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Abstract 24 

The human face cues a wealth of social information, but the neural mechanisms that underpin 25 

social attributions from faces are not well known. In the current fMRI experiment, we used 26 

repetition suppression to test the hypothesis that populations of neurons in face perception and 27 

theory-of-mind neural networks would show sensitivity to faces that cue distinct trait 28 

judgments. Although faces were accurately discriminated based on associated traits, our 29 

results showed no evidence that face or theory-of-mind networks showed repetition 30 

suppression for face traits. Thus, we do not provide evidence for population coding models of 31 

face perception that include sensitivity to high and low trait features. Due to aspects of the 32 

experimental design, which bolstered statistical power and sensitivity, we have reasonable 33 

confidence that we could detect effects of a moderate size, should they exist. The null 34 

findings reported here, therefore, add value to models of neural organisation in social 35 

perception by showing instances where effects are absent or small. To test the generalisability 36 

of our findings, future work should test different types of trait judgment and different types of 37 

facial stimuli, in order to further probe the neurobiological bases of impression formation 38 

based on facial appearance. 39 

  40 
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Introduction 41 

Faces signal information that guide social interactions (Emery, 2000). Although complex 42 

social signals such as emotional states, trait characteristics, and attentional focus are readily 43 

perceived from faces (Jack & Schyns, 2017; Todorov et al., 2015), the neural mechanisms 44 

that process social dimensions of face perception remain unclear. Here, in a functional 45 

magnetic resonance imaging (fMRI) experiment, we use repetition suppression to investigate 46 

the neural representation of how trait inferences are arrived at during social perception.  47 

The majority of neuroscience research on face perception has focused on detection and 48 

recognition of identity and emotion. This research has identified face-selective patches of 49 

cortex that respond more to viewing faces than other categories of objects such as houses and 50 

cars (Duchaine & Yovel, 2015; Haxby et al., 2000; Kanwisher et al., 1997). Key regions in 51 

the face perception network include the fusiform face area (FFA; Kanwisher et al., 1997), 52 

occipital face area (OFA; Gauthier et al., 2000) and posterior superior temporal sulcus (pSTS; 53 

Allison et al., 2000; Pitcher et al., 2011). These three nodes along the ventral visual stream are 54 

suggested to perform core visual analyses of facial features, but also interact with extended 55 

circuits in anterior cortex for more elaborate representations of identity and emotional valence 56 

(Duchaine & Yovel, 2015; Haxby et al., 2000; Kanwisher, 2010).  57 

Face recognition is important for initiating social interactions, but faces cue much 58 

more than the mere presence of a social agent. Indeed, impressions of others are partly formed 59 

on the basis of stable, non-emotional aspects of facial appearance (Todorov et al., 2015; 60 

Zebrowitz, 2011). As such, there is interplay between the perception of facial features and the 61 

formation of character impressions (Jack & Schyns, 2017). Models of social impressions from 62 

faces have been developed that include dimensions of valence/trustworthiness, dominance 63 

and attractiveness (Todorov et al., 2008; Sutherland et al., 2013; Wang et al., 2016). However, 64 

there is currently little known regarding the neural bases of such impression formation. For 65 
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example, faces that cue social evaluations of trustworthiness and attractiveness have been 66 

associated with responses in the amygdala and ventral striatum, which have been thought to 67 

index the reward value and typicality of faces (Bzdok et al., 2011; Mende-Siedlecki et al., 68 

2013; Said et al., 2010; 2011; Todorov et al., 2013). Additionally, behavioural research has 69 

shown that personality characteristics such as extraversion are accurately perceived from 70 

static facial features (Borkenau & Liebler, 1992; Borkenau et al., 2009; Kramer & Ward, 71 

2010; Penton-Voak et al., 2006). However, beyond brain circuits associated with reward, little 72 

is currently known regarding the neural architecture supporting personality judgments that are 73 

cued during face perception. 74 

Research investigating trait judgments has primarily focused on reading statements, 75 

rather than faces (Uleman et al., 2008). For example, reading trait-diagnostic statements, such 76 

as “she gave money to charity”, engages the theory-of-mind (ToM) network more than trait-77 

neutral statements such as “she sharpened her pencil” (Heleven et al., 2017; Heleven & Van 78 

Overwalle, 2016; Ma et al., 2014; Mitchell et al., 2002; 2005; Van Overwalle et al., 2016). 79 

The ToM network is engaged when attributing mental states such as beliefs, desires and 80 

attitudes to others, as well as judging character and is thought to be central to understanding 81 

social cognition (van Overwalle, 2009; Frith & Frith, 1999). The ToM network is largely 82 

distinct from the face perception network with key nodes covering temporoparietal junction, 83 

medial prefrontal cortex, temporal poles and precuneus (van Overwalle, 2009; Frith & Frith, 84 

