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6 Abstract

7 In perceptual decision making the brain extracts and accumulates de-
8 cision evidence from a stimulus over time and eventually makes a decision
9 based on the accumulated evidence. Several characteristics of this process
10 have been observed in human electrophysiological experiments, especially
11 an average build-up of motor-related signals supposedly reflecting accumu-
12 lated evidence, when averaged across trials. Another recently established
13 approach to investigate the representation of decision evidence in brain
1 signals is to correlate the within-trial fluctuations of decision evidence with
15 the measured signals. We here report results for a two-alternative forced
16 choice reaction time experiment in which we applied this approach to hu-
17 man magnetoencephalographic (MEG) recordings. These results consoli-
18 date a range of previous findings. In addition, they show: 1) that decision
19 evidence is most strongly represented in the MEG signals in three consecu-
20 tive phases, 2) that motor areas contribute longer to these representations
21 than parietal areas and 3) that posterior cingulate cortex is involved most
2 consistently, among all brain areas, in all three of the identified phases.
23 As most previous work on perceptual decision making in the brain has
2% focused on parietal and motor areas, our findings therefore suggest that
25 the role of the posterior cingulate cortex in perceptual decision making
2 may be currently underestimated.

» 1 Introduction

s During perceptual decision making observers reason about the state of their
2 environment. Supported by findings in single neurons of non-human primates,
s the underlying mechanism has been characterised as an accumulation-to-bound
a process (Gold & Shadlen, 2007). Specifically, the current consensus is that
» during perceptual decision making the brain accumulates noisy pieces of sensory
13 evidence across time until it reaches a confidence bound. Most experimental
s results on this process have been based on stimuli which have been designed
s to provide the same amount of evidence per unit time on average across trials.
s Trial-averaged accumulated evidence then should follow a gradual build-up with
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s evidence-dependent slope and a maximum close to the response within trial
1 (Gold & Shadlen, 2007).

39 In humans, evidence of this kind of average build-up have been found using
«» magneto- and electroencephalography (M/EEG). For example, lateralised oscil-
a1 latory signals in the beta band measured with magnetoencephalography exhibit
4 this build-up, where sources were located to dorsal premotor and primary motor
i cortex (Donner, Siegel, Fries, & Engel, 2009). In EEG, there are similar find-
w ings of a build-up for lateralised readiness potentials and oscillations (Kelly &
s O’Connell, 2013; de Lange, Rahnev, Donner, & Lau, 2013). Furthermore, when
4 human participants have to detect the presence of stimuli in noise, a centro-
«  parietal positivity shows the characteristics of an evidence-dependent build-up
s independently of the type of stimulus used and the kind of response made (Kelly
w & O’Connell, 2013; O’Connell, Dockree, & Kelly, 2012). Together these findings
so suggest that the human parietal and motor cortices are involved in perceptual
s1  decision making and in particular represent accumulated evidence. This view is
2 compatible with electrophysiological recordings in non-human animals (Hanks
53 & Summerfield, 2017) and an active role of the motor system during decision
s« making (Cisek & Kalaska, 2010).

55 It has long been known that electromagnetic signals over motor areas build
ss up towards a motor response and can signal an eventual choice even before
sv  the response (Smulders & Miller, 2012). This means that the crucial aspect
ss of decision evidence representations is not the build-up as such, but its co-
so variance with the theoretically available evidence. Consequently, more recent
s approaches have induced consistent, within-trial changes in available decision
s evidence (Wyart, de Gardelle, Scholl, & Summerfield, 2012; Thura & Cisek,
2 2014; Brunton, Botvinick, & Brody, 2013; Hanks & Summerfield, 2017). These
63 within-trial changes allow more specific analyses, because one can directly assess
s« the covariation between decision evidence and neural signals a) across a much
es richer sample of evidences than available with the trial-constant evidences in
s previous analyses and b) while the decision is ongoing.

67 Although it has previously been shown that electromagnetic signals in the
¢ human brain correlate with within-trial changing decision evidence (Wyart et
oo al., 2012; de Lange, Jensen, & Dehaene, 2010; Gluth, Rieskamp, & Biichel, 2013;
7 Gould, Nobre, Wyart, & Rushworth, 2012), these studies had either rather long
7 stimulus presentation times atypical for fast perceptual decisions (Gluth et al.,
2 2013; Gould et al., 2012), or did not employ a reaction time paradigm (Wyart
72 et al., 2012; de Lange et al., 2010; Gould et al., 2012). In the present work we
u  therefore sought representations of decision evidence in a two-alternative forced
75 choice reaction time paradigm in which we induced changes in decision evidence
7 every 100 ms. That is, our paradigm attempts to mimic natural perceptual deci-
77 sion making behaviour more closely than previous investigations with controlled,
7 within-trial changing evidence while still observing neural responses across the
79 whole human brain.

80 Specifically, we investigated correlations between decision evidence and hu-
ss man MEG signals and their sources. We found particularly large effects of
&2 decision evidence in the human MEG in three consecutive phases aligned to


https://doi.org/10.1101/350876
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/350876; this version posted January 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

&3 when the particular piece of evidence became available. The underlying sources
s indicate that the information delivered by the evidence propagated from visual
& over parietal to motor areas, as expected, but also that it remained in motor
s areas for a longer time than in parietal areas. In addition, our results implicate
&7 posterior cingulate cortex in all of the identified phases suggesting a central role
g of this brain region in the transformation of sensory signals to decision evidence
s in our task.

« 2 Results
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Figure 1: Course of events within a trial in the single dot task (A) and behaviour
of individual participants (B). Each trial started with the presentation of a
fixation cross, followed by the appearance of the two yellow targets after about
1 s. 700 ms after the appearance of the targets the fixation cross disappeared
and a single white dot was presented at a random position on the screen (drawn
from a 2D-Gaussian distribution centred on one of the targets). Every 100 ms
the position of the white dot was changed to a new random draw from the same
distribution. Participants were instructed to indicate the target which they
thought was the centre of the observed dot positions. After 25 dot positions
(2.5 s) without a response, a new trial was started automatically, otherwise
a new trial started with the response of the participant. Average behaviour
(accuracy and median response time) for each of the 34 participants is shown
in B.

o1 While MEG was recorded, 34 human participants observed a single white dot
o2 on the screen changing its position every 100 ms and had to decide whether a
s left or a right target (two yellow dots) was the centre of the white dot movement
o (Figure 1). Under moderate time pressure (see Methods), participants indicated
s their choice with a button press using the index finger of the corresponding hand.
o6 The distance of the target dots on the screen was chosen in behavioural pilots
o7 so that participants had an intermediate accuracy around 75% while being told
e to be as accurate and fast as possible. The average median response time across
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o participants was 1.1 s with an average accuracy of 78% (cf. Figure 1B).

100 This paradigm dissociates two different kinds of information available to the
1w participants from the stimulus. The x-coordinates of the jumping white dot
102 convey decision-relevant perceptual information while the y-coordinates convey
03 perceptual information that is irrelevant for the decision. We assume that both
14 signals are processed by the brain, but only the decision-relevant x-coordinates
s are taken into account when making a decision.

106 To define decision evidence, we used a computational model. An ideal ob-
w7 server model for inference about the target given a sequence of single dots has
s been described before (H. Park, Lueckmann, von Kriegstein, Bitzer, & Kiebel,
wo  2016; Bitzer, Park, Blankenburg, & Kiebel, 2014). This model identifies, as
o expected, the x-coordinates of the white dot positions as momentary decision
m  evidence. Specifically, there is a direct linear relationship between x-coordinates
2 and momentary evidence so that in the following regression analyses we could
us  directly use the x-coordinates as independent variables instead of having to
ue compute decision evidence from the x-coordinates through the model.We fur-
us  ther identified the cumulative sum of x-coordinates across single dot positions as
us accumulated evidence which corresponds to the average state of a discrete-time
w7 drift-diffusion model (Bitzer et al., 2014).

us 2.1 Participants integrate evidence provided by single dot
119 positions to make decisions

120 As the task required and the model predicted, participants made their decision
21 based on the provided evidence. In Figure 2 we show this as the correlation of
122 participants’ choices with momentary and accumulated evidence. Momentary
s evidence was mildly correlated with choices throughout the trial (correlation co-
e efficients around 0.3) while the correlation between accumulated evidence and
s choices increased to a high level (around 0.7) as more and more dot positions
s were presented. This result indicates that participants accumulated the mo-
12z mentary evidence, here the x-coordinate of the dot, to make their choices. In
s contrast, as expected, the y-coordinates had no influence on the participants’
1o choices as indicated by correlation coefficients around 0 (Figure 2B).

