue that, faced with heterogeneity, it is necessary to sacrifice sensitivity to focus on a
subgroup of individuals with similar brain abnormalities. Due to the expected trade-off
between specificity and sensitivity, the high specificity of our two-stage model indeed came
at a cost of reduced sensitivity (55.1% in ADNI1 and 47.3% in ADNI2 for classifying pMCI
vs sMCI), which is much lower than sensitivity values of 64%-95% reported by other groups
[7,8,10-16]. The two-stage procedure did not offer gains compared to a simpler SVM model,
if the threshold of the SVM model could be selected a priori to match the specificity of the

two-stage procedure (see ROC curves in Figure 3). The two-stage prediction model offered
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the advantage of a principled approach to train the prediction model in order to maximize
specificity, based on samples that are robust and easily classifiable, without testing a range of
prediction thresholds. The choice of a L1 regularized logistic regression also led to a compact
and interpretable subset of features for the HPS.

Favoring specificity over sensitivity is useful in settings where false positives need to
be minimized and PPV needs to be high, such as expensive clinical trials. Here, with our
VCOG HPS model, we report the highest PPVs for progression to AD from the MCI stage
(up to 87.8%, adjusted for 33.6% prevalence of progressors) for models that included
structural MRI and cognitive features, which are, importantly, modalities that are already
widely used by clinicians. The present work could be used as a screening tool for recruitment
in clinical trials that target MCI subjects who are likely to progress to dementia within three
years. The implementation of an automated selection algorithm could also result in groups of
MCI subjects with more homogeneous brain pathology. However, we note that high
confidence subjects did not all present with significant amyloid burden (92.0% and 68.4% of
high confidence subjects in ADNI1 and ADNI2 respectively, Figure 4), which means that not
all high confidence individuals are likely to have prodromal AD, even when progressing to
dementia.

When we trained our model with cognitive features only, tests for general cognition,
memory, and executive function were chosen as the strongest predictors of AD dementia. Our
COG HPS model thus supports previous research that reported general cognition, memory,
and executive function as important neuropsychological predictors of dementia [7,29,38,39].
Compared to the state-of-the-art multi-domain cognition-based predictive model, which
reported 87.1% specificity and 81.8% PPV (77.5% when adjusted to 33.6% pMCI
prevalence) [40], our COG HPS model achieved similar performance reaching between
87.5%-95% specificity and 72.3%-85.1% (adjusted) PPV. As general cognition was the
strongest feature in our model to predict progression, this supports previous findings that
MCI patients with deficits across multiple domains are at the highest risk for dementia
[39,41].

For our VBM model, we extracted a number of gray matter atrophy subtypes that
recapitulated previously reported subtypes, namely the medial temporal lobe and parietal
dominant subtypes [5,17-19], which were associated strongly with a diagnosis of AD

dementia. Weights for the parietal dominant and medial temporal lobe subtypes (Subtypes 1
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and 6 from Figure 1b, respectively) contributed substantially to the highly predictive
signature in the VBM model. The atrophy pattern of subtype 6 is spatially similar to the
spread of neurofibrillary tangles in Braak stages III and IV [42], which may support previous
findings that tau aggregation mediates neurodegeneration [43]. The contributions of the
parietal dominant and medial temporal lobe subtypes in the VBM HPS model are also in line
with previous works, which have reported that cortical thickness and volumes of the medial
temporal lobes, inferior parietal cortex, and precuneus are strong predictors of progression to
dementia [7,11].

When combined with cognitive tests in the VCOG model, the structural subtypes
were given marginal weights. This suggests some redundancy between atrophy and
cognition, and that cognitive features have higher predictive power than structural features in
the ADNI MCI sample. This conclusion is consistent with the observation that the COG
model significantly outperformed the VBM model, similar to previous work [7]. Although
cognitive markers were stronger features, the VCOG model assigned large negative weights
for the structural subtypes 3, which showed greater relative GMV in the temporal lobes, and
7, which showed greater relative GMV in the parietal, occipital, and temporal lobes. This
means that these features were predictive of stable MCI in the VCOG model, in line with
previous work showing that atrophy in these regions is predictive of progression to dementia
[7,11]. Furthermore, we demonstrated that combining MRI data with cognitive markers
significantly improves upon a model based on MRI features alone. This result is again in line
with the literature [7,10], yet was shown for the first time for a model specifically trained for
high PPV. Note that in the current study, the predictive model was trained exclusively on
images acquired on 1.5T scanners from ADNI1. Good generalization to ADNI2 with 3T
scanners demonstrates robustness of imaging structural subtypes across scanner makes.

The VCOG highly predictive signature might reflect a late disease stage. We looked
at the ratio of early to late MCI subjects in the ADNI2 sample (note that ADNII did not have
early MCI subjects). Of the MCI subjects identified as high confidence by the VCOG model,
84.4% were late MCI subjects, compared to a rate of 34.9% of late MCI subjects in the entire
ADNI2 MCI sample (Supplementary Figure S1). This approach may not be optimal for early
detection of future cognitive decline. Training a model to classify MCI progressors and
non-progressors to dementia could be done in order to capture future progressors in earlier

preclinical stages (e.g. early MCI). Finally, we focused on structural MRI and
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neuropsychological batteries as features in our models due to their wide availability and
established status as clinical tools. However, we believe adding other modalities such as PET
imaging, CSF markers, functional MRI, genetic factors, or lifestyle factors could result in

higher predictive power, especially at earlier preclinical stages of AD.

Conclusion

In summary, we found a subgroup of patients with MCI who share a signature of
cognitive deficits and brain atrophy, that put them at very high risk to progress from MCI to
AD dementia within a time span of three years. We validated the signature in two separate
cohorts that contained both stable MCI patients and MCI patients who progressed to
dementia. The model was able to predict progression to dementia in MCI patients with up to
93.1% PPV and up to 96.7% specificity. The signature was present in about half of all
progressors, demonstrating that gains in PPV can be made by focusing on a homogeneous,
yet relatively common subgroup. Our model could potentially improve subject selection in
clinical trials and identify individuals at a higher risk of AD dementia for early intervention

in clinical settings.
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