1999; Saxe & Kanwisher, 2003). However, the potential role of the ToM network in forming 85 

impressions based on facial appearance has not been studied in depth. As such, the cognitive 86 

and neural systems that identify perceptual features and link them to trait judgments are not 87 

well known (Over & Cook, 2018). The current study, therefore, investigates the hypothesis 88 

that impression formation from faces relies on a distributed neural architecture that spans the 89 

face perception and ToM neural networks. 90 
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In the current fMRI study, we addressed the extent to which face perception and ToM 91 

networks contribute to forming impressions based on facial appearance. The experiment used 92 

a repetition suppression (RS) design (Grill-Spector, Henson, & Martin, 2006; Barron et al., 93 

2016). RS designs measure a reduced BOLD response following a repeated stimulus feature 94 

and a release from suppression following a novel stimulus feature. Compared to conventional 95 

subtraction designs, which can show if a brain region shows magnitude differences between 96 

conditions, RS studies hold the potential to study neural processes at the level of neural 97 

populations within a given brain region. A brain region that shows RS, therefore, can allow 98 

inferences about the organisation of underlying neural populations (Barron et al., 2016; 99 

Figure 1). We created face stimuli that cued high and low trait judgments and showed these 100 

stimuli to participants in a sequence that created novel and repeated events. To identify 101 

functional regions of interest, we used established face and ToM localiser tasks and to bolster 102 

statistical power we used an analysis pipeline that has been demonstrated to exhibit high 103 

functional resolution and sensitivity (Julian et al., 2012; Nieto-Castanon & Fedorenko, 2012). 104 

If the face and ToM networks are engaged in forming impressions based on facial features in 105 

the manner that we predict, we would expect to observe repetition suppression for face traits 106 

in both networks.  107 

 108 

Method 109 
 110 
Participants 111 

Twenty-eight participants completed the experiment (14 female; Mage=23.96, SD=5.52). All 112 

participants received a monetary reimbursement (£15), had normal or corrected-to-normal 113 

vision and gave informed consent according to the local ethics guidelines.  114 

 115 

Stimuli and experimental tasks 116 
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Stimuli. Face stimuli were initially selected from a face database created at Bangor 117 

University. The Bangor face database comprises photographs of participants with an 118 

emotionally neutral expression and self-report measures of various personality and subclinical 119 

traits (Kramer and Ward, 2010; Jones et al., 2012; Scott et al., 2013). Individual images were 120 

extracted from the database and transformed along four personality or health dimensions 121 

(Extraversion, Agreeableness, Neuroticism and Physical Health). These dimensions were 122 

chosen because prior work had shown that these dimensions were readily identifiable in 123 

composite stimuli, which average faces across multiple identities (Kramer & Ward, 2010).  124 

All face transformations were performed in JPsychomorph (Tiddeman et al., 2001). 125 

Face stimuli were produced by transforming an original face image from the database towards 126 

an average template of a high trait face (High Trait) or towards an average template of a low 127 

trait face (Low Trait). Template faces were produced by creating a composite of the 15 128 

individuals with the highest or lowest ratings along each of the four dimensions. For example, 129 

for physical health, an average composite of the 15 most physically healthy individuals in the 130 

database was created as well as an average composite of the 15 least physically healthy 131 

individuals. This process was repeated for all four dimensions (Extraversion, Agreeableness, 132 

Neuroticism and Physical Health). To avoid skin colour or make-up influencing the 133 

construction of composite images, only individuals that were white and not wearing make-up 134 

were included. Also, to simplify the design space, we only used images of female individuals.  135 

Individual images were selected that were between those included in the high and low 136 

composites and also met the above inclusion criteria (i.e., white females who were not 137 

wearing make-up). Additionally, the individual in each image had provided consent that their 138 

individual face could be shown in later studies. The number of individuals fitting these 139 

criteria per trait were: Extraversion = 54, agreeableness = 53, neuroticism = 56, physical 140 

health = 54, which made a total of 217 IDs. Note that these were not unique IDs and most 141 
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were used across traits. An individual face image was then transformed in two ways: towards 142 

the high trait composite image by 100% and towards the low trait composite image by 100% 143 

