
Representations of evidence for a perceptual1

decision in the human brain2

Sebastian Bitzer Hame Park Burkhard Maess3

Katharina von Kriegstein Stefan J. Kiebel4

January 21, 20195

Abstract6

In perceptual decision making the brain extracts and accumulates de-7

cision evidence from a stimulus over time and eventually makes a decision8

based on the accumulated evidence. Several characteristics of this process9

have been observed in human electrophysiological experiments, especially10

an average build-up of motor-related signals supposedly reflecting accumu-11

lated evidence, when averaged across trials. Another recently established12

approach to investigate the representation of decision evidence in brain13

signals is to correlate the within-trial fluctuations of decision evidence with14

the measured signals. We here report results for a two-alternative forced15

choice reaction time experiment in which we applied this approach to hu-16

man magnetoencephalographic (MEG) recordings. These results consoli-17

date a range of previous findings. In addition, they show: 1) that decision18

evidence is most strongly represented in the MEG signals in three consecu-19

tive phases, 2) that motor areas contribute longer to these representations20

than parietal areas and 3) that posterior cingulate cortex is involved most21

consistently, among all brain areas, in all three of the identified phases.22

As most previous work on perceptual decision making in the brain has23

focused on parietal and motor areas, our findings therefore suggest that24

the role of the posterior cingulate cortex in perceptual decision making25

may be currently underestimated.26

1 Introduction27

During perceptual decision making observers reason about the state of their28

environment. Supported by findings in single neurons of non-human primates,29

the underlying mechanism has been characterised as an accumulation-to-bound30

process (Gold & Shadlen, 2007). Specifically, the current consensus is that31

during perceptual decision making the brain accumulates noisy pieces of sensory32

evidence across time until it reaches a confidence bound. Most experimental33

results on this process have been based on stimuli which have been designed34

to provide the same amount of evidence per unit time on average across trials.35

Trial-averaged accumulated evidence then should follow a gradual build-up with36
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evidence-dependent slope and a maximum close to the response within trial37

(Gold & Shadlen, 2007).38

In humans, evidence of this kind of average build-up have been found using39

magneto- and electroencephalography (M/EEG). For example, lateralised oscil-40

latory signals in the beta band measured with magnetoencephalography exhibit41

this build-up, where sources were located to dorsal premotor and primary motor42

cortex (Donner, Siegel, Fries, & Engel, 2009). In EEG, there are similar find-43

ings of a build-up for lateralised readiness potentials and oscillations (Kelly &44

O’Connell, 2013; de Lange, Rahnev, Donner, & Lau, 2013). Furthermore, when45

human participants have to detect the presence of stimuli in noise, a centro-46

parietal positivity shows the characteristics of an evidence-dependent build-up47

independently of the type of stimulus used and the kind of response made (Kelly48

& O’Connell, 2013; O’Connell, Dockree, & Kelly, 2012). Together these findings49

suggest that the human parietal and motor cortices are involved in perceptual50

decision making and in particular represent accumulated evidence. This view is51

compatible with electrophysiological recordings in non-human animals (Hanks52

& Summerfield, 2017) and an active role of the motor system during decision53

making (Cisek & Kalaska, 2010).54

It has long been known that electromagnetic signals over motor areas build55

up towards a motor response and can signal an eventual choice even before56

the response (Smulders & Miller, 2012). This means that the crucial aspect57

of decision evidence representations is not the build-up as such, but its co-58

variance with the theoretically available evidence. Consequently, more recent59

approaches have induced consistent, within-trial changes in available decision60

evidence (Wyart, de Gardelle, Scholl, & Summerfield, 2012; Thura & Cisek,61

2014; Brunton, Botvinick, & Brody, 2013; Hanks & Summerfield, 2017). These62

within-trial changes allow more specific analyses, because one can directly assess63

the covariation between decision evidence and neural signals a) across a much64

richer sample of evidences than available with the trial-constant evidences in65

previous analyses and b) while the decision is ongoing.66

Although it has previously been shown that electromagnetic signals in the67

human brain correlate with within-trial changing decision evidence (Wyart et68

al., 2012; de Lange, Jensen, & Dehaene, 2010; Gluth, Rieskamp, & Büchel, 2013;69

Gould, Nobre, Wyart, & Rushworth, 2012), these studies had either rather long70

stimulus presentation times atypical for fast perceptual decisions (Gluth et al.,71

2013; Gould et al., 2012), or did not employ a reaction time paradigm (Wyart72

et al., 2012; de Lange et al., 2010; Gould et al., 2012). In the present work we73

therefore sought representations of decision evidence in a two-alternative forced74

choice reaction time paradigm in which we induced changes in decision evidence75

every 100 ms. That is, our paradigm attempts to mimic natural perceptual deci-76

sion making behaviour more closely than previous investigations with controlled,77

within-trial changing evidence while still observing neural responses across the78

whole human brain.79

Specifically, we investigated correlations between decision evidence and hu-80

man MEG signals and their sources. We found particularly large effects of81

decision evidence in the human MEG in three consecutive phases aligned to82
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when the particular piece of evidence became available. The underlying sources83

indicate that the information delivered by the evidence propagated from visual84

over parietal to motor areas, as expected, but also that it remained in motor85

areas for a longer time than in parietal areas. In addition, our results implicate86

posterior cingulate cortex in all of the identified phases suggesting a central role87

of this brain region in the transformation of sensory signals to decision evidence88

in our task.89

2 Results90

Figure 1: Course of events within a trial in the single dot task (A) and behaviour
of individual participants (B). Each trial started with the presentation of a
fixation cross, followed by the appearance of the two yellow targets after about
1 s. 700 ms after the appearance of the targets the fixation cross disappeared
and a single white dot was presented at a random position on the screen (drawn
from a 2D-Gaussian distribution centred on one of the targets). Every 100 ms
the position of the white dot was changed to a new random draw from the same
distribution. Participants were instructed to indicate the target which they
thought was the centre of the observed dot positions. After 25 dot positions
(2.5 s) without a response, a new trial was started automatically, otherwise
a new trial started with the response of the participant. Average behaviour
(accuracy and median response time) for each of the 34 participants is shown
in B.

