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Abstract 
 
Clinical trials in Alzheimer’s disease need to enroll patients whose cognition will decline             

over time, if left untreated, in order to demonstrate the efficacy of an intervention. Machine               

learning models used to screen for patients at risk of progression to dementia should therefore               

favor specificity (detecting only progressors) over sensitivity (detecting all progressors),          

especially when the prevalence of progressors is low. Here, we explore whether such             

high-risk patients can be identified using cognitive assessments and structural neuroimaging,           

by training machine learning tools in a high specificity regime. A multimodal signature of              

Alzheimer's dementia was first extracted from ADNI1. We then validated the predictive            

value of this signature on ADNI1 patients with mild cognitive impairment (N=235). The             

signature was optimized to predict progression to dementia over three years with low             

sensitivity (55.1%) but high specificity (95.6%), resulting in only moderate accuracy (69.3%)            

but high positive predictive value (80.4%, adjusted for a "typical" 33% prevalence rate of true               

progressors). These results were replicated in ADNI2 (N=235), with 87.8% adjusted positive            

predictive value (96.7% specificity, 47.3% sensitivity, 85.1% accuracy). We found that           

cognitive measures alone could identify high-risk individuals, with structural measurements          

providing a slight improvement. The signature had comparable receiver operating          

characteristics to standard machine learning tools, yet a marked improvement in positive            

predictive value was achieved over the literature by selecting a high specificity operating             

point. The multimodal signature can be readily applied for the enrichment of clinical trials. 
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Introduction 
Alzheimer’s disease (AD), a leading cause of dementia, is marked by the abnormal             

accumulation of amyloid 𝛽 (A𝛽) and hyperphosphorylated tau proteins in the brain, which             

leads to widespread neurodegeneration. AD has a long prodromal phase, and it has been              

difficult to predict which individuals will decline and experience AD dementia. While mild             

cognitive impairment (MCI) puts individuals at risk, only a fraction (33.6% on average) of              

MCI patients will develop dementia within a period of three years, as shown in a               

meta-analysis of 41 studies ​[1] ​. Identifying MCI patients who will progress to AD dementia              

with enough specificity has thus been a challenge for clinical trials ​[2] ​. This lack of               

prognostic power may be due to individual variability. Different clinical phenotypes have            

been described where patients will exhibit distinct cognitive deficits ​[3] ​. Previous work has             

also characterized neuropathological subtypes based on the distribution of neurofibrillary          

tangles ​[4] ​, which correspond well to distinct patterns of brain atrophy ​[5] ​. Different subtypes              

of brain atrophy have also been associated with different rates of progression to dementia ​[6] ​.               

The implications for prognosis are profound: only a subgroup of patients will experience a              

sharp cognitive decline that can be reliably predicted. We therefore propose to identify a              

subset of individuals with a homogenous signature of brain atrophy and cognitive deficits             

who will progress to AD dementia with high precision. 

There is a large field focused on using machine learning to automatically detect MCI              

patients who will progress to AD dementia based on imaging and cognitive features. For              

models combining structural MRI and cognition, state-of-the-art performance is 79%          

accuracy (76% specificity, 83% sensitivity) ​[7] ​. Some groups have achieved higher           

accuracies ranging from 82-97% when using other imaging methods, such as A𝛽 positron             

emission tomography ​[8] or resting-state functional MRI ​[9] ​. Although this increase in            

accuracy may suggest that A𝛽 imaging and resting-state functional MRI are better features,             

these imaging measures are more invasive, costly, and currently lack the large scale of              

validation of tools that are already widely used in clinical settings, such as cognitive              

assessments and structural MRI. Given the need to develop tools that will easily scale up in                

clinical settings, we propose to focus on predictive models that use structural imaging and              

cognition as features. 

Models are typically trained to maximize accuracy, defined as the proportion of            

subjects that were correctly identified, either as progressors or non-progressors. For           
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enrichment in clinical trials, a more relevant metric is positive predictive value (PPV), which              

is the proportion of subjects that actually progress to dementia when they have been              

identified as such by the model. The PPV of a model is dependent on the baseline rate of                  

progression in the sample, with a typical rate (within three years or more) in MCI patients                

being 33.6% ​[1] ​. Assuming a 33.6% baseline rate, it is possible to calculate the PPVs of                

published models in the literature, based on reported sensitivity and specificity scores. The             

adjusted PPV for models using cognitive and structural measures ranged from 50 to 75%              

[7,8,10–16] ​. In other words, up to half of subjects who were identified as progressors by               

published algorithms would not actually progress to dementia in a typical MCI sample. We              

therefore aimed to adapt the training regimen of predictive models to favor specificity over              

sensitivity, with the hypothesis that in this regime the models will identify progressors with              

high PPV. We expected that optimizing for high specificity will result in a low number of                

false positives, which is particularly important when the prevalence of progressors is low and              

therefore the susceptibility of the predictive model to identify false positive progressors is             

high. 

The overall goal of this work was to develop a model to identify individuals who are                 

at high risk of progression to AD dementia with high PPV and specificity, using structural               

MRI and cognitive features. We aimed to show that by training standard machine learning              

tools in a high specificity regime, we can identify the most robust progressor MCI patients               

with high confidence. We further wanted to assess whether those high risk individuals had              

prodromal AD, by examining longitudinal cognitive decline, as well as A𝛽 and tau burden in               

these individuals. We finally aimed to evaluate the complementarity of features derived from             

cognition and atrophy patterns by examining the overlap of high risk individuals who were              

identified as such by each modality. Although the complementarity of cognitive and            

structural measures has been extensively studied for prognosis of dementia in a general MCI              

population, the main contribution of this work is to examine their complementarity in the              

specific context of a high risk signature which achieves high specificity and PPV, at the cost                

of low sensitivity when the class of interest is relatively rare. Specific aims, as well as a                 

summary of experiments and the main results, are listed in Table 1. 
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Table 1. Summary of objectives, experiments, and main findings 

Specific objectives Experiments Main findings 

1) Identify subtypes of brain 
atrophy patterns 

We used unsupervised clustering 
on atrophy maps generated from 
structural images in AD and CN 
subjects. 

Seven distinct patterns of atrophy 
were identified, some of which 
were strongly associated with a 
diagnosis of AD (Figure 1b). 

2a) Replicate previous findings 
from works that used cognitive 
and structural features to predict 
progression to AD from MCI 

A linear support vector machine, 
that was optimized for accuracy, 
was trained on the following 
features: 1) structural atrophy 
patterns, 2) multi-domain 
cognitive assessments, and 3) a 
combination of both. 

The support vector machine 
based on cognitive features had 
higher predictive value than the 
structural MRI signature, similar 
to previous findings ​[7]​. See 
Figures 2 and 3. 