(Figure 1). A 100% transform retains the identity cues of the original image whilst shifting 144 

the appearance by 100% of the shape, colour, and texture difference between the high and the 145 

low composite images. This produced two transformed images per original stimulus (High 146 

trait, Low trait), which made 434 images in total. 147 

We transformed stimuli in this manner to exaggerate the distinctive facial features 148 

associated with particular trait characteristics, whilst maintaining a variety of facial identities 149 

by using individual faces rather than composite images. We did not use composite face 150 

images, as this would reduce the variety of identities presented during the scanning task, 151 

which may lead participants to disengage. Indeed, we wanted to maintain interest in the 152 

stimuli and thus encourage a ‘fresh’ social judgment on every trial and increasing variety of 153 

idiosyncratic facial features and identities seemed a concrete way of doing so.  154 

Pilot task. To assess the extent to which these stimuli would cue distinct trait 155 

judgments, we ran a pilot behavioural experiment (see Supplementary Method). The pilot 156 

experiment demonstrated that judgements of Low and High Extraversion, Neuroticism and 157 

Physical health were perceived distinctly and as anticipated based on prior research (Kramer 158 

& Ward, 2010; Supplementary Figure 2). However, there was no difference in the perception 159 

of high and low agreeableness (Supplementary Figure 2). Prior work on agreeableness 160 

averaged multiple facial identities to create one composite image (Kramer & Ward, 2010). In 161 

the current study, we used individual faces that had been transformed towards High or Low 162 

trait features. Therefore, after the pilot study, it was unclear if the lack of distinct behavioural 163 

judgments based on agreeableness was due to the method of stimulus construction. We 164 

decided to leave the agreeableness stimuli in for the scanning experiment in order to see if the 165 
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same pattern of results persisted in new participants and, if so, if there were neural effects in 166 

the absence of distinct behavioural judgments. 167 

Main task. The main task used an event-related design with two types of face stimuli 168 

presented (High trait and Low trait faces). The design of the main task is illustrated in Figure 169 

1. Each run comprised 17 blocks of 9 trials. On every trial participants were shown a face and 170 

asked to make a social judgement. At the start of each block, participants were shown a 171 

written statement and a ratings scale for 4 seconds (1=Strongly disagree, 2= Disagree, 3 = 172 

Agree, 4=Strongly agree). The task for participants was to rate how well the person matched 173 

the statement. Each trial lasted 3s and participants were instructed to make a judgment based 174 

on their initial reaction or “gut instinct”. The scale was always the same, but was included 175 

with the statement before each block as a reminder. Participants responded on a button box 176 

within the scanner by pressing the corresponding key. Between blocks a white cross was 177 

presented on a black screen for a randomly selected duration of 2, 3 or 4 seconds.  178 

Each block contained High and Low versions of stimuli from one category (e.g., 179 

Physical Health) and each trial showed a different person. However, participants were not 180 

shown high and low versions of the same person in the same category. Instead, participants 181 

were shown either a high or a low version of an individual to avoid confusion with seeing the 182 

same person transformed to opposite ends of a single dimension. Statements for each block 183 

related to the category of stimuli presented in that block. For example, in a physical health 184 

block, participants made judgments based on statements concerning physical health. Four 185 

statements per category were taken for Extraversion, Agreeableness and Neuroticism from the 186 

corresponding scales of the mini-IPIP (Donnellan et al., 2006). An example of an 187 

Extraversion statement is “Is the life of the party”. For physical health judgements, items were 188 

used from the Short-Form 12-Item Health Survey, which assesses physical health (Ware, 189 

Kosinski, & Keller, 1996). An example physical health statement is ‘‘Finds it easy to climb 190 
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the stairs”. The first block in a run was randomly selected as a starter block. Subsequently, 191 

four blocks of each category were presented in a pseudorandom order such that each block 192 

followed each other equally often.  193 

Each block began with a starter trial, which was randomly selected from that category. 194 

The next 8 trials were sequenced to achieve an even number of novel and repeated trials with 195 

novel and repeated trials following each other equally often. Each trial was defined in 196 

reference to the preceding trial. For example, a High trait trial that was preceded by a High 197 

trait trial would be defined as a repeated trial, whereas a High trait trial that was preceded by a 198 

Low trait trial would be defined as a novel trial. This design produced the two conditions of 199 

interest, which were modelled as separate regressors in the general linear model: 200 

Novel_FaceTrait and Repeated_FaceTrait. The starter trial was included as an additional 201 

regressor of no interest since the trial was not preceded by any trial and therefore it was not 202 

comparable to the other trials. Each trial was modelled from the onset of the first image for a 203 

nominal zero second duration. Across a block there were four trials per condition and across a 204 

run there were 68 trials per condition. Each participant completed two runs of the main task, 205 

which made 136 trials per condition over the entire experiment. In addition, before entering 206 

the scanner, participants completed two practice blocks of the main task.  207 

Face localiser. To identify face-selective brain regions, we used an established face 208 

localiser (Pitcher et al., 2011). Five categories of stimuli were shown to participants (faces, 209 

bodies, scenes, objects, scrambled objects), with one category per block. Each block lasted 210 