130 Previous work has investigated the influence of individual stimulus elements
1 on the eventual decision and whether this influence differed across elements
1 (Wyart et al., 2012; Hubert-Wallander & Boynton, 2015). In our analysis
133 this corresponds to checking whether the correlations with momentary evidence
1 shown in Figure 2A differ across dots. This is clearly the case (F(13,462) =
s 65.49,p < 0.001). Contrary to previous work (Hubert-Wallander & Boynton,
s 2015) we do not observe a primacy effect. Instead, we observe a particularly
w large difference in the influence of the 4th and 5th dots on the decision (post-
s hoc paired t-test: ¢(33) = —34.90,p < 0.001) with the 5th dot having a strong
130 influence while the 4th dot having a relatively small influence. This reflects our
uo pre-selection and manipulation of stimuli which were partially chosen from a
w1 previous experiment to induce large response times (leading to the small influ-
12 ence of the 4th dot) and a manipulation of the 5th dot to create large variation
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Figure 2: Participants accumulate momentary evidence provided by dot po-
sitions for making their decisions. (A) Each shown point corresponds to the
Pearson correlation coefficient for the correlation between choices of a single
participant and the sequence of presented dot positions across the 480 trials of
the experiment. We plot, over stimulus duration, the momentary (blue) and
the accumulated evidence (orange). The dotted vertical line shows the median
RT across participants. Until about the 10th dot presentation the correlation
between accumulated evidence and participant choices rises, reaching values
around 0.7 while the momentary evidence is only modestly related to partici-
pant choices across all dots. (B) The same format as in A but all measures are
computed from the y-coordinates of dot positions which were irrelevant for the
decision. As expected, y-coordinates do not correlate with participant choices.
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us  in x-coordinates (see Methods for further details). Taken together these results
us  confirm that the used stimuli were effective in driving the decisions of the partic-
us ipants and that the theoretically defined momentary and accumulated evidence
us integrate well with observed behaviour.

w 2.2 MEG signals covary with momentary evidence at spe-
148 cific time points after stimulus update

uo  For the analysis of the MEG data we used regression analyses computing event-
0 related regression coefficients of a general linear model (Clarke, Taylor, Dev-
11 ereux, Randall, & Tyler, 2013; Hauk, Davis, Ford, Pulvermiiller, & Marslen-
12 Wilson, 2006). For our main analysis the regressors of interest were the mo-
153 mentary evidence and, as a control, the y-coordinates of the presented dots. We
1ss normalised both the regressors and the data so that the resulting regression co-
155 efficients can be interpreted as approximate correlation values while accounting
156 for potential covariates of no interest (see Methods). Note that this correlation
157 analysis contrasts with standard event-related field analyses, where one would
155 only test for the presence of a constant time-course across trials. With the cor-
10 relation analysis, the estimated regression coefficients describe how strongly the
w MEG signal, in each time point and each sensor (or source), followed the ups
1 and downs of variables such as the momentary evidence, across trials.

162 As a first result, we found that correlations between momentary evidence and
163 MEG signals followed a stereotypical temporal profile after each dot position
e update (cf. Supplementary Figure 1). Therefore, we performed an expanded
165 regression analysis where we explicitly modelled the time from each dot position
16 update, which we call ’dot onset’ in the following. To exclude the possibility
17 that effects signalling the button press motor response influence the results of
s the dot onset aligned analysis, we only included data, for each trial, up until at
1o most 200 ms prior to the participant’s response.

170 We first identified time points at which the MEG signal correlated most
m strongly with the momentary evidence. For these sensor-level analyses we fo-
2 cused on magnetometer sensors only. We performed separate regression analyses
173 for each time point from dot onset, magnetometer sensor and participant, com-
7a  puted the mean regression coefficients across participants, took their absolute
s value to yield a magnitude and averaged them across sensors. Figure 3 shows
e that the strongest correlations between momentary evidence and magnetometer
wr signals occurred at 120 ms, 180 ms and in a prolonged period from roughly 300
s to 500 ms after dot onset. In contrast, correlations with the decision irrelevant
o control variable, that is, the dot y-coordinates, were significantly lower in this
o period from 300 to 500 ms (two-tailed Wilcoxon test for absolute average coeffi-
;1 clents across all sensors and times within 300-500 ms, W = 382781, p < 0.001).
182 The sensor topographies shown in Figure 3 indicate for the momentary evi-
183 dence a progression of the strongest correlations from an occipital positivity over
14 a centro-parietal positivity to a central positivity. y-coordinate correlations, on
15 the other hand, remained spatially at occipito-parietal sensors.
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Figure 3: Time course of correlation strengths between magnetometer measure-
ments and momentary evidence (left) and perceptual control variable (right).
Top panels show time courses of the mean (across sensors) magnitude of grand
average regression coefficients (8). For comparison, dotted lines show the cor-
responding values for data which were randomly permuted across trials before
statistical analysis. Black dots indicate time points for which the sensor topog-
raphy is shown below the plot. These topographies directly display the grand
average regression coefficients at the indicated time without rectification, i.e.,
with negative (blue) and positive (red) correlation values. (A) The momentary
evidence has strong correlations with the magnetometer signal at 120 ms, 180
ms and from about 300 ms to 500 ms after dot onsets. (B) The correlations
with the decision irrelevant y-coordinate are visibly and significantly weaker
than for the evidence, but there are two prominent peaks from about 120 ms to
210 ms and at 320 ms after dot onset. There is no sustained correlation with
the y-coordinate beyond 400 ms and the topographies of magnetometers differ
strongly between evidence and y-coordinates. Specifically, the evidence exhibits
occipital, centro-parietal and central topographies whereas the y-coordinate ex-
hibits strong correlations only in lateral occipito-parietal sensors.



https://doi.org/10.1101/350876
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/350876; this version posted January 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

s 2.3 Correlations with accumulated evidence

17 Guided by the model we used dot x-coordinates as representation of momentary
188 evidence, but dot x-coordinates also do have a purely perceptual interpretation
19 similar to the y-coordinates as they simply measure the horizontal location of a
10 visual stimulus. Correlations with x-coordinates, therefore, may reflect at some
11 time points early visual processes independent of the decision, at some time
12 points momentary evidence and other time points both of them. Contrasting
3 the strength of significant effects for x- and y-coordinates (Figure 3) already
1we  suggested that at least from 400 ms after dot onset x-coordinates indeed repre-
15 sented momentary evidence. To further corroborate this supposition we turned
195 to a form of decision evidence that has no direct purely perceptual interpretation
w7 and is more closely related to the decision itself: the accumulated evidence.

198 Note that accumulated evidence is, through the final choice, more strongly
o related to the motor response than the momentary evidence (cf. Figure 2A,
20 Supplementary Figure 2 which means that some effects indicated by the accu-
o1 mulated evidence regressor may be attributed to the motor response and not
22 the accumulated evidence. To account for this potential confound we excluded
203 also from this analysis all data later than 200 ms before the response so that
2 the results only contain effects unrelated to the motor response.

205 Furthermore, accumulated and momentary evidence are themselves entan-
26 gled such that both regressors lead to partially overlapping effects. See Methods
27 and Supplementary Material for more information. The point of this analysis,
28 however, is that it will more strongly highlight accumulated evidence effects
200  while the momentary evidence regressor in the previous analysis more strongly
210 highlighted perceptual and momentary evidence effects.

n Figure 4 depicts the time course of overall correlation magnitudes for accu-
a2 mulated evidence together with effect topographies at chosen time points. We
a3 found correlations between the MEG signal and accumulated evidence at all of
a1 peri-stimulus time until about 550 ms after dot onset. Crucially, at all time
25 points of that period we observed centro-parietal and, especially, central sensor
26 topographies suggesting that these represent specifically decision-relevant infor-
217 mation such as momentary or accumulated evidence, as hypothesised based on
218 the correlations with x-coordinates shown in Figure 3. For further discussion of
219 the time course of accumulated evidence, see Supplementary material.

2 2.4 Sources of stimulus-aligned momentary evidence ef-
2 fects

22 By investigating the sources of the evidence correlations at sensor level, we aimed
23 to better understand the nature of these effects and to confirm their locations
24 in the brain suggested by the shown sensor topographies. In particular, we
25 were interested in linking the time points at which we found strong momentary
26 evidence correlations to potential functional stages in the processing of decision
27 evidence, such as sensory processing, relating sensory information to the decision
»s and integrating momentary evidence with previous evidence.
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Figure 4: Accumulated evidence correlated with magnetometer signals from 0 to
about 550 ms after dot onset displaying central sensor topographies throughout
this time period. Format as in Figure 3, i.e., top panel shows time course of
the mean (across sensors) magnitude of grand average regression coefficients (53)
together with corresponding time courses after 3 different permutations across
trials (dotted). For further analysis and discussion of results, see Supplementary
Material.
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229 We reconstructed source currents along the cerebral cortex for each par-
20 ticipant and subsequently repeated our regression analysis on the estimated
an sources. Specifically, we performed source reconstruction on the preprocessed
22 MEG data using noise-normalised minimum norm estimation based on all MEG
213 sensors (magnetometers and gradiometers) (Gramfort et al., 2014, 2013; Dale et
24 al., 2000). Further, we aggregated estimated values by averaging across sources
235 within 180 brain areas defined by a recently published brain atlas (Glasser et al.,
25 2016). This resulted in average time courses for each experimental trial in each of
237 the 180 brain areas defined per hemisphere for each participant. We then applied
2 the expanded regression analysis to these source-reconstructed time courses in-
20 stead of onto MEG sensors. Following the summary statistics approach we
20 identified time points and areas with significant second-level correlations by
an - performing t-tests across participants and applying multiple comparison correc-
2 tion using false discovery rate (Benjamini & Hochberg, 1995) simultaneously
23 across all time points and brain areas.