2b) Train a model in a high 
specificity regime to identify high 
confidence AD subjects with a 
high-risk signature 

We used a two-stage algorithm to 
ensure we were maximizing 
specificity over sensitivity. We 
trained on the following features: 
1) structural atrophy patterns, 2) 
multi-domain cognitive 
assessments, and 3) a combination 
of both. 

The two-stage algorithm resulted 
in a model that achieved high 
specificity and high PPV, with 
reduced sensitivity (Figure 2). 
Three high-risk signatures were 
generated (Figure 5). 

3) Assess if the high-risk signature 
generated by the two-stage 
algorithm can identify progressors 
in MCI subjects within a three 
year period 

We measured PPV, specificity, 
sensitivity, and accuracy of the 
model in predicting progressors in 
two separate MCI cohorts. 

The model achieved high 
specificity and high PPV, again at 
the cost of sensitivity and 
accuracy (Figures 2 and 4). 

4) Test the performance of the 
two-stage algorithm against 
standard algorithms 

We compared the ROC 
performance of the two-stage 
algorithm against standard 
algorithms (e.g. KNN, GNB, 
SVM with a RBF kernel). 

The performance of the two-stage 
algorithm did not differ from 
standard algorithms, in terms of 
area under a ROC curve, but was 
the only one to operate in a 
high-specificity, low sensitivity 
regime (Figure 3). 

5) Validate whether this high-risk 
signature represents a prodromal 
phase of AD 

We compared cognitive decline, 
amyloid and tau burden in tagged 
high-risk individuals against those 
who were not. 

Tagged high-risk individuals 
experienced sharper cognitive 
decline and higher levels of 
amyloid and tau than non-tagged 
individuals (Figure 4). 

6) Assess the complementarity of 
cognitive and structural measures 

We examined whether there was 
overlap in the subjects that were 
identified by the three high-risk 
signatures. 

The majority of subjects that were 
identified by the multimodal 
high-risk signature had been 
identified as such by the unimodal 
cognitive and unimodal structural 
signatures. The unimodal 
cognitive signature identified the 
majority of all high-risk subjects 
(Figure 6). 
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Materials and methods 
Data 

Data used in the preparation of this article were obtained from the Alzheimer's             

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was         

launched in 2003 as a public-private partnership, led by Principal Investigator Michael W.             

Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance               

imaging (MRI), positron emission tomography (PET), other biological markers, and clinical           

and neuropsychological assessment can be combined to measure the progression of mild            

cognitive impairment (MCI) and early Alzheimer's disease (AD). For up-to-date information,           

see www.adni-info.org.  

We took baseline T1-weighted MRI scans from the ADNI1 (228 CN, 397 MCI, 192              

AD) and ADNI2 (218 CN, 354 MCI, 103 AD) studies. For a detailed description of MRI                

acquisition details, see http://adni.loni.usc.edu/methods/documents/mri-protocols/. All     

subjects gave informed consent to participate in these studies, which were approved by the              

research ethics committees of the institutions involved in data acquisition. Consent was            

obtained for data sharing and secondary analysis, the latter being approved by the ethics              

committee at the CRIUGM. For the MCI groups, each individual must have had at least 36                

months of follow-up for inclusion in our analysis. We also further stratified the MCI groups               

into stable (sMCI), who never received any change in their diagnosis, and progressors             

(pMCI), who received a diagnosis of AD dementia within 36 months of follow-up. pMCI              

who progressed to AD dementia after 36 months were excluded. After applying these             

inclusion/exclusion criteria, we were left with 280 and 268 eligible MCI subjects in ADNI1              

and ADNI2 respectively. 

 

Structural features from voxel-based morphometry 

Images were processed with the NeuroImaging Analysis Kit (NIAK) version 0.18.1           

(https://hub.docker.com/r/simexp/niak-boss/), the MINC toolkit (http://bic-mni.github.io/)     

version 0.3.18, and SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) under      

CentOS with Octave (http://gnu.octave.org) version 4.0.2. Preprocessing of MRI data was           

executed in parallel on the Cedar supercomputer (https://docs.computecanada.ca/wiki/Cedar),        
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using the Pipeline System for Octave and Matlab (PSOM) ​[21] ​. Each T1 image was linearly               

co-registered to the Montreal Neurological Institute (MNI) ICBM152 stereotaxic symmetric          

template ​[22] ​, using the CIVET pipeline ​[23] ​, and then re-oriented to the AC-PC line. Each               

image was segmented into grey matter, white matter, and CSF probabilistic maps. The             

DARTEL toolbox ​[24] was used to normalize the grey matter segmentations to a predefined              

grey matter template in MNI152 space. Each map was modulated to preserve the total              

amount of signal and smoothed with a 8 mm isotropic Gaussian blurring kernel. After quality               

control of the normalized grey matter segmentations, we were left with 621 subjects in              

ADNI1 (out of 700, 88.7% success rate) and 515 subjects in ADNI2 (out of 589, 87.4%                

success rate).  

We extracted subtypes to characterize variability of grey matter distribution with the            

CN and AD samples from ADNI1. In order to reduce the impact of factors of no interest that                  

may have influenced the clustering procedure, we regressed out age, sex, mean grey matter              

volume (GMV), and total intracranial volume (TIV), using a mass univariate linear regression             

model at each voxel. We then derived a spatial Pearson's correlation coefficient between all              

pairs of individual maps after confound regression. This defined a subject x subject (377 x               

377) similarity matrix which was entered into a Ward hierarchical clustering procedure            

(Figure 1a). Based on visual inspection of the similarity matrix, we identified 7 subgroups              

(Figure 1b). Each subtype was defined as the average map of each subgroup. For each               

subject, we computed spatial correlations between their map and each subtype, which we call              

weights (Figure 1a). The weights formed a n subject x m subtypes (n=377, m=7) matrix,               

which was included in the feature space for all predictive models including voxel-based             

morphometry (VBM) throughout this work. As in our previous works ​[20,25] ​, we chose to              

use weights, which can be interpreted as continuous measures for subtype affinity, over             

discrete subtype membership because the latter is less informative as most individuals            

express similarity to multiple subtypes ​[26] ​. Note that although we chose to present our              

findings with 7 subtypes, we examined how the number of subtypes may impact our              

subsequent predictions. There was no significant difference in model performance when we            

changed the number of subtypes (see Table S1 in supplementary material). 
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Figure 1. Subtyping procedure and resulting subtypes. a) A hierarchical clustering procedure            
identified 7 subtypes, or subgroups, of individuals with similar patterns of grey matter topography              
within the ADNI1 cohort of CN and AD subjects (top). A measure of spatial similarity, called subtype                 
weight, between a single individual’s grey matter volume map and the average of a given subtype was                 
calculated for all individuals and all subtypes (bottom). b) Maps of the 7 subtypes showing the                
distribution of grey matter across all voxels relative to the average. CN* and AD* denote significant                
associations between the subtype weights and diagnoses of cognitively normal (CN) or Alzheimer's             
dementia (AD) respectively. 
 