18s and showed six 3s movie clips from that category. A total of two blocks were shown in 211 

each functional run. At the start, middle and end of each functional run, there was a rest 212 

condition for 18s. In the rest condition, a series of six uniform colour fields were presented 213 

for 3s each. The order of blocks was reversed from the first to the second bock (e.g., fixation, 214 

faces, objects, scenes, bodies, scrambled objects, fixation, scrambled objects, bodies, scenes, 215 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 20, 2018. ; https://doi.org/10.1101/351783doi: bioRxiv preprint 

https://doi.org/10.1101/351783
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

objects, faces, fixation). Throughout all blocks, participants were instructed to watch the 216 

movies but were not given an explicit task. 217 

Theory-of-mind localiser. To localise brain regions associated with ToM, we used an 218 

established ToM-localiser (Dodell-Feder et al., 2011; http://saxelab.mit.edu/superloc.php). 219 

Participants read 10 short false belief stories, in which the belief characters have about the 220 

state of the world is false. Participants also read 10 false photograph stories, where a 221 

photograph, map, or sign has out-dated or misleading information. After reading each story, 222 

participants had to answer whether the subsequently presented statement is true or false. Each 223 

run started with a 12 second rest period, after which the stories (10 seconds) and questions (4 224 

seconds) were presented for 14 seconds combined. Each story was separated by a 12 second 225 

rest period. The order of items and conditions was identical for each subject. In the first run, 226 

stimuli 1 – 5 from each condition were presented, and the remaining stimuli were presented 227 

during the second block.  228 

Procedure. Participants completed two runs of the main task. Two additional 229 

functional runs were also completed as part of another experiment – one run included a 230 

version of an imitation inhibition task (Brass et al., 2000) and one run included a version of a 231 

flanker task (Eriksen & Eriksen, 1974). These runs occurred before each run of the main task 232 

in order to add variety and offset boredom. Subsequently, participants then completed one run 233 

of the face localiser and two runs of the ToM-localiser. The ToM-localiser was always 234 

presented after participants had completed the main task, to ensure that participants were not 235 

primed towards making trait inferences during the main task. All participants completed an 236 

anatomical scan. 237 

 238 

Data acquisition 239 
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The experiment was conducted on a 3 Tesla scanner (Philips Achieva), equipped with 240 

a 32-channel SENSE-head coil. Stimuli were displayed on a MR safe BOLD screen 241 

(Cambridge Research Systems: http://www.crsltd.com/) behind the scanner, which 242 

participants viewed via a mirror mounted on the head-coil. T2*-weighted functional images 243 

were acquired using a gradient echo echo-planar imaging (EPI) sequence with the following 244 

parameters: acquisition time (TR) = 2000 ms; echo time (TE) = 30ms; flip angle = 90˚; 245 

number of axial slices = 35; slice thickness = 4mm; slice gap = 0.8mm; field of view = 230 x 246 

230 x 167mm3. After the functional runs were completed, a high-resolution T1-weighted 247 

structural image was acquired for each participant (voxel size = 1 mm3, TE = 3.8 ms, flip 248 

angle = 8°, FoV = 288 × 232 × 175 mm3). Four dummy scans (4 * 2000 ms) were routinely 249 

acquired at the start of each functional run and were excluded from analysis. 291 volumes per 250 

functional run were collected, except for participant 1 where 288 and 289 volumes were 251 

collected in block 1 and 2 respectively.  252 

 253 

Behavioural data analysis 254 

During scanning, faces were rated on four dimensions in a similar manner to the pilot 255 

experiment. The four dimensions included Extraversion, Agreeableness, Neuroticism and 256 

Physical Health and the ratings scale ranged from 1 to 4 (1 = Strongly disagree, 2 = Disagree, 257 

3 = Agree, 4 = Strongly agree). Ratings on each of these dimensions were compared between 258 

high and low transformed stimuli. We expected high transformed stimuli to be rated in a 259 

manner that is more consistent with descriptions of the trait category. For instance, based on 260 

prior work (Kramer & Ward, 2010), as well as our behavioural pilot data, we would expect 261 

stimuli transformed towards high physical health to be rated in a manner consistent with 262 

higher physical heath. To compare high and low transformed stimuli, we computed difference 263 

scores between high and low stimulus categories as well as interval estimates using 95% 264 
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confidence intervals (Cumming, 2013). We also computed a paired-samples t-test and a 265 

standardised effect size for each difference score (Cohen’s dz; Cohen, 1992; Lakens, 2013). 266 