244 The time course of correlation magnitudes shown in Figure 3 suggested three
s time windows at which particularly strong correlations with momentary evi-
26  dence were present in the brain. The source analysis gives equivalent results:
27 Multiple comparison corrected effects occurred only within 110 ms — 130 ms, 160
2s ms — 200 ms and 290 ms — 510 ms (cf. Source Data 1). In subsequent analyses
29 we, therefore, concentrated on these time windows and call them according to
0 their temporal order ”early”, ”intermediate” and ”late” phases. Figure 5 de-
1 picts the brain areas with at least one significant multiple comparison corrected
»2  effect within the corresponding phase. The colour scale indicates the average
253 t-value magnitudes within the time window for these significant areas (we chose
x4 to display t-value magnitudes instead of correlation magnitudes here, because
s  the estimated correlation values had larger second-level variability differences
256 across brain areas than sensors).

257 As the sensor topographies suggested, we observed that in the early phase
s the strongest correlations were located in visual areas such as V3, V1 and areas
250 in the lateral occipital cortex (e.g., FST, MST, LO3 according to (Glasser et al.,
20 2016)), but also in a small area of posterior cingulate cortex (v23ab) and there
21 was an effect in a parietal area of the left hemisphere (MIP). In the interme-
x2 diate phase most of the correlations in visual areas, especially those in lateral
»3 occipital areas, vanished. Instead, more parietal areas exhibited significant cor-
¢ relations with momentary evidence, especially in the right inferior (IP0, PGp)
265 and superior parietal cortex (VIP, TAL, 7TAm). Additionally, we found strong
26 correlations in posterior cingulate cortex (POS2 and DVT). In the late phase
27 some correlations in parietal areas persisted, but only focal at some time points
xs S0 that on average across the time window correlations were weak compared to
x%0 other brain areas. Specifically, the strongest correlations were spread across the
20 posterior cingulate cortex in both hemispheres (especially areas v23ab, 31pd,
on 7Tm, 3lpv, d23ab). Further strong correlations occurred in motor areas, espe-
o cially in the left hemisphere, including somatosensory areas (3a, 3b, 1), primary
s motor cortex (area 4) and premotor areas (6a, 6d). Note that we excluded from
o the analysis all time points later than 200 ms before the trial-specific motor

10
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Figure 5: Correlations with momentary evidence shift from visual over parietal
to motor and posterior cingulate areas. We investigated the three time win-
dows with strong correlations in the sensor-level results: early (110 ms — 130
ms), intermediate (160 ms — 200 ms) and late (290 ms — 510 ms). For each of
these phases only brain areas with at least one significant effect (p < 0.01, FDR
corrected) within the time window are coloured. For display purposes, colours
show average second-level t-value magnitudes where the average is taken over
time points within the time window. The 5 areas with the most consistent,
strong correlations per hemisphere and time window are marked by black out-
lines. These were (in that order; specified as Brodmann areas with subdivisions
as defined in (Glasser et al., 2016)): early, left — V3, FST, LO3, VMV2, MST;
right - VMV2, LO1, v23ab, VMV1, VVC; intermediate, left — POS2, AIP, V2;
right — TP0, VIP, TAL, PGp, DVT; late, left — 1, 3a, 6d, 3b, 31pd; right — v23ab,
7m, 31pd, 31pv, d23ab.
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as response. Additionally, we observed weaker correlations in mid and anterior
2 cingulate motor areas (e.g., 24dv, p24pr). These results confirm that the in-
o7 formation carried by the decision-relevant x-coordinates shifts from visual over
;s parietal areas towards motor areas where this information, presumably momen-
a9 tary evidence, appears to be represented over a longer time period. The results
20 also reveal that source currents of brain areas in posterior cingulate cortex had
s strong correlations with x-coordinates throughout all three phases. Accord-
22 ingly, the areas with the largest correlation magnitudes on average across all
23 time points within 0 to 500 ms were predominantly located in posterior cingu-
¢ late cortex (5 areas with strongest average effects in that order: left — v23ab,
25 3a, 31pd, 3b, 1; right — v23ab, DVT, d23ab, 31pv, 7Tm). This suggests a poten-
s tially central role of posterior cingulate cortex in the processing of momentary
27 evidence in the task.

x 2.5 Sources of stimulus-aligned accumulated evidence ef-
289 fects

20 The sensor topographies for the accumulated evidence effects suggested that
21 accumulated evidence was represented in common brain sources across the whole
22 time window of 0 to 550 ms from dot onset. Therefore, we used this full time
23 window to investigate the underlying sources. As for the momentary evidence,
204 cf. Figure 5, we identified brain areas with significant correlations after FDR
25 correction across locations and times (p < 0.05, no significant effects for p <
26 0.01) in at least one time point and then averaged the t-value magnitudes across
27 time points within the time window in these areas. Given the similarity of
28 sensor topographies of momentary evidence in the late phase and the sensor
20 topographies of accumulated evidence we expected their sources to overlap.

L

1.85 2.12 2.39 2.66 2.93 3.20 3.47 3.74
N

p < 0.05, FDR corrected

Figure 6: Sustained correlations with accumulated evidence in motor and cin-
gulate areas. Following the procedure in Figure 5, we coloured only areas with
a significant correlation with accumulated evidence (p < 0.05 FDR corrected)
with colour indicating the average t-value magnitude in the extended time win-
dow from 0 ms to 550 ms after dot onset. The 5 largest effects were (marked by
black boundaries): left — 3a, 6d, 1, 2, v23ab; right — V6, 6a, 7Tm, p24pr, 24dv.

300 In Figure 6, one can see that, although the estimated correlation magnitudes
s were slightly higher for the accumulated evidence than for the momentary evi-
w2 dence, fewer effects were statistically significant for accumulated evidence. This
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303 is most likely because the variability of correlation magnitudes across partic-
w4 ipants increased relative to momentary evidence effects (results not shown).
;s Otherwise, the identified brain areas were consistent with those of the momen-
ws  tary evidence in the late phase. In particular, we observed consistently strong
s7  correlations with accumulated evidence in motor, premotor, cingulate motor
s and posterior cingulate areas.

w 2.6 Correlations with choice reveal response-aligned build-
310 up and separate motor response

su  Our finding that momentary or accumulated evidence is represented in motor
sz areas is consistent with a wide range of previous work (Donner et al., 2009; Kelly
sz & O’Connell, 2013; de Lange et al., 2013; Thura & Cisek, 2014; Selen, Shadlen,
ae & Wolpert, 2012; Michelet, Duncan, & Cisek, 2010). If motor areas are involved
a5 in processing momentary or accumulated evidence prior to a response, as these
a5 results indicate, the question arises how these processes relate to motor processes
a7 linked to the response itself. More specifically, we were interested in how the
sis patterns of correlations with momentary and accumulated evidence related to
a9 correlation patterns representing the motor response and whether these could be
320 linked to the absence or presence of the involvement of certain brain areas. To
21 investigate correlation patterns representing the motor response we computed
a2 choice-dependent effects centred on the response time of the participants. We
323 did this with a regression analysis using the participant choice as a regressor of
2 interest (see Methods). The choice regressor provides a measure for how well
w5 the choice of the participants can be decoded from univariate brain signals.

326 Figure 7 depicts the estimated time course of correlation magnitudes aver-
w7 aged across participants and sensors. From about 500 ms before the response,
w8 correlations between choice and MEG data became gradually stronger culminat-
w9 ing in an expected peak centred slightly after the response. The sensor topogra-
a0 phies of the build-up period before the response strongly resembled those we
;1 found for accumulated evidence in our previous analyses. In fact, these results
s most likely correspond to the same effect, because the participant choice itself
;33 was increasingly correlated with accumulated evidence as the trial progressed
s (cf. Figure 2). That is, the build-up seen in the figure only indirectly visu-
15 alises an increasing evidence signal by depicting an increasing alignment of the
16 final choice with the internal representation before the response (presumably
s accumulated evidence).

338 The motor response itself (peak around 30 ms) was, as expected, much
19 more strongly represented in the MEG signals than the accumulated evidence,
s see Figure 7. Although the motor response also had a predominantly central
s topography, its topography visibly differed from that prior to the response (at
s -300 and -120 ms). Specifically, the topography before the response exhibited
a3 stronger anti-correlation in occipital sensors than around the response while the
sa topography around the response exhibited stronger anti-correlations in fronto-
us  lateral sensors (p < 0.01 corrected, cf. Supplementary Figure 6). Furthermore,
us  the correlation with choice was relatively higher over central sensors at 30 ms
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Figure 7: The button press motor response is also represented most strongly in
central magnetometers, but the corresponding topography differs slightly from
that associated with momentary and accumulated evidence. We computed the
correlation between participant choices and MEG magnetometers using linear
regression for data aligned at response time. Following the format of Figure 3
we here show the time course of the mean (across sensors) magnitude of grand
average regression coefficients (3). Sensor topographies for time points indicated
by the black dots are shown below the main panel. Note that for the time points
before the response we use a different scaling of colours than for time points
around the response and later. This is to more clearly visualise the topography
around the response which contains larger values. The colour scaling for the
time points before the response is equal to that of Figure 3 and Figure 4. The
topography at -300 ms strongly resembled that for accumulated evidence, but
the topography around the response (30 ms) additionally exhibited stronger
fronto-lateral and weaker occipital anti-correlations (p < 0.01 corrected, cf.
Supplementary Figure 6). Positive values / correlations mean that measured
sensor values tended to be high for a right choice (button press) and low for a
left choice and vice-versa for negative values. See Supplementary Figure 5 to
see how the central topography at 30 hé shown here results as the difference of
the topographies associated with right and left choices.
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s7 than at -120 ms (Supplementary Figure 6).

