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Abstract

The human face cues a wealth of social information, but the neural mechanisms that underpin
social attributions from faces are not well known. In the current fMRI experiment, we used
repetition suppression to test the hypothesis that populations of neurons in face perception and
theory-of-mind neural networks would show sensitivity to faces that cue distinct trait
judgments. Although faces were accurately discriminated based on associated traits, our
results showed no evidence that face or theory-of-mind networks showed repetition
suppression for face traits. Thus, we do not provide evidence for population coding models of
face perception that include sensitivity to high and low trait features. Due to aspects of the
experimental design, which bolstered statistical power and sensitivity, we have reasonable
confidence that we could detect effects of a moderate size, should they exist. The null
findings reported here, therefore, add value to models of neural organisation in social
perception by showing instances where effects are absent or small. To test the generalisability
of our findings, future work should test different types of trait judgment and different types of
facial stimuli, in order to further probe the neurobiological bases of impression formation

based on facial appearance.
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Introduction

Faces signal information that guide social interactions (Emery, 2000). Although complex
social signals such as emotional states, trait characteristics, and attentional focus are readily
perceived from faces (Jack & Schyns, 2017; Todorov et al., 2015), the neural mechanisms
that process social dimensions of face perception remain unclear. Here, in a functional
magnetic resonance imaging (fMRI) experiment, we use repetition suppression to investigate
the neural representation of how trait inferences are arrived at during social perception.

The majority of neuroscience research on face perception has focused on detection and
recognition of identity and emotion. This research has identified face-selective patches of
cortex that respond more to viewing faces than other categories of objects such as houses and
cars (Duchaine & Yovel, 2015; Haxby et al., 2000; Kanwisher et al., 1997). Key regions in
the face perception network include the fusiform face area (FFA; Kanwisher et al., 1997),
occipital face area (OFA; Gauthier et al., 2000) and posterior superior temporal sulcus (pSTS;
Allison et al., 2000; Pitcher et al., 2011). These three nodes along the ventral visual stream are
suggested to perform core visual analyses of facial features, but also interact with extended
circuits in anterior cortex for more elaborate representations of identity and emotional valence
(Duchaine & Yovel, 2015; Haxby et al., 2000; Kanwisher, 2010).

Face recognition is important for initiating social interactions, but faces cue much
more than the mere presence of a social agent. Indeed, impressions of others are partly formed
on the basis of stable, non-emotional aspects of facial appearance (Todorov et al., 2015;
Zebrowitz,2011). As such, there is interplay between the perception of facial features and the
formation of character impressions (Jack & Schyns, 2017). Models of social impressions from
faces have been developed that include dimensions of valence/trustworthiness, dominance
and attractiveness (Todorov et al., 2008; Sutherland et al., 2013; Wang et al., 2016). However,

there is currently little known regarding the neural bases of such impression formation. For
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example, faces that cue social evaluations of trustworthiness and attractiveness have been
associated with responses in the amygdala and ventral striatum, which have been thought to
index the reward value and typicality of faces (Bzdok et al., 2011; Mende-Siedlecki et al.,
2013; Said et al., 2010; 2011; Todorov et al., 2013). Additionally, behavioural research has
shown that personality characteristics such as extraversion are accurately perceived from
static facial features (Borkenau & Liebler, 1992; Borkenau et al., 2009; Kramer & Ward,
2010; Penton-Voak et al., 2006). However, beyond brain circuits associated with reward, little
is currently known regarding the neural architecture supporting personality judgments that are
cued during face perception.

Research investigating trait judgments has primarily focused on reading statements,
rather than faces (Uleman et al., 2008). For example, reading trait-diagnostic statements, such
as “she gave money to charity”, engages the theory-of-mind (ToM) network more than trait-
neutral statements such as “she sharpened her pencil” (Heleven et al., 2017; Heleven & Van
Overwalle, 2016; Ma et al., 2014; Mitchell et al., 2002; 2005; Van Overwalle et al., 2016).
The ToM network is engaged when attributing mental states such as beliefs, desires and
attitudes to others, as well as judging character and is thought to be central to understanding
social cognition (van Overwalle, 2009; Frith & Frith, 1999). The ToM network is largely
distinct from the face perception network with key nodes covering temporoparietal junction,
medial prefrontal cortex, temporal poles and precuneus (van Overwalle, 2009; Frith & Frith,
1999; Saxe & Kanwisher, 2003). However, the potential role of the ToM network in forming
impressions based on facial appearance has not been studied in depth. As such, the cognitive
and neural systems that identify perceptual features and link them to trait judgments are not
well known (Over & Cook, 2018). The current study, therefore, investigates the hypothesis
that impression formation from faces relies on a distributed neural architecture that spans the

