

1 Representations of evidence for a perceptual 2 decision in the human brain

³ Sebastian Bitzer Hame Park Burkhard Maess
⁴ Katharina von Kriegstein Stefan J. Kiebel

5 January 21, 2019

6 **Abstract**

In perceptual decision making the brain extracts and accumulates decision evidence from a stimulus over time and eventually makes a decision based on the accumulated evidence. Several characteristics of this process have been observed in human electrophysiological experiments, especially an average build-up of motor-related signals supposedly reflecting accumulated evidence, when averaged across trials. Another recently established approach to investigate the representation of decision evidence in brain signals is to correlate the within-trial fluctuations of decision evidence with the measured signals. We here report results for a two-alternative forced choice reaction time experiment in which we applied this approach to human magnetoencephalographic (MEG) recordings. These results consolidate a range of previous findings. In addition, they show: 1) that decision evidence is most strongly represented in the MEG signals in three consecutive phases, 2) that motor areas contribute longer to these representations than parietal areas and 3) that posterior cingulate cortex is involved most consistently, among all brain areas, in all three of the identified phases. As most previous work on perceptual decision making in the brain has focused on parietal and motor areas, our findings therefore suggest that the role of the posterior cingulate cortex in perceptual decision making may be currently underestimated.

²⁷ 1 Introduction

28 During perceptual decision making observers reason about the state of their
29 environment. Supported by findings in single neurons of non-human primates,
30 the underlying mechanism has been characterised as an accumulation-to-bound
31 process (Gold & Shadlen, 2007). Specifically, the current consensus is that
32 during perceptual decision making the brain accumulates noisy pieces of sensory
33 evidence across time until it reaches a confidence bound. Most experimental
34 results on this process have been based on stimuli which have been designed
35 to provide the same amount of evidence per unit time on average across trials.
36 Trial-averaged accumulated evidence then should follow a gradual build-up with

37 evidence-dependent slope and a maximum close to the response within trial
38 (Gold & Shadlen, 2007).

39 In humans, evidence of this kind of average build-up have been found using
40 magneto- and electroencephalography (M/EEG). For example, lateralised oscillatory
41 signals in the beta band measured with magnetoencephalography exhibit
42 this build-up, where sources were located to dorsal premotor and primary motor
43 cortex (Donner, Siegel, Fries, & Engel, 2009). In EEG, there are similar findings
44 of a build-up for lateralised readiness potentials and oscillations (Kelly &
45 O'Connell, 2013; de Lange, Rahnev, Donner, & Lau, 2013). Furthermore, when
46 human participants have to detect the presence of stimuli in noise, a centro-
47 parietal positivity shows the characteristics of an evidence-dependent build-up
48 independently of the type of stimulus used and the kind of response made (Kelly
49 & O'Connell, 2013; O'Connell, Dockree, & Kelly, 2012). Together these findings
50 suggest that the human parietal and motor cortices are involved in perceptual
51 decision making and in particular represent accumulated evidence. This view is
52 compatible with electrophysiological recordings in non-human animals (Hanks
53 & Summerfield, 2017) and an active role of the motor system during decision
54 making (Cisek & Kalaska, 2010).

55 It has long been known that electromagnetic signals over motor areas build
56 up towards a motor response and can signal an eventual choice even before
57 the response (Smulders & Miller, 2012). This means that the crucial aspect
58 of decision evidence representations is not the build-up as such, but its co-
59 variance with the theoretically available evidence. Consequently, more recent
60 approaches have induced consistent, within-trial changes in available decision
61 evidence (Wyart, de Gardelle, Scholl, & Summerfield, 2012; Thura & Cisek,
62 2014; Brunton, Botvinick, & Brody, 2013; Hanks & Summerfield, 2017). These
63 within-trial changes allow more specific analyses, because one can directly assess
64 the covariation between decision evidence and neural signals a) across a much
65 richer sample of evidences than available with the trial-constant evidences in
66 previous analyses and b) while the decision is ongoing.

67 Although it has previously been shown that electromagnetic signals in the
68 human brain correlate with within-trial changing decision evidence (Wyart et
69 al., 2012; de Lange, Jensen, & Dehaene, 2010; Gluth, Rieskamp, & Büchel, 2013;
70 Gould, Nobre, Wyart, & Rushworth, 2012), these studies had either rather long
71 stimulus presentation times atypical for fast perceptual decisions (Gluth et al.,
72 2013; Gould et al., 2012), or did not employ a reaction time paradigm (Wyart
73 et al., 2012; de Lange et al., 2010; Gould et al., 2012). In the present work we
74 therefore sought representations of decision evidence in a two-alternative forced
75 choice reaction time paradigm in which we induced changes in decision evidence
76 every 100 ms. That is, our paradigm attempts to mimic natural perceptual deci-
77 sion making behaviour more closely than previous investigations with controlled,
78 within-trial changing evidence while still observing neural responses across the
79 whole human brain.

80 Specifically, we investigated correlations between decision evidence and hu-
81 man MEG signals and their sources. We found particularly large effects of
82 decision evidence in the human MEG in three consecutive phases aligned to

83 when the particular piece of evidence became available. The underlying sources
84 indicate that the information delivered by the evidence propagated from visual
85 over parietal to motor areas, as expected, but also that it remained in motor
86 areas for a longer time than in parietal areas. In addition, our results implicate
87 posterior cingulate cortex in all of the identified phases suggesting a central role
88 of this brain region in the transformation of sensory signals to decision evidence
89 in our task.

90 2 Results

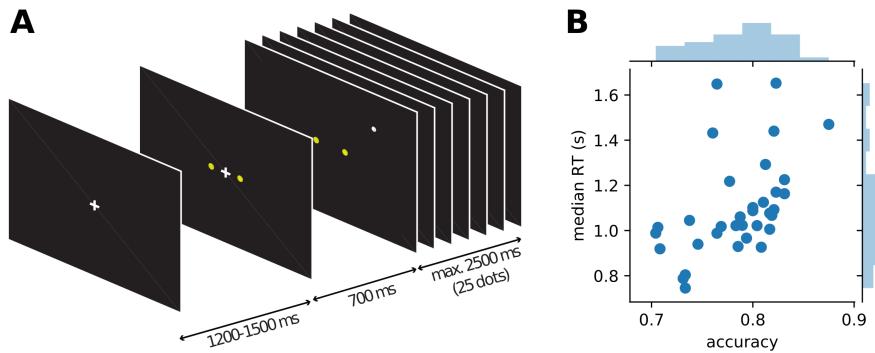


Figure 1: Course of events within a trial in the single dot task (A) and behaviour of individual participants (B). Each trial started with the presentation of a fixation cross, followed by the appearance of the two yellow targets after about 1 s. 700 ms after the appearance of the targets the fixation cross disappeared and a single white dot was presented at a random position on the screen (drawn from a 2D-Gaussian distribution centred on one of the targets). Every 100 ms the position of the white dot was changed to a new random draw from the same distribution. Participants were instructed to indicate the target which they thought was the centre of the observed dot positions. After 25 dot positions (2.5 s) without a response, a new trial was started automatically, otherwise a new trial started with the response of the participant. Average behaviour (accuracy and median response time) for each of the 34 participants is shown in B.

91 While MEG was recorded, 34 human participants observed a single white dot
92 on the screen changing its position every 100 ms and had to decide whether a
93 left or a right target (two yellow dots) was the centre of the white dot movement
94 (Figure 1). Under moderate time pressure (see Methods), participants indicated
95 their choice with a button press using the index finger of the corresponding hand.
96 The distance of the target dots on the screen was chosen in behavioural pilots
97 so that participants had an intermediate accuracy around 75% while being told
98 to be as accurate and fast as possible. The average median response time across

99 participants was 1.1 s with an average accuracy of 78% (cf. Figure 1B).

100 This paradigm dissociates two different kinds of information available to the
101 participants from the stimulus. The x-coordinates of the jumping white dot
102 convey decision-relevant perceptual information while the y-coordinates convey
103 perceptual information that is irrelevant for the decision. We assume that both
104 signals are processed by the brain, but only the decision-relevant x-coordinates
105 are taken into account when making a decision.

106 To define decision evidence, we used a computational model. An ideal ob-
107 server model for inference about the target given a sequence of single dots has
108 been described before (H. Park, Lueckmann, von Kriegstein, Bitzer, & Kiebel,
109 2016; Bitzer, Park, Blankenburg, & Kiebel, 2014). This model identifies, as
110 expected, the x-coordinates of the white dot positions as momentary decision
111 evidence. Specifically, there is a direct linear relationship between x-coordinates
112 and momentary evidence so that in the following regression analyses we could
113 directly use the x-coordinates as independent variables instead of having to
114 compute decision evidence from the x-coordinates through the model. We fur-
115 ther identified the cumulative sum of x-coordinates across single dot positions as
116 accumulated evidence which corresponds to the average state of a discrete-time
117 drift-diffusion model (Bitzer et al., 2014).

118 **2.1 Participants integrate evidence provided by single dot 119 positions to make decisions**

120 As the task required and the model predicted, participants made their decision
121 based on the provided evidence. In Figure 2 we show this as the correlation of
122 participants' choices with momentary and accumulated evidence. Momentary
123 evidence was mildly correlated with choices throughout the trial (correlation co-
124 efficients around 0.3) while the correlation between accumulated evidence and
125 choices increased to a high level (around 0.7) as more and more dot positions
126 were presented. This result indicates that participants accumulated the mo-
127 mentary evidence, here the x-coordinate of the dot, to make their choices. In
128 contrast, as expected, the y-coordinates had no influence on the participants'
129 choices as indicated by correlation coefficients around 0 (Figure 2B).

130 Previous work has investigated the influence of individual stimulus elements
131 on the eventual decision and whether this influence differed across elements
132 (Wyart et al., 2012; Hubert-Wallander & Boynton, 2015). In our analysis
133 this corresponds to checking whether the correlations with momentary evidence
134 shown in Figure 2A differ across dots. This is clearly the case ($F(13, 462) =$
135 $65.49, p \ll 0.001$). Contrary to previous work (Hubert-Wallander & Boynton,
136 2015) we do not observe a primacy effect. Instead, we observe a particularly
137 large difference in the influence of the 4th and 5th dots on the decision (post-
138 hoc paired t-test: $t(33) = -34.90, p \ll 0.001$) with the 5th dot having a strong
139 influence while the 4th dot having a relatively small influence. This reflects our
140 pre-selection and manipulation of stimuli which were partially chosen from a
141 previous experiment to induce large response times (leading to the small influ-
142 ence of the 4th dot) and a manipulation of the 5th dot to create large variation

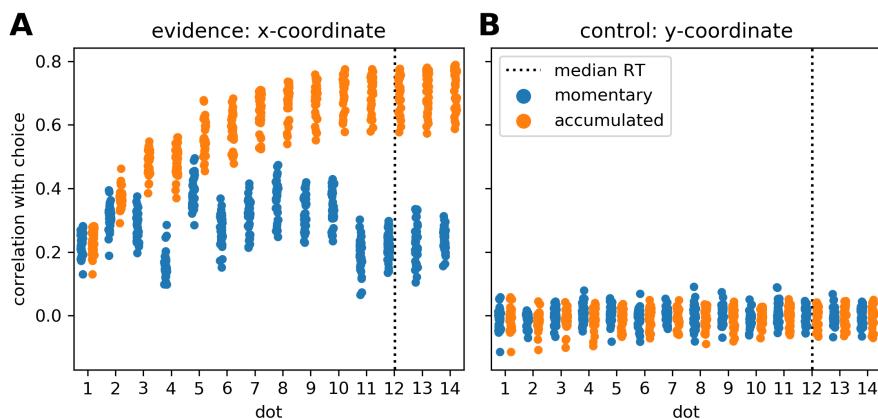


Figure 2: Participants accumulate momentary evidence provided by dot positions for making their decisions. (A) Each shown point corresponds to the Pearson correlation coefficient for the correlation between choices of a single participant and the sequence of presented dot positions across the 480 trials of the experiment. We plot, over stimulus duration, the momentary (blue) and the accumulated evidence (orange). The dotted vertical line shows the median RT across participants. Until about the 10th dot presentation the correlation between accumulated evidence and participant choices rises, reaching values around 0.7 while the momentary evidence is only modestly related to participant choices across all dots. (B) The same format as in A but all measures are computed from the y-coordinates of dot positions which were irrelevant for the decision. As expected, y-coordinates do not correlate with participant choices.

143 in x-coordinates (see Methods for further details). Taken together these results
144 confirm that the used stimuli were effective in driving the decisions of the partic-
145 ipants and that the theoretically defined momentary and accumulated evidence
146 integrate well with observed behaviour.

