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Abstract

We propose and theoretically study an approach to massively parallel single molecule
peptide sequencing, based on single molecule measurement of the kinetics of probe
binding [1] to the N-termini of immobilized peptides. Unlike previous proposals, this
method is robust to both weak and non-specific probe-target affinities, which we
demonstrate by applying the method to a range of randomized affinity matrices
consisting of relatively low-quality binders. This suggests a novel principle for proteomic
measurement whereby highly non-optimized sets of low-affinity binders could be
applicable for protein sequencing, thus shifting the burden of amino acid identification
from biomolecular design to readout. Measurement of probe occupancy times, or of
time-averaged fluorescence, should allow high-accuracy determination of N-terminal
amino acid identity for realistic probe sets. The time-averaged fluorescence method
scales well to extremely weak-binding probes. We argue that this method could lead to
an approach with single amino acid resolution and the ability to distinguish many
canonical and modified amino acids, even using highly non-optimized probe sets. This
readout method should expand the design space for single molecule peptide sequencing
by removing constraints on the properties of the fluorescent binding probes.

Author summary

We simplify the problem of single molecule protein sequencing by proposing and
analyzing an approach that makes use of low-affinity, low-specificity binding reagents.
This decouples the problem of protein sequencing from the problem of generating a
high-quality library of binding reagents against each of the amino acids.

Introduction 1

Massively parallel DNA sequencing has revolutionized the biological sciences [2, 3], but 2

no comparable technology exists for massively parallel sequencing of proteins. The most 3

widely used DNA sequencing methods rely critically on the ability to locally amplify 4
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(i.e., copy) single DNA molecules – whether on a surface [4], attached to a bead [5], or 5

anchored inside a hydrogel matrix [6] – to create a localized population of copies of the 6

parent single DNA molecule. The copies can be probed in unison to achieve a strong, 7

yet localized, fluorescent signal for readout via simple optics and standard cameras. For 8

protein sequencing, on the other hand, there is no protein ‘copy machine’ analogous to a 9

DNA polymerase, which could perform such localized signal amplification. Thus, 10

protein sequencing remains truly a single molecule problem. While true single molecule 11

DNA sequencing approaches exist [7–9], these often also rely on polymerase-based DNA 12

copying, although direct reading of single nucleic acid molecules is beginning to become 13

possible with nanopore approaches [10] that may be extensible to protein 14

readout [11–13]. Thus, the development of a massively parallel protein sequencing 15

technology may benefit from novel concepts for the readout of sequence information 16

from single molecules. 17

Previously proposed approaches to massively parallel single molecule protein 18

sequencing [14–16] utilize designs that rely on covalent chemical modification of specific 19

amino acids along the chain. Such chain-internal tagging reactions are currently 20

available only for a small subset of the 20 amino acids, and they have finite efficiency. 21

Thus, such approaches would likely not be able to read the identity of every amino acid 22

along the chain. 23

An alternative approach to protein sequencing [1, 17–19] is to use successive rounds 24

of probing with N-terminal-specific amino-acid binders (NAABs) [1]. Recent studies 25

have proposed that proteins derived from N-terminal-specific enzymes such as 26

aminopeptidases [20], or from antibodies against the PITC-modified N-termini arising 27

during Edman degradation [21], could be used as NAABs for protein sequencing. Yet 28

designing or evolving highly specific, strong N-terminal binders to all 20 amino acids 29

(and more if post-translational modifications, e.g., phosphorylation, are considered) is a 30

challenge. Rather than attempting to improve the properties of the NAABs themselves, 31

we will introduce a strategy – which we term “spectral sequencing” – to work around 32

the limitations of existing NAABs and enable single molecule protein sequencing 33

without the need to develop novel binding reagents. 34

Spectral sequencing measures the affinities of many low-affinity, relatively 35

non-specific NAABs, collectively determining a “spectrum” or “profile” of affinity across 36

binders, for each of the N-terminal amino acids. This profile is sufficient to determine 37

the identity of the N-terminal amino acid. Thus, rather than requiring individual 38

binders to be specific in and of themselves, we will infer a specific profile by combining 39

measurements of many non-specific interactions. The spectral sequencing approach 40

measures the single molecule binding kinetics in a massively parallel fashion, using a 41

generalization of Points Accumulation for Imaging in Nanoscale Topography (PAINT) 42

techniques [22,23] to N-terminal amino acid binders. 43

In what follows, we first derive the capabilities of single-molecule fluorescence based 44

measurement of probe binding kinetics as a function of probe properties and noise 45

sources. We then apply this analysis to the problem of sequencing proteins by 46

measuring profiles of NAAB binding kinetics. Using a range of randomized NAAB 47

affinity matrices as well as an affinity matrix derived directly from the existing 48

measured NAAB kinetics [1], we simulate sequencing of single peptides and obtain 49

97.5% percent accuracy in amino acid identification over a total observation period of 50

35 minutes, even in the presence of up to 5% percent error in the instrument calibration 51

and 25% variation in the true underlying kinetics of the binders, due for example to the 52

effects of nonterminal amino acids. 53
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Fig 1. Identifying Amino Acids from Kinetic Measurements A Example
affinity matrix for a set of NAABs. The affinities of each of the 17 NAABs are shown
for all 19 amino acids excluding cysteine, which is used to anchor the peptides to the
surface. Reproduced from [1]. B In the proposed measurement scheme, the target
(green disk) is attached to a glass slide and is observed using TIRF microscopy. NAAB
binders (brown clefts) bearing fluorophores (red dots) are excited by a TIRF beam
(purple) and generate fluorescent photon emissions (red waves). C When a fluorophore
is bound, there is an increase in fluorescence in the spot containing the target.
Photobleaching of the fluorophore is indistinguishable from unbinding events, so it is
important to use a dye that is robust against photobleaching. Plot shows an illustrative
stochastic kinetics simulation incorporating Poisson shot noise of photon emission. D
The plot shows the affinities of the methionine targeting and tryptophan targeting
NAABs for each of the natural amino acids excluding cysteine (black Xs). Upon
measuring the affinities for these NAABs against an unknown target, the target can be
identified with the amino acid corresponding to the colored region within which the
plotted affinities fall. As an example, a pair of measurements yielding the white star
would identify the target as glycine. E The affinities of the glutamine and lysine
targeting NAABs are shown for each of the amino acids. Some amino acids that are
practically indistinguishable using the Met and Trp NAABs are easily distinguished
using the Gln and Lys NAABs. As an example, if the same target amino acid described
in D were measured with only the Gln and Lys NAABs, yielding the white star, we
would identify the target as proline. However, combining these measurements with
those for the white star in D with Met and Trp NAABs, we see that the true identity of
the target is serine. Thus, the higher dimensional measurement of the amino acid using
many different NAABs allows disambiguation of the amino acid identity.
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Problem Overview 54