face perception and ToM neural networks.
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91 In the current fMRI study, we addressed the extent to which face perception and ToM
92  networks contribute to forming impressions based on facial appearance. The experiment used
93  arepetition suppression (RS) design (Grill-Spector, Henson, & Martin, 2006; Barron et al.,
94  2016). RS designs measure a reduced BOLD response following a repeated stimulus feature
95  and arelease from suppression following a novel stimulus feature. Compared to conventional
96  subtraction designs, which can show if a brain region shows magnitude differences between
97  conditions, RS studies hold the potential to study neural processes at the level of neural
98  populations within a given brain region. A brain region that shows RS, therefore, can allow
99  inferences about the organisation of underlying neural populations (Barron et al., 2016;

100 Figure 1). We created face stimuli that cued high and low trait judgments and showed these

101 stimuli to participants in a sequence that created novel and repeated events. To identify

102 functional regions of interest, we used established face and ToM localiser tasks and to bolster

103 statistical power we used an analysis pipeline that has been demonstrated to exhibit high

104  functional resolution and sensitivity (Julian et al., 2012; Nieto-Castanon & Fedorenko, 2012).

105 If the face and ToM networks are engaged in forming impressions based on facial features in

106  the manner that we predict, we would expect to observe repetition suppression for face traits

107 in both networks.

108

109  Method

110

111 Participants

112 Twenty-eight participants completed the experiment (14 female; M,.=23.96, SD=5.52). All

113 participants received a monetary reimbursement (£15), had normal or corrected-to-normal

114  vision and gave informed consent according to the local ethics guidelines.

115

116  Stimuli and experimental tasks
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117 Stimuli. Face stimuli were initially selected from a face database created at Bangor

118 University. The Bangor face database comprises photographs of participants with an

119  emotionally neutral expression and self-report measures of various personality and subclinical
120 traits (Kramer and Ward, 2010; Jones et al., 2012; Scott et al., 2013). Individual images were
121 extracted from the database and transformed along four personality or health dimensions

122 (Extraversion, Agreeableness, Neuroticism and Physical Health). These dimensions were

123 chosen because prior work had shown that these dimensions were readily identifiable in

124 composite stimuli, which average faces across multiple identities (Kramer & Ward, 2010).
125 All face transformations were performed in JPsychomorph (Tiddeman et al., 2001).
126 Face stimuli were produced by transforming an original face image from the database towards
127 an average template of a high trait face (High Trait) or towards an average template of a low
128  trait face (Low Trait). Template faces were produced by creating a composite of the 15

129 individuals with the highest or lowest ratings along each of the four dimensions. For example,
130 for physical health, an average composite of the 15 most physically healthy individuals in the
131 database was created as well as an average composite of the 15 least physically healthy

132 individuals. This process was repeated for all four dimensions (Extraversion, Agreeableness,
133 Neuroticism and Physical Health). To avoid skin colour or make-up influencing the

134 construction of composite images, only individuals that were white and not wearing make-up
135 were included. Also, to simplify the design space, we only used images of female individuals.
136 Individual images were selected that were between those included in the high and low
137 composites and also met the above inclusion criteria (i.e., white females who were not

138 wearing make-up). Additionally, the individual in each image had provided consent that their
139 individual face could be shown in later studies. The number of individuals fitting these

140  criteria per trait were: Extraversion = 54, agreeableness = 53, neuroticism = 56, physical

141 health = 54, which made a total of 217 IDs. Note that these were not unique IDs and most
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142 were used across traits. An individual face image was then transformed in two ways: towards
143 the high trait composite image by 100% and towards the low trait composite image by 100%
144 (Figure 1). A 100% transform retains the identity cues of the original image whilst shifting
145 the appearance by 100% of the shape, colour, and texture difference between the high and the
146 low composite images. This produced two transformed images per original stimulus (High
147 trait, Low trait), which made 434 images in total.