Cognitive features 

We took baseline neuropsychological scores for each subject from several cognitive           

domains: memory from the composite score ADNI-MEM ​[27] ​, executive function from the            

composite score ADNI-EF ​[28] ​, language from the Boston Naming Test (BNT), visuospatial            

from the clock drawing test, and global cognition from the Alzheimer's Disease Assessment             

Scale-Cognitive (ADAS13). We chose measures that span multiple cognitive domains as it            

has been suggested that the use of a combination of neuropsychological measures is likely the               

best approach to predicting incipient dementia ​[29] ​. These scores were included as features             

for the predictive models involving cognition. Thirteen subjects across both ADNI1 and            
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ADNI2 (8 AD, 5 MCI) had to be excluded due to missing values in their cognitive                

assessments. See Table 2 for demographic information of subjects who were included in             

analyses. 

 

Table 2. Demographic information for post-QC subjects in ADNI1 and ADNI2. 

ADNI1 CN sMCI pMCI AD 

N 205 88 147 165 

Age ± SD 76.1 ± 5.0 74.0 ± 7.6 74.3 ± 7.1 75.4 ± 7.5 

Female % 51.7 40.9 40.8 51.5 

APOE4+ % 27.8 37.5 68.7 65.4 

ADAS13 ± SD 9.5 ± 4.3 14.3 ± 5.5 21.3 ± 5.3 28.6 ± 7.1 

MMSE ± SD 29.1 ± 1.0 27.7 ± 1.7 26.7 ± 1.7 23.4 ± 2.0 

ADNI2 CN  sMCI pMCI AD 

N 188 180 55 89 

Age ± SD 72.8 ± 6.1 70.8 ± 7.3 72.1 ± 7.1 74.4 ± 7.8 

Female % 54.0 47.8 49.1 46.1 

APOE4+ % 29.4 35.6 65.4 71.3 

ADAS13 ± SD 9.1 ± 4.2 11.8 ± 5.3 21.4 ± 6.5 31.6 ± 8.7 

MMSE ± SD 29.1 ± 1.1 28.4 ± 1.6 27.3 ± 1.9 23.1 ± 2.3 

ADAS13=Alzheimer’s Disease Assessment Scale - Cognitive subscale (13 items);  

MMSE=Mini Mental State Examination 

 

 

Prediction of high confidence AD dementia cases in ADNI1 

We trained a linear support vector machine (SVM) model with a linear kernel, as              

implemented by Scikit-learn ​[30] version 0.18 to classify AD vs CN from ADNI1 to get a                

baseline prediction accuracy. We then used a two-step method to select an operating point for               

the linear SVM to obtain a highly precise and specific classification ​[20] ​. This was done by                

replicating the SVM prediction via subsampling and identifying the patients with highly            
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robust prediction outcomes, i.e. who are consistently identified as true AD cases (true             

positives) during testing, regardless of the training subsample. This approach was found, in             

practice, to lead to a highly specific prediction, in addition to offering a guarantee of               

robustness; see ​[20] for more information. Specifically here, a tenfold cross-validation loop            

was used to estimate the performance of the trained model. Classes were balanced inversely              

proportional to class frequencies in the input data for the training. A nested cross-validation              

loop (stratified shuffle split with 50 splits and 20% test size, i.e. ​a random permutation               

cross-validator was used to split the data into 50 training and test sets, where the size of the                  

test set was always 20% of the original sample size​) was used for the grid search of the SVM                   

hyperparameter ​C (grid was 10​-2 to 10​1 with 15 equal steps). We randomly selected              

subsamples of the dataset, retaining a set percentage of participants in each subsample. For              

each subsample, a separate SVM model was trained to predict AD or CN in ADNI1. The                

SVM training was replicated a number of times. Both the subsample size and the number of                

subsamples were selected to maximize the positive predictive value of the prediction of             

sMCI vs pMCI in ADNI1, as described below. Predictions were made on the remaining              

subjects that were not used for training, and, for each subject, we calculated a hit probability                

defined as the frequency of correct classification across all SVM replications in which the test               

set contained that subject. High confidence AD cases were defined as individuals with 100%              

hit probabilities with the AD label. Next, we trained a logistic regression classifier ​[31] ​, with               

L1 regularization on the coefficients, to predict the high confidence AD cases. A stratified              

shuffle split (500 splits, 50% test size) was used to estimate the performance of the model for                 

the grid search of the hyperparameter ​C (grid was 10​-2 to 10​1 with 15 equal steps) on the                  

overall ADNI1 sample, and the same hyperparameters were used for all SVM replications.  

We used the entire CN and AD sample from ADNI1 to obtain three highly predictive               

signatures (HPS) (i.e. models), 1) one using VBM subtype weights as features (VBM only),              

2) one using only cognitive features (COG only), 3) and one using the combination of VBM                

subtype weights and cognitive features (VCOG). In all three signatures, age, sex, mean             

GMV, and TIV were also included as features. 

 

Prediction of progression to AD dementia from the MCI stage in ADNI1 

The logistic regression trained on AD vs CN was used to identify MCI patients who               

have a HPS of AD dementia in ADNI1. Our hyperparameters for this logistic regression were               
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optimized based on the number of subsamples and subsample size that produced the             

maximum specificity and PPV for the classification of sMCI (n=89) vs pMCI (n=155) in              

ADNI1, while maintaining a minimum of 30% sensitivity. We varied the number of             

subsamples (100, 500, 1000) and subsample size (10%, 20%, 30%, 50%) to perturb the              

model and identify subjects that had robust outcomes during the testing phase regardless of              

the training subsample. We then re-trained our models to classify AD vs CN in ADNI1 with                

these optimized hyperparameters. This was done for all three signatures. In brief, we used the               

AD and CN sample from ADNI1 as a training set, and the MCI subjects from ADNI1 as a                  

validation set. The ADNI2 sample was then used as an independent replication (test) set, to               

establish the performance of the two-stage model without further changes to the            

hyperparameters.  