While MEG was recorded, 34 human participants observed a single white dot91

on the screen changing its position every 100 ms and had to decide whether a92

left or a right target (two yellow dots) was the centre of the white dot movement93

(Figure 1). Under moderate time pressure (see Methods), participants indicated94

their choice with a button press using the index finger of the corresponding hand.95

The distance of the target dots on the screen was chosen in behavioural pilots96

so that participants had an intermediate accuracy around 75% while being told97

to be as accurate and fast as possible. The average median response time across98
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participants was 1.1 s with an average accuracy of 78% (cf. Figure 1B).99

This paradigm dissociates two different kinds of information available to the100

participants from the stimulus. The x-coordinates of the jumping white dot101

convey decision-relevant perceptual information while the y-coordinates convey102

perceptual information that is irrelevant for the decision. We assume that both103

signals are processed by the brain, but only the decision-relevant x-coordinates104

are taken into account when making a decision.105

To define decision evidence, we used a computational model. An ideal ob-106

server model for inference about the target given a sequence of single dots has107

been described before (H. Park, Lueckmann, von Kriegstein, Bitzer, & Kiebel,108

2016; Bitzer, Park, Blankenburg, & Kiebel, 2014). This model identifies, as109

expected, the x-coordinates of the white dot positions as momentary decision110

evidence. Specifically, there is a direct linear relationship between x-coordinates111

and momentary evidence so that in the following regression analyses we could112

directly use the x-coordinates as independent variables instead of having to113

compute decision evidence from the x-coordinates through the model.We fur-114

ther identified the cumulative sum of x-coordinates across single dot positions as115

accumulated evidence which corresponds to the average state of a discrete-time116

drift-diffusion model (Bitzer et al., 2014).117

2.1 Participants integrate evidence provided by single dot118

positions to make decisions119

As the task required and the model predicted, participants made their decision120

based on the provided evidence. In Figure 2 we show this as the correlation of121

participants’ choices with momentary and accumulated evidence. Momentary122

evidence was mildly correlated with choices throughout the trial (correlation co-123

efficients around 0.3) while the correlation between accumulated evidence and124

choices increased to a high level (around 0.7) as more and more dot positions125

were presented. This result indicates that participants accumulated the mo-126

mentary evidence, here the x-coordinate of the dot, to make their choices. In127

contrast, as expected, the y-coordinates had no influence on the participants’128

choices as indicated by correlation coefficients around 0 (Figure 2B).129

Previous work has investigated the influence of individual stimulus elements130

on the eventual decision and whether this influence differed across elements131

(Wyart et al., 2012; Hubert-Wallander & Boynton, 2015). In our analysis132

this corresponds to checking whether the correlations with momentary evidence133

shown in Figure 2A differ across dots. This is clearly the case (F (13, 462) =134

65.49, p � 0.001). Contrary to previous work (Hubert-Wallander & Boynton,135

2015) we do not observe a primacy effect. Instead, we observe a particularly136

large difference in the influence of the 4th and 5th dots on the decision (post-137

hoc paired t-test: t(33) = −34.90, p � 0.001) with the 5th dot having a strong138

influence while the 4th dot having a relatively small influence. This reflects our139

pre-selection and manipulation of stimuli which were partially chosen from a140

previous experiment to induce large response times (leading to the small influ-141

ence of the 4th dot) and a manipulation of the 5th dot to create large variation142
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Figure 2: Participants accumulate momentary evidence provided by dot po-
sitions for making their decisions. (A) Each shown point corresponds to the
Pearson correlation coefficient for the correlation between choices of a single
participant and the sequence of presented dot positions across the 480 trials of
the experiment. We plot, over stimulus duration, the momentary (blue) and
the accumulated evidence (orange). The dotted vertical line shows the median
RT across participants. Until about the 10th dot presentation the correlation
between accumulated evidence and participant choices rises, reaching values
around 0.7 while the momentary evidence is only modestly related to partici-
pant choices across all dots. (B) The same format as in A but all measures are
computed from the y-coordinates of dot positions which were irrelevant for the
decision. As expected, y-coordinates do not correlate with participant choices.
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in x-coordinates (see Methods for further details). Taken together these results143

confirm that the used stimuli were effective in driving the decisions of the partic-144

ipants and that the theoretically defined momentary and accumulated evidence145

integrate well with observed behaviour.146

2.2 MEG signals covary with momentary evidence at spe-147

cific time points after stimulus update148

For the analysis of the MEG data we used regression analyses computing event-149

related regression coefficients of a general linear model (Clarke, Taylor, Dev-150

ereux, Randall, & Tyler, 2013; Hauk, Davis, Ford, Pulvermüller, & Marslen-151

Wilson, 2006). For our main analysis the regressors of interest were the mo-152

mentary evidence and, as a control, the y-coordinates of the presented dots. We153

normalised both the regressors and the data so that the resulting regression co-154

efficients can be interpreted as approximate correlation values while accounting155

for potential covariates of no interest (see Methods). Note that this correlation156

analysis contrasts with standard event-related field analyses, where one would157

only test for the presence of a constant time-course across trials. With the cor-158

relation analysis, the estimated regression coefficients describe how strongly the159