We consider the problem in which a set of peptides is immobilized on a surface and 55

imaged using total internal reflection fluorescence (TIRF) microscopy. The surface must 56

be appropriately passivated to minimize nonspecific binding [19,24–30]. The limited 57

vertical extent of the evanescent excitation field of the TIRF microscope allows 58

differential sensitivity to fluorescent molecules which are near the microscope slide 59

surface, which allows us to detect NAABs that have bound to peptides on the surface. 60

Existing sets of NAABS (e.g. [1]), derived from aminopeptidases or tRNA synthetases 61

with affinities biased towards specific amino acids, have low affinity or specificity 62

(figure 1A), so one cannot deduce the identity of an N-terminal amino acid from the 63

binding of a single NAAB. Instead, we propose to deduce the identity of the N terminal 64

amino acid of a particular peptide by measuring optically the kinetics of a set of 65

NAABs against the peptide. After observing the binding of each NAAB against the 66

peptide, we will carry out a cycle of Edman degradation [31,32], revealing the next 67

amino acid along the chain as the new N-terminus, and then repeat the process. The 68

process of observing binding kinetics with TIRF microscopy (figure 1B,C) is similar to 69

that used in Points Accumulation for Imaging of Nanoscale Topography (PAINT [22]), 70

e.g., DNA PAINT [23]. This process produces a high-dimensional vector of 71

kinetically-measured affinities at each cycle (figure 1D,E) that can be used to infer the 72

N-terminal amino acid. 73

This method, while powerful and potentially applicable for current NAABs, 74

ultimately breaks down for probes whose binding is extremely weak, i.e., for which the 75

bound time is so short that only a small number of photons is released while the probe 76

is bound. While fast camera frame rates can be used, the system ultimately becomes 77

limited in the achievable fluorescent signal to noise ratio, unless the measurements are 78

averaged over long experiment times. To extend these concepts into the ultra-weak 79

binding regime, therefore, we propose not to measure the precise binding and unbinding 80

kinetics but rather the time-averaged luminosity of each spot, which indicates the 81

fraction of time a probe was bound. We find that this luminosity-based measurement 82

scheme is highly robust and compatible with short run times. 83

Results 84

Our results are divided into three sections. We first consider the regimes of binder 85

concentration and illumination intensity within which one would expect the proposed 86

method to operate. We then discuss two possible methods for analyzing single molecule 87

kinetic data. Finally, we perform simulations using the derived parameters and data 88

analysis methods in order to estimate the sensitivity of the proposed sequencing method. 89

Distinguishability of Amino Acids Based on their NAAB 90

Binding Profiles 91

A set of binders (NAABs) is characterized by their affinities for their targets (e.g., the 92

20 amino acids), which can be expressed in the form of an affinity matrix. The affinity 93

matrix A is defined such that the i,jth entry of A is the negative log affinity of the ith 94

binder for the jth target: 95

ai,j = − log (kD) (1)

where kD is the dissociation constant (we define τD as the dissociation time). 96

Throughout this paper, the values of the affinities encoded in the affinity matrix will 97

be referred to as the reference values, to distinguish them from the measured values 98

obtained in the experiment and from the true values, which may depend on 99

4/25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2018. ; https://doi.org/10.1101/352310doi: bioRxiv preprint 

https://doi.org/10.1101/352310
http://creativecommons.org/licenses/by/4.0/


environmental conditions but which are not known by the experimenter; the reference 100

values are known and will be used in our computational process of identifying amino 101

acids. As shown in S1.1 Appendix, we estimate that it would be possible to 102

determine the identities of the N terminal amino acids from affinity measurements with 103

99% accuracy, provided that the affinity measurements occur according to a distribution 104

centered on the reference value with standard deviation no greater than 64% of the 105

mean. 106

Constraints on Realistic Binding Measurements 107

In this section, we discuss the primary constraints that are imposed by the measurement 108

modality. 109

Binder Shot Noise For the purposes of our analysis, we will assume that all binders 110

within 100 nm of the surface emit photons at an equal rate, while more distant binders 111

emit no photons at all. We will also assume that all emitted photons are collected. In 112

reality, excitation due to higher-order beams that do not reflect at the interface will lead 113

to some diffuse background from the bulk solution, and not all photons will be collected 114

due to finite efficiencies in the optical path and at the detector, but contributions from 115

these factors will depend significantly on the specifics of the optical setup and are 116

difficult to estimate; we account approximately for some of these factors in the 117

simulations below by calibrating with published DNA PAINT experiments. We will use 118

the term “observation field” to refer to the region occupied by fluorescent NAABs 119

binding to a single, well-isolated, surface-anchored peptide. For the sake of simplicity, 120

we will assume that the observation field is imaged onto a single pixel on the camera, 121

and will assume that it constitutes a cylindrical region 300 nm in diameter and 100 nm 122

in depth, corresponding to visible TIRF illumination. 123

In order to be able to distinguish the bound state from the unbound state, the 124

number of photons emitted over the period of observation in the bound state must be 125

significantly larger than the number of photons emitted in the unbound state. We 126

denote by τobs the observation period (which may extend over multiple camera frames), 127

by R the rate at which fluorophores in the observation field emit photons, and by nfree 128

the number of free binders in the observation field, which we will refer to as the 129

“occupation number” for brevity. The occupation number may be given in terms of the 130

volume V of the observation field and the molecular number density of the binders ρ by 131

nfree = ρV = 1000NAcV, (2)

where c is the molar concentration and NA is Avogadro’s number. Then there are two 132

regimes in which we are interested, corresponding to nfree � 1 and nfree ≤ 1. The choice 133

of nfree is up to the experimenter and may be chosen differently for different NAABs. It 134

will need to be optimized to maximize the dynamic range of the kD readout experiment. 135

If nfree � 1, the number of photons emitted by the nfree free fluorophores in the 136

observation field during the observation period will be drawn from a Poisson 137

distribution with mean and variance 138

λf = Rτobsnfree. (3)

On the other hand, in the bound state, the mean number of photons emitted is 139

λb = Rτobs(nfree + 1). (4)

One may then derive (S1.2 Appendix) the requirement that 140

Rτobs ≥ 36 (1 + nfree) . (5)
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The photon rate R is associated with the illumination intensity by 141

R =
Iε

1000NAhν
, (6)

where ε is the molar absorptivity. (See S1.3 Appendix for a derivation.) The 142

minimum intensity that can be used is thus set by the constraints on R in equation (5). 143

We obtain 144

I � 1000NAhν

ε

36 (1 + nfree)

τobs
. (7)