147 **2.2 MEG signals covary with momentary evidence at spe-
148 cific time points after stimulus update**

149 For the analysis of the MEG data we used regression analyses computing event-
150 related regression coefficients of a general linear model (Clarke, Taylor, Dev-
151 ereux, Randall, & Tyler, 2013; Hauk, Davis, Ford, Pulvermüller, & Marslen-
152 Wilson, 2006). For our main analysis the regressors of interest were the mo-
153 mentary evidence and, as a control, the y-coordinates of the presented dots. We
154 normalised both the regressors and the data so that the resulting regression co-
155 efficients can be interpreted as approximate correlation values while accounting
156 for potential covariates of no interest (see Methods). Note that this correlation
157 analysis contrasts with standard event-related field analyses, where one would
158 only test for the presence of a constant time-course across trials. With the cor-
159 relation analysis, the estimated regression coefficients describe how strongly the
160 MEG signal, in each time point and each sensor (or source), followed the ups
161 and downs of variables such as the momentary evidence, across trials.

162 As a first result, we found that correlations between momentary evidence and
163 MEG signals followed a stereotypical temporal profile after each dot position
164 update (cf. Supplementary Figure 1). Therefore, we performed an expanded
165 regression analysis where we explicitly modelled the time from each dot position
166 update, which we call 'dot onset' in the following. To exclude the possibility
167 that effects signalling the button press motor response influence the results of
168 the dot onset aligned analysis, we only included data, for each trial, up until at
169 most 200 ms prior to the participant's response.

170 We first identified time points at which the MEG signal correlated most
171 strongly with the momentary evidence. For these sensor-level analyses we fo-
172 cused on magnetometer sensors only. We performed separate regression analyses
173 for each time point from dot onset, magnetometer sensor and participant, com-
174 puted the mean regression coefficients across participants, took their absolute
175 value to yield a magnitude and averaged them across sensors. Figure 3 shows
176 that the strongest correlations between momentary evidence and magnetometer
177 signals occurred at 120 ms, 180 ms and in a prolonged period from roughly 300
178 to 500 ms after dot onset. In contrast, correlations with the decision irrelevant
179 control variable, that is, the dot y-coordinates, were significantly lower in this
180 period from 300 to 500 ms (two-tailed Wilcoxon test for absolute average coeffi-
181 cients across all sensors and times within 300-500 ms, $W = 382781, p \ll 0.001$).

182 The sensor topographies shown in Figure 3 indicate for the momentary evi-
183 dence a progression of the strongest correlations from an occipital positivity over
184 a centro-parietal positivity to a central positivity. y-coordinate correlations, on
185 the other hand, remained spatially at occipito-parietal sensors.

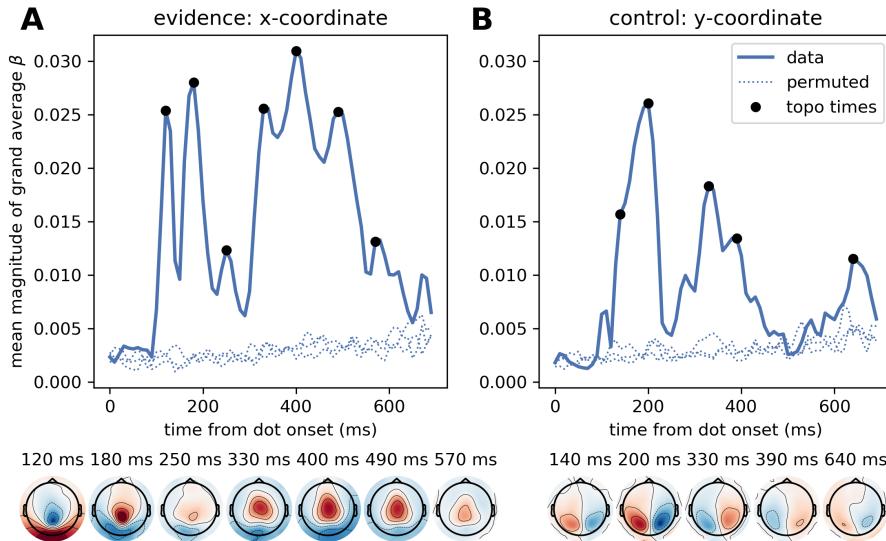


Figure 3: Time course of correlation strengths between magnetometer measurements and momentary evidence (left) and perceptual control variable (right). Top panels show time courses of the mean (across sensors) magnitude of grand average regression coefficients (β). For comparison, dotted lines show the corresponding values for data which were randomly permuted across trials before statistical analysis. Black dots indicate time points for which the sensor topography is shown below the plot. These topographies directly display the grand average regression coefficients at the indicated time without rectification, i.e., with negative (blue) and positive (red) correlation values. (A) The momentary evidence has strong correlations with the magnetometer signal at 120 ms, 180 ms and from about 300 ms to 500 ms after dot onsets. (B) The correlations with the decision irrelevant y-coordinate are visibly and significantly weaker than for the evidence, but there are two prominent peaks from about 120 ms to 210 ms and at 320 ms after dot onset. There is no sustained correlation with the y-coordinate beyond 400 ms and the topographies of magnetometers differ strongly between evidence and y-coordinates. Specifically, the evidence exhibits occipital, centro-parietal and central topographies whereas the y-coordinate exhibits strong correlations only in lateral occipito-parietal sensors.

186 2.3 Correlations with accumulated evidence

187 Guided by the model we used dot x-coordinates as representation of momentary
188 evidence, but dot x-coordinates also do have a purely perceptual interpretation
189 similar to the y-coordinates as they simply measure the horizontal location of a
190 visual stimulus. Correlations with x-coordinates, therefore, may reflect at some
191 time points early visual processes independent of the decision, at some time
192 points momentary evidence and other time points both of them. Contrasting
193 the strength of significant effects for x- and y-coordinates (Figure 3) already
194 suggested that at least from 400 ms after dot onset x-coordinates indeed repre-
195 sented momentary evidence. To further corroborate this supposition we turned
196 to a form of decision evidence that has no direct purely perceptual interpretation
197 and is more closely related to the decision itself: the accumulated evidence.

198 Note that accumulated evidence is, through the final choice, more strongly
199 related to the motor response than the momentary evidence (cf. Figure 2A,
200 Supplementary Figure 2 which means that some effects indicated by the accu-
201 mulated evidence regressor may be attributed to the motor response and not
202 the accumulated evidence. To account for this potential confound we excluded
203 also from this analysis all data later than 200 ms before the response so that
204 the results only contain effects unrelated to the motor response.

205 Furthermore, accumulated and momentary evidence are themselves entan-
206 gled such that both regressors lead to partially overlapping effects. See Methods
207 and Supplementary Material for more information. The point of this analysis,
208 however, is that it will more strongly highlight accumulated evidence effects
209 while the momentary evidence regressor in the previous analysis more strongly
210 highlighted perceptual and momentary evidence effects.

211 Figure 4 depicts the time course of overall correlation magnitudes for accu-
212 mulated evidence together with effect topographies at chosen time points. We
213 found correlations between the MEG signal and accumulated evidence at all of
214 peri-stimulus time until about 550 ms after dot onset. Crucially, at all time
215 points of that period we observed centro-parietal and, especially, central sensor
216 topographies suggesting that these represent specifically decision-relevant infor-
217 mation such as momentary or accumulated evidence, as hypothesised based on
218 the correlations with x-coordinates shown in Figure 3. For further discussion of
219 the time course of accumulated evidence, see Supplementary material.

220 2.4 Sources of stimulus-aligned momentary evidence ef- 221 fects

222 By investigating the sources of the evidence correlations at sensor level, we aimed
223 to better understand the nature of these effects and to confirm their locations
224 in the brain suggested by the shown sensor topographies. In particular, we
225 were interested in linking the time points at which we found strong momentary
226 evidence correlations to potential functional stages in the processing of decision
227 evidence, such as sensory processing, relating sensory information to the decision
228 and integrating momentary evidence with previous evidence.

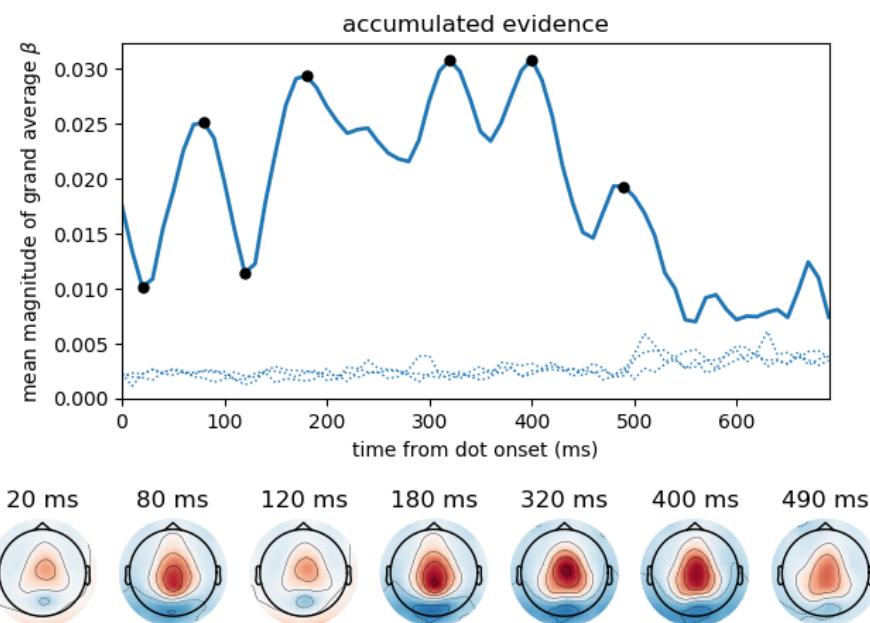


Figure 4: Accumulated evidence correlated with magnetometer signals from 0 to about 550 ms after dot onset displaying central sensor topographies throughout this time period. Format as in Figure 3, i.e., top panel shows time course of the mean (across sensors) magnitude of grand average regression coefficients (β) together with corresponding time courses after 3 different permutations across trials (dotted). For further analysis and discussion of results, see Supplementary Material.

229 We reconstructed source currents along the cerebral cortex for each par-
230 ticipant and subsequently repeated our regression analysis on the estimated
231 sources. Specifically, we performed source reconstruction on the preprocessed
232 MEG data using noise-normalised minimum norm estimation based on all MEG
233 sensors (magnetometers and gradiometers) (Gramfort et al., 2014, 2013; Dale et
234 al., 2000). Further, we aggregated estimated values by averaging across sources
235 within 180 brain areas defined by a recently published brain atlas (Glasser et al.,
236 2016). This resulted in average time courses for each experimental trial in each of
237 the 180 brain areas defined per hemisphere for each participant. We then applied
238 the expanded regression analysis to these source-reconstructed time courses in-
239 stead of onto MEG sensors. Following the summary statistics approach we
240 identified time points and areas with significant second-level correlations by
241 performing t-tests across participants and applying multiple comparison correc-
242 tion using false discovery rate (Benjamini & Hochberg, 1995) simultaneously
243 across all time points and brain areas.

244 The time course of correlation magnitudes shown in Figure 3 suggested three
245 time windows at which particularly strong correlations with momentary evi-
246 dence were present in the brain. The source analysis gives equivalent results:
247 Multiple comparison corrected effects occurred only within 110 ms – 130 ms, 160
248 ms – 200 ms and 290 ms – 510 ms (cf. Source Data 1). In subsequent analyses
249 we, therefore, concentrated on these time windows and call them according to
250 their temporal order "early", "intermediate" and "late" phases. Figure 5 de-
251 picts the brain areas with at least one significant multiple comparison corrected
252 effect within the corresponding phase. The colour scale indicates the average
253 t-value magnitudes within the time window for these significant areas (we chose
254 to display t-value magnitudes instead of correlation magnitudes here, because
255 the estimated correlation values had larger second-level variability differences
256 across brain areas than sensors).