MEG signal, in each time point and each sensor (or source), followed the ups160

and downs of variables such as the momentary evidence, across trials.161

As a first result, we found that correlations between momentary evidence and162

MEG signals followed a stereotypical temporal profile after each dot position163

update (cf. Supplementary Figure 1). Therefore, we performed an expanded164

regression analysis where we explicitly modelled the time from each dot position165

update, which we call ’dot onset’ in the following. To exclude the possibility166

that effects signalling the button press motor response influence the results of167

the dot onset aligned analysis, we only included data, for each trial, up until at168

most 200 ms prior to the participant’s response.169

We first identified time points at which the MEG signal correlated most170

strongly with the momentary evidence. For these sensor-level analyses we fo-171

cused on magnetometer sensors only. We performed separate regression analyses172

for each time point from dot onset, magnetometer sensor and participant, com-173

puted the mean regression coefficients across participants, took their absolute174

value to yield a magnitude and averaged them across sensors. Figure 3 shows175

that the strongest correlations between momentary evidence and magnetometer176

signals occurred at 120 ms, 180 ms and in a prolonged period from roughly 300177

to 500 ms after dot onset. In contrast, correlations with the decision irrelevant178

control variable, that is, the dot y-coordinates, were significantly lower in this179

period from 300 to 500 ms (two-tailed Wilcoxon test for absolute average coeffi-180

cients across all sensors and times within 300-500 ms, W = 382781, p� 0.001).181

The sensor topographies shown in Figure 3 indicate for the momentary evi-182

dence a progression of the strongest correlations from an occipital positivity over183

a centro-parietal positivity to a central positivity. y-coordinate correlations, on184

the other hand, remained spatially at occipito-parietal sensors.185
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Figure 3: Time course of correlation strengths between magnetometer measure-
ments and momentary evidence (left) and perceptual control variable (right).
Top panels show time courses of the mean (across sensors) magnitude of grand
average regression coefficients (β). For comparison, dotted lines show the cor-
responding values for data which were randomly permuted across trials before
statistical analysis. Black dots indicate time points for which the sensor topog-
raphy is shown below the plot. These topographies directly display the grand
average regression coefficients at the indicated time without rectification, i.e.,
with negative (blue) and positive (red) correlation values. (A) The momentary
evidence has strong correlations with the magnetometer signal at 120 ms, 180
ms and from about 300 ms to 500 ms after dot onsets. (B) The correlations
with the decision irrelevant y-coordinate are visibly and significantly weaker
than for the evidence, but there are two prominent peaks from about 120 ms to
210 ms and at 320 ms after dot onset. There is no sustained correlation with
the y-coordinate beyond 400 ms and the topographies of magnetometers differ
strongly between evidence and y-coordinates. Specifically, the evidence exhibits
occipital, centro-parietal and central topographies whereas the y-coordinate ex-
hibits strong correlations only in lateral occipito-parietal sensors.
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2.3 Correlations with accumulated evidence186

Guided by the model we used dot x-coordinates as representation of momentary187

evidence, but dot x-coordinates also do have a purely perceptual interpretation188

similar to the y-coordinates as they simply measure the horizontal location of a189

visual stimulus. Correlations with x-coordinates, therefore, may reflect at some190

time points early visual processes independent of the decision, at some time191

points momentary evidence and other time points both of them. Contrasting192

the strength of significant effects for x- and y-coordinates (Figure 3) already193

suggested that at least from 400 ms after dot onset x-coordinates indeed repre-194

sented momentary evidence. To further corroborate this supposition we turned195

to a form of decision evidence that has no direct purely perceptual interpretation196

and is more closely related to the decision itself: the accumulated evidence.197

Note that accumulated evidence is, through the final choice, more strongly198

related to the motor response than the momentary evidence (cf. Figure 2A,199

Supplementary Figure 2 which means that some effects indicated by the accu-200

mulated evidence regressor may be attributed to the motor response and not201

the accumulated evidence. To account for this potential confound we excluded202

also from this analysis all data later than 200 ms before the response so that203

the results only contain effects unrelated to the motor response.204

Furthermore, accumulated and momentary evidence are themselves entan-205

gled such that both regressors lead to partially overlapping effects. See Methods206

and Supplementary Material for more information. The point of this analysis,207

however, is that it will more strongly highlight accumulated evidence effects208

while the momentary evidence regressor in the previous analysis more strongly209

highlighted perceptual and momentary evidence effects.210

Figure 4 depicts the time course of overall correlation magnitudes for accu-211

mulated evidence together with effect topographies at chosen time points. We212

found correlations between the MEG signal and accumulated evidence at all of213

peri-stimulus time until about 550 ms after dot onset. Crucially, at all time214

points of that period we observed centro-parietal and, especially, central sensor215

topographies suggesting that these represent specifically decision-relevant infor-216

mation such as momentary or accumulated evidence, as hypothesised based on217

the correlations with x-coordinates shown in Figure 3. For further discussion of218

the time course of accumulated evidence, see Supplementary material.219

2.4 Sources of stimulus-aligned momentary evidence ef-220

fects221

By investigating the sources of the evidence correlations at sensor level, we aimed222

to better understand the nature of these effects and to confirm their locations223

in the brain suggested by the shown sensor topographies. In particular, we224

were interested in linking the time points at which we found strong momentary225

evidence correlations to potential functional stages in the processing of decision226

evidence, such as sensory processing, relating sensory information to the decision227

and integrating momentary evidence with previous evidence.228
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Figure 4: Accumulated evidence correlated with magnetometer signals from 0 to
about 550 ms after dot onset displaying central sensor topographies throughout
this time period. Format as in Figure 3, i.e., top panel shows time course of
the mean (across sensors) magnitude of grand average regression coefficients (β)
together with corresponding time courses after 3 different permutations across
trials (dotted). For further analysis and discussion of results, see Supplementary
Material.
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We reconstructed source currents along the cerebral cortex for each par-229

ticipant and subsequently repeated our regression analysis on the estimated230

sources. Specifically, we performed source reconstruction on the preprocessed231

MEG data using noise-normalised minimum norm estimation based on all MEG232

sensors (magnetometers and gradiometers) (Gramfort et al., 2014, 2013; Dale et233

al., 2000). Further, we aggregated estimated values by averaging across sources234

within 180 brain areas defined by a recently published brain atlas (Glasser et al.,235