L build-up

response

0.01740.499 0.981 146 1.94 243 291 3.39 p < 0.01, FDR corrected

build-up - response

-6.93 -4.95 -2.97 -0.9890.989 2.97 4.95 6.93

p < 0.01, FDR corrected

Figure 8: Around the response time strongest correlations with choice occurred
in primary motor, somatosensory and cingulate motor cortex (BA 24) while dur-
ing the build-up period we found the strongest effects in premotor and cingulate
motor cortex. The 5 largest effects per hemisphere were: build-up, left — 24dv,
6a, 24dd, 3a, SCEF; right — 24dv, p24pr, 6a, SCEF, OP2-3; response, left — 4,
3b, 24dv, 3a, SCEF; right — 3b, 4, p24pr, 24dv, 2. When testing for differences
in the spatial pattern of correlation magnitudes (see Methods) between the two
time windows, we only found significant differences in the motor and cingulate
areas: 1, 24dv, 2, 3la, 3a, 3b, 4, 6d, 6mp, SCEF, p24pr. All of these effects
indicated that correlations with choice were stronger in the response window
(blue). The build-up and response panels show spatially normalised t-value
magnitudes while the difference panel shows t-values of spatially normalised
correlation magnitude differences.

348 To analyse this difference at the source level we applied the regression anal-
s ysis to the reconstructed source currents. Figure 8 depicts the results of an
0 analysis of two time windows: the ”build-up” window from -500 ms to -120 ms
31 (when a dip before the response indicates an end of the build-up) and the "re-
32 sponse” window capturing the response peak from -30 ms to 100 ms. We only
33 show brain areas with at least one significant effect within the time window af-
s ter correcting for multiple comparisons (FDR with o = 0.01 across brain areas
355 and the two time windows). The shown colours indicate normalised second-level
16 t-value magnitudes (see Methods).
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357 As expected, in the response window, the effects were dominated by choice
s correlations in bilateral primary motor and somatosensory cortices, but also
30 choice correlations in cingulate motor areas (around Brodmann area 24) were
w0 among the effects with the strongest magnitudes. Other significant correlations
1 with choice within the response window occurred in premotor and posterior
2 cingulate cortices. In the build-up window, the strongest correlations occurred
33 predominantly in cingulate motor cortex and premotor areas (especially 6a).
364 We further aimed at identifying brain areas with significantly different cor-
s relation magnitudes in the two time windows. Specifically, we were interested
s in the difference of the spatial patterns of correlation magnitudes, across brain
7 areas, between the two time windows. To do this, we normalised correlation
s magnitudes across brain areas within the time windows and computed the dif-
w0 ferences between time windows within each brain area and participant (see
s Methods for details). Figure 8, bottom panel, shows that across participants
sn  the only statistically significant differences occurred in the primary motor and
sz somatosensory cortices and, with smaller effect size, in cingulate motor areas. In
sz all these areas correlation magnitudes were larger in the response as compared
s to the build-up window.

375 In summary, the response-centred analysis of choice correlations suggests
srs  that the build-up of choice-correlations leading towards a response is related
s to the accumulation of momentary evidence, because sensor topographies and
sis brain areas were highly consistent across choice- and evidence-based analyses.
srn The correlation topographies for the build-up and the response windows shown
s in Figure 7 had significant differences in central, occipital and fronto-lateral
s sensors. When analysing these differences at the source level (Figure 8), the
s only sources with significant differences were located in motor areas. These
;3 results together suggest that the brain areas representing decision evidence are
s largely overlapping with those representing the upcoming choice and the motor
ss response. The difference in correlation patterns at the source level between the
s upcoming choice and motor response could be explained by an increase in choice
sr - correlations in motor areas.

w= 3 Discussion

s Using MEG, we have analysed the dynamics of evidence representations in the
s0 human brain during perceptual decision making. We induced fast, within-trial
s evidence fluctuations using a visual stimulus in which new, momentary evi-
s dence appeared every 100 ms and correlated the resulting momentary evidence
33 dynamics with MEG signals. We found that each update of momentary evidence
s elicited a stereotyped response in the MEG signal that lasted until about 600
s s after the update onset, meaning that the brain processed incoming pieces
w6 of momentary evidence in parallel. We identified three main phases of the rep-
37 resentation of momentary evidence: an early phase around 120 ms after an
s evidence update, an intermediate phase around 180 ms and a late phase from
s about 300 to 500 ms. These phases exhibited different sensor topographies with
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w0 positive correlations shifting from occipital to centro-parietal to central sensors
s during the three phases. Using source reconstruction, we localised these rep-
w2 resentations of momentary evidence in early visual, parietal and motor areas,
w03 respectively, with significant correlations in posterior cingulate cortex occurring
w04 in all three phases. Significant correlations with accumulated evidence includ-
w05 ing the most recent evidence update occurred continuously until about 550 ms
w6 after update onset and exhibited a central topography similar to that in the
w7 late phase of momentary evidence representations with corresponding sources.
w8 Additionally, response-aligned correlations of the MEG signal with the final
a0 choice of the participants shared a similar topography in a build-up phase hun-
a0 dreds of milliseconds before the response. The correlation analysis at the source
a1 level further showed that the only significant differences between build-up phase
a2 and motor response were higher choice correlations in motor areas during the
413 Iesponse.

a1 These results consolidate a wide range of separate previous findings: It has
a5 previously been shown that the human brain elicits electromagnetic signals that
se  correlate with individual pieces of momentary evidence (Wyart et al., 2012;
ar  de Lange et al., 2010; Gluth et al., 2013; Gould et al., 2012). Compared to
ss  these studies we here for the first time used a reaction time paradigm with
a0 fast evidence changes every 100 ms, more directly mimicking natural perceptual
a0 decision making processes. More importantly, our results are the first to track
21 momentary evidence representations through the three phases that we identified
a2 and the corresponding areas in the human brain, although at least the early and
w2 late phases were previously hinted at (Wyart et al., 2012).

a4 A large proportion of previous work investigating the dynamics of evidence
w5 representations in the human brain focused on oscillatory signals (Donner et
w6 al., 2009; de Lange et al., 2013; Gould et al., 2012; Siegel, Donner, Oostenveld,
wr  Fries, & Engel, 2007). For example, it has been found that the average amount
a8 of evidence in a trial is represented in the power of oscillations in occipital and
w90 parietal cortex (Siegel et al., 2007). Further, the difference in the power of
a0 oscillations between central-left and central-right sensors exhibits an evidence-
a1 dependent build-up towards the response that appears to be generated in motor
w2 areas (Donner et al., 2009; de Lange et al., 2013). We here made correspond-
a3 ing observations, but directly in the trial-wise temporal MEG signals reflecting
s trial-wise signal variations correlated with decision evidence that are believed
a5 to result from minute, event-related fluctuations in the voltage potentials of
45 neuronal populations.

437 There is overwhelming evidence that motor areas including areas in the pre-
s motor and primary motor cortex are involved in perceptual decision making,
o e.g. (Hanks & Summerfield, 2017; Heekeren, Marrett, & Ungerleider, 2008).
w0 Specifically, it has been shown that some single neurons in primary motor cor-
w1 tex represent momentary evidence (Thura & Cisek, 2014), that the strength of
w2 muscle reflex gains is proportional to the average amount of momentary evi-
w3 dence within a trial (Selen et al., 2012), that motor-evoked potentials can be
ue  related to accumulated evidence (Michelet et al., 2010; Hadar, Rowe, Di Costa,
ws  Jones, & Yarrow, 2016) and that classical lateralised readiness potentials which
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us  are thought to represent motor processes (Smulders & Miller, 2012) also exhibit
wr  evidence-dependent build-up in a detection task (Kelly & O’Connell, 2013). Our
ws  results further substantiate these findings by showing that human motor areas
wo  represent each update of momentary evidence roughly within 300 to 500 ms after
w0 the update onset and that accumulated evidence is represented in motor areas
s throughout the decision making process. Using a response-aligned analysis of
s2  choice-dependent effects in the same reference frame as the analyses of evidence,
3 we could further show that the stimulus-aligned evidence representations resem-
s ble closely the representation of the final choice during a build-up phase before
45 the motor response. This supports the hypothesis that previous observations
w6 of pre-response representations of an upcoming choice, such as the lateralised
«s7 readiness potential, should be interpreted as expressions of an ongoing decision
w8 making process about the next sensible motor response. In sum, the present
a0 and previous findings strongly affirm a tight coupling between decision making
w0 and motor processes, as, for example, formulated in the affordance competition
w1 hypothesis (Cisek & Kalaska, 2010; Cisek, 2007), but also other theories in cog-
w2 nitive computational neuroscience (O’Regan & Noé, 2001; Clark, 2013; Friston,
ss  Daunizeau, & Kiebel, 2009).