It is worth bearing in mind that an occupation number of nfree ≈ 1 in every cylinder 145

with diameter 300 nm and height 100 nm corresponds to a molar density of 235 nm. 146

In the case of nfree ≤ 1, the noise may deviate significantly from a Poisson 147

distribution (see S1.2 Appendix for a discussion). In this regime, it is likely easy to 148

distinguish the bound and unbound states, and instead the constraints on R and τobs 149

are set by the requirement that Rτobs be greater than the read and dark noises of the 150

camera. Modern sCMOS cameras have very low dark noises of 0.1 e− per second, and 151

read noises of only 1 to 2 e− on average. We denote by p the per-frame noise, measured 152

in electrons, and by f the camera frame rate. Note that τobs may be determined 153

independently of f , because the photon counts from multiple frames may be averaged in 154

order to extend the observation period. Instead, f is constrained by practical 155

considerations such as the per-frame read noise and the saturation point of the sensor. 156

In order to overcome the read and dark noises, we need 157

R� pf. (8)

The minimum intensity can thus be determined by the constraint 158

I � 1000pfNAhν

ε
. (9)

A detector noise of p = 1 electron per frame is now standard. To satisfy the requirement 159

in equation (8) for our further calculations, we will take as a requirement that in the 160

limit of nfree ≤ 1, we should have 161

Rτobs ≥ 9. (10)

Photobleaching The upper bound on the tolerable intensity is placed by 162

photobleaching. Assuming continuous imaging, the fluorophore should remain active for 163

the entire duration during which the fluorophore is bound. We denote by Nq the average 164

number of photons that a fluorophore emits before it bleaches. Then, we must have 165

R/koff � Nq. (11)

In terms of the intensity, 166

I � 1000NAhνkoffNq
ε

. (12)

For a typical dye, such as ATTO647N, values of Nq on the order of 107 and 167

ε ∼ 1.5× 107 m−1 m−1 have been reported [23]. 168

Stochastic Binding Due to the stochastic nature of binding events, the length of the 169

experiment must be chosen to be much longer than the average time between binding 170

events. Hence, 171

1

konc
� τexp, (13)

where c is the concentration of free binders in the solution. 172
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Fig 2. Two Types of Affinity Measurements using TIRF Microscopy A A
measurement performed using the proposed scheme yields a fluorescence intensity trace
where periods of high intensity correspond to the target being bound and periods of low
intensity correspond to the target being free. The affinity of a binder against the target
may then be determined in two ways, either via occupancy measurements or via
luminosity measurements. B An occupancy measurement is performed “along the time
axis,” by calculating kon from the average time between binding events, and koff from
the average length of binding events. C On the other hand, a luminosity measurement
is performed “along the brightness axis,” by calculating kD directly from the average
luminosity of the target over the whole observation period. D We validated our
simulation by applying occupancy measurements to determine kon and koff from
simulated data. The parameters used here were identical to those used in the
production of Figure 2a in [23]. See text for symbol definitions.

Methods of Data Analysis 173

A measurement performed using this scheme yields a time series such as that shown in 174

Figure 2A. We now discuss the two primary options for extracting the kinetics from this 175

data and the experimental conditions that are optimal for each scheme, given the 176

constraints discussed above. 177

Occupancy Measurements 178

The first measurement, used commonly in the field of single-molecule kinetics [23,33], 179

relies on detecting changes in the occupancy state of the target. The measurement 180

scheme is depicted schematically in Figure 2B. This measurement is performed “along 181

the time axis,” in the sense that it relies on temporal information – when probes bind 182

and unbind – and is relatively insensitive to analog luminosity information beyond that 183

needed to make these digital determinations. This method is optimal for measurements 184

on binders with very high affinities, which can be performed at low concentrations. The 185

upper limit on the dynamic range of this method is set by the frame rate, i.e., 186

koff � f, (14)
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where f is the imaging rate. In order to extract temporal information, we set 187

τobs = 1/f . This method will typically operate in the limit nfree ≤ 1, so from 188

equation (10), we find that we must have Rτobs ≥ 9. Hence, 189

R/f ≥ 9, (15)

and hence 190

R/9� koff. (16)

On the other hand, the lower bound on the dynamic range is provided by 191

photobleaching, as captured in equation (11). In total, we have 192

R/Nq � koff � R/9. (17)

In practice, for this measurement modality, we will choose f = 100 Hz and R = 104 s−1, 193

corresponding to a laser power of 13 W cm−2. With Nq ∼ 107, the requirement becomes 194

koff � 100 s−1 and koff � 10−3 s−1, yielding an effective dynamic range of 195

approximately three orders of magnitude of koff. 196

Finally, the experiment time is constrained by the requirement that 197

Texp � 1/(konc). (18)

For a value of kon on the order of 105 m−1 s−1 and a concentration on the order of 198

100 nm, this requirement implies that an experiment time of at least 100 seconds is 199

necessary in order to see several binding events with high probability. 200

If the binding and unbinding events may be identified, then one may determine the 201

average binding time Tb and the average time between binding events Ti, which we will 202

refer to as the inter-event time. If photobleaching may be neglected, then we have 203

koff =
1

Tb
, (19)

and 204

kon =
1

Tic
, (20)

where c is the free binder concentration. Thus, 205

kD =
Ti
Tb
c. (21)

Alternatively, if the on-rate kon is known, then it is possible to determine koff even in 206

the presence of photobleaching. (See S1.4 Appendix for details.) 207

Luminosity measurements 208

An alternative to the occupancy-time measurements described above involves deducing 209

kD directly from the fraction fB of time that the target is bound by a probe. This 210

quantity may in turn be deduced from the average luminosity of the spot containing the 211

free binder over the period of observation, as depicted in Figure 2C. Whereas occupancy 212

measurements are performed “along the time axis,” neglecting luminosity information, 213

luminosity measurements are performed “along the luminosity axis,” neglecting 214

temporal information about the series of binding and unbinding events. Because it does 215

not attempt to track individual binding and unbinding events, this method is 216

particularly suited to measurements of weak binders performed at high background 217

concentrations, where binding and unbinding events may occur faster than the camera 218

frame rate. Moreover, this method relies on each NAAB of a given type having 219

8/25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2018. ; https://doi.org/10.1101/352310doi: bioRxiv preprint 

https://doi.org/10.1101/352310
http://creativecommons.org/licenses/by/4.0/


approximately the same brightness, which could be achieved using a high-efficiency 220

method for monovalently labeling the NAAB N- or C-terminus [34,35]. 221

If the target is bound a fraction fB of the time, then the dissociation constant is 222

given by 223

kD =
1− fB
fB

c, (22)

where c is the background binder concentration. We denote by S the average brightness 224

of the spot when a fluorescent binder is attached to the target, and by N the average 225

brightness of the spot when the target is free. Neglecting photobleaching, the average 226

brightness of the spot over the whole experiment is given by 227

M = fBS + (1− fB)N. (23)