148 We transformed stimuli in this manner to exaggerate the distinctive facial features

149 associated with particular trait characteristics, whilst maintaining a variety of facial identities
150 by using individual faces rather than composite images. We did not use composite face

151  images, as this would reduce the variety of identities presented during the scanning task,

152 which may lead participants to disengage. Indeed, we wanted to maintain interest in the

153 stimuli and thus encourage a ‘fresh’ social judgment on every trial and increasing variety of
154  idiosyncratic facial features and identities seemed a concrete way of doing so.

155 Pilot task. To assess the extent to which these stimuli would cue distinct trait

156  judgments, we ran a pilot behavioural experiment (see Supplementary Method). The pilot
157  experiment demonstrated that judgements of Low and High Extraversion, Neuroticism and
158  Physical health were perceived distinctly and as anticipated based on prior research (Kramer
159 & Ward, 2010; Supplementary Figure 2). However, there was no difference in the perception
160  of high and low agreeableness (Supplementary Figure 2). Prior work on agreeableness

161  averaged multiple facial identities to create one composite image (Kramer & Ward, 2010). In
162 the current study, we used individual faces that had been transformed towards High or Low
163 trait features. Therefore, after the pilot study, it was unclear if the lack of distinct behavioural
164  judgments based on agreeableness was due to the method of stimulus construction. We

165  decided to leave the agreeableness stimuli in for the scanning experiment in order to see if the
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166 ~ same pattern of results persisted in new participants and, if so, if there were neural effects in
167  the absence of distinct behavioural judgments.

168 Main task. The main task used an event-related design with two types of face stimuli
169  presented (High trait and Low trait faces). The design of the main task is illustrated in Figure
170 1. Each run comprised 17 blocks of 9 trials. On every trial participants were shown a face and
171  asked to make a social judgement. At the start of each block, participants were shown a

172 written statement and a ratings scale for 4 seconds (1=Strongly disagree, 2= Disagree, 3 =

173 Agree, 4=Strongly agree). The task for participants was to rate how well the person matched
174  the statement. Each trial lasted 3s and participants were instructed to make a judgment based
175  on their initial reaction or “gut instinct”. The scale was always the same, but was included

176 with the statement before each block as a reminder. Participants responded on a button box
177  within the scanner by pressing the corresponding key. Between blocks a white cross was

178  presented on a black screen for a randomly selected duration of 2, 3 or 4 seconds.

179 Each block contained High and Low versions of stimuli from one category (e.g.,

180  Physical Health) and each trial showed a different person. However, participants were not

181  shown high and low versions of the same person in the same category. Instead, participants
182 were shown either a high or a low version of an individual to avoid confusion with seeing the
183 same person transformed to opposite ends of a single dimension. Statements for each block
184  related to the category of stimuli presented in that block. For example, in a physical health
185  block, participants made judgments based on statements concerning physical health. Four

186  statements per category were taken for Extraversion, Agreeableness and Neuroticism from the
187  corresponding scales of the mini-IPIP (Donnellan et al., 2006). An example of an

188 Extraversion statement is “Is the life of the party”. For physical health judgements, items were
189  used from the Short-Form 12-Item Health Survey, which assesses physical health (Ware,

190  Kosinski, & Keller, 1996). An example physical health statement is ‘‘Finds it easy to climb
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191  the stairs”. The first block in a run was randomly selected as a starter block. Subsequently,
192 four blocks of each category were presented in a pseudorandom order such that each block
193 followed each other equally often.

194 Each block began with a starter trial, which was randomly selected from that category.
195  The next 8 trials were sequenced to achieve an even number of novel and repeated trials with
196  novel and repeated trials following each other equally often. Each trial was defined in

197  reference to the preceding trial. For example, a High trait trial that was preceded by a High
198 trait trial would be defined as a repeated trial, whereas a High trait trial that was preceded by a
199  Low trait trial would be defined as a novel trial. This design produced the two conditions of
200  interest, which were modelled as separate regressors in the general linear model:

201 Novel_FaceTrait and Repeated_FaceTrait. The starter trial was included as an additional

202 regressor of no interest since the trial was not preceded by any trial and therefore it was not
203  comparable to the other trials. Each trial was modelled from the onset of the first image for a
204  nominal zero second duration. Across a block there were four trials per condition and across a
205  run there were 68 trials per condition. Each participant completed two runs of the main task,
206  which made 136 trials per condition over the entire experiment. In addition, before entering
207  the scanner, participants completed two practice blocks of the main task.