464 One potential caveat of our correlation results in motor areas is that due
w5 to the specifics of our task participants may actually have executed micro-
w6 movements trying to track the changes of the perceptual stimulus either with
w7 their eyes, or with minimal finger movements close to the response buttons.
s In this scenario the observed correlations in motor areas would be possibly ex-
w0 plained by motor signals to the muscles. Although we cannot completely exclude
w0 this possibility we deem it unlikely, because: i) Stimuli were shown only very
an centrally at visual angles within about 10° visual angle with most stimuli within
a2 5° diameter from fixation meaning that most of them were well within the foveal
w3 visual field. ii) The sensor topographies representing evidence were very similar
e to that associated with the motor response, that is, the evidence representations
a5 do not appear to be specifically related to eye movements. iii) As mentioned
s  above, a large body of work employing a wide variety of different tasks already
a7 supports the reverse interpretation that motor areas represent decision evidence
s before motor execution. In conclusion, we do not believe that the correlations
s with momentary or accumulated evidence observed in motor areas of the brain
w0 are merely an expression of motor control signals that caused stimulus-correlated
w1 micro-movements. Even if such micro-movements existed, we deem it likely that
a2 these follow the time-course of decision evidence rather than decision-irrelevant
«3  stimulus properties, as suggested by recent results about the adaptation of reflex
¢ gains and motor evoked potentials during decision making (Selen et al., 2012;
s Michelet et al., 2010; Hadar et al., 2016).

486 The early, intermediate and late phases of momentary evidence representa-
a7 tions mirrored the presumed general transfer of behaviourally relevant visual
s information through the brain (Kandel, Jessell, Schwartz, Siegelbaum, & Hud-
s speth, 2012). In the early phase around 120 ms after evidence updates we found
w0 the strongest representations of momentary evidence in early visual cortex and
w01 occipito-temporal areas while in the intermediate phase around 180 ms momen-
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w2 tary evidence representations included areas in inferior and superior parietal
a3 cortex. In the late phase the momentary evidence was predominantly repre-
w4 sented in pre-/motor, somatosensory and cingulate areas while we only found
w5 one weak significant correlation with momentary evidence in one area of pari-
ws  etal cortex (right PFt). The same was true for representations of accumulated
w7 evidence. Taken together, these results suggest that in our task parietal cortex
w8 was only transiently involved in the processing of momentary evidence and that
a0 it did not accumulate evidence for the decision, or at least did not represent
s0 accumulated evidence over an extended period of time.

501 These results appear to be at odds with previous findings in non-human
so2  primates which had identified neurons in inferior parietal cortex that seemed
s3  to represent accumulated evidence (Gold & Shadlen, 2007). More recent work,
sa  however, suggests that the firing of these neurons is more diverse than originally
ss thought (Latimer, Yates, Meister, Huk, & Pillow, 2015; I. M. Park, Meister,
se  Huk, & Pillow, 2014; Meister, Hennig, & Huk, 2013). It is possible that the
sor  signal from only few evidence accumulating neurons in inferior parietal cortex
sos  is too weak to be recorded with MEG. Another possibility why we do not find
s0  strong correlations with accumulated evidence in parietal areas is that probably
sio  these representations are not as strongly lateralised in parietal areas as they
su are in motor areas. This would make it much harder to detect them with the
sz typically low spatial resolution of MEG. Yet another possibility is that the repre-
si3 sentation of decision evidence in parietal areas follows a more intricate dynamic
s process that is hard to identify with simple correlation analyses (Churchland
sis et al., 2010). If this was the case, an interesting follow-up question would be
sis  why the representations of accumulated evidence in parietal and motor or pos-
si7 terior cingulate areas apparently differ, as we clearly found correlations with
sis  accumulated evidence in the latter areas.

519 To manipulate decision evidence in our task we changed the position of
s0 a single dot presented on a screen. Only the x-coordinates of these dot po-
s sitions represented momentary decision evidence while the decision-irrelevant
s2 y-coordinates acted as a perceptual control variable. We have shown that cor-
s3  relations of MEG signals with the perceptual control variable, in contrast to
s« momentary evidence, were strongly diminished in the period from 300 to 500
ss s after dot onset. This suggests that the brain ceases to represent perceptual
s information that is behaviourally irrelevant around this time and that brain
s7  areas with strong correlations with momentary evidence in this time window in-
s deed are involved in the decision making process. This interpretation is further
s20  supported by previous work which has shown that purely perceptual stimulus
s0  information is represented in electrophysiological signals only until about 400
sn s after stimulus onset (Wyart et al., 2012; Myers et al., 2015; Mostert, Kok,
s2 & de Lange, 2015) while specifically decision-related information is represented
s13  longer starting around 170 ms after stimulus onset (Wyart et al., 2012; Myers et
s al., 2015; Mostert et al., 2015; Philiastides & Sajda, 2006; Philiastides, Ratcliff,
s & Sajda, 2006; Philiastides, Heekeren, & Sajda, 2014).

536 We further validated this interpretation by investigating correlations with ac-
sv cumulated evidence, that is, the cumulative sum of momentary evidences within
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s a trial. In contrast to the momentary evidence, this sum is more specifically
s related to the decision and has no simple, purely perceptual interpretation.
s The similarity of the topographies for accumulated evidence correlations and
safor momentary evidence correlations in the late phase suggests that specifically
sz decision-relevant evidence is represented in the late phase, that is, within 300
s3 to 500 ms after evidence updates. Our results do not allow to clearly state
saa - whether momentary, or accumulated, or both types of decision evidence were
sis  represented in the brain in this time window, because both types of evidence are
s correlated, especially early within a trial. However, we also found that accumu-
se7  lated evidence exhibited the corresponding central topography more consistently
sis throughout peri-stimulus time than momentary evidence, so it appears reason-
se0  able to assume that predominantly accumulated evidence is represented in the
ss0  late phase.

551 Finally, and perhaps most surprisingly, we found significant correlations with
s momentary and accumulated evidence in posterior cingulate cortex across all
53 the investigated phases. Especially a ventral part of posterior cingulate cortex
s (v23ab) was involved already in the early phase which was dominated by corre-
s lations of momentary evidence in early visual areas and may therefore relate to
ss6  basic visual processing of the stimulus. In the intermediate phase, the correla-
ss7  tions in posterior cingulate cortex were weaker, but persisted. In the late phase
sss  correlations in posterior cingulate cortex constituted one of the main effects
ss0  suggesting that it is a region contributing to the maintenance and accumulation
sso  of momentary evidence in the brain. Consequently, posterior cingulate cortex
ss1  appears to be involved in both early sensory processing and decision making
sz and, therefore, could act as a bridge between these processes.

563 Previous studies investigating the function of posterior cingulate cortex have
s« mostly concentrated on a rather slow time scale, for example, contrasting differ-
sss  ent task conditions to each other, while we analysed rapid fluctuations of neural
sso  signals. These studies of slow changes in posterior cingulate cortex activations
ss7  have implicated the posterior cingulate as having a direct role in directing the
ses  focus of attention (Leech & Sharp, 2014). However, posterior cingulate cortex
ss0  has been associated with a wide range of functions which have recently been
s summarized as estimating the need to change behaviour in light of new, exter-
sn nal requirements (Pearson, Heilbronner, Barack, Hayden, & Platt, 2011). Our
s2 findings are compatible with this view, when transferred to the context of com-
s;3 parably fast perceptual decision making where decision evidence may be viewed
s as the need to follow one (press left) or another (press right) behaviour.

575 In the field of perceptual decision making, especially in electrophysiological
sts work with non-human animals, the posterior cingulate cortex has not gained
s7 much attention (Gold & Shadlen, 2007; Hanks & Summerfield, 2017). Given
sis our findings it, therefore, appears that the role of posterior cingulate cortex in
so - perceptual decision making may have been underestimated.
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w» 4 Materials and Methods

ss1 This study has been approved by the ethics committee of the Technical Univer-
22 sity of Dresden (EK324082016). Written informed consent was obtained from
se3  all participants. Code implementing the statistical analysis which produced all
ssa  presented results is available at https://github.com/sbitzer/BeeMEG.

s 4.1 Participants

sss 37 healthy, right-handed participants were recruited from the Max Planck In-
se7  stitute for Human Cognitive and Brain Sciences (Leipzig, Germany) participant
sss  pool (age range: 20 — 35 years, mean 25.7 years, 19 females). All had normal or
ss9  corrected-to-normal vision, and reported no history of neurologic or psychiatric
s disorders. One participant was excluded from MEG measurement due to low
sn  performance during training. In total, 36 participants participated in the MEG
so  study. Two participants’ data were excluded from analyses due to excessive
s3  eye artefacts and too many bad channels. Finally, 34 participants’ data were
s« analysed (age range: 20 — 35 years, mean 25.85 years, 17 females).

ss 4.2 Stimuli

sss In each trial, a sequence of up to 25 white dots were presented on a black screen.
sv  Bach dot was displayed for 100 ms (6 frames, refresh rate 60 Hz). The white
ss  dot was located at x, y coordinates which were sampled from one of two two-
soo  dimensional Gaussian distributions with means located at 425 pixels horizontal
so distance from the centre of the screen. The standard deviation was 70 pixels in
1 both axes of the screen. The mean locations were the two target locations (-25:
sz left, 25: right). These target locations corresponded to visual angles +0.6° from
03 the centre of the screen. The standard deviation of the Gaussian distribution
s0a corresponded to +£1.7° from the two target locations. The stimuli used in this
sos study consisted of a subset of stimuli used previously(H. Park et al., 2016),
s and additional newly created stimuli. The stimuli were chosen to increase the
sor probability that the participants see the 5th dot within the 25 dot sequence by
o8 not responding earlier. In short, trials where 70% of the participants in the
oo previous study (H. Park et al., 2016) had reaction times (RT) longer than 700
s10 s but not timed-out were chosen from the second most difficult condition. This
e resulted in 28 trials from 200 trials. Then each trial was copied 6 times, with
sz only the 5th dot location differing, ranging in 'target location + [-160 -96 -32 32
sz 96 160] (pixels)’. This resulted in 168 trials. These trials were mirrored to create
e1e  a dataset with the same evidence strengths but with different x coordinate signs
s (336 trials), and finally trials which had short RTs were chosen from (H. Park
a6 et al., 2016) as catch trials, to prevent participants from adapting to the long
sv RT trials (30% of the total trials). This resulted in a total of 480 trials per
618 experiment.