2016). This resulted in average time courses for each experimental trial in each of236

the 180 brain areas defined per hemisphere for each participant. We then applied237

the expanded regression analysis to these source-reconstructed time courses in-238

stead of onto MEG sensors. Following the summary statistics approach we239

identified time points and areas with significant second-level correlations by240

performing t-tests across participants and applying multiple comparison correc-241

tion using false discovery rate (Benjamini & Hochberg, 1995) simultaneously242

across all time points and brain areas.243

The time course of correlation magnitudes shown in Figure 3 suggested three244

time windows at which particularly strong correlations with momentary evi-245

dence were present in the brain. The source analysis gives equivalent results:246

Multiple comparison corrected effects occurred only within 110 ms – 130 ms, 160247

ms – 200 ms and 290 ms – 510 ms (cf. Source Data 1). In subsequent analyses248

we, therefore, concentrated on these time windows and call them according to249

their temporal order ”early”, ”intermediate” and ”late” phases. Figure 5 de-250

picts the brain areas with at least one significant multiple comparison corrected251

effect within the corresponding phase. The colour scale indicates the average252

t-value magnitudes within the time window for these significant areas (we chose253

to display t-value magnitudes instead of correlation magnitudes here, because254

the estimated correlation values had larger second-level variability differences255

across brain areas than sensors).256

As the sensor topographies suggested, we observed that in the early phase257

the strongest correlations were located in visual areas such as V3, V1 and areas258

in the lateral occipital cortex (e.g., FST, MST, LO3 according to (Glasser et al.,259

2016)), but also in a small area of posterior cingulate cortex (v23ab) and there260

was an effect in a parietal area of the left hemisphere (MIP). In the interme-261

diate phase most of the correlations in visual areas, especially those in lateral262

occipital areas, vanished. Instead, more parietal areas exhibited significant cor-263

relations with momentary evidence, especially in the right inferior (IP0, PGp)264

and superior parietal cortex (VIP, 7AL, 7Am). Additionally, we found strong265

correlations in posterior cingulate cortex (POS2 and DVT). In the late phase266

some correlations in parietal areas persisted, but only focal at some time points267

so that on average across the time window correlations were weak compared to268

other brain areas. Specifically, the strongest correlations were spread across the269

posterior cingulate cortex in both hemispheres (especially areas v23ab, 31pd,270

7m, 31pv, d23ab). Further strong correlations occurred in motor areas, espe-271

cially in the left hemisphere, including somatosensory areas (3a, 3b, 1), primary272

motor cortex (area 4) and premotor areas (6a, 6d). Note that we excluded from273

the analysis all time points later than 200 ms before the trial-specific motor274
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Figure 5: Correlations with momentary evidence shift from visual over parietal
to motor and posterior cingulate areas. We investigated the three time win-
dows with strong correlations in the sensor-level results: early (110 ms – 130
ms), intermediate (160 ms – 200 ms) and late (290 ms – 510 ms). For each of
these phases only brain areas with at least one significant effect (p < 0.01, FDR
corrected) within the time window are coloured. For display purposes, colours
show average second-level t-value magnitudes where the average is taken over
time points within the time window. The 5 areas with the most consistent,
strong correlations per hemisphere and time window are marked by black out-
lines. These were (in that order; specified as Brodmann areas with subdivisions
as defined in (Glasser et al., 2016)): early, left – V3, FST, LO3, VMV2, MST;
right – VMV2, LO1, v23ab, VMV1, VVC; intermediate, left – POS2, AIP, V2;
right – IP0, VIP, 7AL, PGp, DVT; late, left – 1, 3a, 6d, 3b, 31pd; right – v23ab,
7m, 31pd, 31pv, d23ab.
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response. Additionally, we observed weaker correlations in mid and anterior275

cingulate motor areas (e.g., 24dv, p24pr). These results confirm that the in-276

formation carried by the decision-relevant x-coordinates shifts from visual over277

parietal areas towards motor areas where this information, presumably momen-278

tary evidence, appears to be represented over a longer time period. The results279

also reveal that source currents of brain areas in posterior cingulate cortex had280

strong correlations with x-coordinates throughout all three phases. Accord-281

ingly, the areas with the largest correlation magnitudes on average across all282

time points within 0 to 500 ms were predominantly located in posterior cingu-283

late cortex (5 areas with strongest average effects in that order: left – v23ab,284

3a, 31pd, 3b, 1; right – v23ab, DVT, d23ab, 31pv, 7m). This suggests a poten-285

tially central role of posterior cingulate cortex in the processing of momentary286

evidence in the task.287

2.5 Sources of stimulus-aligned accumulated evidence ef-288

fects289

The sensor topographies for the accumulated evidence effects suggested that290

accumulated evidence was represented in common brain sources across the whole291

time window of 0 to 550 ms from dot onset. Therefore, we used this full time292

window to investigate the underlying sources. As for the momentary evidence,293

cf. Figure 5, we identified brain areas with significant correlations after FDR294

correction across locations and times (p < 0.05, no significant effects for p <295

0.01) in at least one time point and then averaged the t-value magnitudes across296

time points within the time window in these areas. Given the similarity of297

sensor topographies of momentary evidence in the late phase and the sensor298

topographies of accumulated evidence we expected their sources to overlap.299

Figure 6: Sustained correlations with accumulated evidence in motor and cin-
gulate areas. Following the procedure in Figure 5, we coloured only areas with
a significant correlation with accumulated evidence (p < 0.05 FDR corrected)
with colour indicating the average t-value magnitude in the extended time win-
dow from 0 ms to 550 ms after dot onset. The 5 largest effects were (marked by
black boundaries): left – 3a, 6d, 1, 2, v23ab; right – V6, 6a, 7m, p24pr, 24dv.