208 Face localiser. To identify face-selective brain regions, we used an established face
209 localiser (Pitcher et al., 2011). Five categories of stimuli were shown to participants (faces,
210  bodies, scenes, objects, scrambled objects), with one category per block. Each block lasted
211 18s and showed six 3s movie clips from that category. A total of two blocks were shown in
212 each functional run. At the start, middle and end of each functional run, there was a rest

213 condition for 18s. In the rest condition, a series of six uniform colour fields were presented
214 for 3s each. The order of blocks was reversed from the first to the second bock (e.g., fixation,

215  faces, objects, scenes, bodies, scrambled objects, fixation, scrambled objects, bodies, scenes,
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216  objects, faces, fixation). Throughout all blocks, participants were instructed to watch the
217  movies but were not given an explicit task.
218 Theory-of-mind localiser. To localise brain regions associated with ToM, we used an

219  established ToM-localiser (Dodell-Feder et al., 2011; http://saxelab.mit.edu/superloc.php).

220  Participants read 10 short false belief stories, in which the belief characters have about the
221  state of the world is false. Participants also read 10 false photograph stories, where a

222 photograph, map, or sign has out-dated or misleading information. After reading each story,
223 participants had to answer whether the subsequently presented statement is true or false. Each
224 run started with a 12 second rest period, after which the stories (10 seconds) and questions (4
225  seconds) were presented for 14 seconds combined. Each story was separated by a 12 second
226  rest period. The order of items and conditions was identical for each subject. In the first run,
227  stimuli 1 — 5 from each condition were presented, and the remaining stimuli were presented
228  during the second block.

229 Procedure. Participants completed two runs of the main task. Two additional

230  functional runs were also completed as part of another experiment — one run included a

231  version of an imitation inhibition task (Brass et al., 2000) and one run included a version of a
232 flanker task (Eriksen & Eriksen, 1974). These runs occurred before each run of the main task
233 in order to add variety and offset boredom. Subsequently, participants then completed one run
234 of the face localiser and two runs of the ToM-localiser. The ToM-localiser was always

235  presented after participants had completed the main task, to ensure that participants were not
236  primed towards making trait inferences during the main task. All participants completed an
237  anatomical scan.

238

239 Data acquisition

10
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240 The experiment was conducted on a 3 Tesla scanner (Philips Achieva), equipped with
241 a 32-channel SENSE-head coil. Stimuli were displayed on a MR safe BOLD screen

242 (Cambridge Research Systems: http://www crsltd.com/) behind the scanner, which

243 participants viewed via a mirror mounted on the head-coil. T2*-weighted functional images
244  were acquired using a gradient echo echo-planar imaging (EPI) sequence with the following
245  parameters: acquisition time (TR) = 2000 ms; echo time (TE) = 30ms; flip angle = 90°;

246 number of axial slices = 35; slice thickness = 4mm; slice gap = 0.8mm,; field of view = 230 x
247 230 x 167mnr. After the functional runs were completed, a high-resolution T1-weighted

248 structural image was acquired for each participant (voxel size = 1 mnr, TE = 3.8 ms, flip

249  angle = 8°, FoV =288 x 232 x 175 mnv). Four dummy scans (4 * 2000 ms) were routinely
250  acquired at the start of each functional run and were excluded from analysis. 291 volumes per
251  functional run were collected, except for participant 1 where 288 and 289 volumes were

252 collected in block 1 and 2 respectively.

253

254  Behavioural data analysis

255 During scanning, faces were rated on four dimensions in a similar manner to the pilot
256  experiment. The four dimensions included Extraversion, Agreeableness, Neuroticism and

257  Physical Health and the ratings scale ranged from 1 to 4 (1 = Strongly disagree, 2 = Disagree,
258 3 = Agree, 4 = Strongly agree). Ratings on each of these dimensions were compared between
259  high and low transformed stimuli. We expected high transformed stimuli to be rated in a

260  manner that is more consistent with descriptions of the trait category. For instance, based on
261 prior work (Kramer & Ward, 2010), as well as our behavioural pilot data, we would expect
262 stimuli transformed towards high physical health to be rated in a manner consistent with

263 higher physical heath. To compare high and low transformed stimuli, we computed difference

264  scores between high and low stimulus categories as well as interval estimates using 95%