 

Statistical test of differences in model performance 

We used Monte-Carlo simulations to generate confidence intervals on the          

performance (i.e. accuracy, PPV, specificity and sensitivity) of both linear SVM and HPS             

models for their predictions of AD vs CN and pMCI vs sMCI. Taking the observed               

sensitivity and specificity, and using similar sample sizes to our experiment, we replicated the              

number of true and false positive detection 100000 times using independent Bernoulli            

variables, and derived replications of PPV, specificity and sensitivity. By comparing these            

replications to the accuracy, sensitivity, specificity and PPV observed in both models, we             

estimated a p-value for differences in model performance ​[32] ​. A p-value smaller than 0.05              

was interpreted as evidence of a significant difference in performance, and 0.001 as strong              

evidence. We also used this approach to compare the performance of the combined features              

(VCOG) to the models containing VBM features (VBM) or cognitive features (COG) only.             

Note that, based on our hypotheses regarding the behaviour of the HPS model, the tests were                

one-sided for increased accuracy, specificity and PPV, and one-sided for decreased           

sensitivity.  

To assess the performance of the HPS models against standard machine learning            

algorithms, we used four algorithms (SVM with a RBF kernel, K nearest neighbors, random              

forest, and Gaussian naive Bayes) to train models to classify AD vs CN in the ADNI1                

dataset. We then tested and validated these models on classifying AD vs CN in ADNI2 and                

finally pMCI vs sMCI in both ADNI1 and ADNI2 separately. See the supplementary material              
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for details of the implementations of these latter algorithms. We then generated ROC curves              

and calculated the area under the curve (AUC) for each model and classification (AD vs CN;                

pMCI vs sMCI) in both ADNI1 and ADNI2.  

 

Statistical tests of association of progression, AD biomarkers, and risk factors in            

high confidence MCI subjects 

Based on the classifications resulting from the linear SVM and HPS models, we             

separated the MCI subjects into three different groups: 1) High confidence, subjects who             

were selected by the HPS model as hits, 2) Low confidence, subjects who were selected by                

the linear SVM model as hits but were not selected by the HPS model, and 3) Negative,                 

subjects who were not selected as hits by either algorithm.  

In order to validate whether the high confidence subjects represented individuals who            

were in a prodromal phase of AD, we tested if this subgroup was enriched for progression to                 

dementia, APOE4 carriers, females, and subjects who were positive for A𝛽 and tau             

pathology. Positivity of AD pathology was determined by CSF measurements of A𝛽 1-42             

peptide and total tau with cut-off values of less than 192 pg/mL and greater than 93 pg/mL                 

respectively ​[33] ​. We implemented Monte-Carlo simulations, where we selected 100000          

random subgroups out of the original MCI sample. By comparing the proportion of             

progressors, APOE4 carriers, females, A𝛽-positive, and tau-positive subjects in these null           

replications to the actual observed values in the HPS subgroup, we estimated a p-value ​[32]               

(one sided for increase). A p-value smaller than 0.05 was interpreted as evidence of a               

significant enrichment, and 0.001 as strong evidence. 

One-way ANOVAs were used to evaluate differences between the HPS groupings           

with respect to age. Post-hoc Tukey's HSD tests were done to assess pairwise differences              

among the three classes (high confidence, low confidence, negative). These tests were            

implemented in Python with the SciPy library ​[34] version 0.19.1 and StatsModels library             

[35] ​ version 0.8.0. 

To explore the impact of HPS grouping on cognitive trajectories, linear mixed effects             

models were performed to evaluate the main effects of and interactions between the HPS              

groups and time on ADAS13 scores up to 36 months of follow-up. The models were first fit                 

with a random effect of participant and then were fit with random slopes (time | participant) if                 
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ANOVAs comparing the likelihood ratio suggested a significant improvement in model fit.            

All tests were performed separately on the ADNI1 and ADNI2 datasets. These tests were              

implemented in R version 3.3.2 with the library nlme version 3.1.128 ​[36] ​. 

 

Public code, data availability and reproducibility 

The code used in this experiment is available on a GitHub repository            

( ​https://github.com/SIMEXP/vcog_hps_ad​) and zenodo   

( ​https://doi.org/10.5281/zenodo.1444081) ​.  

We shared a notebook replicating all the machine learning experiments, starting after            

the generation of VBM subtypes. However, in order to protect the privacy of the study               

participants, we could not share individual subtype weights alongside other behavioural data            

and diagnostic information. We thus created parametric (Gaussian) bootstrap simulations,          

based on group statistics alone, that will allow interested readers to replicate results similar to               

those presented in this manuscript, using the exact same code and computational environment             

that were used on real data, but with purely synthetic data instead. The notebook can be                

executed online via the binder platform ( ​http://mybinder.org ​), and runs into a docker            

container 

( ​https://mybinder.org/v2/gh/SIMEXP/vcog_hps_ad/master?filepath=%2Fvcog_hpc_predictio

n_simulated_data.ipynb ​), built from a configuration file that is available on GitHub           

( ​https://github.com/SIMEXP/vcog_hps_ad/blob/master/Dockerfile​). The container itself is     

available on Docker Hub ( ​https://hub.docker.com/r/simexp/vcog_hps_ad/) ​. The simulated       

data was archived on figshare     

( ​https://figshare.com/articles/Simulated_cognitive_and_structural_MRI_data_from_ADNI/71

32757​).  

The simulation included the following 16 variables: age, sex, mean grey matter            

volume, total intracranial volume, 5 cognitive assessment scores and 7 VBM subtype weights             

from both ADNI1 and ADNI2. Subjects that had missing values for these variables were              

discarded from the simulation, leaving N=1115 subjects. We stratified the population into 12             

subgroups: the four clinical labels (AD, pMCI, sMCI, CN), each further subdivided by the              

three prediction subclasses identified in this paper (negative, low confidence, high           

confidence). For each subgroup, we estimated the average and covariance matrices between            
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the 16 variables of interest. We then generated a number of multivariate normal data points               

that matched the number of subjects found in each subgroup, using the empirical mean and               

covariance matrix of each subgroup. Finally, the range of the simulated data was clipped to               

the range of the original real data, and the simulated sex data points were binarized by nearest                 

neighbour.  

The statistics from the predictive model in the original implementation are similar to             

that of the simulated data. The model predicted the progression of dementia from MCI in               

ADNI1 with a PPV of 93.1% (specificity of 93.2%) on real data. This coincides with a 93.3%                 

PPV (specificity of 94.3%) that we get when using the simulated data. Similarly, with the               

ADNI2 dataset the model achieved a 81.3% PPV (specificity of 96.7%) from the real data               

and a 75.7% PPV (specificity of 95.0%) from the simulated data.  

Results 

Subtypes of brain atrophy 

Subtype 1 was characterized by reduced relative GMV in the occipital, parietal and             

posterior temporal lobes. Subtype 2 displayed reduced relative GMV across the cortex,            

except for the medial parts of the parietal and occipital lobes and the cingulate. Subtype 3 had                 

increased relative GMV in the medial and lateral temporal lobes, insula, and striatum.             