 267 

fMRI data preprocesing and analysis 268 

Preprocessing. Head motion was examined for each participant on each task, with an 269 

exclusion criteria if displacement across either task exceeded 3 millimetres. We report for 270 

each task how many runs or participants were removed for each experiment. fMRI data were 271 

analysed with Statistical Parametric Mapping software (SPM8; Wellcome Trust Department 272 

of Cognitive Neurology, London, UK: www.fil.ion.ucl.ac.uk/spm/). Data were realigned, 273 

unwarped, corrected for slice timing, and normalised to the MNI template with a resolution of 274 

3mm3. Images were then spatially smoothed (5mm). 275 

 Analysis. We used spm_ss to perform our primary analyses (Julian et al., 2012; Nieto-276 

Castanon & Fedorenko, 2012; http://www.nitrc.org/projects/spm_ss). Spm_ss enables a 277 

subject-specific approach to fMRI data analysis. Like other ROI approaches, functional 278 

regions of interest (fROI) are defined and tested in separate data to ensure that the analyses 279 

are not circular (Kriegeskorte et al., 2009). The advantage of spm_ss is that it uses an 280 

algorithm (or functional parcels from prior datasets) to define fROIs in a group-constrained 281 

and subject-specific manner (GSS). This means that the approach benefits from showing 282 

group consistency across participants, without requiring complete voxel-level overlap across 283 

participants. As such, the approach integrates single-subject specificity within individuals 284 

with group-constrained consistency across individuals.  285 

We used GSS to define fROIs using separate localiser data. fROIs were first defined 286 

using Face and ToM network localisers before we tested how these fROIs responded in our 287 

main task contrasts of interest (RS FaceTraits). To do so, the following steps were taken. 1) 288 

Using localiser data, we computed activation maps in individuals, thresholded these images (p 289 
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< 0.001, uncorrected) and overlaid them on top of one another. The resultant overlay map 290 

contains information on the percentage of individuals that show an above threshold response. 291 

2) The overlay map was then divided into regions by an image parcellation algorithm. 3) The 292 

resulting regions are then investigated in terms of the proportion of subjects that show some 293 

suprathreshold voxels. 4) Regions that overlap in a substantial number of participants (>50%) 294 

are then interrogated using independent data (i.e., data from the main task). Statistical tests 295 

across participants were performed on percent signal change values extracted from the fROIs 296 

according to contrasts of interest.  297 

Main task contrasts. For the fMRI data analysis of the main task, we computed our 298 

primary contrast of interest: RS Face Traits (Novel_FaceTrait > Repeated_FaceTrait).  299 

Face localiser contrasts. Each block was modelled from the onset of the first trial for 300 

the entire block (18 seconds). A design matrix was fit for each participant with five regressors 301 

per block (Faces, Bodies, Scenes, Objects, Scrambled objects). To identify face-selective 302 

regions, a Face > All baseline contrast was evaluated in individual participants (Dynamic 303 

Faces > Dynamic Scenes + Objects + Scrambled Objects) 304 

ToM localiser contrasts. A design matrix was fit for each participant with 2 305 

regressors, one for each experimental condition (false beliefs and false photographs). The 306 

ToM-network was revealed by contrasting false beliefs with false photographs (False Beliefs 307 

> False Photographs). 308 

 309 

Results 310 

Behavioural data 311 

During scanning, high trait faces were rated more consistent with trait characteristics than low 312 

trait faces for extraversion t(27)=10.88, p <0.001, dz = 2.06, neuroticism t(27)=4.50, p <0.001, 313 

dz = 0.85, and physical health t(27)=3.73, p <0.001, dz = 0.71 (Figure 2). There was no 314 
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difference between high and low trait faces for judgments of agreeableness t(27)=-0.33, p = 315 

0.63, dz = -0.06 (Figure 2). This pattern of results closely replicates our pilot data. 316 

 317 

fMRI data 318 

The GSS analysis using the face localiser data revealed nine regions where a majority 319 

of participants showed a greater response to faces than all other baseline conditions. Three of 320 

these regions are of particular interest given our predictions as they represent the core face 321 

perception network. These regions include rOFA, rFFA and r STS/STG. None of the three 322 

regions of interest showed RS for Face Traits estimated from data from the main task (Figure 323 

3A; Table 1). If we widen the search to all nine face responsive regions, we do not find RS for 324 

Face Traits in any of the ROIs (Supplementary Table 4). 325 

The GSS analysis using the ToM localiser data revealed nine regions where a majority 326 

of participants showed a greater response to false belief stories than false photograph stories. 327 