In Figure 6, one can see that, although the estimated correlation magnitudes300

were slightly higher for the accumulated evidence than for the momentary evi-301

dence, fewer effects were statistically significant for accumulated evidence. This302
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is most likely because the variability of correlation magnitudes across partic-303

ipants increased relative to momentary evidence effects (results not shown).304

Otherwise, the identified brain areas were consistent with those of the momen-305

tary evidence in the late phase. In particular, we observed consistently strong306

correlations with accumulated evidence in motor, premotor, cingulate motor307

and posterior cingulate areas.308

2.6 Correlations with choice reveal response-aligned build-309

up and separate motor response310

Our finding that momentary or accumulated evidence is represented in motor311

areas is consistent with a wide range of previous work (Donner et al., 2009; Kelly312

& O’Connell, 2013; de Lange et al., 2013; Thura & Cisek, 2014; Selen, Shadlen,313

& Wolpert, 2012; Michelet, Duncan, & Cisek, 2010). If motor areas are involved314

in processing momentary or accumulated evidence prior to a response, as these315

results indicate, the question arises how these processes relate to motor processes316

linked to the response itself. More specifically, we were interested in how the317

patterns of correlations with momentary and accumulated evidence related to318

correlation patterns representing the motor response and whether these could be319

linked to the absence or presence of the involvement of certain brain areas. To320

investigate correlation patterns representing the motor response we computed321

choice-dependent effects centred on the response time of the participants. We322

did this with a regression analysis using the participant choice as a regressor of323

interest (see Methods). The choice regressor provides a measure for how well324

the choice of the participants can be decoded from univariate brain signals.325

Figure 7 depicts the estimated time course of correlation magnitudes aver-326

aged across participants and sensors. From about 500 ms before the response,327

correlations between choice and MEG data became gradually stronger culminat-328

ing in an expected peak centred slightly after the response. The sensor topogra-329

phies of the build-up period before the response strongly resembled those we330

found for accumulated evidence in our previous analyses. In fact, these results331

most likely correspond to the same effect, because the participant choice itself332

was increasingly correlated with accumulated evidence as the trial progressed333

(cf. Figure 2). That is, the build-up seen in the figure only indirectly visu-334

alises an increasing evidence signal by depicting an increasing alignment of the335

final choice with the internal representation before the response (presumably336

accumulated evidence).337

The motor response itself (peak around 30 ms) was, as expected, much338

more strongly represented in the MEG signals than the accumulated evidence,339

see Figure 7. Although the motor response also had a predominantly central340

topography, its topography visibly differed from that prior to the response (at341

-300 and -120 ms). Specifically, the topography before the response exhibited342

stronger anti-correlation in occipital sensors than around the response while the343

topography around the response exhibited stronger anti-correlations in fronto-344

lateral sensors (p < 0.01 corrected, cf. Supplementary Figure 6). Furthermore,345

the correlation with choice was relatively higher over central sensors at 30 ms346
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Figure 7: The button press motor response is also represented most strongly in
central magnetometers, but the corresponding topography differs slightly from
that associated with momentary and accumulated evidence. We computed the
correlation between participant choices and MEG magnetometers using linear
regression for data aligned at response time. Following the format of Figure 3
we here show the time course of the mean (across sensors) magnitude of grand
average regression coefficients (β). Sensor topographies for time points indicated
by the black dots are shown below the main panel. Note that for the time points
before the response we use a different scaling of colours than for time points
around the response and later. This is to more clearly visualise the topography
around the response which contains larger values. The colour scaling for the
time points before the response is equal to that of Figure 3 and Figure 4. The
topography at -300 ms strongly resembled that for accumulated evidence, but
the topography around the response (30 ms) additionally exhibited stronger
fronto-lateral and weaker occipital anti-correlations (p < 0.01 corrected, cf.
Supplementary Figure 6). Positive values / correlations mean that measured
sensor values tended to be high for a right choice (button press) and low for a
left choice and vice-versa for negative values. See Supplementary Figure 5 to
see how the central topography at 30 ms shown here results as the difference of
the topographies associated with right and left choices.
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than at -120 ms (Supplementary Figure 6).347

Figure 8: Around the response time strongest correlations with choice occurred
in primary motor, somatosensory and cingulate motor cortex (BA 24) while dur-
ing the build-up period we found the strongest effects in premotor and cingulate
motor cortex. The 5 largest effects per hemisphere were: build-up, left – 24dv,
6a, 24dd, 3a, SCEF; right – 24dv, p24pr, 6a, SCEF, OP2-3; response, left – 4,
3b, 24dv, 3a, SCEF; right – 3b, 4, p24pr, 24dv, 2. When testing for differences
in the spatial pattern of correlation magnitudes (see Methods) between the two
time windows, we only found significant differences in the motor and cingulate
areas: 1, 24dv, 2, 31a, 3a, 3b, 4, 6d, 6mp, SCEF, p24pr. All of these effects
indicated that correlations with choice were stronger in the response window
(blue). The build-up and response panels show spatially normalised t-value
magnitudes while the difference panel shows t-values of spatially normalised
correlation magnitude differences.