Subtype 4 had decreased relative GMV in the temporal lobes, inferior parietal lobes, posterior              

cingulate, and the prefrontal cortices. Subtype 5 was characterized by greater relative GMV             

in the temporal lobes, while Subtype 6 had the opposite pattern of reduced relative GMV in                

the temporal lobes. Subtype 7 displayed greater relative GMV in the parietal lobes, posterior              

lateral temporal lobes, medial temporal lobes, and medial occipital lobes. See Figure 1b for              

surface representations of the subtypes. Diagnosis (CN, sMCI, pMCI, AD) accounted for a             

substantial amount of variance in subtype weights for subtypes 1 (F=8.51, p=1.30 ✕ 10​-5​), 2               

(F=10.32, p=1.00 ✕ 10​-6​), 4 (F=14.53, p=2.60 ✕ 10​-9​), 5 (F=13.86, p=6.77 ✕ 10​-9​), 6               

(F=34.27, p=2.57 ✕ 10​-21​), and 7 (F=37.02, p=5.85 ✕ 10​-23​). Post-hoc t-tests showed AD              

subjects had significantly higher weights compared to CN (Figure 1b) for subtypes 1 (t=2.88,              

p=​0.02​), 2 (t=4.05, p=3.0 ✕ 10​-4​), 4 (t=4.83, p<1.0 ✕ 10​-4​), and 6 (t=7.86, p=<1.0 10​-4​),                

making these subtypes associated with a diagnosis of AD. CN subjects had significantly             
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higher weights compared to AD for subtypes 5 (t=-4.86, p<1.0 ✕ 10​-4​) and 7 (t=-6.95, p<1.0                

✕ 10​-4​), making these subtypes associated with a cognitively normal status.  

 

Prediction of AD dementia vs cognitively normal individuals 

The linear SVM model trained using the VCOG features achieved 94.5% PPV (95.6%             

specificity, 93.9% sensitivity, 94.9% accuracy) when classifying AD vs CN in ADNI1. Such             

high performance was expected given the marked cognitive deficits associated with clinical            

dementia. COG features only actually reached excellent performance as well (97.6% PPV,            

98.0% specificity, 96.4% sensitivity, 97.3% accuracy), while using VBM features only           

yielded markedly lower performances (86.4% PPV, 89.3% specificity, 79.6% sensitivity,          

84.8% accuracy) (see Figures 2 and ROC analysis in Figure 3). Note that the performance               

metrics in ADNI1 were estimated through cross-validation, and represent an average           

performance for several models trained on different subsets of ADNI1. We then trained a              

model on all of ADNI1, and estimated its performance on an independent dataset, ADNI2.              

Using VCOG predictors, the ADNI1 model reached 92.0% PPV (96.3% specificity, 92.0%            

sensitivity, 94.5% accuracy), when applied on ADNI2 AD vs CN data. Again the             

performance was comparable with COG predictors only (92.2% PPV, 96.3% specificity,           

94.3% sensitivity, 95.6% accuracy), and VBM features only achieved lower performance           

(57.3% PPV, 79.8% specificity, 56.7% sensitivity, 72.3% accuracy) (see Figures 2 and ROC             

analysis in Figure 3). Note that PPV is dependent on the proportion of patients and controls                

for a given sensitivity and specificity. Since the ADNI2 sample had a substantially smaller              

proportion of AD subjects compared to ADNI1, the resulting PPV was reduced. When we              

adjusted the baseline rate of AD subjects in ADNI2 to the same rate in ADNI1, the PPVs                 

were 95.2%, 95.3%, and 70.2% for the VCOG, COG, and VBM models respectively.  

 

Identification of high confidence AD cases for prediction 

The VCOG HPS model achieved 99.2% PPV (99.5% specificity, 77.6% sensitivity,           

89.7% accuracy) in classifying high confidence AD subjects in ADNI1. These performance            

scores were estimated by cross-validation of the entire two-stage process (training of SVM,             

estimation of hit probability, identification of HPS). However, the hyperparameters of the            

two-stage model were optimized on classifying pMCI vs sMCI in ADNI1, as described             
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previously. We next trained a single model on all of ADNI1, which we applied on an                

independent sample (ADNI2). The ADNI1 AD VCOG HPS model reached 98.6% PPV            

(99.5% specificity, 79.5% sensitivity, 93.1% accuracy) on ADNI2. As was previously           

observed with the conventional SVM analysis, the VCOG HPS model had similar            

performance to the COG HPS model (ADNI1: 100% PPV, 100% specificity, 87.3%            

sensitivity, 94.2% accuracy; ADNI2: 98.7% PPV, 99.5% specificity, 88.6% sensitivity,          

96.0% accuracy), and outperformed the VBM HPS model (ADNI1: 92.3% PPV, 96.1%            

specificity, 54.6% sensitivity, 77.2% accuracy; ADNI2: 65.2% PPV, 91.5% specificity,          

33.3% sensitivity, 72.7% accuracy); see Figure 2. When adjusted to the same baseline rate of               

AD subjects as ADNI1, the PPVs in ADNI2 were 99.2%, 99.3%, and 76.7% for the VCOG,                

COG, and VBM HPS models respectively.  
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Figure 2. Accuracy, specificity, sensitivity, and positive predictive value (PPV) for different            
classifiers: linear SVM, highly predictive signature (HPS), and the linear SVM thresholded at 0.95              
(SVM 0.95), for the classifications of patients with AD dementia (AD) and cognitively normal              
individuals (CN) and patients with mild cognitive impairment who progress to AD (pMCI) and stable               
MCI (sMCI) in ADNI1 and ADNI2. VBM represents the model trained with VBM subtypes, COG               
represents the model trained with baseline cognitive scores, and VCOG represents the model trained              
with both VBM subtypes and cognition. Positive predictive value was adjusted (PPV (adj)) for a               
prevalence of 33.6% pMCI in a sample of MCI subjects for both ADNI1 and ADNI2 MCI cohorts.                 
Significant differences are denoted by * for p<0.05 and ** for p<0.001). 
 
 

High confidence prediction of progression to AD dementia  

When using the full VCOG features, 87 MCI patients were selected as high             

confidence in ADNI1, out of which 81 (93.1% PPV) were pMCI within 36 months of               

follow-up. This represented a large, significant increase over the baseline rate of progressors             

in the entire ADNI1 MCI sample (37.4%) (p<0.001). This was also a significant increase              

over the SVM's predictions, where 83.9% of subjects that it had labeled as hits were true                

progressors (p<0.001). When adjusted to a 33.6% baseline rate of progressors, more typical             

of MCI populations, the PPV of high confidence subjects for prognosis of dementia was              

80.4% (93.2% specificity, 55.1% sensitivity, 69.3% accuracy).  