257 As the sensor topographies suggested, we observed that in the early phase
258 the strongest correlations were located in visual areas such as V3, V1 and areas
259 in the lateral occipital cortex (e.g., FST, MST, LO3 according to (Glasser et al.,
260 2016)), but also in a small area of posterior cingulate cortex (v23ab) and there
261 was an effect in a parietal area of the left hemisphere (MIP). In the interme-
262 diate phase most of the correlations in visual areas, especially those in lateral
263 occipital areas, vanished. Instead, more parietal areas exhibited significant cor-
264 relations with momentary evidence, especially in the right inferior (IP0, PGp)
265 and superior parietal cortex (VIP, 7AL, 7Am). Additionally, we found strong
266 correlations in posterior cingulate cortex (POS2 and DVT). In the late phase
267 some correlations in parietal areas persisted, but only focal at some time points
268 so that on average across the time window correlations were weak compared to
269 other brain areas. Specifically, the strongest correlations were spread across the
270 posterior cingulate cortex in both hemispheres (especially areas v23ab, 31pd,
271 7m, 31pv, d23ab). Further strong correlations occurred in motor areas, espe-
272 cially in the left hemisphere, including somatosensory areas (3a, 3b, 1), primary
273 motor cortex (area 4) and premotor areas (6a, 6d). Note that we excluded from
274 the analysis all time points later than 200 ms before the trial-specific motor

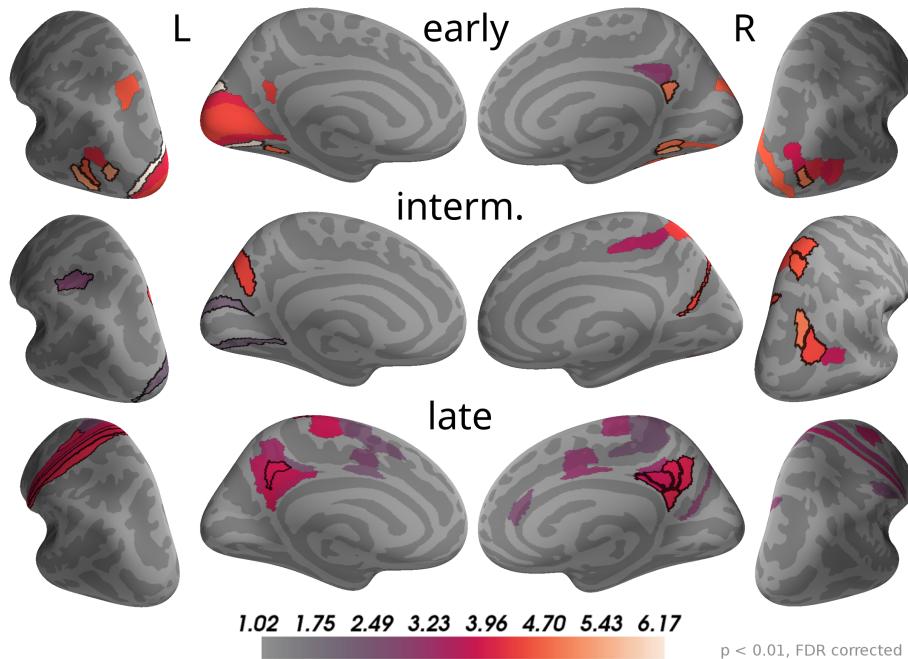


Figure 5: Correlations with momentary evidence shift from visual over parietal to motor and posterior cingulate areas. We investigated the three time windows with strong correlations in the sensor-level results: early (110 ms – 130 ms), intermediate (160 ms – 200 ms) and late (290 ms – 510 ms). For each of these phases only brain areas with at least one significant effect ($p < 0.01$, FDR corrected) within the time window are coloured. For display purposes, colours show average second-level t-value magnitudes where the average is taken over time points within the time window. The 5 areas with the most consistent, strong correlations per hemisphere and time window are marked by black outlines. These were (in that order; specified as Brodmann areas with subdivisions as defined in (Glasser et al., 2016)): early, left – V3, FST, LO3, VMV2, MST; right – VMV2, LO1, v23ab, VMV1, VVC; intermediate, left – POS2, AIP, V2; right – IP0, VIP, 7AL, PGp, DVT; late, left – 1, 3a, 6d, 3b, 31pd; right – v23ab, 7m, 31pd, 31pv, d23ab.

275 response. Additionally, we observed weaker correlations in mid and anterior
276 cingulate motor areas (e.g., 24dv, p24pr). These results confirm that the in-
277 formation carried by the decision-relevant x-coordinates shifts from visual over
278 parietal areas towards motor areas where this information, presumably momen-
279 tary evidence, appears to be represented over a longer time period. The results
280 also reveal that source currents of brain areas in posterior cingulate cortex had
281 strong correlations with x-coordinates throughout all three phases. Accord-
282 ingly, the areas with the largest correlation magnitudes on average across all
283 time points within 0 to 500 ms were predominantly located in posterior cingu-
284 late cortex (5 areas with strongest average effects in that order: left – v23ab,
285 3a, 31pd, 3b, 1; right – v23ab, DVT, d23ab, 31pv, 7m). This suggests a poten-
286 tially central role of posterior cingulate cortex in the processing of momentary
287 evidence in the task.

288 **2.5 Sources of stimulus-aligned accumulated evidence ef-
289 fects**

290 The sensor topographies for the accumulated evidence effects suggested that
291 accumulated evidence was represented in common brain sources across the whole
292 time window of 0 to 550 ms from dot onset. Therefore, we used this full time
293 window to investigate the underlying sources. As for the momentary evidence,
294 cf. Figure 5, we identified brain areas with significant correlations after FDR
295 correction across locations and times ($p < 0.05$, no significant effects for $p <$
296 0.01) in at least one time point and then averaged the t-value magnitudes across
297 time points within the time window in these areas. Given the similarity of
298 sensor topographies of momentary evidence in the late phase and the sensor
299 topographies of accumulated evidence we expected their sources to overlap.

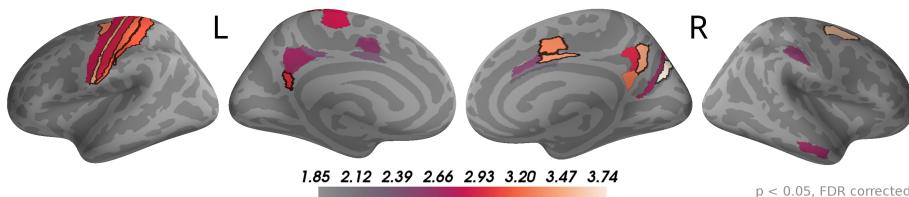


Figure 6: Sustained correlations with accumulated evidence in motor and cingulate areas. Following the procedure in Figure 5, we coloured only areas with a significant correlation with accumulated evidence ($p < 0.05$ FDR corrected) with colour indicating the average t-value magnitude in the extended time window from 0 ms to 550 ms after dot onset. The 5 largest effects were (marked by black boundaries): left – 3a, 6d, 1, 2, v23ab; right – V6, 6a, 7m, p24pr, 24dv.

300 In Figure 6, one can see that, although the estimated correlation magnitudes
301 were slightly higher for the accumulated evidence than for the momentary evi-
302 dence, fewer effects were statistically significant for accumulated evidence. This

303 is most likely because the variability of correlation magnitudes across partic-
304 ipants increased relative to momentary evidence effects (results not shown).
305 Otherwise, the identified brain areas were consistent with those of the momen-
306 tary evidence in the late phase. In particular, we observed consistently strong
307 correlations with accumulated evidence in motor, premotor, cingulate motor
308 and posterior cingulate areas.

309 **2.6 Correlations with choice reveal response-aligned build-**
310 **up and separate motor response**

311 Our finding that momentary or accumulated evidence is represented in motor
312 areas is consistent with a wide range of previous work (Donner et al., 2009; Kelly
313 & O'Connell, 2013; de Lange et al., 2013; Thura & Cisek, 2014; Selen, Shadlen,
314 & Wolpert, 2012; Michelet, Duncan, & Cisek, 2010). If motor areas are involved
315 in processing momentary or accumulated evidence prior to a response, as these
316 results indicate, the question arises how these processes relate to motor processes
317 linked to the response itself. More specifically, we were interested in how the
318 patterns of correlations with momentary and accumulated evidence related to
319 correlation patterns representing the motor response and whether these could be
320 linked to the absence or presence of the involvement of certain brain areas. To
321 investigate correlation patterns representing the motor response we computed
322 choice-dependent effects centred on the response time of the participants. We
323 did this with a regression analysis using the participant choice as a regressor of
324 interest (see Methods). The choice regressor provides a measure for how well
325 the choice of the participants can be decoded from univariate brain signals.

326 Figure 7 depicts the estimated time course of correlation magnitudes aver-
327 aged across participants and sensors. From about 500 ms before the response,
328 correlations between choice and MEG data became gradually stronger culminat-
329 ing in an expected peak centred slightly after the response. The sensor topogra-
330 phies of the build-up period before the response strongly resembled those we
331 found for accumulated evidence in our previous analyses. In fact, these results
332 most likely correspond to the same effect, because the participant choice itself
333 was increasingly correlated with accumulated evidence as the trial progressed
334 (cf. Figure 2). That is, the build-up seen in the figure only indirectly visu-
335 alises an increasing evidence signal by depicting an increasing alignment of the
336 final choice with the internal representation before the response (presumably
337 accumulated evidence).

338 The motor response itself (peak around 30 ms) was, as expected, much
339 more strongly represented in the MEG signals than the accumulated evidence,
340 see Figure 7. Although the motor response also had a predominantly central
341 topography, its topography visibly differed from that prior to the response (at
342 -300 and -120 ms). Specifically, the topography before the response exhibited
343 stronger anti-correlation in occipital sensors than around the response while the
344 topography around the response exhibited stronger anti-correlations in fronto-
345 lateral sensors ($p < 0.01$ corrected, cf. Supplementary Figure 6). Furthermore,
346 the correlation with choice was relatively higher over central sensors at 30 ms

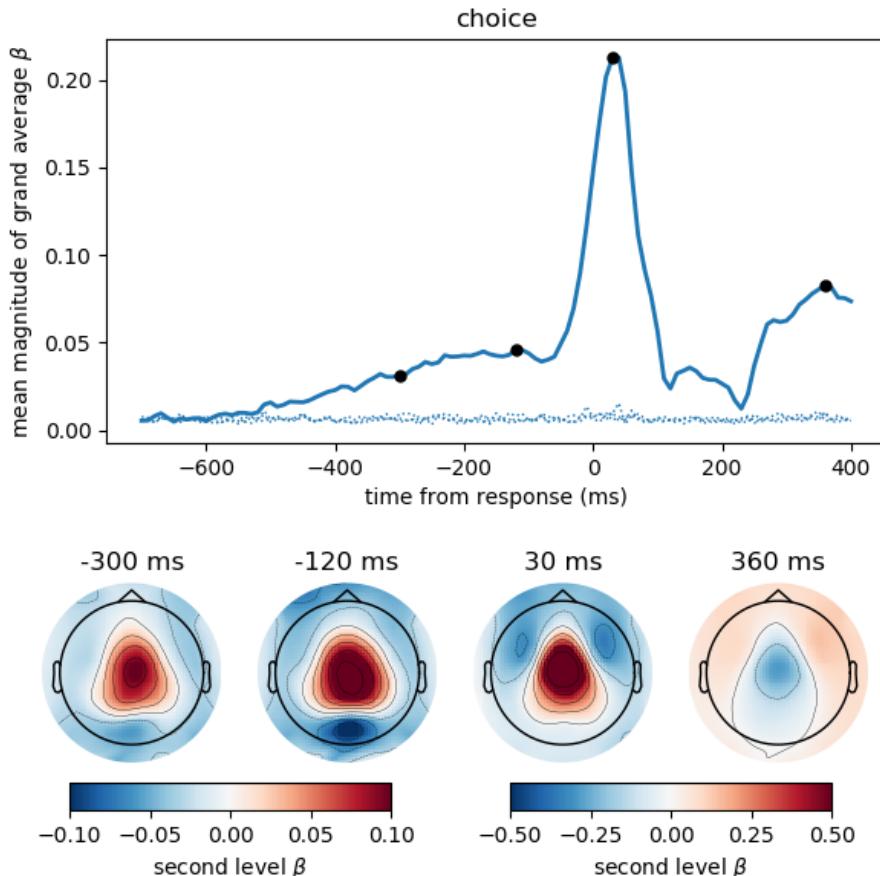


Figure 7: The button press motor response is also represented most strongly in central magnetometers, but the corresponding topography differs slightly from that associated with momentary and accumulated evidence. We computed the correlation between participant choices and MEG magnetometers using linear regression for data aligned at response time. Following the format of Figure 3 we here show the time course of the mean (across sensors) magnitude of grand average regression coefficients (β). Sensor topographies for time points indicated by the black dots are shown below the main panel. Note that for the time points before the response we use a different scaling of colours than for time points around the response and later. This is to more clearly visualise the topography around the response which contains larger values. The colour scaling for the time points before the response is equal to that of Figure 3 and Figure 4. The topography at -300 ms strongly resembled that for accumulated evidence, but the topography around the response (30 ms) additionally exhibited stronger fronto-lateral and weaker occipital anti-correlations ($p < 0.01$ corrected, cf. Supplementary Figure 6). Positive values / correlations mean that measured sensor values tended to be high for a right choice (button press) and low for a left choice and vice-versa for negative values. See Supplementary Figure 5 to see how the central topography at 30 ms shown here results as the difference of the topographies associated with right and left choices.

³⁴⁷ than at -120 ms (Supplementary Figure 6).