To analyse this difference at the source level we applied the regression anal-348

ysis to the reconstructed source currents. Figure 8 depicts the results of an349

analysis of two time windows: the ”build-up” window from -500 ms to -120 ms350

(when a dip before the response indicates an end of the build-up) and the ”re-351

sponse” window capturing the response peak from -30 ms to 100 ms. We only352

show brain areas with at least one significant effect within the time window af-353

ter correcting for multiple comparisons (FDR with α = 0.01 across brain areas354

and the two time windows). The shown colours indicate normalised second-level355

t-value magnitudes (see Methods).356
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As expected, in the response window, the effects were dominated by choice357

correlations in bilateral primary motor and somatosensory cortices, but also358

choice correlations in cingulate motor areas (around Brodmann area 24) were359

among the effects with the strongest magnitudes. Other significant correlations360

with choice within the response window occurred in premotor and posterior361

cingulate cortices. In the build-up window, the strongest correlations occurred362

predominantly in cingulate motor cortex and premotor areas (especially 6a).363

We further aimed at identifying brain areas with significantly different cor-364

relation magnitudes in the two time windows. Specifically, we were interested365

in the difference of the spatial patterns of correlation magnitudes, across brain366

areas, between the two time windows. To do this, we normalised correlation367

magnitudes across brain areas within the time windows and computed the dif-368

ferences between time windows within each brain area and participant (see369

Methods for details). Figure 8, bottom panel, shows that across participants370

the only statistically significant differences occurred in the primary motor and371

somatosensory cortices and, with smaller effect size, in cingulate motor areas. In372

all these areas correlation magnitudes were larger in the response as compared373

to the build-up window.374

In summary, the response-centred analysis of choice correlations suggests375

that the build-up of choice-correlations leading towards a response is related376

to the accumulation of momentary evidence, because sensor topographies and377

brain areas were highly consistent across choice- and evidence-based analyses.378

The correlation topographies for the build-up and the response windows shown379

in Figure 7 had significant differences in central, occipital and fronto-lateral380

sensors. When analysing these differences at the source level (Figure 8), the381

only sources with significant differences were located in motor areas. These382

results together suggest that the brain areas representing decision evidence are383

largely overlapping with those representing the upcoming choice and the motor384

response. The difference in correlation patterns at the source level between the385

upcoming choice and motor response could be explained by an increase in choice386

correlations in motor areas.387

3 Discussion388

Using MEG, we have analysed the dynamics of evidence representations in the389

human brain during perceptual decision making. We induced fast, within-trial390

evidence fluctuations using a visual stimulus in which new, momentary evi-391

dence appeared every 100 ms and correlated the resulting momentary evidence392

dynamics with MEG signals. We found that each update of momentary evidence393

elicited a stereotyped response in the MEG signal that lasted until about 600394

ms after the update onset, meaning that the brain processed incoming pieces395

of momentary evidence in parallel. We identified three main phases of the rep-396

resentation of momentary evidence: an early phase around 120 ms after an397

evidence update, an intermediate phase around 180 ms and a late phase from398

about 300 to 500 ms. These phases exhibited different sensor topographies with399
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positive correlations shifting from occipital to centro-parietal to central sensors400

during the three phases. Using source reconstruction, we localised these rep-401

resentations of momentary evidence in early visual, parietal and motor areas,402

respectively, with significant correlations in posterior cingulate cortex occurring403

in all three phases. Significant correlations with accumulated evidence includ-404

ing the most recent evidence update occurred continuously until about 550 ms405

after update onset and exhibited a central topography similar to that in the406

late phase of momentary evidence representations with corresponding sources.407

Additionally, response-aligned correlations of the MEG signal with the final408

choice of the participants shared a similar topography in a build-up phase hun-409

dreds of milliseconds before the response. The correlation analysis at the source410

level further showed that the only significant differences between build-up phase411

and motor response were higher choice correlations in motor areas during the412

response.413

These results consolidate a wide range of separate previous findings: It has414

previously been shown that the human brain elicits electromagnetic signals that415

correlate with individual pieces of momentary evidence (Wyart et al., 2012;416

de Lange et al., 2010; Gluth et al., 2013; Gould et al., 2012). Compared to417

these studies we here for the first time used a reaction time paradigm with418

fast evidence changes every 100 ms, more directly mimicking natural perceptual419

decision making processes. More importantly, our results are the first to track420

momentary evidence representations through the three phases that we identified421

and the corresponding areas in the human brain, although at least the early and422

late phases were previously hinted at (Wyart et al., 2012).423

A large proportion of previous work investigating the dynamics of evidence424

representations in the human brain focused on oscillatory signals (Donner et425

al., 2009; de Lange et al., 2013; Gould et al., 2012; Siegel, Donner, Oostenveld,426

Fries, & Engel, 2007). For example, it has been found that the average amount427

of evidence in a trial is represented in the power of oscillations in occipital and428

parietal cortex (Siegel et al., 2007). Further, the difference in the power of429

oscillations between central-left and central-right sensors exhibits an evidence-430

dependent build-up towards the response that appears to be generated in motor431

areas (Donner et al., 2009; de Lange et al., 2013). We here made correspond-432

ing observations, but directly in the trial-wise temporal MEG signals reflecting433

trial-wise signal variations correlated with decision evidence that are believed434

to result from minute, event-related fluctuations in the voltage potentials of435

neuronal populations.436

There is overwhelming evidence that motor areas including areas in the pre-437

motor and primary motor cortex are involved in perceptual decision making,438

e.g. (Hanks & Summerfield, 2017; Heekeren, Marrett, & Ungerleider, 2008).439

Specifically, it has been shown that some single neurons in primary motor cor-440

tex represent momentary evidence (Thura & Cisek, 2014), that the strength of441

muscle reflex gains is proportional to the average amount of momentary evi-442

dence within a trial (Selen et al., 2012), that motor-evoked potentials can be443

related to accumulated evidence (Michelet et al., 2010; Hadar, Rowe, Di Costa,444