If S and N are known, then fB may thus be deduced directly from the measured 228

photon rate M averaged over the entire experiment, via 229

fB =
M −N
S −N

. (24)

S and N can be measured directly for example by anchoring NAABs sparsely to a 230

surface and measuring the brightness of the resulting puncta (to deduce S), or 231

puncta-free regions (to measure N). 232

One significant advantage of this method is that the observation period τobs can be 233

chosen to be arbitrarily long by averaging the photon counts of many successive frames 234

(i.e., we have τobs = Texp). In practice, we will use τobs = 100 s. With this value, we can 235

use a relatively high concentration of 2 µm (corresponding to nfree � 1) even for a 236

relatively low intensity of 1.3 W cm−2 (corresponding to R = 103 s−1, while still 237

satisfying (5). Operating in this regime significantly reduces the vulnerability of the 238

experiment to stochasticity and photobleaching. However, unlike in the case of 239

occupancy measurements, there is no way to account for photobleaching, if it occurs. 240

Nonetheless, we do not expect photobleaching to have a significant impact on our 241

results, since most of the NAABs have fairly high off-rates [1, 20]. 242

In contrast to occupancy measurements, luminosity measurements are also sensitive 243

to error in the calibration of the measurement apparatus, for example if the brightness 244

of the bright and dark states is not known exactly. The bright and dark states S and N 245

could likely be calibrated by doping in labeled reference peptides to the sample to be 246

sequenced. Still, there may be some error in the measurements of S and N . For a 247

discussion of computational strategies for coping with calibration error, see 248

Appendix 1.5. 249

Simulations 250

Simulation Outline 251

In order to determine whether the TIRF measurement scheme described above can be 252

used to identify single amino acids on the N -termini of surface-anchored peptides, we 253

simulated N-terminal amino acid identification experiments. 254

We first used a specific NAAB affinity matrix given in [1]. Importantly, random 255

affinity matrices generated by permuting the values of the NAAB affinity matrix 256

perform similarly well in residue-calling simulations (fig 5 and 6). To generate the 257

random affinity matrices with statistics matching the statistics of the NAAB affinity 258

matrix, each matrix element was chosen by randomly sampling values from the NAAB 259

affinity matrix of [1], without replacement. The simulations described here can therefore 260

be assumed to apply to general ensembles of N-terminal binders with affinity value 261

statistics similar to those displayed by these existing NAABs. 262
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In the simulations, there is assumed to be one free target in the volume analyzed, 263

which is a cylinder of diameter 300 nm and height 100 nm as discussed above. The 264

simulation considers each frame of the camera in succession, and models the number of 265

photons registered at the camera. At the start of the simulation, or as soon as the 266

target becomes free, a time Tfree is drawn from an exponential distribution with mean 267

1/(konc), where c is the concentration of binders. Once a time equal to Tfree has passed, 268

the binder is considered occupied, and a time Tbound is drawn from an exponential 269

distribution with mean 1/koff. In addition, upon binding, a time Tphotobleach is drawn 270

from an exponential distribution with mean Nq/R, where Nq is the number of photons 271

the fluorophore emits on average before bleaching and R is the single-fluorophore 272

photon rate. If the time Tphotobleach is less than the time Tbound, the fluorophore ceases 273

to emit photons after time Tphotobleach. Within a given frame, the simulation tracks 274

binding, unbinding, and photobleaching events, and computes the number of signal 275

photons detected by the camera by drawing from a Poisson distribution with mean 276

RTon, where R is the single fluorophore photon rate and Ton is the amount of time 277

during the frame in which an unbleached fluorophore was attached to the target. 278

The dominant contribution to noise in the simulation is expected to come from 279

fluorophores attached to free binders that enter and leave the observation field [33]. At 280

the end of each frame, the simulation draws the number of free binders that enter the 281

observation field during the frame from a Poisson distribution with mean nfree/f , where 282

f is the frame rate and nfree is the free binder occupation number of the frame. For 283

each binder that enters the observation field, we draw a dwell time t from an 284

exponential distribution with mean τdwell as calculated in equation (40) from diffusion 285

theory (see Appendix 1.2), and a total photon contribution from a Poisson distribution 286

with mean Rt. Finally, we calculate the detector shot noise from a Gaussian 287

distribution with mean p and standard deviation equal to 0.1p. 288

Validation of the Simulation Pipeline To validate the simulations, we reproduced 289

the DNA PAINT kinetics data collected by [23] using the parameters reported in that 290

paper. There, values of kon = 106 m−1 s−1 and koff = 2 s−1 were reported. Imaging was 291

conducted at 650 nm with a power of 4 mW to 8 mW over an imaging region of 292

(150 µm)2, corresponding to an intensity of approximately 26.67 W cm−2, corresponding 293

to a photon rate of R ∼ 18 000 s−1, assuming a dye comparable to ATTO655. However, 294

accounting for the low quantum efficiency of ATTO655 and possible losses of light in 295

the light path of the microscope, we performed our simulations with R ∼ 1500 s−1. 296

From our simulated data, we were able to reproduce the measured off- and on-rates, as 297

shown in Figure 2D. Moreover, consistent with [23], photobleaching only became 298

apparent in the simulation at laser powers greater than 100 mW. 299

Measurements of kD 300

Occupancy Measurements We next simulated occupancy measurements of the 301

binding kinetics of the NAAB against the target. We performed 100 simulations for 302

each of five different values of kon between 104 m−1 s−1 and 106 m−1 s−1, which is 303

consistent with standard values observed for antibodies [36], and for each of five 304

different values of kD between 100 µm and 10 nm. We assumed a framerate of 100 Hz, 305

detector read noise of 1 e−, and a laser power of 130 kW m−2, corresponding to a 306

single-fluorophore photon rate of 104 s−1. NAABs were washed onto the sample at a 307

concentration of 300 nm, and each wash was observed for Texp = 100 s. 308
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Fig 3. Two Types of Affinity Measurements using TIRF Microscopy A The
accuracies of occupation measurements of kD are shown as a function of kD and kon for
the simulation described in the text, with Texp = 100 s. These measurements achieve
high accuracy for kon ≥ 105 m−1 s−1 and koff � 100 s−1. For values of koff on the order
of 100 s−1 (upper right-hand corner), the accuracy deteriorates significantly. B The
accuracies of luminosity measurements of kD are shown as a function of kD and kon.
These measurements achieve high accuracy for kon ≥ 105 m−1 s−1 and kD ≥ 100 nm.
The heat map shown gives the fractional errors as a function of kD and kon for the
simulation described in the text, with Texp = 100 s. In contrast to occupation
measurements, the accuracy of luminosity measurements does not deteriorate for very
high values of koff. C For luminosity measurements only, the mean fractional error in
the measured value of kD is plotted as a function of the observation time for five
different values of kD. The line y = 1/x is plotted as a guide to the eye. For
kD = 10 nm and kD = 100 nm, the effects of photobleaching are evident at longer
runtimes. D Also, for luminosity measurements only, the measured value of kD is
plotted as a function of the actual value of kD for 8 different values of the runtime. The
performance of the algorithm improves dramatically for τobs > 25 s. The line y = x is
plotted as a guide to the eye. Error bars in C, D denote standard error over 100 trials.
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In order to analyze the data, we ran a control simulation in which kon was set to 0, so 309