Four of these regions are of particular interest given our predictions regarding specific nodes 328 

of the ToM network. These regions include rTPJ, mPFC and r anterior STG / temporal pole. 329 

None of these regions showed RS for Face Traits estimated from data from the main task 330 

(Figure 3B; Table 1). If we widen the search to all nine regions from the ToM localiser, we do 331 

not find RS for Face Traits in any of the ROIs (Supplementary Table 4). 332 

 As judgements of agreeableness showed no behavioural differences in perceptions of 333 

trait character or health (Figure 2), we removed agreeableness blocks from the analysis, but 334 

the results remained the same in both brain networks of interest.  335 

 Finally, we completed an exploratory whole-brain analysis, in order to test if regions 336 

outside of the Face and ToM networks showed RS for Face Traits. Using SPM8, we 337 

calculated Novel > Repeated Face Traits at the single subject level before completing a 338 

random effects analysis at the group level using the same contrast. At the group level, no 339 
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significant clusters of activity were found (p < 0.001, K=10, p<0.05 family wise error 340 

corrected). Even at a more liberal threshold (p < 0.001, uncorrected for multiple 341 

comparisons), no clusters emerged from this contrast.  342 

Data from this experiment are freely available, including the behavioural and fROI 343 

data (osf.io/7knrp), as well as data from the whole-brain analysis 344 

(https://neurovault.org/collections/HDLVMPQU/). 345 

 346 

Discussion 347 

Here we show that faces readily cued accurate person judgments regarding extraversion, 348 

neuroticism and physical health, but the neural networks associated with face perception and 349 

ToM showed no sensitivity in terms of repetition suppression to trait judgements. As such, we 350 

do not provide evidence that supports population coding models of face perception that 351 

include dimensions for high and low trait features along the ventral visual stream and in the 352 

ToM network. Due to aspects of the experimental design and analysis pipeline, which 353 

bolstered statistical power and sensitivity, we have reasonable confidence that we could detect 354 

effects of a moderate size, should they exist. However, it remains possible that these regions 355 

are sensitive to other trait dimensions of person perception such as trustworthiness or other 356 

types of facial stimuli, such as synthetic stimuli. The null findings reported here, therefore, 357 

add value to models of neural organisation by showing instances where effects are absent or 358 

small. In addition, by publishing null results, we provide a less biased scientific record, one 359 

that future studies can build upon by appropriately powering studies (Open Science 360 

Collaboration, 2015; Simmons et al., 2011). Indeed, future work can use these results to guide 361 

further interrogation of what is fundamentally an interesting scientific and social question that 362 

relates to understanding the neural mechanisms associated with how trait inferences are cued 363 

from facial appearance. 364 
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 365 

Understanding the neural basis of impression formation based on facial appearance  366 

The current experiment provides no evidence that populations of neurons in face perception 367 

or ToM networks code for facial features that are associated with distinct trait judgements of 368 

extraversion, neuroticism or physical health. Moreover, a whole-brain analysis showed no 369 

effects in the amygdala or ventral striatum, which have previously been associated with social 370 

evaluations of faces based on valence (Bzdok et al., 2011; Mende-Siedlecki et al., 2013; Said 371 

et al., 2010; 2011; Todorov et al., 2013). Observers were able to accurately discriminate faces 372 

on the basis of the social trait being displayed for the majority of person dimensions. 373 

However, we were unable to uncover the neural substrates for this discrimination. In 374 

particular, we could not find evidence for our hypothesis that brain regions representing 375 

features and judgements for high traits might be separable from those representing low traits. 376 

Rather than distinct populations of neurons in the same neural region coding for high and low 377 

trait features and judgments, which a neural response consistent with RS would support 378 

(Grill-Spector, Henson, & Martin, 2006; Barron et al., 2016), the results may suggest that face 379 

perception and ToM networks have a common neural parameter that codes for the perceptual 380 

and judgement space under investigation. If so, the same neural populations would be 381 

engaged on all trials, whether novel or repeated. For example, if the same features of the face 382 

cue high and low judgements, they would be engaged equally on novel and repeated trials. 383 

The ultimate judgment would differ between high and low trait faces, but the underlying 384 

neural architecture would be similar. This proposal is speculative, however, and would 385 

require further testing and confirmation.  386 

 An alternative possibility is that RS may not have been sensitive enough to detect the 387 

fine-grained population coding structure that was tested. To bolster statistical power, we 388 

included a large number of trials per condition for fMRI research (136), we tested 28 389 
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participants and we used a single-subject analysis pipeline that has been shown to have 390 

relatively high sensitivity and functional resolution in multi-subject analyses (Nieto-Castanon 391 