We replicated these analyses in the MCI sample from ADNI2 (N=235). Using VCOG             

features, 32 subjects were identified as high confidence, 26 of which progressed to AD              

dementia within 36 months follow-up (81.2% PPV, specificity of 96.7%, sensitivity of            

47.3%, 85.1% accuracy, 87.8% PPV adjusted to a 33.6% baseline rate). This represented a              

significantly higher prevalence than the 30.6% baseline rate in the entire ADNI2 MCI cohort              

(p<0.001). This was also a significant increase over the SVM's predictions, where 67.8% of              

subjects it had labeled as hits were true progressors (p<0.001).  

As in the classifications of AD vs CN, the VCOG HPS model tended to have higher                

performance compared to the VBM HPS (ADNI1: 89.9% specificity, 42.9% sensitivity,           

60.5% accuracy, 87.7% PPV, 68.2% adjusted PPV; ADNI2: 90.1% specificity, 47.3%           

sensitivity, 80.2% accuracy, 59.1% PPV, 70.7% adjusted PPV) in classifying pMCI vs sMCI.             

The VCOG HPS also had similar performance compared to the COG HPS (ADNI1: 87.5%              

specificity, 64.6% sensitivity, 73.2% accuracy, 89.6% PPV, 72.3% adjusted PPV; ADNI2:           

95.0% specificity, 56.4% sensitivity, 86.0% accuracy, 77.5% PPV, 85.1% adjusted PPV) for            
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distinguishing between pMCI and sMCI. Notably, the VCOG features lead to higher PPV             

than VBM and COG features taken independently, both in ADNI1 and ADNI2. That increase              

was large and significant between VCOG and VBM (up to 17%) and marginal and              

non-significant between VCOG and COG (up to 8%); see Figure 2. 

 

Trade-off between sensitivity and specificity of different algorithms 

The HPS models consistently outperformed the linear SVM classifiers with respect to            

specificity (p<0.001) in the classifications of AD vs CN and pMCI vs sMCI in both ADNI1                

and ADNI2, regardless of the features that the models contained. The HPS also had greater               

PPV (p<0.05) adjusted for a typical prevalence of 33.6% pMCI in a given sample of MCI                

subjects ​[1] ​. However, these increases in specificity and PPV for the HPS model came at a                

significant cost of reduced sensitivity compared to the linear SVM classifier, across all             

models in both ADNI1 and ADNI2 (p<0.05) (Figure 2). Note that this shift towards lower               

sensitivity and higher specificity and PPV could be achieved by adjusting the threshold of the               

SVM analysis (see Figure 2 and ROC analysis in Figure 3), and is not unique to the two-stage                  

procedure we implemented. This trade-off between sensitivity and specificity is universal           

across machine learning algorithms and similar results can be achieved by adjusting the             

prediction threshold of different strategies. As shown by the ROC curves and AUC values in               

Figure 3, other machine learning algorithms (SVM with a radial basis function kernel, K              

nearest neighbors, random forest, and Gaussian naive Bayes) also performed similarly to the             

HPS. Thus, the value of the HPS is in the selection of a threshold point in order to operate in                    

a high specificity regime. 
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Figure 3. Receiver operating characteristic (ROC) curves for various machine learning algorithms 
with different features (VBM for VBM subtypes only, COG for cognitive features only, VCOG for a 
combination of VBM subtypes and cognitive features). Algorithms included a support vector machine 
with a radial basis function kernel (RBF SVM), K nearest neighbors (KNN), random forest (RF), 
Gaussian naive Bayes (GNB), a support vector machine with a linear kernel representing the first 
stage (Linear SVM) of the two-stage predictive model, and the two-stage highly predictive signature 
(HPS). TPR refers to true positive rate,  FPR refers to false positive rate, and AUC refers to area under 
the curve. 
 

 
Characteristics of MCI subjects with a highly predictive VCOG signature of AD 

High confidence MCI subjects with the VCOG signature were more likely to be             

progressors (Figure 4a) compared to low confidence subjects and negative subjects (ADNI1:            

p<0.001; ADNI2: p<0.001). High confidence MCI subjects were also more likely to be             
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APOE4 carriers (Figure 4b) (ADNI1: p<0.005; ADNI2: p<0.05). There was no difference in             

sex across the HPS groupings in the MCI subjects of either the ADNI1 or ADNI2 cohorts                

(Figure 4c). This was consistent with the whole sample, where there were equal proportions              

of progressors across both sexes in each dataset (ADNI1: χ​2​=0.015, p=0.90; ADNI2:            

χ​2​=0.0002, p=0.99). The high confidence class was also significantly enriched for A𝛽-positive            

subjects in ADNI1 (p<0.05). However, this result was not replicated in the ADNI2 MCI              

subjects (Figure 4d). Similarly with tau, we found a significant increase in tau-positive             

subjects in the high confidence group of ADNI1 (p<0.05), but not in ADNI2 (Figure 4e). We                

found a significant age difference across the HPS classes in ADNI2 (F=5.68, p<0.005), where              

the high confidence subjects were older than the Negative subjects by a mean of 4.4 years.                

However, age did not differ across the HPS classes in ADNI1 (Figure 4f). Finally, high               

confidence subjects had significantly steeper cognitive declines compared to the low           

confidence and negative groups (Figure 4g): there were significant interactions between the            

HPS groupings and time in ADNI1: (high confidence 𝛽=-0.147, t=-7.56, p<0.001; low            

confidence 𝛽=-0.055, t=-2.46, p<0.05) and ADNI2 (high confidence 𝛽=-0.194, t=-8.69,          

p<0.001; low confidence 𝛽=-0.072, t=-3.31, p=0.001). The high confidence subjects in           

ADNI1 and ADNI2 respectively gained 1.8 and 2.3 more points each year on the ADAS13               

compared to the low confidence and negative groups. Note that higher scores on the              

Alzheimer’s Disease Assessment Scale - Cognitive subscale (13 items) (ADAS13) represent           

worse cognitive function. 
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Figure 4. Characteristics of MCI subjects with the VCOG signature in ADNI1 and ADNI2. We show 
the percentage of MCI subjects who a) progressed to dementia, were b) APOE4 carriers, c) female, d) 
positive for A𝛽 measured by a cut-off of 192 pg/mL in the CSF [22], and e) positive for tau measured 
by a cut-off of 93 pg/mL in the CSF [22] in each classification (High confidence, Low confidence, 
and Negative). f) Age and g) cognitive trajectories, measured by the Alzheimer's Disease Assessment 
Scale - Cognitive subscale with 13 items (ADAS13), across the three classes. Significant differences 
are denoted by * for family-wise error rate-corrected p<0.05. 
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COG, VBM and VCOG highly predictive signatures 

The COG signature was mainly driven by scores from the ADAS13, which measures             

overall cognition, ADNI-MEM, a composite score that measures memory ​[27] ​, and           

ADNI-EF, a composite score that measures executive function ​[37] (coefficients were 5.49,            

-4.80 and -2.50 respectively). In this model, sex, age, mean GMV, and TIV contributed very               

little, relative to the cognitive features (Figure 5b). Note that these coefficients should be              

interpreted as pseudo z-scores as the features had been normalized to zero mean and unit               

variance. 