Jones, & Yarrow, 2016) and that classical lateralised readiness potentials which445
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are thought to represent motor processes (Smulders & Miller, 2012) also exhibit446

evidence-dependent build-up in a detection task (Kelly & O’Connell, 2013). Our447

results further substantiate these findings by showing that human motor areas448

represent each update of momentary evidence roughly within 300 to 500 ms after449

the update onset and that accumulated evidence is represented in motor areas450

throughout the decision making process. Using a response-aligned analysis of451

choice-dependent effects in the same reference frame as the analyses of evidence,452

we could further show that the stimulus-aligned evidence representations resem-453

ble closely the representation of the final choice during a build-up phase before454

the motor response. This supports the hypothesis that previous observations455

of pre-response representations of an upcoming choice, such as the lateralised456

readiness potential, should be interpreted as expressions of an ongoing decision457

making process about the next sensible motor response. In sum, the present458

and previous findings strongly affirm a tight coupling between decision making459

and motor processes, as, for example, formulated in the affordance competition460

hypothesis (Cisek & Kalaska, 2010; Cisek, 2007), but also other theories in cog-461

nitive computational neuroscience (O’Regan & Noë, 2001; Clark, 2013; Friston,462

Daunizeau, & Kiebel, 2009).463

One potential caveat of our correlation results in motor areas is that due464

to the specifics of our task participants may actually have executed micro-465

movements trying to track the changes of the perceptual stimulus either with466

their eyes, or with minimal finger movements close to the response buttons.467

In this scenario the observed correlations in motor areas would be possibly ex-468

plained by motor signals to the muscles. Although we cannot completely exclude469

this possibility we deem it unlikely, because: i) Stimuli were shown only very470

centrally at visual angles within about 10◦ visual angle with most stimuli within471

5◦ diameter from fixation meaning that most of them were well within the foveal472

visual field. ii) The sensor topographies representing evidence were very similar473

to that associated with the motor response, that is, the evidence representations474

do not appear to be specifically related to eye movements. iii) As mentioned475

above, a large body of work employing a wide variety of different tasks already476

supports the reverse interpretation that motor areas represent decision evidence477

before motor execution. In conclusion, we do not believe that the correlations478

with momentary or accumulated evidence observed in motor areas of the brain479

are merely an expression of motor control signals that caused stimulus-correlated480

micro-movements. Even if such micro-movements existed, we deem it likely that481

these follow the time-course of decision evidence rather than decision-irrelevant482

stimulus properties, as suggested by recent results about the adaptation of reflex483

gains and motor evoked potentials during decision making (Selen et al., 2012;484

Michelet et al., 2010; Hadar et al., 2016).485

The early, intermediate and late phases of momentary evidence representa-486

tions mirrored the presumed general transfer of behaviourally relevant visual487

information through the brain (Kandel, Jessell, Schwartz, Siegelbaum, & Hud-488

speth, 2012). In the early phase around 120 ms after evidence updates we found489

the strongest representations of momentary evidence in early visual cortex and490

occipito-temporal areas while in the intermediate phase around 180 ms momen-491
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tary evidence representations included areas in inferior and superior parietal492

cortex. In the late phase the momentary evidence was predominantly repre-493

sented in pre-/motor, somatosensory and cingulate areas while we only found494

one weak significant correlation with momentary evidence in one area of pari-495

etal cortex (right PFt). The same was true for representations of accumulated496

evidence. Taken together, these results suggest that in our task parietal cortex497

was only transiently involved in the processing of momentary evidence and that498

it did not accumulate evidence for the decision, or at least did not represent499

accumulated evidence over an extended period of time.500

These results appear to be at odds with previous findings in non-human501

primates which had identified neurons in inferior parietal cortex that seemed502

to represent accumulated evidence (Gold & Shadlen, 2007). More recent work,503

however, suggests that the firing of these neurons is more diverse than originally504

thought (Latimer, Yates, Meister, Huk, & Pillow, 2015; I. M. Park, Meister,505

Huk, & Pillow, 2014; Meister, Hennig, & Huk, 2013). It is possible that the506

signal from only few evidence accumulating neurons in inferior parietal cortex507

is too weak to be recorded with MEG. Another possibility why we do not find508

strong correlations with accumulated evidence in parietal areas is that probably509

these representations are not as strongly lateralised in parietal areas as they510

are in motor areas. This would make it much harder to detect them with the511

typically low spatial resolution of MEG. Yet another possibility is that the repre-512

sentation of decision evidence in parietal areas follows a more intricate dynamic513

process that is hard to identify with simple correlation analyses (Churchland514

et al., 2010). If this was the case, an interesting follow-up question would be515

why the representations of accumulated evidence in parietal and motor or pos-516

terior cingulate areas apparently differ, as we clearly found correlations with517

accumulated evidence in the latter areas.518

To manipulate decision evidence in our task we changed the position of519

a single dot presented on a screen. Only the x-coordinates of these dot po-520

sitions represented momentary decision evidence while the decision-irrelevant521

y-coordinates acted as a perceptual control variable. We have shown that cor-522

relations of MEG signals with the perceptual control variable, in contrast to523

momentary evidence, were strongly diminished in the period from 300 to 500524

ms after dot onset. This suggests that the brain ceases to represent perceptual525

information that is behaviourally irrelevant around this time and that brain526

areas with strong correlations with momentary evidence in this time window in-527

deed are involved in the decision making process. This interpretation is further528

supported by previous work which has shown that purely perceptual stimulus529

information is represented in electrophysiological signals only until about 400530

ms after stimulus onset (Wyart et al., 2012; Myers et al., 2015; Mostert, Kok,531

& de Lange, 2015) while specifically decision-related information is represented532

longer starting around 170 ms after stimulus onset (Wyart et al., 2012; Myers et533

al., 2015; Mostert et al., 2015; Philiastides & Sajda, 2006; Philiastides, Ratcliff,534