that no NAABs bound to the target. In practice, this calibration could be performed by 310

observing a spot that does not have a target. From this, we calculated the mean and 311

standard deviation of the noise on a per-frame basis. We then identified binding and 312

unbinding events as follows. First, we identified all frames in which the photon count 313

was more than 2 standard deviations above the noise mean. These frames will be 314

referred to as “on” frames, whereas all other frames will be referred to as “off” frames. 315

If three such “on” frames occurred in a row, the event was identified as a binding event. 316

The binding event was considered to continue until at least two “off”-frames in a row 317

were observed. Once all the binding and unbinding events were identified, the average 318

inter-event time and the average binding time were calculated, and from these the 319

kinetics were deduced (Figure 2A). 320

The accuracy of the kD measurements was found to improve with increasing kon, and 321

to improve with increasing kD for values of koff below 10 s−1 (Figure 3A). For values of 322

koff significantly above 10 s−1, it was no longer possible to distinguish individual binding 323

and unbinding events from noise (Figure 3A, upper right-hand corner). Moreover, for 324

values of kon below 105 m−1 s−1, the condition Texp � 1/(konc) was no longer satisfied. 325

Finally, for very small values of kD, photobleaching limited the accuracy of the analysis. 326

For kon > 105 m−1 s−1 and koff ∼ 10 s−1, it was possible to obtain the correct value of 327

kD to within approximately 5− 10%. However, the accuracy deteriorated sharply for 328

combinations of kon and koff deviating from these ideal conditions. 329

Luminosity Measurements We then simulated luminosity measurements of kD 330

using comparable parameters. Because these measurements depend only on the average 331

luminosity over the entire experiment, the entire experiment was lumped into a single 332

camera frame. In practice, however, the same results can be obtained by averaging over 333

the photon counts of multiple frames. The laser intensity was set to 13 kW m−2, 334

corresponding to a single-fluorophore photon rate of R = 1000 s−1, and the free binder 335

concentration was set to 2 µm. The photon rate of the off-state was determined first by 336

running the simulation with the value of kon set to 0. The photon rate in the on-state 337

was then determined by running the simulation with the value of kon set to 1010 m−1 s−1, 338

and the value of kD set to 10−20 m. Because the exposure time used in this experiment 339

is very long compared to the dwell time of free binders in the observation field, it was 340

assumed that all free binders that enter the observation field emit a number of photons 341

equal to Rτdwell (i.e., the noise was taken to be approximately Poissonian), which 342

substantially reduces the computational complexity of the algorithm. Once the average 343

luminosity over the experiment was determined, the value of fB was deduced. 344

For observation times shorter than 50 s, the analysis sometimes returns values of fB 345

arbitrarily close to or greater than 1 or arbitrarily close to or less than 0. This can 346

happen as a consequence of statistical error in the luminosity measurements, even in the 347

absence of systematic error. For this reason, in order to avoid negative or outlandishly 348

large values of kD from compromising the analysis, we chose the maximum value of fB 349

to be equal to the value expected when kD = 1 nm, and we chose the minimum value of 350

fB to be equal to the value obtained when kD = 10 mm. Any values of fB outside of 351

this range were adjusted to the maximum or minimum value, appropriately. 352

In order to enable comparison to the occupancy measurements, the simulation was 353

run 100 times for each of five values of kon between 104 m−1 s−1 and 106 m−1 s−1 and 354

for each of five values of kD between 100 µm and 10 nm. The accuracy was found to be 355

comparable to that obtained in the occupancy experiments (Figure 3A), except that the 356
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accuracy did not deteriorate for very high values of koff (Figure 3B, upper right-hand 357

corner). For values of kon on the order of (or greater than) 105 m−1 s−1 and values of 358

kD greater than 1 µm, kD could easily be determined to within the accuracy condition 359

required by equation (31). 360

To ascertain the effect of τobs on the accuracy, the simulation was run 100 times for 361

each of the same 25 combinations of kon and koff, with 8 different values of τobs between 362

1 s and 1000 s and a free binder population of 2 µm (Figure 3C). As expected, the 363

accuracy was found to undergo a sharp transition when τobs was on the order of 25 s, 364

corresponding to 1/(konc)� τobs. For values of τobs > 25 s and values of kD greater 365

than 1 µm, the error in the measurement of kD decreased like 1/τobs (Figure 3C). For 366

observation times greater than 25 s, the value of kD could be calculated with standard 367

deviation less than 64% of the mean for values of kD on the order of or greater than 368

1 µm, although photobleaching leads to saturation and significant losses of accuracy for 369

smaller values of kD (Figure 3D). 370

Separately, to ascertain the effect of the free binder concentration on the accuracy, 371

the simulation was run 1000 times on each of the same 25 combinations of kon and kD, 372

with τobs = 50 s at seven different values of the concentration between 10 nm and 5 µm. 373

For values of kon such that τobs � 1/(konc), the effect of increasing kon was found to be 374

similar to the effect of increasing τobs (data not shown). 375

Identifying Amino Acids 376

Because standard deviations in kD below 64% of the mean could consistently be 377

achieved in the luminosity measurements across a broad range of values of kon and kD, 378

it is reasonable to expect that luminosity measurements of NAAB binding kinetics with 379

the affinity matrix in figure 1a could allow for the identification of amino acids at the 380

single molecule level. We thus simulated an experiment in which a peptide with an 381

unknown amino acid is attached to a surface, and is observed successively in multiple 382

baths, each containing a single kind of fluorescent NAAB. In this simulation, amino 383

acids were randomly chosen from a uniform distribution. Binders were added to the 384

solution at a concentration of 1 µm and the laser power was set to 13 kW m−2. For each 385

NAAB, effective values of the dissociation constant k̃D, the on-rate k̃on, the effective 386

brightness R̃, and the calibration levels S̃ and Ñ were determined for the NAAB-amino 387

acid pair. The spot containing the NAAB was then observed over a period of time τobs, 388

which ranged from 50 to 500 seconds, and the total number of photons observed was 389

stored. This process was repeated for each NAAB, generating a vector ~M of observed 390

photon counts. 391

Systematic error in the experiment was parametrized using three quantities. For each 392