619 We originally designed this stimulus set, especially the manipulations of
s20 the 5th dot, to increase the chance of inducing sufficiently large effects in the
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e MEG signal when observing the 5th dot. In a preliminary analysis we realised,
s2 however, that the natural variation of the stimuli already induces observable
3 effects. Consequently, we pooled all trials for analysis.

o 4.3 Procedure

s Participants were seated in a dimly lit shielding room during the training and the
s2s  MEG measurement. Visual stimuli were presented using Presentation®) soft-
v ware (Version 16.0, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com).
es The display was a semi-transparent screen onto which the stimuli were back-
20 projected from a projector located outside of the magnetic shielding room (Vac-
s20 uumschmelze Hanau, Germany). The display was located 90 cm from the par-
sn ticipants. The task was to find out which target (left or right) was the centre
62 of the white dot positions, but participants were instructed with a cover story:
63 Hach target represented a bee hive and the white dot represented a bee. Par-
14 ticipants should tell which bee hive is more likely the home of the bee. They
¢35 were additionally instructed to be both accurate and fast, but not too fast at
s the expense of being inaccurate, and not too slow that the trial times out.
s They went through a minimum 210 and maximum 450 trials of training, until
3 they reached a minimum of 75% accuracy. Feedback (correct, incorrect, too
s slow, too fast) was provided during the training. After training, a pseudo-main
s0  block with 200 trials without feedback preceded MEG measurement. After the
s pseudo-main session, the 480 trials in randomized order were presented to each
s2 participant divided into 5 blocks. The MEG measurement lasted 60 minutes,
3 including breaks between blocks. Each trial started with a fixation cross (ran-
e domized, 1200 ms 1500 ms uniform distribution) followed by two yellow target
es dots. After 700 ms, the fixation cross disappeared and the first white dot ap-
sss  peared. The white dot jumped around the screen and stayed at each location
sr  for 100 ms, until the participant submitted a response by pressing a button
s using either hand, corresponding to the left / right target, or when the trial
o0 timed-out (2.5 s). In order to maintain motivation and attention throughout
e0 the measurement, participants were told to accumulate points (not shown to
1 the participants) for correct trials and adequate (not too slow and not too fast,
s> non-time-out) RTs. Bonus money in addition to compensation for participating
3 in the experiment were given to participants with good performances. RTs and
s choices were collected for each trial for each participant. Although the trial or-
65 der was randomized across participants, every participant saw exactly the same
oo 480 trials.

ev 4.4 Model of decision making behaviour

s We used a previously described ideal observer model of decision making be-
60 haviour that is equivalent to a drift-diffusion model to define decision evidence
oo (H. Park et al., 2016; Bitzer et al., 2014). The model postulates a direct linear
es1  relationship between momentary decision evidence and the x-coordinates of the
ez white dot and identifies accumulated evidence as the simple cumulative sum of
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e3 x-coordinates. Parameters of the model, that are typically fit to behavioural
ss Tesponses, only change the slope, or offset of the linear relationship between x-
s coordinates and momentary decision evidence. As we normalised x-coordinates
ss  before entering them in subsequent analyses, these parameters of the model are
7 irrelevant for our purposes. Therefore, the decision making model had no further
ss role in our analyses than providing the theoretical link between x-coordinates
s0 and momentary and accumulated decision evidence.

« 4.5 MEG data acquisition and preprocessing

sn  MEG data were recorded with a 306 channel VectorviewTM device (Elekta Oy,
s Helsinki, Finland), sampled at 1000 Hz. The MEG sensors covered the whole
ez head, with triplet sensors consisting of two orthogonal gradiometers and one
e+ magnetometer at 102 locations. Additionally, three electrode pairs were used
o5 to monitor eye movement and heart beats at the same sampling rate. The
s raw MEG data was corrected for head movements and external interferences
s by the Signal Space Separation (SSS) method (Taulu, Simola, & Kajola, 2005)
os  implemented in the MaxFilterTM software (Elekta Oy) for each block. The
s subsequent preprocessing was performed using MATLAB (Mathworks, Mas-
s sachusetts, United States). The head movement corrected data was high-pass
1 and low-pass filtered using a linear phase FIR Kaiser filter (corrected for the
s2 shift) at cut-off frequencies of 0.33 Hz and 45 Hz respectively, with filter or-
3 ders of 3736 and 392, respectively. The filtered data was then down-sampled
s« to 250 Hz. Then independent component analysis (ICA) was applied to the
s continuous data using functions in the EEGLAB (Delorme & Makeig, 2004) to
e remove eye and heart beat artefacts. The data dimensionality was reduced by
7 principal component analysis to 50 or 60 components prior to running the ICA.
s Components which had high temporal correlations (> 0.3) or typical topogra-
0 phies with/of the EOG and ECG signals were identified and excluded. The
so  ICA-reconstructed data for each block was combined, and epoched from — 300
o1 ms to 2500 ms from the first dot onset (zero). Another ICA was applied to
22 these epoched data in order to check for additional artefacts and confirm typi-
3 cal neural topographies from the components. The ICA reconstructed data and
s original data were compared and inspected in order to ensure only artefactual
e0s trials were excluded. Before statistical analysis we used MNE-Python v0.15.2
s (Gramfort et al., 2014, 2013) to downsample the data to 100 Hz (10 ms steps)
ez and perform baseline correction for each trial where the baseline value was the
s mean signal in the period from -300 ms to 0 ms (first dot onset).

w0 4.6 Source reconstruction

700 We reconstructed the source currents underlying the measured MEG signals us-
71 ing noise-normalised minimum norm estimation (Dale et al., 2000) implemented
702 in the MNE software. To create participant-specific forward models we semi-
703 automatically co-registered the head positions of participants with the MEG
74 coordinate frame while at the same time morphing the participants’ head shape
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s to that of Freesurfer’s fsaverage by aligning the fsaverage head surface to a set of
06 head points recorded for each participant. We defined a source space along the
77 white matter surface of the average subject with 4098 equally spaced sources per
708 hemisphere and an approximate source spacing of about 5 mm (MNE’s ”oct6”
700 option). For minimum norm estimation we assumed a signal-to-noise ratio of 3
70 (lambda2 = 0.11). We estimated the noise covariance matrix for noise normali-
1 sation (Dale et al., 2000) from the MEG signals in the baseline period spanning
2 from 300 ms before to first dot onset in each trial. We further used standard
73 loose orientation constraints (loose=0.2), but subsequently picked only the cur-
74 rents normal to the cortical mantle. We employed standard depth weighting
ns  with a value of 0.8 to overcome the bias of minimum norm estimates towards
76 superficial sources. We computed the inverse solution from all MEG sensors
77 (magnetometers and the two sets of gradiometers) returning dynamic statistical
78 parametric maps for each participant. Before some of the subsequent statistical
79 analyses we averaged the reconstructed source signals across all sources of a
720 brain area as defined by the recently published HCP-MMP parcellation of the
71 human connectome project (Glasser et al., 2016).

= 4.7 Regression analyses

723 Most of our results were based on regression analyses with a general linear
7« model giving event-related regression coefficients (Clarke et al., 2013; Hauk et
75 al.,, 2006). We differentiate between a standard regression analysis on events
76 aligned at the time when the white dot appeared in each trial, expanded regres-
77 sion analyses on events aligned at the times of white dot position changes and
728 response-aligned regression analyses.

2 4.7.1 Standard regression analysis

720 In the standard regression analysis we defined dot-specific regressors with values
= changing only across trials. For example, we defined a regressor for momentary
722 evidence (x-coordinate) of the 2nd white dot position presented in the trial.
733 For convenience we also call white dot positions (1st, 2nd and so forth in the
7 sequence of dot positions) simply ’dots’.