& Fedorenko, 2012). Nonetheless, RS may have been smaller than we could detect with 392 

reasonable confidence. Future work may consider multi voxel pattern analysis approaches 393 

(Kriegeskorte & Kievit, 2013), which have been shown to be more sensitive than RS 394 

approaches in the domain of vision (Sapountzis et al., 2010). In addition, future work may 395 

consider the relationship between face and ToM networks as prior functional connectivity 396 

research has shown that the ToM network functionally couples with nodes of body perception 397 

network (Greven et al., 2016; Greven & Ramsey, 2017a, b). The hypothesis that such future 398 

connectivity research could pursue is that the representation of trait judgments from faces 399 

may span across face perception and ToM networks rather than only within them. 400 

 401 

Limitations and constraints on generality 402 

In the current study, we do not show RS for trait inferences based on facial appearance. By 403 

contrast, other work using written descriptions of behaviour, which imply trait inferences, have 404 

shown that vental medial prefrontal cortex (vmPFC) shows RS for trait implying behaviours 405 

(Heleven et al., 2017; Heleven & Van Overwalle, 2016; Ma et al., 2014; Van Overwalle et al., 406 

2016). Indeed, this work shows that vmPFC encodes trait representations for familiar (Heleven 407 

& Van Overwalle, 2016) and unfamiliar individuals (Heleven et al., 2017), as well as for distinct 408 

traits such as valence and competence (Van Overwalle et al., 2016). Therefore, it is important 409 

that we acknowledge relevant constraints on the generality of our findings (Simons et al., 2017). 410 

Our data, at least with the stimuli that we used, do not support the view that vmPFC stores a 411 

person or trait code, which can be easily accessed or engaged irrespective of the type of input 412 

(face or text). It could be that written text is simply a more salient way to engage trait inferences, 413 

which could lead to the discrepant results. Alternatively, it be might be that not all sources of 414 
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input (face, text) or all types of person judgment (extraversion, health, trustworthiness) are 415 

coded in a similar neural structure. Future work that directly tests interactions between input 416 

type and judgments type would be valuable.  417 

Of particular interest for future work would be to test judgments from faces that vary 418 

on a valence / trustworthiness dimension (Todorov et al., 2008). In the current study, the 419 

behavioural data showed that participants’ judgments did not distinguish between high and low 420 

agreeableness faces, which is the closest dimension to valence / trustworthiness. However, 421 

participants were sensitive to other dimensions, such as extraversion, neuroticism and physical 422 

health. Importantly, recent models of social judgments from faces have shown that appraising 423 

faces has three partly distinct dimensions including valence / trustworthiness, dominance and 424 

attractiveness (Sutherland et al., 2013). Since judgments of physical health have been associated 425 

with attractiveness (Little et al., 2011), our physical health dimension closely resembles a key 426 

dimension in the person perception (attractiveness). Therefore, it may be that health and 427 

attractiveness judgments, as well as some other types of traits judgment (extraversion, 428 

neuroticism), are not coded in the same way as valence / trustworthiness judgments. Indeed, 429 

given the role of valence judgments in guiding approach and avoidance behaviours, it may be 430 

that there is a more distinct neural architecture dedicated to perceiving such traits. 431 

In the current study, we used morphed images of real human faces. Our findings, 432 

therefore, apply most directly to faces that look straightforwardly human. A complementary 433 

avenue for future research would be to test models of trait inference from synthetic, computer-434 

generated facial stimuli. The advantage of using computer-generated stimuli would be tighter 435 

experimental control, which may boost the ability to detect effects of interest. The obvious 436 

disadvantage, however, compared to the current approach of using real photographs, is the 437 

artificial limit imposed on ecological validity (Sutherland et al., 2013). Using synthetic images 438 

that produce more extreme facial attributes, which differ from the average more, may be 439 
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important, given research that shows widespread neural responses to faces at high and low ends 440 

of continua (Said et al., 2010; 2011). Indeed, even though the majority of trait inferences 441 

showed reliable behavioural judgments, it is possible that the similarity between our stimuli 442 

reduced the saliency of features that cue trait judgments. Relatedly, we made sure that 443 

participants would not see stimuli morphed to different traits in the same block in order to avoid 444 

confusion between identities and facial attributes. But, by doing so, this may have made the 445 

distinction between high and low exemplars less obvious. An alternative approach would be to 446 

show high and low version in the same blocks. 447 

 448 

Open science and the file drawer problem  449 

Since null results and smaller effect sizes are typically relegated to the file drawer (Rosenthal, 450 