Almost all grey matter subtypes contributed to the VBM signature. Mean GMV,            

subtype 1 (reduced relative GMV in the occipital, parietal and posterior temporal lobes) and              

subtype 6 (reduced relative GMV in the temporal lobes, notably the medial temporal regions)              

had the highest weights in the model (coefficients were -5.07, 4.87, and 3.98 respectively)              

(Figure 5c). We had anticipated the larger contribution of these two subtypes as they have               

been described in previous AD subtyping work ​[5,17–19] ​.  

The ADAS13, memory (ADNI-MEM) and executive function (ADNI-EF) scores         

contributed the most to the VCOG signature (coefficients were 6.27, -7.43 and -3.95             

respectively, Figure 5a). Of the VBM features, subtypes 2, 3 and 7 contributed the most to the                 

signature (coefficients were 1.36, -2.12 and -2.83 respectively). Subtypes 1 and 6, which had              

the highest positive weights in the VBM HPS model, were given marginal weights in the               

VCOG HPS model, which is potentially indicative of redundancy with COG features. Note             

that the weights for subtypes 3 and 7 were negative in the model, which means that predicted                 

AD and pMCI cases had brain atrophy patterns that were spatially dissimilar to those              

subtypes. 
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Figure 5. Coefficients of the high confidence prediction a) VCOG HPS model, b) COG HPS model, c) 
VBM HPS model. ADAS13=Alzheimer’s Disease Assessment Scale - Cognitive, MEM=ADNI-MEM 
score; EXEC=ADNI-EF score, BNT=Boston Naming Test, CLOCK=clock drawing test, VBM 
1-7=VBM subtype weights, GMV=mean grey matter volume, TIV=total intracranial volume. 

 

Comparison of COG, VBM and VCOG high confidence subjects 

We found substantial overlap of subjects labeled as high confidence in the MCI             

cohorts across the VBM, COG and VCOG signatures (Figure 6). There were very few              

subjects that were labeled as high confidence exclusively by the VCOG signature. As to be               

expected, the majority of subjects labeled as high confidence by the VCOG signature             

(ADNI1: 97.7%; ADNI2: 100%) were also labeled as high confidence by either the VBM              

only or COG only signatures or both. Of the subjects that were labeled as high confidence by                 

the VBM only signature, 23.6% and 55.2% in ADNI1 and ADNI2 respectively were             

identified exclusively by the VBM HPS. There were relatively few subjects (7 and 2 subjects               

in ADNI1 and ADNI2 respectively) that were captured by VBM and VCOG but missed by               

the COG HPS. The COG HPS actually identified the majority of all high confidence subjects               

across the three signatures (ADNI1: 106 of 132 total subjects, ADNI2: 40 of 65 total               

subjects). From Figure 6, we can see that the VCOG HPS acts as a refinement of the COG                  
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signature, as the VCOG HPS captures a subset of subjects that were labeled by the COG                

HPS. 

Out of the high confidence subjects labeled by all three signatures, 97.9% and 93.7%              

from ADNI1 and ADNI2 respectively progressed to dementia (Supplementary Table S2).           

These subjects had worse cognition based on the MMSE and higher proportions of APOE4              

carriers, A𝛽 positive and tau positive individuals, compared to the baseline rates in all MCI               

subjects. Of the high confidence subjects who were labeled only by the VBM model, 70.6%               

and 43.4% from ADNI1 and ADNI2 respectively were progressors. This group of subjects             

had less A𝛽 and tau positive individuals compared to the baseline rates. Of the high               

confidence subjects who were labeled only the COG model, 70.4% and 57.1% from ADNI1              

and ADNI2 respectively progressed to dementia. This group appeared to have a greater             

proportion of A𝛽 positive individuals compared to the baseline rates in both ADNI1 and              

ADNI2 cohorts. The majority of these COG high confidence subjects were also male. Given              

the distinct characteristics among the exclusively COG, exclusively VBM, and VCOG high            

confidence subjects, these groups may represent subgroups with different risks for AD            

dementia. As it appears that a greater proportion of pMCI is captured when cognitive and               

structural MRI features are combined, these findings may support joining multiple modalities            

together in order to achieve higher positive predictive value. However, these results are             

qualitative and of an exploratory nature due to low sample sizes.  

 

Figure 6. Venn diagram depicting the number of MCI subjects labeled as high confidence by the 
VBM, COG, and VCOG HPS models in ADNI1 and ADNI2. 
 

 

23 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 8, 2019. ; https://doi.org/10.1101/352344doi: bioRxiv preprint 

https://doi.org/10.1101/352344
http://creativecommons.org/licenses/by/4.0/


Discussion 

We developed a MRI and cognitive-based model to predict AD dementia with high             

PPV and specificity. Specifically, our two-stage predictive model reached 93.2% specificity           

and 93.1% PPV (80.4% when adjusted for 33.6% prevalence of progressors) in ADNI1 when              

classifying progressor vs stable MCI patients (within 3 years follow-up). We replicated these             

results in ADNI2 where the model reached 96.7% specificity and 81.2% PPV (87.8%             

adjusted PPV). With respect to specificity and PPV, these results are a substantial             

improvement over previous works combining structural MRI and cognition on the same            

prediction task, that have reported up to 76% specificity and 65% PPV (adjusted for 33.6%               

prevalence of progressors) ​[7] ​. Finally, our results also reproduced our past work which             

developed a model that optimizes specificity and PPV ​[20] ​. However, it appears that a              

combination of structural and functional MRI measures may lead to an improved prediction             

as two studies have reported 90-100% PPV with these measures ​[9,20] ​, with the limitation of               

smaller sample sizes (56 total MCI subjects in ​[20] ​, 86 total MCI subjects in ​[9] ​) due to the                  

limited availability of functional MRI data in ADNI. Our proposed signature is based on              

widely available measures, and can be readily tested in many clinical trials. Functional MRI              

measures, by contrast, are only gaining traction in large clinical studies, and will at the               

minimum require more time to get widely adopted, if the very high PPVs are replicated in                

larger samples. 