735 We only report results of a standard regression analysis in Supplementary
16 Figure 1. This analysis included the dot x- and y-coordinates of the first 6 dots
777 as regressors of interest (together 12 regressors). Additional nuisance regressors
s were: the response of the participant, a participant-specific trial count roughly
720 Mmeasuring time within the experiment, an intercept capturing average effects
o and a response entropy. The latter quantified the posterior uncertainty of a
71 probabilistic model of the responses (H. Park et al., 2016) that the model had
2 about the response for the stimulus presented in that trial after model parame-
u3  ters were adapted to fit participant responses. Specifically, the wider and flatter
ns  the posterior predictive distribution over responses of the model for a particu-
us lar trial / dot position sequence was, the larger was the response entropy for
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s that trial. The data for this analysis were the preprocessed magnetometer time
747 Ccourses.

us 4.7.2 Expanded regression analyses

dl d2 d3 220 ms from dot onset
dl d2 d3
|— F—otre—ete—etemeto—oto—eto———1+—— >

0 01 02 03 . RT-0.2 RT 1.2 timein trial (s)

Figure 9: Diagram demonstrating the selection of data points entering the ex-
panded regression analyses. Dot positions (d1, d2, d3, ...) changed every 100
ms in the experiment (black). Coloured dots indicate times at which signal data
points entered the analysis for a given time from dot position change (dot onset,
shown exemplarily for 80 and 220 ms from dot onset). We only considered time
points up to 200 ms before the response in each trial. Coloured d1, d2, d3 above
the points indicate the dot positions associated with the corresponding signal
data points for the given time from dot onset. For each trial, these pairs of
signal data and dot positions entered the expanded regression analyses.

749 Expanded regression analyses were based on an expanded set of data cre-
0 ated by dividing up the data into partially overlapping epochs centred on the
= times of dot position changes. For each time point after this dot onset the data
72 contained a variable number of time points depending on how many more dots
753 were presented in each individual trial before a response was given by the par-
= ticipant. For example, if a participant made a response after 880 ms in a trial,
s 9 dots were shown in that trial (onset of the 9th dot was at 800 ms). If we are
756 interested in the time point 120 ms after dot onset (dot position change), this
757 gives us 8 time points within that trial that were 120 ms after dot onset. Further
s excluding all time points 200 ms before the response and later, would leave us
0 with 6 data points for this example trial. See Figure 9 for an illustration. For
w0 each time after dot onset and for each participant we pooled all of these data
1 points across trials and inferred regression coefficients on these expanded data
w2 sets. Note that this approach can equally be interpreted as statistical inference
73 over how strongly the sequence of momentary evidence caused by the dot up-
74 dates is represented in the signal at 100 ms wide steps with a delay given by
75 the chosen time from dot onset.

766 These analyses included two regressors of interest: momentary evidence (x-
77 coordinate) and y-coordinate of the associated dots. We additionally included
s the following nuisance regressors: an intercept capturing average effects, the
w0 absolute values of x- and y-coordinates, perceptual update variables for x- and
70 y-coordinates (Wyart et al., 2012) defined as the magnitude of the change from
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m one dot position to another and accumulated values of x- and y-coordinates.
2 Because we found that the accumulated values can be strongly correlated with
73 the individual x- and y-coordinates (cf. Supplementary Figure 2), we only used
7 accumulated values up to the previous dot in the regressor. For example, if a
s data point was associated with the x-coordinate of the 4th dot, the accumulated
76 regressor would contain the sum of only the first three x-coordinates. This
77 accumulated regressor is equal to the regressor resulting from Gram-Schmidt
s orthonormalisation of the full sum of x-coordinates with respect to the last
79 shown x-coordinate. The accumulated evidence regressor was derived from the
0 ideal observer model as the log posterior odds of the two alternatives, but this
7 was almost 100% correlated with the simple sum of x-coordinates. The small
72 differences between model-based accumulated evidence and sum of x-coordinates
73 after normalisation resulted from a small participant-specific offset representing
s the overall bias of the participant towards one decision alternative. Note that
75 we do not show any results for this (previous) accumulated evidence regressor.
786 In Figure 4, Figure 6, Supplementary Figure 3 and Supplementary Figure
w4 we report results from separate expanded regression analyses in which we re-
s placed the x-coordinate regressor with the sum of x-coordinates and dropped the
70 previous accumulated evidence regressor. We did this, because the previous ac-
0 cumulated evidence regressor did not allow us to estimate effects of accumulated
1 evidence for the first 100 ms after dot onset which is possible with the separate
2 regression. We also did not see any benefits from using the previous accumulated
73 evidence regressor in comparison to the simple sum of x-coordinates up to the
74 current dot. Although the previous accumulated evidence regressor is in princi-
75 ple Gram-Schmidt orthogonalised with respect to the current, i.e., last presented
76 x-coordinate and therefore provides independent information from the current
77 x-coordinate, this is not the orthogonalisation that we are most interested in.
s Ideally we would want to orthogonalise with respect to any information about
79 x-coordinates, i.e., momentary evidence including information contributed by
so the whole series of x-coordinates. So, while the previous accumulated evidence
s regressor is orthogonal to the current x-coordinate, it still correlates with the
sz x-coordinates of previously presented dots. As accumulated evidence is just the
g3 sum of x-coordinates, this cannot be prevented so that momentary and accu-
ss  mulated evidence regressors will always partially capture overlapping effects.
ss  We still found it informative to present a separate analysis for accumulated ev-
ss idence under the premise that the effects of the accumulated evidence regressor
s more strongly relate to accumulated evidence than momentary evidence and
s vice-versa for the momentary evidence regressor. We present a discussion of
soo  their differences in Supplementary Material.

s 4.7.3 Response-aligned regression analyses

su  Additional to the first-dot onset and dot onset aligned analyses, we conducted
sz response-aligned analyses in which time was referenced to trial-specific response
sz times of participants. The regressors in this analysis were the trial-specific choice
sia  Of the participant, trial-time and an intercept. Choice was encoded as -1 for left
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sis  and +1 for right so that the direction of correlations was compatible with that
sis  for the evidence regressors. The trial-time regressor simply counted the trial
g7 number within the experiment per participant. Timed out trials were excluded
sis  from analysis. As in the other regression analyses we z-scored regressors and
sio  data across trials before estimating the regression coefficients, except for trial-
g0 time which was only scaled to standard deviation equal to 1. We ran two
en  different analyses in sensor and source space. In sensor space (magnetometers)
s22  we ran independent univariate regressions for each combination of sensor and
e3  time so that we ran 102 * 70 regressions with maximally 480 data points (one
22 per trial, minus excluded trials). We report results of this analysis in Figure 7
225 and Supplementary Figure 6. After having identified time windows of interest
s2s  based on the sensor level results, we aggregated data from the identified times
g7 Into a common regression on source data. To do this we simply pooled the data
228 from all times in the time window and ran the regression on this expanded data
0 set, then including maximally number of trials * number of time points data
g0 points. This approach meant that we were automatically estimating the mean
s regression coefficients across the selected time window for each brain area and
s participant. We report results of this analysis in Figure 8.

sz 4.7.4 Identification of significant source-level effects

sa  To identify significant correlations between regressors of interest and source sig-
g1 nals we followed the summary statistics approach (Friston, Ashburner, Kiebel,
s Nichols, & Penny, 2006) and performed two-sided t-tests on the second level
s (group-level, t-tests across participants). We corrected for multiple comparisons
38 across time points and brain areas by controlling the false discovery rate using
g0 the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995). Specifically,
a0 for identifying significant effects reported in Figure 5 we corrected across 25,340
s tests covering 70 time points (0 to 690 ms from dot onset in 10 ms steps) and
s> 362 brain areas (180 brain areas of interest per hemisphere plus one collection
sz Of sources per hemisphere that fell between the area definitions provided by the
se  atlas). We report all significant effects of this analysis in Supplementary Data
ss Table 1.

s 4.7.5 Identification of significant differences in correlation patterns

sar  We formally investigated the differences in correlation patterns of the response-
ss  aligned analysis between the two time windows of interest (Figure 8, Supple-
a0 mentary Figure 6). As we were interested in the differences between spatial
so patterns, we accounted for the overall increase in correlation magnitudes from
g1 build-up to response window by normalising the correlation magnitudes. This
sz  normalisation consisted of first shifting the minimum magnitude to 0 and then
3  scaling the resulting magnitudes so that their mean equals 1 across sensors or
s« brain areas. The initial shift of the magnitudes prevents excessive shrinking of
g5 magnitude variances for magnitude patterns with overall large magnitudes and
sss ensures that the magnitudes have similar distributions across the involved sen-
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g7 sors or brain areas in both considered time periods. We subsequently computed
ss the differences between the selected time periods on the first level and report
o second-level (across participant) statistics.

860 The analysis on the source level in principle equalled that of the sensor level,
g1 but additionally accounted for the fact that most brain areas were not involved
sz in encoding the choice. We achieved this by computing the normalisation pa-
83 rameters for a time window only across brain areas with a significant effect in
ss  this time window. However, we then computed magnitude differences for all
s brain areas with a significant effect in at least one of the time windows and
ss proceeded with second-level statistics for these areas as before.
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w 6  Supplementary Material

w1 6.1 Stereotyped temporal correlation profiles across evi-
1002 dence regressors
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Supplementary Figure 1: Time course of correlations with momentary evidence
repeats for each dot shifted by dot onset times. In the standard regression
analysis there was one regressor for each element in the sequence of dot positions
(dots). This allowed us to see, when after first dot onset, correlations with
the considered dot could be observed. The figure demonstrates exemplarily
for the magnetometer channel with the strongest average correlations that the
correlation time course exhibits roughly a stereotyped profile relative to the
onset time of the dot on the second level. Dotted lines show the same quantity,
but for data that we permuted over trials before the regression analysis.
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ws 6.2  Correlations with accumulated evidence
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Supplementary Figure 2: The accumulated evidence is correlated across trials
with the momentary evidence provided by dot positions, the correct choice in a
trial and the choices of the participants. A: Correlation coefficients for all com-
binations of momentary and accumulated evidence for the shown onset times.
For example, the correlation value at row 2, column 4 gives the correlation be-
tween the momentary evidence of the 2nd dot position within a trial and the
accumulated evidence up to the 4th dot position, across trials. B: Comparison
of correlations between accumulated evidence and three trial-wise measures:
the correct choice in a trial (orange line), the momentary evidence at the same
time point (green line, equal to diagonal in A), and the choices of the partici-
pants (blue boxes). The blue boxes show the distribution over participants per
considered dot position.