11
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265  confidence intervals (Cumming, 2013). We also computed a paired-samples t-test and a

266  standardised effect size for each difference score (Cohen’s d,; Cohen, 1992; Lakens, 2013).
267

268  fMRI data preprocesing and analysis

269 Preprocessing. Head motion was examined for each participant on each task, with an
270  exclusion criteria if displacement across either task exceeded 3 millimetres. We report for
271 each task how many runs or participants were removed for each experiment. fMRI data were
272 analysed with Statistical Parametric Mapping software (SPM8; Wellcome Trust Department
273 of Cognitive Neurology, London, UK: www fil.ion.ucl.ac.uk/spm/). Data were realigned,
274  unwarped, corrected for slice timing, and normalised to the MNI template with a resolution of
275 3mnr. Images were then spatially smoothed (Smm).

276 Analysis. We used spm_ss to perform our primary analyses (Julian et al., 2012; Nieto-
277 Castanon & Fedorenko, 2012; http://www nitrc.org/projects/spm_ss). Spm_ss enables a

278  subject-specific approach to fMRI data analysis. Like other ROI approaches, functional

279 regions of interest (fROI) are defined and tested in separate data to ensure that the analyses
280  are not circular (Kriegeskorte et al., 2009). The advantage of spm_ss is that it uses an

281  algorithm (or functional parcels from prior datasets) to define fROIs in a group-constrained
282  and subject-specific manner (GSS). This means that the approach benefits from showing

283 group consistency across participants, without requiring complete voxel-level overlap across
284  participants. As such, the approach integrates single-subject specificity within individuals
285  with group-constrained consistency across individuals.

286 We used GSS to define fROIs using separate localiser data. fROIs were first defined
287  using Face and ToM network localisers before we tested how these fROIs responded in our
288  main task contrasts of interest (RS FaceTraits). To do so, the following steps were taken. 1)

289  Using localiser data, we computed activation maps in individuals, thresholded these images (p

12
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290 < 0.001, uncorrected) and overlaid them on top of one another. The resultant overlay map

291  contains information on the percentage of individuals that show an above threshold response.
292 2) The overlay map was then divided into regions by an image parcellation algorithm. 3) The
293 resulting regions are then investigated in terms of the proportion of subjects that show some
294  suprathreshold voxels. 4) Regions that overlap in a substantial number of participants (>50%)
295  are then interrogated using independent data (i.e., data from the main task). Statistical tests
296  across participants were performed on percent signal change values extracted from the fROIs
297  according to contrasts of interest.

298 Main task contrasts. For the fMRI data analysis of the main task, we computed our
299  primary contrast of interest: RS Face Traits (Novel_FaceTrait > Repeated_FaceTrait).

300 Face localiser contrasts. Each block was modelled from the onset of the first trial for
301  the entire block (18 seconds). A design matrix was fit for each participant with five regressors
302 per block (Faces, Bodies, Scenes, Objects, Scrambled objects). To identify face-selective

303  regions, a Face > All baseline contrast was evaluated in individual participants (Dynamic

304  Faces > Dynamic Scenes + Objects + Scrambled Objects)

305 ToM localiser contrasts. A design matrix was fit for each participant with 2

306  regressors, one for each experimental condition (false beliefs and false photographs). The

307 ToM-network was revealed by contrasting false beliefs with false photographs (False Beliefs
308 > False Photographs).

309

310  Results

311 Behavioural data

312 During scanning, high trait faces were rated more consistent with trait characteristics than low
313 trait faces for extraversion t(27)=10.88, p <0.001, d, = 2.06, neuroticism t(27)=4.50, p <0.001,

314  d,=0.85, and physical health t(27)=3.73, p <0.001, d, = 0.71 (Figure 2). There was no

13
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315  difference between high and low trait faces for judgments of agreeableness t(27)=-0.33,p =
316  0.63,d,=-0.06 (Figure 2). This pattern of results closely replicates our pilot data.

317

318  fMRI data

319 The GSS analysis using the face localiser data revealed nine regions where a majority
320  of participants showed a greater response to faces than all other baseline conditions. Three of
321  these regions are of particular interest given our predictions as they represent the core face
322 perception network. These regions include rOFA, rFFA and r STS/STG. None of the three
323 regions of interest showed RS for Face Traits estimated from data from the main task (Figure
324  3A; Table 1). If we widen the search to all nine face responsive regions, we do not find RS for
325  Face Traits in any of the ROIs (Supplementary Table 4).