NAAB, the effective dissociation constant k̃D for the NAAB-amino acid pair was drawn 393

from a normal distribution centered on the reference value kD, with standard deviation 394

equal to σKkD, where σK parametrizes the effect of non-terminal amino acids and other 395

environmental factors on the dissociation constant. Likewise, the effective brightness of 396

the NAAB relative to the average NAAB brightness was determined by drawing R̃ from 397

a normal distribution with mean R and standard deviation σBR, where R is the photon 398

rate of a standard fluorophore (assumed here to be ATTO647N) in the observation field. 399

Finally, in order to determine the effective calibration levels, the true calibration levels 400

S and N were first determined as the luminosity of the bound and unbound states, as 401

described above (Luminosity Measurements). The measured calibration levels S̃ and Ñ 402

were then determined by drawing from a normal distribution with mean equal to S and 403
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N and with standard deviation equal to σCS and σCN , respectively. The values of σK , 404

σB , and σC will be given below in percentages. 405

Analysis was performed by comparing the measured photon counts to the photon 406

counts that would have been expected for each amino acid, as described above. For each 407

NAAB-amino acid pair, the expected photon count was calculated from the NAAB 408

concentration c, the reference value of kD and the measured calibration level S̃ and Ñ , 409

via 410

~E =
c

c+ kD
S̃ +

(
1− c

c+ kD

)
Ñ . (25)

The resulting expected photon counts were then assembled into a matrix W , such 411

that the (i, j)th element of W is the photon count that one would have expected on the 412

measurement of the ith NAAB if the target were the jth amino acid, given the 413

calibration levels S̃ and Ñ . Finally, the amino acid identity Iaa was determined by 414

minimizing the norm between the vector of observed photon counts ~M and the columns 415

of W , i.e., 416

Iaa = argmink

∥∥∥ ~M − ~wk

∥∥∥ , (26)

where ~wk is the kth column of W . 417

In Figure 4A-C, the accuracy with which amino acids can be identified is shown as a 418

function of the observation time and the systematic error, for a 1 µm free binder 419

concentration. In the absence of systematic error, amino acids could be identified with 420

greater than 99% accuracy after a 50 s observation. Moreover, if the calibration error 421

can be kept below 5%, and if the systematic error in the kinetics can be kept below 25%, 422

then our simulations indicate that it would be possible to identify amino acids with 423

greater than 97.5% accuracy over an observation window of 100 s. 424

The measurement accuracy was shown to be robust against systematic differences in 425

brightness between different NAABs (data not shown). The experiment also showed 426

robustness against systematic deviation in kD up to the 25% level, with progressive 427

deterioration in the measurement accuracy observed for values of σK above 25%. 428

Calibration error was found to have the most substantial effect on the accuracy, with 429

calibration errors on the order of 10% reducing the achievable accuracy below 90% even 430

for an observation time of 250 s. The effects of calibration error on the accuracy could 431

be substantially reduced by reducing the concentration of free binders (Figure 4D), 432

which has the effect of increasing the gap between the S and N . However, in order to 433

preserve the requirement that Texp � 1/(konc), it is necessary to increase the 434

experiment length by a similar factor. (It is worth noting that for this reason, a free 435

NAAB concentration of 1 µm was used, rather than 2 µm as used above.) Moreover, this 436

improvement comes at the cost of increased sensitivity to systematic error in kD. 437

Application to randomized affinity matrices 438

In order to determine whether the protein sequencing method proposed here is limited 439

to the specific affinity matrix given in [1], we generated affinity matrices with 440

comparable binding statistics by randomly shuffling the kD values in the NAAB affinity 441

matrix. For 100 such random affinity matrices, we then performed identical simulations 442

as in fig 4E, assuming 5% calibration error and 25% kinetic error. To calculate the 443

overall error rate for a given matrix, we summed the frequencies of incorrect residue 444

calls (the off-diagonal elements of the matrices in fig 4E). The overall error rate for the 445

NAAB affinity matrix, calculated in this way, is 0.0124, and the distribution of error 446

rates across the random matrices is shown in fig 5. Only one randomly generated 447
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Fig 4. Identification of Amino Acids is Robust Against Systematic Error
The fraction of amino acids incorrectly identified is plotted as a function of τobs for four
different values of the systematic calibration error σC and four different values of the
systematic kinetic error σK (as described in the text). A In the absence of systematic
error, measurements with τobs = 50 s result in correct amino acid identification more
than 98% of the time. For 25% error in kD, the accuracy drops to 97.5%, and if 5%
calibration error is added, it drops further to 92%. More than 5% systematic error in
the calibration leads to very significant numbers of mistakes in amino acid identification.
B With τobs = 100 s, an accuracy of 97.5% was obtained for 25% error in kD and 5%
error in the calibration. C Increasing τobs beyond 100 s at the same binder
concentration leads to diminishing improvements in the accuracy. D The sensitivity to
calibration error could be substantially reduced by decreasing the concentration of free
binders to 100 nm. However, this increased concentration necessitates a longer runtime.
E For τobs = 100 s, plots are shown for each value of σC and σK , depicting the
probability that a given target amino acid (on the horizontal axis) was assigned a
particular identity (on the vertical axis). Off-diagonal elements correspond to errors.
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Fig 5. Overall Error Rates for 100 Random Affinity Matrices The overall
error rate, calculated as the sum of incorrect residue calls divided by the total number
of residue calls over 10000 trials, is plotted for 100 random affinity matrices.

affinity matrix had an error rate lower than the NAAB error rate. Nonetheless, it is 448

clear that most affinity matrices with affinity statistics similar to the NAABs [1] would 449

yield errors in the range of 1%-4%, and thus the sequencing method described here is 450

generalizable to a range of similar N-terminal amino acid binders. 451

Discussion 452

The calculations and simulations discussed above indicate that if the measurement 453

apparatus can be calibrated with an accuracy of 5%, and if the reference values of kD 454

can be kept within 25% of the true values, it is theoretically possible to determine the 455

identity of an N-terminal amino acid with greater than 97.5% accuracy by measuring 456

the kinetics of the NAABs against the target amino acid. Crucially, kD can be inferred 457

just from the time-averaged local concentration of NAABs within the observation field, 458

and thus the measurement can be performed at relatively high background binder 459

concentrations, because it does not rely on being able to distinguish individual binding 460

and unbinding events. 461

Primary Uncertainties Three primary uncertainties exist regarding the validity of 462

the simulations performed here. Firstly, our simulation did not incorporate the effects of 463

non-specific binding of NAABs to the surface. Nonetheless, if such non-specific binding 464

occurs with sufficiently low affinity, we anticipate that the effect of the non-specific 465

binding will be comparable to the effect of increasing the affinity of the binders for the 466

target, and we have shown that our experiment displays considerable robustness against 467

such sources of systematic error. On the other hand, if non-specific binding occurs with 468

high affinity, we anticipate that by examining the time-course of the luminosity, such 469

non-specific binding events can be identified and accounted for. 470

In addition, some uncertainty exists surrounding the value of Nq for the organic dyes 471

of interest to us, with values between 105 and 107 being reported [23,37]. However, we 472
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expect our method to be relatively robust to photobleaching due to the relatively low 473

affinity and high off-rates of most of the NAABs. Moreover, it is possible that more 474

photostable indicators such as quantum dots could be used in place of organic dyes. 475