1979), the current literature has a publication bias, which prioritises statistically significant 451 

results and produces an overestimate of effect sizes. As such, null results from well designed 452 

and well powered studies are important if the field is going to move towards a more precise 453 

estimate of population effect sizes. Without greater acknowledgement of the value of null 454 

results, artificially high estimates of effect sizes will continue to bias models of cognition and 455 

brain function, skewing the design of future research and resulting in misallocation of 456 

resources (Munafo et al., 2017). Indeed, as outlined above, a null result can make several 457 

important contributions to future research (Zwaan et al., 2017). First, replications and 458 

extensions can be powered to detect smaller effects or a task can be changed to increase 459 

sensitivity. Second, other analysis methods, such as multi-voxel pattern analysis or measures 460 

of connectivity (Kriegeskorte & Kievit, 2013; Bullmore & Sporns, 2009), may be prioritised 461 

as they may more closely capture the information under investigation. As the data from this 462 

study are readily available in online open access repositories, we hope that future research can 463 

be guided by this work. 464 

465 
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Table 1. Main task ROI data. 634 
 635 

 636 
Abbreviations: ROI = Region of interest; fdr = false discovery rate; OFA = occipital face 637 
area; FFA = right fusiform face area; pSTS = posterior superior temporal sulcus; TPJ = 638 
temporoparietal junction; mPFC = medial prefrontal cortex; ant. Temp. = anterior temporal. 639 
 640 
Note: ‘ROI size’ is the total number of voxels in each ROI based on data from a face 641 
perception localiser or a theory-of-mind localiser. ‘Average localiser mask size’ is the number 642 
of voxels that overlap in more than 50% of participants within each ROI. Right OFA, for 643 
example, consists of a 412 voxel ROI, with 84 voxels showing overlap in 93% of participants. 644 
Analyses were performed on the subset of voxels in each ROI that show overlap in a majority 645 
of participants (>50%). 646 
  647 

Region    Novel>Repeated 

 ROI size 
(voxels) 

Average 
localiser 

mask size 
(voxels) 

Inter-
subject 
overlap 

(%) 

Percent 
signal 
change 
(SEM) 

t p(fdr) 

Face localiser       
Right OFA 412 84 93 -.005 (.19) -.03 .82 
Right FFA 223 44 86 .067 (.17) -.41 .82 
Right pSTS 143 24 75 -.127 (.17) -.73 .82 
       
ToM localiser       
Right TPJ 828 230 96 -.099 (.19) -.83 .80 
Right temporal pole 115 22 82 -.054 (.06) -.88 .80 
Right ant. temp cortex 225 58 93 .028 (.08) .34 .80 
Anterior mPFC 50 8 57 .017 (.12) .15 .80 
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Figure 1. Method and design. 648 

 649 
Figure 1. Method and design. A) Individual face images were transformed towards high and 650 
low composite templates of trait variables (Extraversion, Agreeableness, Neuroticism, 651 
Physical health). The example shown is extraversion. The images used are for illustrative 652 
purposes and were not used in the experiment. B) During scanning, each block began with an 653 
instruction screen, which provided a statement and a reminder of the ratings scale. On each 654 
subsequent trial, participants had to make a judgment based on the face presented. As such, all 655 
trials in a mini-block were from the same category (e.g., extraversion), but all trials showed a 656 
different individual. C) An illustration of the population coding model of face perception that 657 
the repetition suppression design was testing. High and low trait features are presented in blue 658 
and green, respectively. Novel and repeated trials are presented in darker and lighter colours, 659 
respectively.   660 
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Figure 2. Ratings data 661 

 662 

Figure 2. Mean average face ratings during scanning. Error bars are 95% confidence 663 
intervals.   664 
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Figure 3. Percent signal change in our functional regions of interest. 665 

 666 
 667 
Figure 3. Percent signal change for novel compared to repeated trials in the face perception 668 
(A) and theory-of-mind network (B). Error bars are standard error of the mean. 669 
Abbreviations: r = right; OFA = occipital face area; FFA = right fusiform face area; pSTS = 670 
posterior superior temporal sulcus; TPJ = temporoparietal junction; mPFC = medial prefrontal 671 
cortex; ant. Temp. = anterior temporal.  672 

-0.5 

0

0.5

r	TPJ mPFC r	ant.	Temp.	
Cortex

r	temporal	pole

Novel>Repeated

A B

-0.5 

0

0.5

r	OFA r	FFA r	pSTS

Novel>Repeated

%
	si
gn

al
	ch

an
ge

%
	si
gn

al
	ch

an
ge

Face	perception	network Theory-of-mind	network

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 20, 2018. ; https://doi.org/10.1101/351783doi: bioRxiv preprint 

https://doi.org/10.1101/351783
http://creativecommons.org/licenses/by-nc-nd/4.0/