326 The GSS analysis using the ToM localiser data revealed nine regions where a majority
327  of participants showed a greater response to false belief stories than false photograph stories.
328  Four of these regions are of particular interest given our predictions regarding specific nodes
329  of the ToM network. These regions include rTPJ, mPFC and r anterior STG / temporal pole.
330  None of these regions showed RS for Face Traits estimated from data from the main task

331  (Figure 3B; Table 1). If we widen the search to all nine regions from the ToM localiser, we do
332 not find RS for Face Traits in any of the ROIs (Supplementary Table 4).

333 As judgements of agreeableness showed no behavioural differences in perceptions of
334 trait character or health (Figure 2), we removed agreeableness blocks from the analysis, but
335  the results remained the same in both brain networks of interest.

336 Finally, we completed an exploratory whole-brain analysis, in order to test if regions
337  outside of the Face and ToM networks showed RS for Face Traits. Using SPM8, we

338  calculated Novel > Repeated Face Traits at the single subject level before completing a

339 random effects analysis at the group level using the same contrast. At the group level, no
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340  significant clusters of activity were found (p < 0.001, K=10, p<0.05 family wise error

341  corrected). Even at a more liberal threshold (p < 0.001, uncorrected for multiple

342 comparisons), no clusters emerged from this contrast.

343 Data from this experiment are freely available, including the behavioural and fROI
344  data (osf.io/7knrp), as well as data from the whole-brain analysis

345  (https://neurovault.org/collectionss HDLVMPQUY/).

346

347  Discussion

348  Here we show that faces readily cued accurate person judgments regarding extraversion,

349  neuroticism and physical health, but the neural networks associated with face perception and
350  ToM showed no sensitivity in terms of repetition suppression to trait judgements. As such, we
351  do not provide evidence that supports population coding models of face perception that

352 include dimensions for high and low trait features along the ventral visual stream and in the
353  ToM network. Due to aspects of the experimental design and analysis pipeline, which

354  bolstered statistical power and sensitivity, we have reasonable confidence that we could detect
355  effects of a moderate size, should they exist. However, it remains possible that these regions
356  are sensitive to other trait dimensions of person perception such as trustworthiness or other
357  types of facial stimuli, such as synthetic stimuli. The null findings reported here, therefore,
358  add value to models of neural organisation by showing instances where effects are absent or
359  small. In addition, by publishing null results, we provide a less biased scientific record, one
360 that future studies can build upon by appropriately powering studies (Open Science

361  Collaboration, 2015; Simmons et al., 2011). Indeed, future work can use these results to guide
362  further interrogation of what is fundamentally an interesting scientific and social question that
363  relates to understanding the neural mechanisms associated with how trait inferences are cued

364  from facial appearance.
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365

366  Understanding the neural basis of impression formation based on facial appearance

367  The current experiment provides no evidence that populations of neurons in face perception
368  or ToM networks code for facial features that are associated with distinct trait judgements of
369  extraversion, neuroticism or physical health. Moreover, a whole-brain analysis showed no
370  effects in the amygdala or ventral striatum, which have previously been associated with social
371 evaluations of faces based on valence (Bzdok et al., 2011; Mende-Siedlecki et al., 2013; Said
372 etal.,2010; 2011; Todorov et al., 2013). Observers were able to accurately discriminate faces
373 on the basis of the social trait being displayed for the majority of person dimensions.

374  However, we were unable to uncover the neural substrates for this discrimination. In

375  particular, we could not find evidence for our hypothesis that brain regions representing

376  features and judgements for high traits might be separable from those representing low traits.
377  Rather than distinct populations of neurons in the same neural region coding for high and low
378  trait features and judgments, which a neural response consistent with RS would support

379  (Grill-Spector, Henson, & Martin, 2006; Barron et al., 2016), the results may suggest that face
380  perception and ToM networks have a common neural parameter that codes for the perceptual
381  and judgement space under investigation. If so, the same neural populations would be

382 engaged on all trials, whether novel or repeated. For example, if the same features of the face
383 cue high and low judgements, they would be engaged equally on novel and repeated trials.
384  The ultimate judgment would differ between high and low trait faces, but the underlying

385  neural architecture would be similar. This proposal is speculative, however, and would

386  require further testing and confirmation.