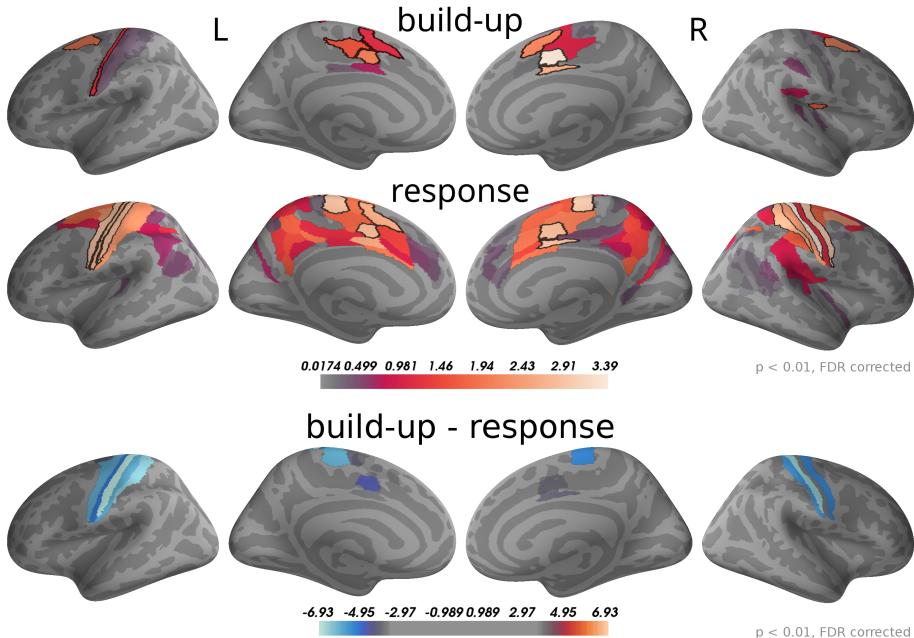


Figure 8: Around the response time strongest correlations with choice occurred in primary motor, somatosensory and cingulate motor cortex (BA 24) while during the build-up period we found the strongest effects in premotor and cingulate motor cortex. The 5 largest effects per hemisphere were: build-up, left – 24dv, 6a, 24dd, 3a, SCEF; right – 24dv, p24pr, 6a, SCEF, OP2-3; response, left – 4, 3b, 24dv, 3a, SCEF; right – 3b, 4, p24pr, 24dv, 2. When testing for differences in the spatial pattern of correlation magnitudes (see Methods) between the two time windows, we only found significant differences in the motor and cingulate areas: 1, 24dv, 2, 31a, 3a, 3b, 4, 6d, 6mp, SCEF, p24pr. All of these effects indicated that correlations with choice were stronger in the response window (blue). The build-up and response panels show spatially normalised t-value magnitudes while the difference panel shows t-values of spatially normalised correlation magnitude differences.

³⁴⁸ To analyse this difference at the source level we applied the regression analysis to the reconstructed source currents. Figure 8 depicts the results of an
³⁴⁹ analysis of two time windows: the "build-up" window from -500 ms to -120 ms
³⁵⁰ (when a dip before the response indicates an end of the build-up) and the "re-
³⁵¹ sponse" window capturing the response peak from -30 ms to 100 ms. We only
³⁵² show brain areas with at least one significant effect within the time window af-
³⁵³ ter correcting for multiple comparisons (FDR with $\alpha = 0.01$ across brain areas
³⁵⁴ and the two time windows). The shown colours indicate normalised second-level
³⁵⁵ t-value magnitudes (see Methods).
³⁵⁶

357 As expected, in the response window, the effects were dominated by choice
358 correlations in bilateral primary motor and somatosensory cortices, but also
359 choice correlations in cingulate motor areas (around Brodmann area 24) were
360 among the effects with the strongest magnitudes. Other significant correlations
361 with choice within the response window occurred in premotor and posterior
362 cingulate cortices. In the build-up window, the strongest correlations occurred
363 predominantly in cingulate motor cortex and premotor areas (especially 6a).

364 We further aimed at identifying brain areas with significantly different cor-
365 relation magnitudes in the two time windows. Specifically, we were interested
366 in the difference of the spatial patterns of correlation magnitudes, across brain
367 areas, between the two time windows. To do this, we normalised correlation
368 magnitudes across brain areas within the time windows and computed the dif-
369 ferences between time windows within each brain area and participant (see
370 Methods for details). Figure 8, bottom panel, shows that across participants
371 the only statistically significant differences occurred in the primary motor and
372 somatosensory cortices and, with smaller effect size, in cingulate motor areas. In
373 all these areas correlation magnitudes were larger in the response as compared
374 to the build-up window.

375 In summary, the response-centred analysis of choice correlations suggests
376 that the build-up of choice-correlations leading towards a response is related
377 to the accumulation of momentary evidence, because sensor topographies and
378 brain areas were highly consistent across choice- and evidence-based analyses.
379 The correlation topographies for the build-up and the response windows shown
380 in Figure 7 had significant differences in central, occipital and fronto-lateral
381 sensors. When analysing these differences at the source level (Figure 8), the
382 only sources with significant differences were located in motor areas. These
383 results together suggest that the brain areas representing decision evidence are
384 largely overlapping with those representing the upcoming choice and the motor
385 response. The difference in correlation patterns at the source level between the
386 upcoming choice and motor response could be explained by an increase in choice
387 correlations in motor areas.

388 3 Discussion

389 Using MEG, we have analysed the dynamics of evidence representations in the
390 human brain during perceptual decision making. We induced fast, within-trial
391 evidence fluctuations using a visual stimulus in which new, momentary evi-
392 dence appeared every 100 ms and correlated the resulting momentary evidence
393 dynamics with MEG signals. We found that each update of momentary evidence
394 elicited a stereotyped response in the MEG signal that lasted until about 600
395 ms after the update onset, meaning that the brain processed incoming pieces
396 of momentary evidence in parallel. We identified three main phases of the rep-
397 resentation of momentary evidence: an early phase around 120 ms after an
398 evidence update, an intermediate phase around 180 ms and a late phase from
399 about 300 to 500 ms. These phases exhibited different sensor topographies with

400 positive correlations shifting from occipital to centro-parietal to central sensors
401 during the three phases. Using source reconstruction, we localised these rep-
402 resentations of momentary evidence in early visual, parietal and motor areas,
403 respectively, with significant correlations in posterior cingulate cortex occurring
404 in all three phases. Significant correlations with accumulated evidence includ-
405 ing the most recent evidence update occurred continuously until about 550 ms
406 after update onset and exhibited a central topography similar to that in the
407 late phase of momentary evidence representations with corresponding sources.
408 Additionally, response-aligned correlations of the MEG signal with the final
409 choice of the participants shared a similar topography in a build-up phase hun-
410 dreds of milliseconds before the response. The correlation analysis at the source
411 level further showed that the only significant differences between build-up phase
412 and motor response were higher choice correlations in motor areas during the
413 response.

414 These results consolidate a wide range of separate previous findings: It has
415 previously been shown that the human brain elicits electromagnetic signals that
416 correlate with individual pieces of momentary evidence (Wyart et al., 2012;
417 de Lange et al., 2010; Gluth et al., 2013; Gould et al., 2012). Compared to
418 these studies we here for the first time used a reaction time paradigm with
419 fast evidence changes every 100 ms, more directly mimicking natural perceptual
420 decision making processes. More importantly, our results are the first to track
421 momentary evidence representations through the three phases that we identified
422 and the corresponding areas in the human brain, although at least the early and
423 late phases were previously hinted at (Wyart et al., 2012).

424 A large proportion of previous work investigating the dynamics of evidence
425 representations in the human brain focused on oscillatory signals (Donner et
426 al., 2009; de Lange et al., 2013; Gould et al., 2012; Siegel, Donner, Oostenveld,
427 Fries, & Engel, 2007). For example, it has been found that the average amount
428 of evidence in a trial is represented in the power of oscillations in occipital and
429 parietal cortex (Siegel et al., 2007). Further, the difference in the power of
430 oscillations between central-left and central-right sensors exhibits an evidence-
431 dependent build-up towards the response that appears to be generated in motor
432 areas (Donner et al., 2009; de Lange et al., 2013). We here made correspond-
433 ing observations, but directly in the trial-wise temporal MEG signals reflecting
434 trial-wise signal variations correlated with decision evidence that are believed
435 to result from minute, event-related fluctuations in the voltage potentials of
436 neuronal populations.

437 There is overwhelming evidence that motor areas including areas in the pre-
438 motor and primary motor cortex are involved in perceptual decision making,
439 e.g. (Hanks & Summerfield, 2017; Heekeren, Marrett, & Ungerleider, 2008).
440 Specifically, it has been shown that some single neurons in primary motor cor-
441 tex represent momentary evidence (Thura & Cisek, 2014), that the strength of
442 muscle reflex gains is proportional to the average amount of momentary evi-
443 dence within a trial (Selen et al., 2012), that motor-evoked potentials can be
444 related to accumulated evidence (Michelet et al., 2010; Hadar, Rowe, Di Costa,
445 Jones, & Yarrow, 2016) and that classical lateralised readiness potentials which

446 are thought to represent motor processes (Smulders & Miller, 2012) also exhibit
447 evidence-dependent build-up in a detection task (Kelly & O'Connell, 2013). Our
448 results further substantiate these findings by showing that human motor areas
449 represent each update of momentary evidence roughly within 300 to 500 ms after
450 the update onset and that accumulated evidence is represented in motor areas
451 throughout the decision making process. Using a response-aligned analysis of
452 choice-dependent effects in the same reference frame as the analyses of evidence,
453 we could further show that the stimulus-aligned evidence representations resem-
454 ble closely the representation of the final choice during a build-up phase before
455 the motor response. This supports the hypothesis that previous observations
456 of pre-response representations of an upcoming choice, such as the lateralised
457 readiness potential, should be interpreted as expressions of an ongoing decision
458 making process about the next sensible motor response. In sum, the present
459 and previous findings strongly affirm a tight coupling between decision making
460 and motor processes, as, for example, formulated in the affordance competition
461 hypothesis (Cisek & Kalaska, 2010; Cisek, 2007), but also other theories in cog-
462 nitive computational neuroscience (O'Regan & Noë, 2001; Clark, 2013; Friston,
463 Daunizeau, & Kiebel, 2009).

464 One potential caveat of our correlation results in motor areas is that due
465 to the specifics of our task participants may actually have executed micro-
466 movements trying to track the changes of the perceptual stimulus either with
467 their eyes, or with minimal finger movements close to the response buttons.
468 In this scenario the observed correlations in motor areas would be possibly ex-
469 plained by motor signals to the muscles. Although we cannot completely exclude
470 this possibility we deem it unlikely, because: i) Stimuli were shown only very
471 centrally at visual angles within about 10° visual angle with most stimuli within
472 5° diameter from fixation meaning that most of them were well within the foveal
473 visual field. ii) The sensor topographies representing evidence were very similar
474 to that associated with the motor response, that is, the evidence representations
475 do not appear to be specifically related to eye movements. iii) As mentioned
476 above, a large body of work employing a wide variety of different tasks already
477 supports the reverse interpretation that motor areas represent decision evidence
478 before motor execution. In conclusion, we do not believe that the correlations
479 with momentary or accumulated evidence observed in motor areas of the brain
480 are merely an expression of motor control signals that caused stimulus-correlated
481 micro-movements. Even if such micro-movements existed, we deem it likely that
482 these follow the time-course of decision evidence rather than decision-irrelevant
483 stimulus properties, as suggested by recent results about the adaptation of reflex
484 gains and motor evoked potentials during decision making (Selen et al., 2012;
485 Michelet et al., 2010; Hadar et al., 2016).

486 The early, intermediate and late phases of momentary evidence representa-
487 tions mirrored the presumed general transfer of behaviourally relevant visual
488 information through the brain (Kandel, Jessell, Schwartz, Siegelbaum, & Hud-
489 speth, 2012). In the early phase around 120 ms after evidence updates we found
490 the strongest representations of momentary evidence in early visual cortex and
491 occipito-temporal areas while in the intermediate phase around 180 ms momen-

492 tary evidence representations included areas in inferior and superior parietal
493 cortex. In the late phase the momentary evidence was predominantly repre-
494 sented in pre-/motor, somatosensory and cingulate areas while we only found
495 one weak significant correlation with momentary evidence in one area of pari-
496 etal cortex (right Pft). The same was true for representations of accumulated
497 evidence. Taken together, these results suggest that in our task parietal cortex
498 was only transiently involved in the processing of momentary evidence and that
499 it did not accumulate evidence for the decision, or at least did not represent
500 accumulated evidence over an extended period of time.

501 These results appear to be at odds with previous findings in non-human
502 primates which had identified neurons in inferior parietal cortex that seemed
503 to represent accumulated evidence (Gold & Shadlen, 2007). More recent work,
504 however, suggests that the firing of these neurons is more diverse than originally
505 thought (Latimer, Yates, Meister, Huk, & Pillow, 2015; I. M. Park, Meister,
506 Huk, & Pillow, 2014; Meister, Hennig, & Huk, 2013). It is possible that the repre-
507 signal from only few evidence accumulating neurons in inferior parietal cortex
508 is too weak to be recorded with MEG. Another possibility why we do not find
509 strong correlations with accumulated evidence in parietal areas is that probably
510 these representations are not as strongly lateralised in parietal areas as they
511 are in motor areas. This would make it much harder to detect them with the
512 typically low spatial resolution of MEG. Yet another possibility is that the repre-
513 sentation of decision evidence in parietal areas follows a more intricate dynamic
514 process that is hard to identify with simple correlation analyses (Churchland
515 et al., 2010). If this was the case, an interesting follow-up question would be
516 why the representations of accumulated evidence in parietal and motor or pos-
517 terior cingulate areas apparently differ, as we clearly found correlations with
518 accumulated evidence in the latter areas.