An ideal model to predict conversion to AD dementia would have both high             

sensitivity and specificity. However, the pathophysiological heterogeneity of clinical         

diagnosis will prevent highly accurate prediction linking brain features to clinical trajectories.            

We argue that, faced with heterogeneity, it is necessary to sacrifice sensitivity to focus on a                

subgroup of individuals with similar brain abnormalities. Due to the expected trade-off            

between specificity and sensitivity, the high specificity of our two-stage model indeed came             

at a cost of reduced sensitivity (55.1% in ADNI1 and 47.3% in ADNI2 for classifying pMCI                

vs sMCI), which is much lower than sensitivity values of 64%-95% reported by other groups               

[7,8,10–16] ​. The two-stage procedure did not offer gains compared to a simpler SVM model,              

if the threshold of the SVM model could be selected ​a priori to match the specificity of the                  

two-stage procedure (see ROC curves in Figure 3). The two-stage prediction model offered             
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the advantage of a principled approach to train the prediction model in order to maximize               

specificity, based on samples that are robust and easily classifiable, without testing a range of               

prediction thresholds. The choice of a L1 regularized logistic regression also led to a compact               

and interpretable subset of features for the HPS.  

Favoring specificity over sensitivity is useful in settings where false positives need to             

be minimized and PPV needs to be high, such as expensive clinical trials. Here, with our                

VCOG HPS model, we report the highest PPVs for progression to AD from the MCI stage                

(up to 87.8%, adjusted for 33.6% prevalence of progressors) for models that included             

structural MRI and cognitive features, which are, importantly, modalities that are already            

widely used by clinicians. The present work could be used as a screening tool for recruitment                

in clinical trials that target MCI subjects who are likely to progress to dementia within three                

years. The implementation of an automated selection algorithm could also result in groups of              

MCI subjects with more homogeneous brain pathology. However, we note that high            

confidence subjects did not all present with significant amyloid burden (92.0% and 68.4% of              

high confidence subjects in ADNI1 and ADNI2 respectively, Figure 4), which means that not              

all high confidence individuals are likely to have prodromal AD, even when progressing to              

dementia. 

When we trained our model with cognitive features only, tests for general cognition,             

memory, and executive function were chosen as the strongest predictors of AD dementia. Our              

COG HPS model thus supports previous research that reported general cognition, memory,            

and executive function as important neuropsychological predictors of dementia ​[7,29,38,39] ​.          

Compared to the state-of-the-art multi-domain cognition-based predictive model, which         

reported 87.1% specificity and 81.8% PPV (77.5% when adjusted to 33.6% pMCI            

prevalence) ​[40] ​, our COG HPS model achieved similar performance reaching between           

87.5%-95% specificity and 72.3%-85.1% (adjusted) PPV. As general cognition was the           

strongest feature in our model to predict progression, this supports previous findings that             

MCI patients with deficits across multiple domains are at the highest risk for dementia              

[39,41] ​.  

For our VBM model, we extracted a number of gray matter atrophy subtypes that              

recapitulated previously reported subtypes, namely the medial temporal lobe and parietal           

dominant subtypes ​[5,17–19] ​, which were associated strongly with a diagnosis of AD            

dementia. Weights for the parietal dominant and medial temporal lobe subtypes (Subtypes 1             
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and 6 from Figure 1b, respectively) contributed substantially to the highly predictive            

signature in the VBM model. The atrophy pattern of subtype 6 is spatially similar to the                

spread of neurofibrillary tangles in Braak stages III and IV ​[42] ​, which may support previous               

findings that tau aggregation mediates neurodegeneration ​[43] ​. The contributions of the           

parietal dominant and medial temporal lobe subtypes in the VBM HPS model are also in line                

with previous works, which have reported that cortical thickness and volumes of the medial              

temporal lobes, inferior parietal cortex, and precuneus are strong predictors of progression to             

dementia ​[7,11] ​.  

When combined with cognitive tests in the VCOG model, the structural subtypes            

were given marginal weights. This suggests some redundancy between atrophy and           

cognition, and that cognitive features have higher predictive power than structural features in             

the ADNI MCI sample. This conclusion is consistent with the observation that the COG              

model significantly outperformed the VBM model, similar to previous work ​[7] ​. Although            

cognitive markers were stronger features, the VCOG model assigned large negative weights            

for the structural subtypes 3, which showed greater relative GMV in the temporal lobes, and               

7, which showed greater relative GMV in the parietal, occipital, and temporal lobes. This              

means that these features were predictive of stable MCI in the VCOG model, in line with                

previous work showing that atrophy in these regions is predictive of progression to dementia              

[7,11] ​. Furthermore, we demonstrated that combining MRI data with cognitive markers           

significantly improves upon a model based on MRI features alone. This result is again in line                

with the literature ​[7,10] ​, yet was shown for the first time for a model specifically trained for                 

high PPV. Note that in the current study, the predictive model was trained exclusively on               

images acquired on 1.5T scanners from ADNI1. Good generalization to ADNI2 with 3T             

scanners demonstrates robustness of imaging structural subtypes across scanner makes. 

The VCOG highly predictive signature might reflect a late disease stage. We looked             

at the ratio of early to late MCI subjects in the ADNI2 sample (note that ADNI1 did not have                   

early MCI subjects). Of the MCI subjects identified as high confidence by the VCOG model,               

84.4% were late MCI subjects, compared to a rate of 34.9% of late MCI subjects in the entire                  

ADNI2 MCI sample (Supplementary Figure S1). This approach may not be optimal for early              

detection of future cognitive decline. Training a model to classify MCI progressors and             

non-progressors to dementia could be done in order to capture future progressors in earlier              

preclinical stages (e.g. early MCI). Finally, we focused on structural MRI and            
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neuropsychological batteries as features in our models due to their wide availability and             

established status as clinical tools. However, we believe adding other modalities such as PET              

imaging, CSF markers, functional MRI, genetic factors, or lifestyle factors could result in             

higher predictive power, especially at earlier preclinical stages of AD.  

 

Conclusion 

In summary, we found a subgroup of patients with MCI who share a signature of               

cognitive deficits and brain atrophy, that put them at very high risk to progress from MCI to                 

AD dementia within a time span of three years. We validated the signature in two separate                

cohorts that contained both stable MCI patients and MCI patients who progressed to             

dementia. The model was able to predict progression to dementia in MCI patients with up to                

93.1% PPV and up to 96.7% specificity. The signature was present in about half of all                

progressors, demonstrating that gains in PPV can be made by focusing on a homogeneous,              

yet relatively common subgroup. Our model could potentially improve subject selection in            

clinical trials and identify individuals at a higher risk of AD dementia for early intervention               

in clinical settings. 
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