Note that with any labeling scheme, there will be some concentration of “dark NAABs” 476

that are not labeled. Thus, the concentrations reported for the simulations above should 477

be regarded as the concentrations of “bright NAABs.” The presence of dark NAABs is 478

unlikely to affect the experimental results provided the total NAAB concentration is less 479

than the dissociation constant (i.e., as long as the target is free most of the time), so a 480

high concentration of dark NAABs can always be compensated for by reducing the total 481

NAAB concentration and increasing the measurement duration. 482

Parallelization We anticipate that the approaches discussed here could be 483

parallelized in a way reminiscent of next-generation nucleic acid sequencing technologies, 484

allowing for massively parallel protein sequencing with single-molecule resolution. In the 485

ideal case, if a 64 megapixel camera were used with one target per pixel, we would have 486

the ability to observe the binding kinetics of NAABs against approximately 107 protein 487

fragments simultaneously. With an observation time of 100 seconds per amino 488

acid-NAAB pair, this corresponds to approximately 35 minutes of observation time per 489

amino acid, or 5 days to identify a protein fragment of 200 amino acids in length. On 490

average, therefore, the sequencing method would have a throughput of approximately 20 491

proteins per second. 492

However, the throughput of the device could be improved dramatically if the readout 493

mechanism were electrical, rather than optical. CMOS-compatible field-effect 494

transistors have been developed as sensors for biological molecules [38–41]. Moreover, 495

electrical sequencing of DNA has been accomplished using ion semiconductor 496

sequencing [42]. Most recently, CMOS-compatible carbon nanotube FETs have been 497

shown to detect DNA hybridization kinetics with better than 10 ms time 498

resolution [43,44]. Similar CMOS-compatible devices have been adapted to the 499

detection of protein concentrations via immunodetection [45]. These systems have the 500

added benefit that they sense from a much smaller volume than TIRF does (sometimes 501

as small as ∼ 10 cubic nanometers [44]), substantially reducing the impact of noise on 502

the measurement. A single 5 inch silicon wafer covered in transistor sensors at a density 503

of 16 transistors per square micron would be capable of sequencing 1012 proteins 504

simultaneously, corresponding to an average throughput of 2,000,000 proteins per 505

second on a single wafer, or one mammalian cell every 7 minutes. Such an approach 506

could make use of dedicated integration circuitry to compute the average NAAB 507

occupancy at the hardware level, greatly simplifying data acquisition and processing. 508

Moreover, if the devices were made CMOS-compatible, they could be produced in bulk, 509

greatly improving scalability. If the intrinsic contrast provided by the NAABs is 510

insufficient for measurements with FETs, the NAABs can be further engineered to have 511

greater electrical contrast, for example by conjugating them on the C-terminus to an 512

electrically salient protein such as ferritin. A combination of electrical and optical 513

readouts may also be desirable. Recently, CMOS-compatible single-photon avalanche 514

diode imaging systems have been developed that are capable of detecting the presence 515

of fluorophores on a surface without magnification [46]. 516

Finally, although the use of TIRF microscopy in the case studied here restricts the 517

proposed approach to operate close to a reflecting surface, the use of thin sections or 518

alternative microscopies could potentially allow such protein sequencing methods to 519

operate in-situ inside intact cells or tissues. 520
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Conclusion 521

We have shown that single molecule protein sequencing is possible using low-affinity, 522

low-specificity binding reagents and single molecule fluorescent detection. Achieving a 523

high-quality single molecule surface chemistry and TIRF measurement setup will be a 524

challenge, but if this can be achieved, our results show that a wide range of binding 525

reagent families should be adaptable to single molecule protein sequencing. 526

1 Supporting information 527

1.1 S1 Appendix. 528

Due to stochasticity, noise, and context-dependence (e.g. sequence-dependence) of the 529

NAAB-amino acid interactions, a measurement performed on the kth target will yield 530

an approximation ~w to the reference affinity vector ~vk. If we assume that the 531

distribution according to which these measurements occur is Gaussian, then we can 532

obtain a simple criterion for determining whether two N terminal amino acids will be 533

distinguishable on the basis of affinity measurements made using a particular set of 534

NAABs. We denote by σ
(i)
j the standard deviation of the measurements made with 535

NAAB i against amino acid j. For each amino acid, we may define a sphere of radius 536

ρj , centered on the vector ~vj , which surrounds that amino acid in affinity space. Here, 537

ρj = 3 max
i

σ
(i)
j

K
(i)
j

, (27)

where K
(i)
j is the dissociation constant for the binding of the ith NAAB to the jth 538

amino acid. 539

N-terminal amino acids will be identifiable with 99.9% certainty provided that there 540

is no overlap in affinity-space between the j spheres of radius ρj . To determine whether 541

there is such an overlap, we must consider the distance metric 542

D ≡ min
i,j 6=i

∥∥∥∥~vi − ~vj~vi

∥∥∥∥ , (28)

where the division is applied element-wise. In order to assign affinity measurements to 543

the correct reference affinity 99.9% of the time, it is sufficient (but not necessary) to 544

have 545

max
i,j 6=i

(ρi + ρj) ≤ D. (29)

Using equation (27), it is then also sufficient to have 546

6 max
i,k 6=i

σ
(i)
k

K
(i)
k

≤ D. (30)

For the specific case of the NAAB affinity matrix, we find that D = 3.84. Thus, in 547

order to ensure that the amino acids can be correctly identified 99.9% of the time, we 548

must have 549

max
i,k 6=i

σik

K
(i)
k

≤ 0.64, (31)

or, equivalently, the standard deviation of the kD measurements must be no greater 550

than 64% of the mean. 551
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1.2 S2 Appendix. 552

Under the assumption of Poissonian noise, the photon rates in the bound and unbound 553

states are given by 554

λf = Rτobsnfree (32)

and 555

λb = Rτobs(nfree + 1) (33)

respectively. In order to be able to distinguish the bound state from the unbound state, 556

it is clear that we must have 557

λf + 3
√
λf ≤ λb − 3

√
λb. (34)