519 To manipulate decision evidence in our task we changed the position of
520 a single dot presented on a screen. Only the x-coordinates of these dot po-
521 sitions represented momentary decision evidence while the decision-irrelevant
522 y-coordinates acted as a perceptual control variable. We have shown that cor-
523 relations of MEG signals with the perceptual control variable, in contrast to
524 momentary evidence, were strongly diminished in the period from 300 to 500
525 ms after dot onset. This suggests that the brain ceases to represent perceptual
526 information that is behaviourally irrelevant around this time and that brain
527 areas with strong correlations with momentary evidence in this time window in-
528 deed are involved in the decision making process. This interpretation is further
529 supported by previous work which has shown that purely perceptual stimulus
530 information is represented in electrophysiological signals only until about 400
531 ms after stimulus onset (Wyart et al., 2012; Myers et al., 2015; Mostert, Kok,
532 & de Lange, 2015) while specifically decision-related information is represented
533 longer starting around 170 ms after stimulus onset (Wyart et al., 2012; Myers et
534 al., 2015; Mostert et al., 2015; Philiastides & Sajda, 2006; Philiastides, Ratcliff,
535 & Sajda, 2006; Philiastides, Heekeren, & Sajda, 2014).

536 We further validated this interpretation by investigating correlations with ac-
537 cumulated evidence, that is, the cumulative sum of momentary evidences within

538 a trial. In contrast to the momentary evidence, this sum is more specifically
539 related to the decision and has no simple, purely perceptual interpretation.
540 The similarity of the topographies for accumulated evidence correlations and
541 for momentary evidence correlations in the late phase suggests that specifically
542 decision-relevant evidence is represented in the late phase, that is, within 300
543 to 500 ms after evidence updates. Our results do not allow to clearly state
544 whether momentary, or accumulated, or both types of decision evidence were
545 represented in the brain in this time window, because both types of evidence are
546 correlated, especially early within a trial. However, we also found that accumu-
547 lated evidence exhibited the corresponding central topography more consistently
548 throughout peri-stimulus time than momentary evidence, so it appears reason-
549 able to assume that predominantly accumulated evidence is represented in the
550 late phase.

551 Finally, and perhaps most surprisingly, we found significant correlations with
552 momentary and accumulated evidence in posterior cingulate cortex across all
553 the investigated phases. Especially a ventral part of posterior cingulate cortex
554 (v23ab) was involved already in the early phase which was dominated by corre-
555 lations of momentary evidence in early visual areas and may therefore relate to
556 basic visual processing of the stimulus. In the intermediate phase, the corre-
557 lations in posterior cingulate cortex were weaker, but persisted. In the late phase
558 correlations in posterior cingulate cortex constituted one of the main effects
559 suggesting that it is a region contributing to the maintenance and accumulation
560 of momentary evidence in the brain. Consequently, posterior cingulate cortex
561 appears to be involved in both early sensory processing and decision making
562 and, therefore, could act as a bridge between these processes.

563 Previous studies investigating the function of posterior cingulate cortex have
564 mostly concentrated on a rather slow time scale, for example, contrasting differ-
565 ent task conditions to each other, while we analysed rapid fluctuations of neural
566 signals. These studies of slow changes in posterior cingulate cortex activations
567 have implicated the posterior cingulate as having a direct role in directing the
568 focus of attention (Leech & Sharp, 2014). However, posterior cingulate cortex
569 has been associated with a wide range of functions which have recently been
570 summarized as estimating the need to change behaviour in light of new, exter-
571 nal requirements (Pearson, Heilbronner, Barack, Hayden, & Platt, 2011). Our
572 findings are compatible with this view, when transferred to the context of com-
573 parably fast perceptual decision making where decision evidence may be viewed
574 as the need to follow one (press left) or another (press right) behaviour.

575 In the field of perceptual decision making, especially in electrophysiological
576 work with non-human animals, the posterior cingulate cortex has not gained
577 much attention (Gold & Shadlen, 2007; Hanks & Summerfield, 2017). Given
578 our findings it, therefore, appears that the role of posterior cingulate cortex in
579 perceptual decision making may have been underestimated.

580 4 Materials and Methods

581 This study has been approved by the ethics committee of the Technical University
582 of Dresden (EK324082016). Written informed consent was obtained from
583 all participants. Code implementing the statistical analysis which produced all
584 presented results is available at <https://github.com/sbitzer/BeeMEG>.

585 4.1 Participants

586 37 healthy, right-handed participants were recruited from the Max Planck Institute
587 for Human Cognitive and Brain Sciences (Leipzig, Germany) participant
588 pool (age range: 20 – 35 years, mean 25.7 years, 19 females). All had normal or
589 corrected-to-normal vision, and reported no history of neurologic or psychiatric
590 disorders. One participant was excluded from MEG measurement due to low
591 performance during training. In total, 36 participants participated in the MEG
592 study. Two participants' data were excluded from analyses due to excessive
593 eye artefacts and too many bad channels. Finally, 34 participants' data were
594 analysed (age range: 20 – 35 years, mean 25.85 years, 17 females).

595 4.2 Stimuli

596 In each trial, a sequence of up to 25 white dots were presented on a black screen.
597 Each dot was displayed for 100 ms (6 frames, refresh rate 60 Hz). The white
598 dot was located at x, y coordinates which were sampled from one of two two-
599 dimensional Gaussian distributions with means located at ± 25 pixels horizontal
600 distance from the centre of the screen. The standard deviation was 70 pixels in
601 both axes of the screen. The mean locations were the two target locations (-25:
602 left, 25: right). These target locations corresponded to visual angles $\pm 0.6^\circ$ from
603 the centre of the screen. The standard deviation of the Gaussian distribution
604 corresponded to $\pm 1.7^\circ$ from the two target locations. The stimuli used in this
605 study consisted of a subset of stimuli used previously (H. Park et al., 2016),
606 and additional newly created stimuli. The stimuli were chosen to increase the
607 probability that the participants see the 5th dot within the 25 dot sequence by
608 not responding earlier. In short, trials where 70% of the participants in the
609 previous study (H. Park et al., 2016) had reaction times (RT) longer than 700
610 ms but not timed-out were chosen from the second most difficult condition. This
611 resulted in 28 trials from 200 trials. Then each trial was copied 6 times, with
612 only the 5th dot location differing, ranging in 'target location + [-160 -96 -32 32
613 96 160] (pixels)'. This resulted in 168 trials. These trials were mirrored to create
614 a dataset with the same evidence strengths but with different x coordinate signs
615 (336 trials), and finally trials which had short RTs were chosen from (H. Park
616 et al., 2016) as catch trials, to prevent participants from adapting to the long
617 RT trials (30% of the total trials). This resulted in a total of 480 trials per
618 experiment.

619 We originally designed this stimulus set, especially the manipulations of
620 the 5th dot, to increase the chance of inducing sufficiently large effects in the

621 MEG signal when observing the 5th dot. In a preliminary analysis we realised,
622 however, that the natural variation of the stimuli already induces observable
623 effects. Consequently, we pooled all trials for analysis.

624 **4.3 Procedure**

625 Participants were seated in a dimly lit shielding room during the training and the
626 MEG measurement. Visual stimuli were presented using Presentation® soft-
627 ware (Version 16.0, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com).
628 The display was a semi-transparent screen onto which the stimuli were back-
629 projected from a projector located outside of the magnetic shielding room (Vac-
630 umschmelze Hanau, Germany). The display was located 90 cm from the par-
631 ticipants. The task was to find out which target (left or right) was the centre
632 of the white dot positions, but participants were instructed with a cover story:
633 Each target represented a bee hive and the white dot represented a bee. Par-
634 ticipants should tell which bee hive is more likely the home of the bee. They
635 were additionally instructed to be both accurate and fast, but not too fast at
636 the expense of being inaccurate, and not too slow that the trial times out.
637 They went through a minimum 210 and maximum 450 trials of training, until
638 they reached a minimum of 75% accuracy. Feedback (correct, incorrect, too
639 slow, too fast) was provided during the training. After training, a pseudo-main
640 block with 200 trials without feedback preceded MEG measurement. After the
641 pseudo-main session, the 480 trials in randomized order were presented to each
642 participant divided into 5 blocks. The MEG measurement lasted 60 minutes,
643 including breaks between blocks. Each trial started with a fixation cross (ran-
644 domized, 1200 ms – 1500 ms uniform distribution) followed by two yellow target
645 dots. After 700 ms, the fixation cross disappeared and the first white dot ap-
646 peared. The white dot jumped around the screen and stayed at each location
647 for 100 ms, until the participant submitted a response by pressing a button
648 using either hand, corresponding to the left / right target, or when the trial
649 timed-out (2.5 s). In order to maintain motivation and attention throughout
650 the measurement, participants were told to accumulate points (not shown to
651 the participants) for correct trials and adequate (not too slow and not too fast,
652 non-time-out) RTs. Bonus money in addition to compensation for participating
653 in the experiment were given to participants with good performances. RTs and
654 choices were collected for each trial for each participant. Although the trial or-
655 der was randomized across participants, every participant saw exactly the same
656 480 trials.

657 **4.4 Model of decision making behaviour**

658 We used a previously described ideal observer model of decision making be-
659 haviour that is equivalent to a drift-diffusion model to define decision evidence
660 (H. Park et al., 2016; Bitzer et al., 2014). The model postulates a direct linear
661 relationship between momentary decision evidence and the x-coordinates of the
662 white dot and identifies accumulated evidence as the simple cumulative sum of

663 x-coordinates. Parameters of the model, that are typically fit to behavioural
664 responses, only change the slope, or offset of the linear relationship between x-
665 coordinates and momentary decision evidence. As we normalised x-coordinates
666 before entering them in subsequent analyses, these parameters of the model are
667 irrelevant for our purposes. Therefore, the decision making model had no further
668 role in our analyses than providing the theoretical link between x-coordinates
669 and momentary and accumulated decision evidence.

670 4.5 MEG data acquisition and preprocessing

671 MEG data were recorded with a 306 channel VectorviewTM device (Elekta Oy,
672 Helsinki, Finland), sampled at 1000 Hz. The MEG sensors covered the whole
673 head, with triplet sensors consisting of two orthogonal gradiometers and one
674 magnetometer at 102 locations. Additionally, three electrode pairs were used
675 to monitor eye movement and heart beats at the same sampling rate. The
676 raw MEG data was corrected for head movements and external interferences
677 by the Signal Space Separation (SSS) method (Taulu, Simola, & Kajola, 2005)
678 implemented in the MaxFilterTM software (Elekta Oy) for each block. The
679 subsequent preprocessing was performed using MATLAB (Mathworks, Mas-
680 sachusetts, United States). The head movement corrected data was high-pass
681 and low-pass filtered using a linear phase FIR Kaiser filter (corrected for the
682 shift) at cut-off frequencies of 0.33 Hz and 45 Hz respectively, with filter or-
683 ders of 3736 and 392, respectively. The filtered data was then down-sampled
684 to 250 Hz. Then independent component analysis (ICA) was applied to the
685 continuous data using functions in the EEGLAB (Delorme & Makeig, 2004) to
686 remove eye and heart beat artefacts. The data dimensionality was reduced by
687 principal component analysis to 50 or 60 components prior to running the ICA.
688 Components which had high temporal correlations (> 0.3) or typical topogra-
689 phies with/of the EOG and ECG signals were identified and excluded. The
690 ICA-reconstructed data for each block was combined, and epoched from – 300
691 ms to 2500 ms from the first dot onset (zero). Another ICA was applied to
692 these epoched data in order to check for additional artefacts and confirm typi-
693 cal neural topographies from the components. The ICA reconstructed data and
694 original data were compared and inspected in order to ensure only artefactual
695 trials were excluded. Before statistical analysis we used MNE-Python v0.15.2
696 (Gramfort et al., 2014, 2013) to downsample the data to 100 Hz (10 ms steps)
697 and perform baseline correction for each trial where the baseline value was the
698 mean signal in the period from -300 ms to 0 ms (first dot onset).

699 4.6 Source reconstruction

700 We reconstructed the source currents underlying the measured MEG signals us-
701 ing noise-normalised minimum norm estimation (Dale et al., 2000) implemented
702 in the MNE software. To create participant-specific forward models we semi-
703 automatically co-registered the head positions of participants with the MEG
704 coordinate frame while at the same time morphing the participants' head shape

705 to that of Freesurfer's fsaverage by aligning the fsaverage head surface to a set of
706 head points recorded for each participant. We defined a source space along the
707 white matter surface of the average subject with 4098 equally spaced sources per
708 hemisphere and an approximate source spacing of about 5 mm (MNE's "oct6"
709 option). For minimum norm estimation we assumed a signal-to-noise ratio of 3
710 ($\lambda = 0.11$). We estimated the noise covariance matrix for noise normali-
711 sation (Dale et al., 2000) from the MEG signals in the baseline period spanning
712 from 300 ms before to first dot onset in each trial. We further used standard
713 loose orientation constraints ($\text{loose}=0.2$), but subsequently picked only the cur-
714 rents normal to the cortical mantle. We employed standard depth weighting
715 with a value of 0.8 to overcome the bias of minimum norm estimates towards
716 superficial sources. We computed the inverse solution from all MEG sensors
717 (magnetometers and the two sets of gradiometers) returning dynamic statistical
718 parametric maps for each participant. Before some of the subsequent statistical
719 analyses we averaged the reconstructed source signals across all sources of a
720 brain area as defined by the recently published HCP-MMP parcellation of the
721 human connectome project (Glasser et al., 2016).