387 An alternative possibility is that RS may not have been sensitive enough to detect the
388  fine-grained population coding structure that was tested. To bolster statistical power, we

389  included a large number of trials per condition for fMRI research (136), we tested 28
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390  participants and we used a single-subject analysis pipeline that has been shown to have

391  relatively high sensitivity and functional resolution in multi-subject analyses (Nieto-Castanon
392 & Fedorenko, 2012). Nonetheless, RS may have been smaller than we could detect with

393  reasonable confidence. Future work may consider multi voxel pattern analysis approaches

394  (Kriegeskorte & Kievit, 2013), which have been shown to be more sensitive than RS

395  approaches in the domain of vision (Sapountzis et al., 2010). In addition, future work may

396  consider the relationship between face and ToM networks as prior functional connectivity

397  research has shown that the ToM network functionally couples with nodes of body perception
398  network (Greven et al., 2016; Greven & Ramsey, 2017a, b). The hypothesis that such future
399  connectivity research could pursue is that the representation of trait judgments from faces

400  may span across face perception and ToM networks rather than only within them.

401

402  Limitations and constraints on generality

403  In the current study, we do not show RS for trait inferences based on facial appearance. By
404  contrast, other work using written descriptions of behaviour, which imply trait inferences, have
405  shown that vental medial prefrontal cortex (vmPFC) shows RS for trait implying behaviours
406  (Heleven et al., 2017; Heleven & Van Overwalle, 2016; Ma et al., 2014; Van Overwalle et al.,
407  2016). Indeed, this work shows that vmPFC encodes trait representations for familiar (Heleven
408 & Van Overwalle,2016) and unfamiliar individuals (Heleven et al., 2017), as well as for distinct
409 traits such as valence and competence (Van Overwalle et al., 2016). Therefore, it is important
410  that we acknowledge relevant constraints on the generality of our findings (Simons et al., 2017).
411 Our data, at least with the stimuli that we used, do not support the view that vmPFC stores a
412 person or trait code, which can be easily accessed or engaged irrespective of the type of input
413 (face or text). It could be that written text is simply a more salient way to engage trait inferences,

414  which could lead to the discrepant results. Alternatively, it be might be that not all sources of
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415  input (face, text) or all types of person judgment (extraversion, health, trustworthiness) are
416  coded in a similar neural structure. Future work that directly tests interactions between input
417  type and judgments type would be valuable.

418 Of particular interest for future work would be to test judgments from faces that vary
419  on a valence / trustworthiness dimension (Todorov et al., 2008). In the current study, the
420  behavioural data showed that participants’ judgments did not distinguish between high and low
421 agreeableness faces, which is the closest dimension to valence / trustworthiness. However,
422 participants were sensitive to other dimensions, such as extraversion, neuroticism and physical
423 health. Importantly, recent models of social judgments from faces have shown that appraising
424 faces has three partly distinct dimensions including valence / trustworthiness, dominance and
425  attractiveness (Sutherland et al.,2013). Since judgments of physical health have been associated
426  with attractiveness (Little et al., 2011), our physical health dimension closely resembles a key
427  dimension in the person perception (attractiveness). Therefore, it may be that health and
428  attractiveness judgments, as well as some other types of traits judgment (extraversion,
429  neuroticism), are not coded in the same way as valence / trustworthiness judgments. Indeed,
430  given the role of valence judgments in guiding approach and avoidance behaviours, it may be
431  that there is a more distinct neural architecture dedicated to perceiving such traits.

432 In the current study, we used morphed images of real human faces. Our findings,
433 therefore, apply most directly to faces that look straightforwardly human. A complementary
434 avenue for future research would be to test models of trait inference from synthetic, computer-
435  generated facial stimuli. The advantage of using computer-generated stimuli would be tighter
436  experimental control, which may boost the ability to detect effects of interest. The obvious
437  disadvantage, however, compared to the current approach of using real photographs, is the
438 artificial limit imposed on ecological validity (Sutherland et al., 2013). Using synthetic images

439  that produce more extreme facial attributes, which differ from the average more, may be
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440  important, given research that shows widespread neural responses to faces at high and low ends
441  of continua (Said et al., 2010; 2011). Indeed, even though the majority of trait inferences
442 showed reliable behavioural judgments, it is possible that the similarity between our stimuli
443 reduced the saliency of features that cue trait judgments. Relatedly, we made sure that
444 participants would not see stimuli morphed to different traits in the same block in order to avoid
445  confusion between identities and facial attributes. But, by doing so, this may have made the
446  distinction between high and low exemplars less obvious. An alternative approach would be to
447  show high and low version in the same blocks.