35


https://doi.org/10.1101/350876
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/350876; this version posted January 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

wa 6.3  On the relation of momentary and accumulated evi-
1045 dence representations

w6 The simple mathematical relationship between momentary and accumulated ev-
e idence (a sum) means that the inferred regression coefficients for either momen-
s tary or accumulated evidence will always contain contributions from the other
ws  type of evidence. In other words, a linear regression analysis (including any
wso  form of correlation analysis) will never be able to completely dissociate neural
wsi - signals relating only to momentary or only to accumulated evidence. However,
w2 as inferred coeflicients for momentary or accumulated evidence still identify ef-
ws3  fects of the corresponding type of evidence more strongly than the other type of
wse evidence, we here attempt to further delineate effects relating to momentary and
s accumulated evidence by investigating specifically differences in their inferred
wss  representations. Our analysis suggests that specifically accumulated evidence
w7 and not momentary evidence is represented in the MEG magnetometer signals
wss  with a central positivity, as already indicated by the inferred coefficients for
w0 accumulated evidence shown in Figure 4.

1060 Because accumulated evidence is the cumulative sum of momentary evi-
wa  dences, accumulated evidence can correlate strongly with the last shown mo-
w2  mentary evidence and with momentary evidences shown at previous time points,
ws3s  even though momentary evidences at different time points are themselves un-
we4 correlated. To understand the relation between momentary and accumulated
wes evidence effects we, therefore, need to consider the recent history of momentary
wes evidences.

1067 To further visualise the relation between momentary and accumulated evi-
wes  dence we annotated the correlation time course of accumulated evidence shown
weo in Figure 4 with that of the momentary evidence shown in Figure 3. This is
w0 shown in Supplementary Figure 3 where we additionally added two time-shifted
wn  replicas of the momentary evidence. These replicas visualise the representations
w2 of the x-coordinates of two previous dots such that we see the time points at
w3 which x-coordinates of the current and two previous dots are represented in
ws  the MEG signals while only the time course of correlations with accumulated
s evidence up to the current dot are shown. The figure shows that the location of
we peaks of accumulated evidence can be explained with the location of peaks of
7 momentary evidence (x-coordinates). For example, at 180 ms peaks of accumu-
ws  lated evidence and momentary evidence of the current dot coincide. Similarly,
we  the peak of accumulated evidence at 80 ms can be related to the 180 ms peak
e of momentary evidence of the previous dot (occurring at 80 ms in reference to
wa  the current dot onset time). These observations demonstrate that the correla-
w2 tions with accumulated evidence are partially driven by representations of the
g3 momentary evidence / x-coordinates in the MEG signals.

1084 To disentangle representations of accumulated evidence and momentary ev-
wss  idence, or dot x-coordinates the time points with large differences in correlation
wss  strengths between the two are of greatest interest. The two time points with the
wsr  largest discrepancies between correlation magnitudes of momentary and accu-
s mulated evidence were 20 ms and 120 ms after dot onset. Supplementary Figure

36


https://doi.org/10.1101/350876
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/350876; this version posted January 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

evidence
0.030 A momentary
— gccumulated
0.025 - permuted

0.020 A

mean magnitude of grand average 8

prEetegrTrac. g . PR . t YL

T T T T T T
0 100 200 300 400 500 600
time from dot onset (ms)

20 ms 80 ms 120 ms 180 ms 320 ms 400 ms

Supplementary Figure 3: Peaks and troughs of accumulated evidence correla-
tions coincide with peaks of momentary evidence correlations. Same format as
in Figure 3. Accumulated evidence is plotted as a blue solid line, where black
dots indicate time points of sensor topographies. In addition, we show the mo-
mentary evidence time course (dark grey shade, cf. Figure 3A) and two time-
shifted replicas of it, one shifted by 100 ms to the past (mid grey) and another
shifted by 200 ms to the past (light grey). These time courses, therefore, are
associated with the representation of the momentary evidence / x-coordinates
of the current and the previous two dots in the brain. This visualisation shows
that peaks in accumulated evidence tend to coincide with peaks in momentary
evidences presented at subsequent time points. Larger discrepancies between
correlation magnitudes of momentary and accumulated evidence only occurred
at 20 ms, 120 ms and from about 450 ms after dot onset. At 80 ms and 180
ms topographies slightly shifted towards parietal sensors otherwise effects were
located centrally.

37


https://doi.org/10.1101/350876
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/350876; this version posted January 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

wso 3 shows that at 20 and 120 ms a drop in magnitude of accumulated evidence cor-
w0 relations co-occurred with the 120 ms momentary evidence peaks of the current
wo  and previous dots. This drop in magnitude of accumulated evidence correlations,
w2 therefore, resulted from an interaction with the centro-parietal anti-correlation
wi  of the MEG signal with x-coordinates (cf. Figure 3A, topography at 120 ms).
wa  Put differently, at these time points the representations of accumulated evidence
ws  and x-coordinates in the MEG signal were incompatible so that through the
ws  correlation between accumulated evidence and x-coordinates the correlations
wor  of accumulated evidence with the MEG signal were diminished as the MEG
s signal simultaneously represented the incompatible x-coordinates. Despite this
009 interaction, however, we still observed positive correlations with accumulated
no evidence in central sensors mirroring the topography, although weaker, at later
uo  time points with strong effects, for example at 320 ms (Supplementary Figure
uee 3, bottom). This affirms that specifically accumulated evidence is represented
uos  with a topography featuring a central positivity in the MEG signal.

1104 At 80 ms and 180 ms the sensor topographies for accumulated evidence
nos  deviated somewhat from a central to a more centro-parietal positivity. We
ms  reported above that the peaks of accumulated evidence coincided with peaks
oz of momentary evidence at these time points. These momentary evidence peaks
nos  corresponded to the 180 ms momentary evidence peak in relation to dot onset
oo which had a centro-parietal topography as shown in Figure 3A. So the shift
mo from central to centro-parietal positive correlations with accumulated evidence
un  can be explained by the interaction with the representation of the momentary
m2 evidence at these time points. Notice, however, that the positive correlations
ms  with accumulated evidence still cover central locations more strongly than the
ui  corresponding effects for momentary evidence at 180 ms (Supplementary Figure
uwis  4). This also indicates that accumulated evidence tended to be represented with
me  a central positivity.
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Supplementary Figure 4: Correlations between magnetometer signals and accu-
mulated evidence are more central than those for momentary evidence at 180 ms
after dot onset. Top: Topographies repeated from Figure 3 and Supplementary
Figure 3 at the indicated times. Bottom: Difference topographies where we sub-
tracted the topography of the momentary evidence at 180 ms from those of the
accumulated evidence. The difference topographies show that the accumulated
evidence had stronger correlations in central sensors while the momentary evi-
dence had stronger correlations in mid-parietal sensors. Additionally, accumu-
lated evidence had stronger correlations in posterior lateral sensors, especially
on the left.
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mr 6.4 Choice correlations correspond to difference between
1118 average signals for right minus left choices

Supplementary Figure 5: The choice correlations 30 ms after the response shown
in Figure 7 emerge from the difference between right and left button responses.
For this analysis we repeated the response-aligned regression analysis, but re-
placed the intercept and choice regressors with regressors for the left and right
choices. The resulting regression coefficients are approximately proportional to
the average signal in trials with a left, or right choice, respectively (the estimated
coefficients are equal to the average signals, if the two response regressors are
encoded with 0s and 1s and are the only regressors in the analysis, or their corre-
lation with the other regressors is exactly 0). The topographies for left and right
above show second-level t-values for the regression coefficients at 30 ms after
the response. The topography on the right hand side shows their difference.
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me 6.5 Topography differences for choice correlations before
1120 and around the response

choice
-120 ms - 30 ms

Supplementary Figure 6: Around the response choice correlations were stronger
than before the response over central sensors. We formally tested the apparent
differences in topographies of choice correlations shown in Figure 7 for time
points -120 ms and 30 ms. As we were interested in the spatial patterns and
not absolute value differences within sensors, we scaled the coefficient estimates
(8) across sensors, but within time points and participants for this analysis so
that their mean magnitude across sensors was equal to 1. We then computed
the difference between time points within each participant and sensor. The
colouring in the plot shows the mean of these differences across participants.
We further applied a t-test across participants within each sensor and corrected
the resulting p-values for false discovery rate at @ = 0.01 across sensors. The
white dots in the figure indicate sensors which exhibited a significant difference
after multiple comparison correction. Together with the topographies shown in
Figure 7 the results of this analysis confirm that before the response occipital
sensors had stronger anti-correlation with choice than around the response. In
contrast, fronto-lateral sensors exhibited stronger anti-correlation around the
response than before the response. Furthermore, the strongest difference oc-
curred in central sensors which exhibited a relatively stronger correlation with
choice around the response than before the response.
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