722 4.7 Regression analyses

723 Most of our results were based on regression analyses with a general linear
724 model giving event-related regression coefficients (Clarke et al., 2013; Hauk et
725 al., 2006). We differentiate between a standard regression analysis on events
726 aligned at the time when the white dot appeared in each trial, expanded regres-
727 sion analyses on events aligned at the times of white dot position changes and
728 response-aligned regression analyses.

729 4.7.1 Standard regression analysis

730 In the standard regression analysis we defined dot-specific regressors with values
731 changing only across trials. For example, we defined a regressor for momentary
732 evidence (x-coordinate) of the 2nd white dot position presented in the trial.
733 For convenience we also call white dot positions (1st, 2nd and so forth in the
734 sequence of dot positions) simply 'dots'.

735 We only report results of a standard regression analysis in Supplementary
736 Figure 1. This analysis included the dot x- and y-coordinates of the first 6 dots
737 as regressors of interest (together 12 regressors). Additional nuisance regressors
738 were: the response of the participant, a participant-specific trial count roughly
739 measuring time within the experiment, an intercept capturing average effects
740 and a response entropy. The latter quantified the posterior uncertainty of a
741 probabilistic model of the responses (H. Park et al., 2016) that the model had
742 about the response for the stimulus presented in that trial after model parame-
743 ters were adapted to fit participant responses. Specifically, the wider and flatter
744 the posterior predictive distribution over responses of the model for a particu-
745 lar trial / dot position sequence was, the larger was the response entropy for

746 that trial. The data for this analysis were the preprocessed magnetometer time
747 courses.

748 **4.7.2 Expanded regression analyses**

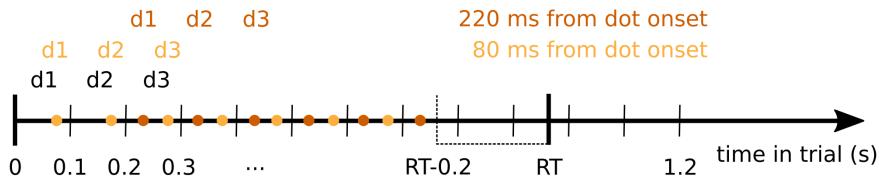


Figure 9: Diagram demonstrating the selection of data points entering the expanded regression analyses. Dot positions (d_1, d_2, d_3, \dots) changed every 100 ms in the experiment (black). Coloured dots indicate times at which signal data points entered the analysis for a given time from dot position change (dot onset, shown exemplarily for 80 and 220 ms from dot onset). We only considered time points up to 200 ms before the response in each trial. Coloured d_1, d_2, d_3 above the points indicate the dot positions associated with the corresponding signal data points for the given time from dot onset. For each trial, these pairs of signal data and dot positions entered the expanded regression analyses.

749 Expanded regression analyses were based on an expanded set of data created
750 by dividing up the data into partially overlapping epochs centred on the
751 times of dot position changes. For each time point after this dot onset the data
752 contained a variable number of time points depending on how many more dots
753 were presented in each individual trial before a response was given by the
754 participant. For example, if a participant made a response after 880 ms in a trial,
755 9 dots were shown in that trial (onset of the 9th dot was at 800 ms). If we are
756 interested in the time point 120 ms after dot onset (dot position change), this
757 gives us 8 time points within that trial that were 120 ms after dot onset. Further
758 excluding all time points 200 ms before the response and later, would leave us
759 with 6 data points for this example trial. See Figure 9 for an illustration. For
760 each time after dot onset and for each participant we pooled all of these data
761 points across trials and inferred regression coefficients on these expanded data
762 sets. Note that this approach can equally be interpreted as statistical inference
763 over how strongly the sequence of momentary evidence caused by the dot up-
764 dates is represented in the signal at 100 ms wide steps with a delay given by
765 the chosen time from dot onset.

766 These analyses included two regressors of interest: momentary evidence (x-
767 coordinate) and y-coordinate of the associated dots. We additionally included
768 the following nuisance regressors: an intercept capturing average effects, the
769 absolute values of x- and y-coordinates, perceptual update variables for x- and
770 y-coordinates (Wyart et al., 2012) defined as the magnitude of the change from

771 one dot position to another and accumulated values of x- and y-coordinates.
772 Because we found that the accumulated values can be strongly correlated with
773 the individual x- and y-coordinates (cf. Supplementary Figure 2), we only used
774 accumulated values up to the previous dot in the regressor. For example, if a
775 data point was associated with the x-coordinate of the 4th dot, the accumulated
776 regressor would contain the sum of only the first three x-coordinates. This
777 accumulated regressor is equal to the regressor resulting from Gram-Schmidt
778 orthonormalisation of the full sum of x-coordinates with respect to the last
779 shown x-coordinate. The accumulated evidence regressor was derived from the
780 ideal observer model as the log posterior odds of the two alternatives, but this
781 was almost 100% correlated with the simple sum of x-coordinates. The small
782 differences between model-based accumulated evidence and sum of x-coordinates
783 after normalisation resulted from a small participant-specific offset representing
784 the overall bias of the participant towards one decision alternative. Note that
785 we do not show any results for this (previous) accumulated evidence regressor.

786 In Figure 4, Figure 6, Supplementary Figure 3 and Supplementary Figure
787 4 we report results from separate expanded regression analyses in which we re-
788 placed the x-coordinate regressor with the sum of x-coordinates and dropped the
789 previous accumulated evidence regressor. We did this, because the previous ac-
790 cumulated evidence regressor did not allow us to estimate effects of accumulated
791 evidence for the first 100 ms after dot onset which is possible with the separate
792 regression. We also did not see any benefits from using the previous accumulated
793 evidence regressor in comparison to the simple sum of x-coordinates up to the
794 current dot. Although the previous accumulated evidence regressor is in princi-
795 ple Gram-Schmidt orthogonalised with respect to the current, i.e., last presented
796 x-coordinate and therefore provides independent information from the current
797 x-coordinate, this is not the orthogonalisation that we are most interested in.
798 Ideally we would want to orthogonalise with respect to any information about
799 x-coordinates, i.e., momentary evidence including information contributed by
800 the whole series of x-coordinates. So, while the previous accumulated evidence
801 regressor is orthogonal to the current x-coordinate, it still correlates with the
802 x-coordinates of previously presented dots. As accumulated evidence is just the
803 sum of x-coordinates, this cannot be prevented so that momentary and accu-
804 mulated evidence regressors will always partially capture overlapping effects.
805 We still found it informative to present a separate analysis for accumulated evi-
806 dence under the premise that the effects of the accumulated evidence regressor
807 more strongly relate to accumulated evidence than momentary evidence and
808 vice-versa for the momentary evidence regressor. We present a discussion of
809 their differences in Supplementary Material.

810 4.7.3 Response-aligned regression analyses

811 Additional to the first-dot onset and dot onset aligned analyses, we conducted
812 response-aligned analyses in which time was referenced to trial-specific response
813 times of participants. The regressors in this analysis were the trial-specific choice
814 of the participant, trial-time and an intercept. Choice was encoded as -1 for left

815 and +1 for right so that the direction of correlations was compatible with that
816 for the evidence regressors. The trial-time regressor simply counted the trial
817 number within the experiment per participant. Timed out trials were excluded
818 from analysis. As in the other regression analyses we z-scored regressors and
819 data across trials before estimating the regression coefficients, except for trial-
820 time which was only scaled to standard deviation equal to 1. We ran two
821 different analyses in sensor and source space. In sensor space (magnetometers)
822 we ran independent univariate regressions for each combination of sensor and
823 time so that we ran 102 * 70 regressions with maximally 480 data points (one
824 per trial, minus excluded trials). We report results of this analysis in Figure 7
825 and Supplementary Figure 6. After having identified time windows of interest
826 based on the sensor level results, we aggregated data from the identified times
827 into a common regression on source data. To do this we simply pooled the data
828 from all times in the time window and ran the regression on this expanded data
829 set, then including maximally number of trials * number of time points data
830 points. This approach meant that we were automatically estimating the mean
831 regression coefficients across the selected time window for each brain area and
832 participant. We report results of this analysis in Figure 8.

833 **4.7.4 Identification of significant source-level effects**

834 To identify significant correlations between regressors of interest and source sig-
835 nals we followed the summary statistics approach (Friston, Ashburner, Kiebel,
836 Nichols, & Penny, 2006) and performed two-sided t-tests on the second level
837 (group-level, t-tests across participants). We corrected for multiple comparisons
838 across time points and brain areas by controlling the false discovery rate using
839 the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995). Specifically,
840 for identifying significant effects reported in Figure 5 we corrected across 25,340
841 tests covering 70 time points (0 to 690 ms from dot onset in 10 ms steps) and
842 362 brain areas (180 brain areas of interest per hemisphere plus one collection
843 of sources per hemisphere that fell between the area definitions provided by the
844 atlas). We report all significant effects of this analysis in Supplementary Data
845 Table 1.

846 **4.7.5 Identification of significant differences in correlation patterns**

847 We formally investigated the differences in correlation patterns of the response-
848 aligned analysis between the two time windows of interest (Figure 8, Supple-
849 mentary Figure 6). As we were interested in the differences between spatial
850 patterns, we accounted for the overall increase in correlation magnitudes from
851 build-up to response window by normalising the correlation magnitudes. This
852 normalisation consisted of first shifting the minimum magnitude to 0 and then
853 scaling the resulting magnitudes so that their mean equals 1 across sensors or
854 brain areas. The initial shift of the magnitudes prevents excessive shrinking of
855 magnitude variances for magnitude patterns with overall large magnitudes and
856 ensures that the magnitudes have similar distributions across the involved sen-

857 sors or brain areas in both considered time periods. We subsequently computed
858 the differences between the selected time periods on the first level and report
859 second-level (across participant) statistics.

860 The analysis on the source level in principle equalled that of the sensor level,
861 but additionally accounted for the fact that most brain areas were not involved
862 in encoding the choice. We achieved this by computing the normalisation pa-
863 rameters for a time window only across brain areas with a significant effect in
864 this time window. However, we then computed magnitude differences for all
865 brain areas with a significant effect in at least one of the time windows and
866 proceeded with second-level statistics for these areas as before.

867 5 Acknowledgements

868 We would like to thank Yvonne Wolff-Rosier for helping with data acquisition.

869 References

870 Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a
871 practical and powerful approach to multiple testing. *Journal of the Royal
872 Statistical Society. Series B. Methodological*, 57(1), 289–300.

873 Bitzer, S., Park, H., Blankenburg, F., & Kiebel, S. J. (2014). Perceptual decision
874 making: Drift-diffusion model is equivalent to a bayesian model. *Frontiers
875 in Human Neuroscience*, 8(102). doi: 10.3389/fnhum.2014.00102

876 Brunton, B. W., Botvinick, M. M., & Brody, C. D. (2013, Apr). Rats and
877 humans can optimally accumulate evidence for decision-making. *Science*,
878 340(6128), 95–98. doi: 10.1126/science.1233912

879 Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Cohen, M. R.,
880 Corrado, G. S., ... Shenoy, K. V. (2010, Mar). Stimulus onset quenches
881 neural variability: a widespread cortical phenomenon. *Nat Neurosci*,
882 13(3), 369–378. Retrieved from <http://dx.doi.org/10.1038/nn.2501>
883 doi: 10.1038/nn.2501

884 Cisek, P. (2007, September). Cortical mechanisms of action selection: the
885 affordance competition hypothesis. *Philosophical transactions of the Royal
886 Society of London. Series B, Biological sciences*, 362, 1585–1599. doi:
887 10.1098/rstb.2007.2054

888 Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with
889 a world full of action choices. *Annu Rev Neurosci*, 33, 269–298. doi:
890 10.1146/annurev.neuro.051508.135409

891 Clark, A. (2013, Jun). Whatever next? predictive brains, situated agents, and
892 the future of cognitive science. *The Behavioral and brain sciences*, 36,
893 181–204. doi: 10.1017/S0140525X12000477

894 Clarke, A., Taylor, K. I., Devereux, B., Randall, B., & Tyler, L. K. (2013,
895 January). From perception to conception: how meaningful objects are

896 processed over time. *Cerebral cortex (New York, N.Y. : 1991)*, 23, 187–
897 197. doi: 10.1093/cercor/bhs002

898 Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W., Lewine,
899 J. D., & Halgren, E. (2000, April). Dynamic statistical parametric map-
900 ping: combining fmri and meg for high-resolution imaging of cortical ac-
901 tivity. *Neuron*, 26, 55–67. doi: 10.1016/S0896-6273(00)81138-1

902 de Lange, F. P., Rahnev, D. A., Donner, T. H., & Lau, H. (2013, Jan). Prestimu-
903 lus oscillatory activity over motor cortex reflects perceptual expectations.
904 *J Neurosci*, 33(4), 1400–1410. doi: 10.1523/JNEUROSCI.1094-12.2013

905 de Lange, F. P., Jensen, O., & Dehaene, S. (2010, Jan). Accumulation of
906 evidence during sequential decision making: the importance of top-down
907 factors. *J Neurosci*, 30(2), 731–738. doi: 10.1523/JNEUROSCI.4080-09
908 .2010

909 Delorme, A., & Makeig, S. (2004, March). Eeglab: an open source toolbox
910 for analysis of single-trial eeg dynamics including independent component
911 analysis. *Journal of neuroscience methods*, 134, 9–21. doi: 10.1016/
912 j.jneumeth.2003.10.009

913 Donner, T. H., Siegel, M., Fries, P., & Engel, A. K. (2009, Sep). Buildup of
914 choice-predictive activity in human motor cortex during perceptual deci-
915 sion making. *Curr Biol*, 19(18), 1581–1585. doi: 10.1016/j.cub.2009.07
916 .066

917 Friston, K. J., Ashburner, J. T., Kiebel, S. J., Nichols, T. E., & Penny, W. D.
918 (Eds.). (2006). *Statistical parametric mapping: The analysis of functional
919 brain images*. Academic Press.