448

449  Open science and the file drawer problem

450  Since null results and smaller effect sizes are typically relegated to the file drawer (Rosenthal,
451  1979), the current literature has a publication bias, which prioritises statistically significant
452 results and produces an overestimate of effect sizes. As such, null results from well designed
453 and well powered studies are important if the field is going to move towards a more precise
454  estimate of population effect sizes. Without greater acknowledgement of the value of null

455  results, artificially high estimates of effect sizes will continue to bias models of cognition and
456  brain function, skewing the design of future research and resulting in misallocation of

457  resources (Munafo et al., 2017). Indeed, as outlined above, a null result can make several

458  important contributions to future research (Zwaan et al., 2017). First, replications and

459  extensions can be powered to detect smaller effects or a task can be changed to increase

460  sensitivity. Second, other analysis methods, such as multi-voxel pattern analysis or measures
461  of connectivity (Kriegeskorte & Kievit, 2013; Bullmore & Sporns, 2009), may be prioritised
462  as they may more closely capture the information under investigation. As the data from this
463  study are readily available in online open access repositories, we hope that future research can
464  be guided by this work.

465
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Table 1. Main task ROI data.
Region Novel>Repeated
ROI size Average Inter- Percent t p(fdr)
(voxels) localiser subject signal
mask size | overlap change
(voxels) (%) (SEM)
Face localiser
Right OFA 412 84 93 -005 (.19) -03 82
Right FFA 223 44 86 067 (.17) -41 82
Right pSTS 143 24 75 -127 (.17) -73 82
ToM localiser
Right TPJ 828 230 96 -099 (.19) -.83 .80
Right temporal pole 115 22 82 -.054 (.06) -.88 30
Right ant. temp cortex 225 58 93 028 (.08) 34 .80
Anterior mPFC 50 8 57 017 (12) 15 .80

Abbreviations: ROI = Region of interest; fdr = false discovery rate; OFA = occipital face
area; FFA = right fusiform face area; pSTS = posterior superior temporal sulcus; TPJ =
temporoparietal junction; mPFC = medial prefrontal cortex; ant. Temp. = anterior temporal.

Note: ‘ROI size’ is the total number of voxels in each ROI based on data from a face
perception localiser or a theory-of-mind localiser. ‘Average localiser mask size’ is the number
of voxels that overlap in more than 50% of participants within each ROI. Right OFA, for
example, consists of a 412 voxel ROI, with 84 voxels showing overlap in 93% of participants.
Analyses were performed on the subset of voxels in each ROI that show overlap in a majority
of participants (>50%).
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648  Figure 1. Method and design.
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649
650  Figure 1. Method and design. A) Individual face images were transformed towards high and

651  low composite templates of trait variables (Extraversion, Agreeableness, Neuroticism,

652  Physical health). The example shown is extraversion. The images used are for illustrative

653  purposes and were not used in the experiment. B) During scanning, each block began with an
654  instruction screen, which provided a statement and a reminder of the ratings scale. On each
655  subsequent trial, participants had to make a judgment based on the face presented. As such, all
656  trials in a mini-block were from the same category (e.g., extraversion), but all trials showed a
657  different individual. C) An illustration of the population coding model of face perception that
658  the repetition suppression design was testing. High and low trait features are presented in blue
659  and green, respectively. Novel and repeated trials are presented in darker and lighter colours,
660  respectively.
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661  Figure 2. Ratings data
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663  Figure 2. Mean average face ratings during scanning. Error bars are 95% confidence
664  intervals.
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Figure 3. Percent signal change in our functional regions of interest.
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Figure 3. Percent signal change for novel compared to repeated trials in the face perception
(A) and theory-of-mind network (B). Error bars are standard error of the mean.
Abbreviations: r = right; OFA = occipital face area; FFA = right fusiform face area; pSTS =
posterior superior temporal sulcus; TPJ = temporoparietal junction; mPFC = medial prefrontal
cortex; ant. Temp. = anterior temporal.
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