Because λb > λf , we may replace the standard deviation
√
λf on the left-hand side by 558

the standard deviation
√
λb, obtaining 559

λf ≤ λb − 6
√
λb. (35)

Hence, 560

Rτobs ≥ 6
√
Rτobs(nfree + 1). (36)

We find the final requirement: 561

nfree ≤
Rτobs

36
− 1. (37)

Rephrased as a condition on the concentration of the binder, we find 562

c ≤
Rτobs
36 − 1

1000NAV
, (38)

or 563

Rτobs ≥ 36 (1 + nfree) . (39)

If nfree ≤ 1, then the assumption of Poissonian noise is invalidated because the 564

emission of successive photons is not independent (it depends on the presence of 565

fluorophores in the observation field). The assumption of Poissonian noise may also be 566

invalidated if the frame rate is comparable to the rate at which fluorophores enter and 567

leave the observation field. In either case, to correctly simulate the noise, one must draw 568

the number of free binders that enter the observation field during a given frame from a 569

Poisson distribution with mean nfreeτobs/τdwell, where τdwell is the amount of time each 570

binder spends in the observation field on average. The average dwell time of free binders 571

in a region of thickness ∆x may be calculated as 572

τdwell = (∆x)2/D, (40)

where D is the diffusion constant [23]. For a small protein in water, we have 573

D ∼ 10−10 m2 s−1. Taking ∆x = 100 nm, we find that free binders will dwell on average 574

τdwell = 100 µs within the imaging plane. 575

Once the number of binders entering the observation field during the frame has been 576

determined, one must draw the length of time t that each binder remains in the frame 577

from an exponential distribution with mean τdwell. Finally, for each binder, one must 578

draw the number of photons emitted by that binder from a Poisson distribution with 579

mean Rt. When the number of free binders is small, the resulting noise will differ 580

significantly from Poisson noise due to the exponential distribution over dwell times. In 581

our simulations, the long tail of the exponential distribution tends to significantly 582

increase the difficulty of distinguishing transient binding and unbinding events, 583

compared to simple Poisson noise (data not shown). 584
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1.3 S3 Appendix. 585

The intensity I is related to the photon rate R of the fluorophore by 586

I = R
hν

σ
, (41)

where h is Planck’s constant, ν is the frequency, σ is the absorption cross-section of the 587

fluorescent dye, and R is the rate of absorption. To determine the cross-section, we note 588

that from the Beer-Lambert law, 589

εc = α, (42)

where α is the attenuation coefficient, c is the molar concentration, and ε is the molar 590

absorptivity, which we assume is given in m−1 m−1. Furthermore, we have 591

σ = α/n, (43)

where σ is the absorption cross-section and n is the atomic number density. Hence, we 592

have 593

σ = εc/n, (44)

or, since c is the molar concentration and n is the number density, we have 594

n = 1000NAc, where NA is Avogadro’s constant, c is given in molar and n is given in 595

atoms per cubic meter. Thus, 596

σ =
ε

1000NA
. (45)

Hence, the photon number is given in terms of the intensity by 597

R =
Iε

1000NAhν
. (46)

1.4 S4 Appendix. 598

One advantage of occupancy measurements is that if kon is known, then koff may be 599

determined even in the presence of photobleaching. To do so, we note that Ti and Tb 600

are independent variables that depend on koff, kon, and Nq. In the above analysis, we 601

assumed that Nq was infinite, so that quenching could be neglected. If Nq is finite, 602

however, then the true expressions for Ti and Tb are given by 603

Tb =
1

koff +R/Nq
. (47)

and 604

Ti =

(
1

koff
− Tb

)
︸ ︷︷ ︸
target occupied

+
1

konc︸ ︷︷ ︸
target unoccupied

. (48)

The first term in equation (48) is the average time the target spends occupied by a 605

quenched fluorophore, while the second term is the average time the target spends 606

unoccupied between unbinding and binding events. Hence, if kon is known, then koff 607

and Nq may be determined from Tb and Ti. 608

1.5 S5 Appendix. 609

In contrast to occupancy measurements, luminosity measurements are sensitive to error 610

in the calibration of the measurement apparatus. Calibration error arises from a 611

combination of systematic differences in the brightness of the on- and off-states, which 612

20/25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2018. ; https://doi.org/10.1101/352310doi: bioRxiv preprint 

https://doi.org/10.1101/352310
http://creativecommons.org/licenses/by/4.0/


may result if different NAABs have different numbers of fluorophores on average, and 613

from systematic error in the measurement of the brightnesses of the on- and off-states. 614

Systematic variation in the brightnesses of the fluorophores can be overcome by 615

calibrating the device prior to each measurement (as discussed below). In general, 616

however, systematic error in the measurement of S and N significantly disrupts 617

attempts to determine the absolute value of kD due to divergences in the derivative of 618

kD as M approaches N . Hence, for weak binders in particular, infinitesimal changes in 619

the calibration level can lead to divergent changes in the measured value of kD. For this 620

reason, if the goal of the measurement is to determine the absolute value of kD, it is 621

essential that the concentration be chosen such that the value of M to be measured lies 622

close to S, i.e., such that the concentration c is close to or greater than kD. If kD is 623

large or unknown, however, this requirement may not be achievable. 624

In our case, however, we are interested not in determining the absolute value of kD, 625

but rather in determining the identity of a target (N-terminal amino acid) from the 626

binding affinities of many binders (NAABs). In this case, one may significantly reduce 627

the effects of calibration error by using the reference values of kD to calculate the 628

expected photon rate E from the brightnesses of the on- and off-states, for each of the 629

possible target identities. After having performed the measurement with all 17 binders, 630

one is left with a vector ~M of the photon rates measured for each binder, and a set of 631

vectors ~Ek, the kth of which is the vector of photon rates that one would have expected 632

to measure if the target were of type k. The identity of the target is then determined by 633

minimizing the norm of ~M − ~Ek over k. The key difference here is that because one 634

compares the expected photon rates to the measured photon rates, one avoids the 635

nonlinearities inherent in calculating the measured dissociation constant from the 636

measured photon rate. 637
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Fig 6. Accuracies for amino acid calling obtained for 100 random affinity
matrices in simulations. 100 random affinity matrices were generated by randomly
shuffling the entries of the NAAB affinity matrix. For each resulting matrix, we
simulated 10000 amino acid calls, with 5% calibration error and 0.25% kinetic error.
The resulting accuracy matrices are presented here. The scale and axes for each matrix
are identical to those in fig. 4E.

1.6 S6 Appendix. 638

Figure 6 shows the full set of accuracy matrices determined by simulation for 100 639

random affinity matrices. 640
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