920 Friston, K. J., Daunizeau, J., & Kiebel, S. J. (2009). Reinforcement learning
921 or active inference? *PLoS One*, 4(7), e6421. doi: 10.1371/journal.pone
922 .0006421

923 Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J.,
924 Yacoub, E., ... Van Essen, D. C. (2016, August). A multi-modal
925 parcellation of human cerebral cortex. *Nature*, 536, 171–178. doi:
926 10.1038/nature18933

927 Gluth, S., Rieskamp, J., & Büchel, C. (2013, October). Classic eeg motor
928 potentials track the emergence of value-based decisions. *NeuroImage*, 79,
929 394–403. doi: 10.1016/j.neuroimage.2013.05.005

930 Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making.
931 *Annu Rev Neurosci*, 30, 535–574. doi: 10.1146/annurev.neuro.29.051605
932 .113038

933 Gould, I. C., Nobre, A. C., Wyart, V., & Rushworth, M. F. S. (2012, Oct).
934 Effects of decision variables and intraparietal stimulation on sensorimotor
935 oscillatory activity in the human brain. *J Neurosci*, 32(40), 13805–13818.
936 doi: 10.1523/JNEUROSCI.2200-12.2012

937 Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D.,
938 Brodbeck, C., ... Hämäläinen, M. (2013, December). Meg and eeg
939 data analysis with mne-python. *Frontiers in neuroscience*, 7, 267. doi:
940 10.3389/fnins.2013.00267

941 Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D.,
942 Brodbeck, C., ... Hämäläinen, M. S. (2014, February). Mne soft-
943 ware for processing meg and eeg data. *NeuroImage*, *86*, 446–460. doi:
944 10.1016/j.neuroimage.2013.10.027

945 Hadar, A. A., Rowe, P., Di Costa, S., Jones, A., & Yarrow, K. (2016, November).
946 Motor-evoked potentials reveal a motor-cortical readout of evidence accu-
947 mulation for sensorimotor decisions. *Psychophysiology*, *53*, 1721–1731.
948 doi: 10.1111/psyp.12737

949 Hanks, T. D., & Summerfield, C. (2017, January). Perceptual decision making
950 in rodents, monkeys, and humans. *Neuron*, *93*, 15–31. doi: 10.1016/
951 j.neuron.2016.12.003

952 Hauk, O., Davis, M. H., Ford, M., Pulvermüller, F., & Marslen-Wilson, W. D.
953 (2006, May). The time course of visual word recognition as revealed by
954 linear regression analysis of erp data. *NeuroImage*, *30*, 1383–1400. doi:
955 10.1016/j.neuroimage.2005.11.048

956 Heekeren, H. R., Marrett, S., & Ungerleider, L. G. (2008, Jun). The neural sys-
957 tems that mediate human perceptual decision making. *Nat Rev Neurosci*,
958 *9*(6), 467–479. doi: 10.1038/nrn2374

959 Hubert-Wallander, B., & Boynton, G. M. (2015). Not all summary statistics are
960 made equal: Evidence from extracting summaries across time. *Journal of
961 vision*, *15*, 5. doi: 10.1167/15.4.5

962 Kandel, E., Jessell, T., Schwartz, J., Siegelbaum, S., & Hudspeth, A. (2012).
963 *Principles of neural science, fifth edition*. McGraw-Hill Education. Re-
964 tried from <http://www.principlesofneuralscience.com/>

965 Kelly, S. P., & O'Connell, R. G. (2013, Dec). Internal and external influences on
966 the rate of sensory evidence accumulation in the human brain. *J Neurosci*,
967 *33*(50), 19434–19441. doi: 10.1523/JNEUROSCI.3355-13.2013

968 Latimer, K. W., Yates, J. L., Meister, M. L. R., Huk, A. C., & Pillow,
969 J. W. (2015, Jul). Single-trial spike trains in parietal cortex reveal dis-
970 crete steps during decision-making. *Science*, *349*(6244), 184–187. doi:
971 10.1126/science.aaa4056

972 Leech, R., & Sharp, D. J. (2014, January). The role of the posterior cingulate
973 cortex in cognition and disease. *Brain : a journal of neurology*, *137*,
974 12–32. doi: 10.1093/brain/awt162

975 Meister, M. L. R., Hennig, J. A., & Huk, A. C. (2013, Feb). Signal mul-
976 tiplexing and single-neuron computations in lateral intraparietal area
977 during decision-making. *J Neurosci*, *33*(6), 2254–2267. doi: 10.1523/
978 JNEUROSCI.2984-12.2013

979 Michelet, T., Duncan, G. H., & Cisek, P. (2010, July). Response competition
980 in the primary motor cortex: corticospinal excitability reflects response
981 replacement during simple decisions. *Journal of neurophysiology*, *104*,
982 119–127. doi: 10.1152/jn.00819.2009

983 Mostert, P., Kok, P., & de Lange, F. P. (2015). Dissociating sensory from de-
984 cision processes in human perceptual decision making. *Sci Rep*, *5*, 18253.
985 doi: 10.1038/srep18253

986 Myers, N. E., Rohenkohl, G., Wyart, V., Woolrich, M. W., Nobre, A. C., &
987 Stokes, M. G. (2015, Dec). Testing sensory evidence against mnemonic
988 templates. *Elife*, 4. doi: 10.7554/eLife.09000

989 O'Connell, R. G., Dockree, P. M., & Kelly, S. P. (2012, November). A
990 supramodal accumulation-to-bound signal that determines perceptual de-
991 cisions in humans. *Nat Neurosci*, 15(12), 1729–1735. doi: 10.1038/
992 nn.3248

993 O'Regan, J. K., & Noë, A. (2001, October). A sensorimotor account of vision
994 and visual consciousness. *The Behavioral and brain sciences*, 24, 939–73;
995 discussion 973-1031. doi: 10.1017/S0140525X01000115

996 Park, H., Lueckmann, J.-M., von Kriegstein, K., Bitzer, S., & Kiebel, S. J.
997 (2016). Spatiotemporal dynamics of random stimuli account for trial-to-
998 trial variability in perceptual decision making. *Sci Rep*, 6, 18832. doi:
999 10.1038/srep18832

1000 Park, I. M., Meister, M. L. R., Huk, A. C., & Pillow, J. W. (2014, Oct). Encoding
1001 and decoding in parietal cortex during sensorimotor decision-making. *Nat
1002 Neurosci*, 17(10), 1395–1403. doi: 10.1038/nn.3800

1003 Pearson, J. M., Heilbronner, S. R., Barack, D. L., Hayden, B. Y., & Platt,
1004 M. L. (2011, April). Posterior cingulate cortex: adapting behavior to a
1005 changing world. *Trends in cognitive sciences*, 15, 143–151. doi: 10.1016/
1006 j.tics.2011.02.002

1007 Philiastides, M. G., Heekeren, H. R., & Sajda, P. (2014, Dec). Human scalp
1008 potentials reflect a mixture of decision-related signals during perceptual
1009 choices. *J Neurosci*, 34(50), 16877–16889. doi: 10.1523/JNEUROSCI
1010 .3012-14.2014

1011 Philiastides, M. G., Ratcliff, R., & Sajda, P. (2006, August). Neural repre-
1012 sentation of task difficulty and decision making during perceptual cate-
1013 gorization: a timing diagram. *The Journal of neuroscience : the official
1014 journal of the Society for Neuroscience*, 26, 8965–8975. doi: 10.1523/
1015 JNEUROSCI.1655-06.2006

1016 Philiastides, M. G., & Sajda, P. (2006, April). Temporal characterization of
1017 the neural correlates of perceptual decision making in the human brain.
1018 *Cereb Cortex*, 16(4), 509–518. doi: 10.1093/cercor/bhi130

1019 Selen, L. P. J., Shadlen, M. N., & Wolpert, D. M. (2012, Feb). Deliberation
1020 in the motor system: reflex gains track evolving evidence leading to a
1021 decision. *J Neurosci*, 32(7), 2276–2286. doi: 10.1523/JNEUROSCI.5273
1022 -11.2012

1023 Siegel, M., Donner, T. H., Oostenveld, R., Fries, P., & Engel, A. K. (2007,
1024 March). High-frequency activity in human visual cortex is modulated by
1025 visual motion strength. *Cerebral cortex (New York, N.Y. : 1991)*, 17,
1026 732–741. doi: 10.1093/cercor/bhk025

1027 Smulders, F. T. Y., & Miller, J. O. (2012). The lateralized readiness potential.
1028 In E. S. Kappenman & S. J. Luck (Eds.), *The oxford handbook of event-
1029 related potential components*. Oxford University Press. doi: 10.1093/
1030 oxfordhb/9780195374148.013.0115

1031 Taulu, S., Simola, J., & Kajola, M. (2005, Sept). Applications of the signal

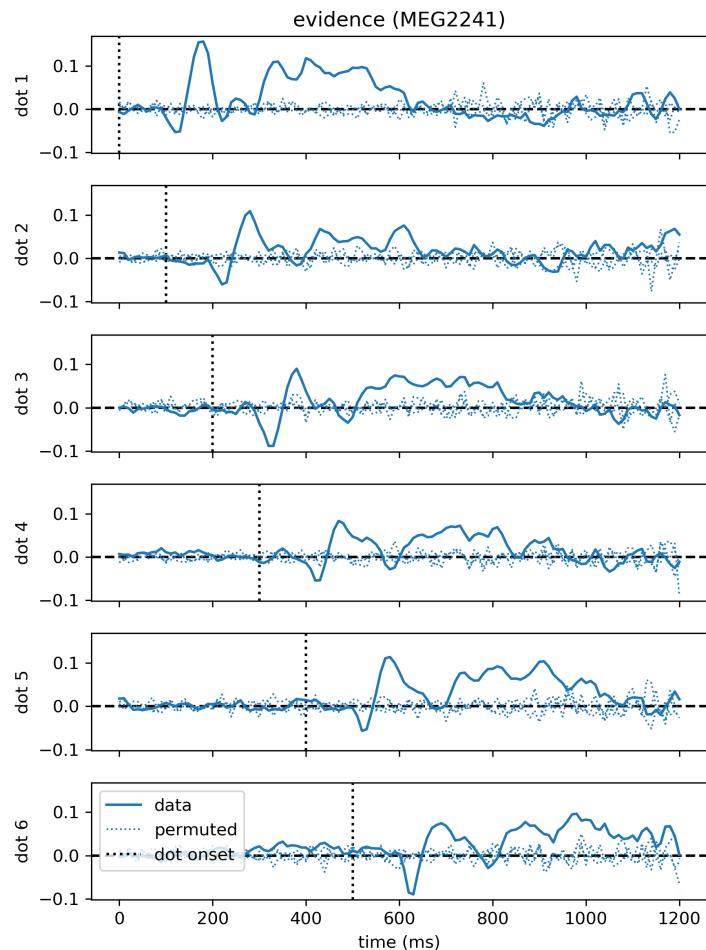
1032 space separation method. *IEEE Transactions on Signal Processing*, 53(9),
1033 3359-3372. doi: 10.1109/TSP.2005.853302

1034 Thura, D., & Cisek, P. (2014, Mar). Deliberation and commitment in the premotor
1035 and primary motor cortex during dynamic decision making. *Neuron*,
1036 81(6), 1401–1416. doi: 10.1016/j.neuron.2014.01.031

1037 Wyart, V., de Gardelle, V., Scholl, J., & Summerfield, C. (2012, nov). Rhythmic
1038 fluctuations in evidence accumulation during decision making in the human
1039 brain. *Neuron*, 76(4), 847–858. doi: 10.1016/j.neuron.2012.09.015

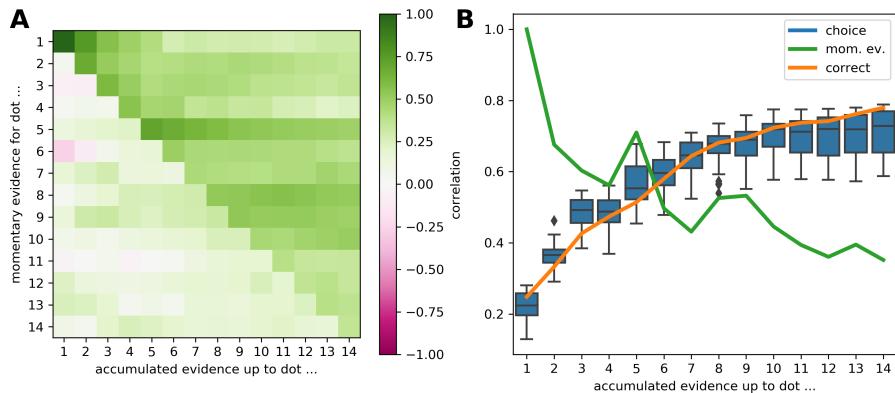
¹⁰⁴⁰ **6 Supplementary Material**

¹⁰⁴¹ **6.1 Stereotyped temporal correlation profiles across evi-**
¹⁰⁴² **dence regressors**



Supplementary Figure 1: Time course of correlations with momentary evidence repeats for each dot shifted by dot onset times. In the standard regression analysis there was one regressor for each element in the sequence of dot positions (dots). This allowed us to see, when after first dot onset, correlations with the considered dot could be observed. The figure demonstrates exemplarily for the magnetometer channel with the strongest average correlations that the correlation time course exhibits roughly a stereotyped profile relative to the onset time of the dot on the second level. Dotted lines show the same quantity, but for data that we permuted over trials before the regression analysis.

1043 **6.2 Correlations with accumulated evidence**



Supplementary Figure 2: The accumulated evidence is correlated across trials with the momentary evidence provided by dot positions, the correct choice in a trial and the choices of the participants. A: Correlation coefficients for all combinations of momentary and accumulated evidence for the shown onset times. For example, the correlation value at row 2, column 4 gives the correlation between the momentary evidence of the 2nd dot position within a trial and the accumulated evidence up to the 4th dot position, across trials. B: Comparison of correlations between accumulated evidence and three trial-wise measures: the correct choice in a trial (orange line), the momentary evidence at the same time point (green line, equal to diagonal in A), and the choices of the participants (blue boxes). The blue boxes show the distribution over participants per considered dot position.

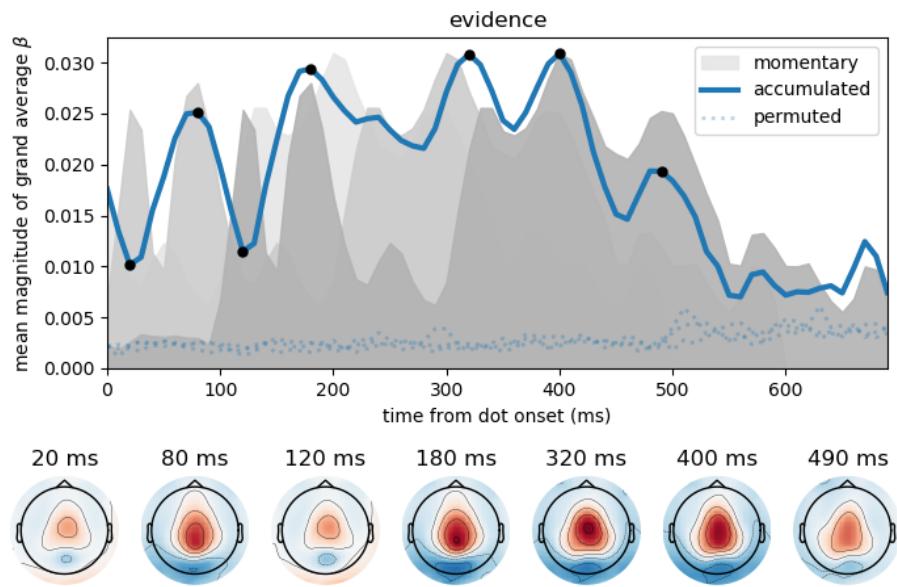
1044 **6.3 On the relation of momentary and accumulated evi-
1045 dence representations**

1046 The simple mathematical relationship between momentary and accumulated evi-
1047 dence (a sum) means that the inferred regression coefficients for either momen-
1048 tary or accumulated evidence will always contain contributions from the other
1049 type of evidence. In other words, a linear regression analysis (including any
1050 form of correlation analysis) will never be able to completely dissociate neural
1051 signals relating only to momentary or only to accumulated evidence. However,
1052 as inferred coefficients for momentary or accumulated evidence still identify ef-
1053 fects of the corresponding type of evidence more strongly than the other type of
1054 evidence, we here attempt to further delineate effects relating to momentary and
1055 accumulated evidence by investigating specifically differences in their inferred
1056 representations. Our analysis suggests that specifically accumulated evidence
1057 and not momentary evidence is represented in the MEG magnetometer signals
1058 with a central positivity, as already indicated by the inferred coefficients for
1059 accumulated evidence shown in Figure 4.

1060 Because accumulated evidence is the cumulative sum of momentary evi-
1061 dences, accumulated evidence can correlate strongly with the last shown momen-
1062 tary evidence and with momentary evidences shown at previous time points,
1063 even though momentary evidences at different time points are themselves un-
1064 correlated. To understand the relation between momentary and accumulated
1065 evidence effects we, therefore, need to consider the recent history of momentary
1066 evidences.

1067 To further visualise the relation between momentary and accumulated evi-
1068 dence we annotated the correlation time course of accumulated evidence shown
1069 in Figure 4 with that of the momentary evidence shown in Figure 3. This is
1070 shown in Supplementary Figure 3 where we additionally added two time-shifted
1071 replicas of the momentary evidence. These replicas visualise the representations
1072 of the x-coordinates of two previous dots such that we see the time points at
1073 which x-coordinates of the current and two previous dots are represented in
1074 the MEG signals while only the time course of correlations with accumulated
1075 evidence up to the current dot are shown. The figure shows that the location of
1076 peaks of accumulated evidence can be explained with the location of peaks of
1077 momentary evidence (x-coordinates). For example, at 180 ms peaks of accumu-
1078 lated evidence and momentary evidence of the current dot coincide. Similarly,
1079 the peak of accumulated evidence at 80 ms can be related to the 180 ms peak
1080 of momentary evidence of the previous dot (occurring at 80 ms in reference to
1081 the current dot onset time). These observations demonstrate that the correla-
1082 tions with accumulated evidence are partially driven by representations of the
1083 momentary evidence / x-coordinates in the MEG signals.

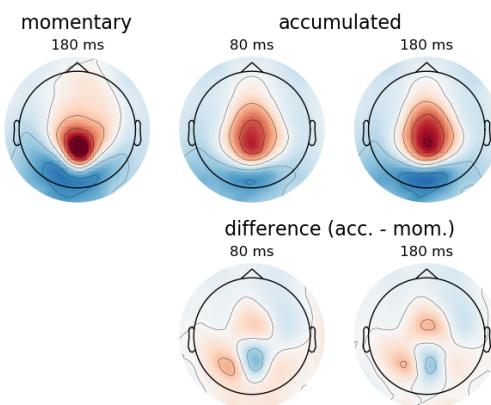
1084 To disentangle representations of accumulated evidence and momentary evi-
1085 dence, or dot x-coordinates the time points with large differences in correlation
1086 strengths between the two are of greatest interest. The two time points with the
1087 largest discrepancies between correlation magnitudes of momentary and accu-
1088 mulated evidence were 20 ms and 120 ms after dot onset. Supplementary Figure



Supplementary Figure 3: Peaks and troughs of accumulated evidence correlations coincide with peaks of momentary evidence correlations. Same format as in Figure 3. Accumulated evidence is plotted as a blue solid line, where black dots indicate time points of sensor topographies. In addition, we show the momentary evidence time course (dark grey shade, cf. Figure 3A) and two time-shifted replicas of it, one shifted by 100 ms to the past (mid grey) and another shifted by 200 ms to the past (light grey). These time courses, therefore, are associated with the representation of the momentary evidence / x-coordinates of the current and the previous two dots in the brain. This visualisation shows that peaks in accumulated evidence tend to coincide with peaks in momentary evidences presented at subsequent time points. Larger discrepancies between correlation magnitudes of momentary and accumulated evidence only occurred at 20 ms, 120 ms and from about 450 ms after dot onset. At 80 ms and 180 ms topographies slightly shifted towards parietal sensors otherwise effects were located centrally.

1089 3 shows that at 20 and 120 ms a drop in magnitude of accumulated evidence cor-
1090 relations co-occurred with the 120 ms momentary evidence peaks of the current
1091 and previous dots. This drop in magnitude of accumulated evidence correlations,
1092 therefore, resulted from an interaction with the centro-parietal anti-correlation
1093 of the MEG signal with x-coordinates (cf. Figure 3A, topography at 120 ms).
1094 Put differently, at these time points the representations of accumulated evidence
1095 and x-coordinates in the MEG signal were incompatible so that through the
1096 correlation between accumulated evidence and x-coordinates the correlations
1097 of accumulated evidence with the MEG signal were diminished as the MEG
1098 signal simultaneously represented the incompatible x-coordinates. Despite this
1099 interaction, however, we still observed positive correlations with accumulated
1100 evidence in central sensors mirroring the topography, although weaker, at later
1101 time points with strong effects, for example at 320 ms (Supplementary Figure
1102 3, bottom). This affirms that specifically accumulated evidence is represented
1103 with a topography featuring a central positivity in the MEG signal.

1104 At 80 ms and 180 ms the sensor topographies for accumulated evidence
1105 deviated somewhat from a central to a more centro-parietal positivity. We
1106 reported above that the peaks of accumulated evidence coincided with peaks
1107 of momentary evidence at these time points. These momentary evidence peaks
1108 corresponded to the 180 ms momentary evidence peak in relation to dot onset
1109 which had a centro-parietal topography as shown in Figure 3A. So the shift
1110 from central to centro-parietal positive correlations with accumulated evidence
1111 can be explained by the interaction with the representation of the momentary
1112 evidence at these time points. Notice, however, that the positive correlations
1113 with accumulated evidence still cover central locations more strongly than the
1114 corresponding effects for momentary evidence at 180 ms (Supplementary Figure
1115 4). This also indicates that accumulated evidence tended to be represented with
1116 a central positivity.

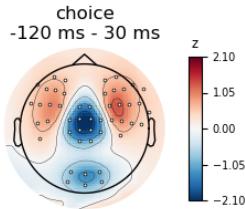


Supplementary Figure 4: Correlations between magnetometer signals and accumulated evidence are more central than those for momentary evidence at 180 ms after dot onset. Top: Topographies repeated from Figure 3 and Supplementary Figure 3 at the indicated times. Bottom: Difference topographies where we subtracted the topography of the momentary evidence at 180 ms from those of the accumulated evidence. The difference topographies show that the accumulated evidence had stronger correlations in central sensors while the momentary evidence had stronger correlations in mid-parietal sensors. Additionally, accumulated evidence had stronger correlations in posterior lateral sensors, especially on the left.

1117 **6.4 Choice correlations correspond to difference between**
1118 **average signals for right minus left choices**

Supplementary Figure 5: The choice correlations 30 ms after the response shown in Figure 7 emerge from the difference between right and left button responses. For this analysis we repeated the response-aligned regression analysis, but replaced the intercept and choice regressors with regressors for the left and right choices. The resulting regression coefficients are approximately proportional to the average signal in trials with a left, or right choice, respectively (the estimated coefficients are equal to the average signals, if the two response regressors are encoded with 0s and 1s and are the only regressors in the analysis, or their correlation with the other regressors is exactly 0). The topographies for left and right above show second-level t-values for the regression coefficients at 30 ms after the response. The topography on the right hand side shows their difference.

1119 **6.5 Topography differences for choice correlations before**
1120 **and around the response**



Supplementary Figure 6: Around the response choice correlations were stronger than before the response over central sensors. We formally tested the apparent differences in topographies of choice correlations shown in Figure 7 for time points -120 ms and 30 ms. As we were interested in the spatial patterns and not absolute value differences within sensors, we scaled the coefficient estimates (β) across sensors, but within time points and participants for this analysis so that their mean magnitude across sensors was equal to 1. We then computed the difference between time points within each participant and sensor. The colouring in the plot shows the mean of these differences across participants. We further applied a t-test across participants within each sensor and corrected the resulting p-values for false discovery rate at $\alpha = 0.01$ across sensors. The white dots in the figure indicate sensors which exhibited a significant difference after multiple comparison correction. Together with the topographies shown in Figure 7 the results of this analysis confirm that before the response occipital sensors had stronger anti-correlation with choice than around the response. In contrast, fronto-lateral sensors exhibited stronger anti-correlation around the response than before the response. Furthermore, the strongest difference occurred in central sensors which exhibited a relatively stronger correlation with choice around the response than before the response.