& Sajda, 2006; Philiastides, Heekeren, & Sajda, 2014).535

We further validated this interpretation by investigating correlations with ac-536

cumulated evidence, that is, the cumulative sum of momentary evidences within537
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a trial. In contrast to the momentary evidence, this sum is more specifically538

related to the decision and has no simple, purely perceptual interpretation.539

The similarity of the topographies for accumulated evidence correlations and540

for momentary evidence correlations in the late phase suggests that specifically541

decision-relevant evidence is represented in the late phase, that is, within 300542

to 500 ms after evidence updates. Our results do not allow to clearly state543

whether momentary, or accumulated, or both types of decision evidence were544

represented in the brain in this time window, because both types of evidence are545

correlated, especially early within a trial. However, we also found that accumu-546

lated evidence exhibited the corresponding central topography more consistently547

throughout peri-stimulus time than momentary evidence, so it appears reason-548

able to assume that predominantly accumulated evidence is represented in the549

late phase.550

Finally, and perhaps most surprisingly, we found significant correlations with551

momentary and accumulated evidence in posterior cingulate cortex across all552

the investigated phases. Especially a ventral part of posterior cingulate cortex553

(v23ab) was involved already in the early phase which was dominated by corre-554

lations of momentary evidence in early visual areas and may therefore relate to555

basic visual processing of the stimulus. In the intermediate phase, the correla-556

tions in posterior cingulate cortex were weaker, but persisted. In the late phase557

correlations in posterior cingulate cortex constituted one of the main effects558

suggesting that it is a region contributing to the maintenance and accumulation559

of momentary evidence in the brain. Consequently, posterior cingulate cortex560

appears to be involved in both early sensory processing and decision making561

and, therefore, could act as a bridge between these processes.562

Previous studies investigating the function of posterior cingulate cortex have563

mostly concentrated on a rather slow time scale, for example, contrasting differ-564

ent task conditions to each other, while we analysed rapid fluctuations of neural565

signals. These studies of slow changes in posterior cingulate cortex activations566

have implicated the posterior cingulate as having a direct role in directing the567

focus of attention (Leech & Sharp, 2014). However, posterior cingulate cortex568

has been associated with a wide range of functions which have recently been569

summarized as estimating the need to change behaviour in light of new, exter-570

nal requirements (Pearson, Heilbronner, Barack, Hayden, & Platt, 2011). Our571

findings are compatible with this view, when transferred to the context of com-572

parably fast perceptual decision making where decision evidence may be viewed573

as the need to follow one (press left) or another (press right) behaviour.574

In the field of perceptual decision making, especially in electrophysiological575

work with non-human animals, the posterior cingulate cortex has not gained576

much attention (Gold & Shadlen, 2007; Hanks & Summerfield, 2017). Given577

our findings it, therefore, appears that the role of posterior cingulate cortex in578

perceptual decision making may have been underestimated.579
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4 Materials and Methods580

This study has been approved by the ethics committee of the Technical Univer-581

sity of Dresden (EK324082016). Written informed consent was obtained from582

all participants. Code implementing the statistical analysis which produced all583

presented results is available at https://github.com/sbitzer/BeeMEG.584

4.1 Participants585

37 healthy, right-handed participants were recruited from the Max Planck In-586

stitute for Human Cognitive and Brain Sciences (Leipzig, Germany) participant587

pool (age range: 20 – 35 years, mean 25.7 years, 19 females). All had normal or588

corrected-to-normal vision, and reported no history of neurologic or psychiatric589

disorders. One participant was excluded from MEG measurement due to low590

performance during training. In total, 36 participants participated in the MEG591

study. Two participants’ data were excluded from analyses due to excessive592

eye artefacts and too many bad channels. Finally, 34 participants’ data were593

analysed (age range: 20 – 35 years, mean 25.85 years, 17 females).594

4.2 Stimuli595

In each trial, a sequence of up to 25 white dots were presented on a black screen.596

Each dot was displayed for 100 ms (6 frames, refresh rate 60 Hz). The white597

dot was located at x, y coordinates which were sampled from one of two two-598

dimensional Gaussian distributions with means located at ±25 pixels horizontal599

distance from the centre of the screen. The standard deviation was 70 pixels in600

both axes of the screen. The mean locations were the two target locations (-25:601

left, 25: right). These target locations corresponded to visual angles ±0.6◦ from602

the centre of the screen. The standard deviation of the Gaussian distribution603

corresponded to ±1.7◦ from the two target locations. The stimuli used in this604

study consisted of a subset of stimuli used previously(H. Park et al., 2016),605

and additional newly created stimuli. The stimuli were chosen to increase the606

probability that the participants see the 5th dot within the 25 dot sequence by607

not responding earlier. In short, trials where 70% of the participants in the608

previous study (H. Park et al., 2016) had reaction times (RT) longer than 700609

ms but not timed-out were chosen from the second most difficult condition. This610

resulted in 28 trials from 200 trials. Then each trial was copied 6 times, with611

only the 5th dot location differing, ranging in ’target location + [-160 -96 -32 32612

96 160] (pixels)’. This resulted in 168 trials. These trials were mirrored to create613

a dataset with the same evidence strengths but with different x coordinate signs614

(336 trials), and finally trials which had short RTs were chosen from (H. Park615

et al., 2016) as catch trials, to prevent participants from adapting to the long616

RT trials (30% of the total trials). This resulted in a total of 480 trials per617

experiment.618

We originally designed this stimulus set, especially the manipulations of619

the 5th dot, to increase the chance of inducing sufficiently large effects in the620
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MEG signal when observing the 5th dot. In a preliminary analysis we realised,621

however, that the natural variation of the stimuli already induces observable622

effects. Consequently, we pooled all trials for analysis.623

4.3 Procedure624

Participants were seated in a dimly lit shielding room during the training and the625

MEG measurement. Visual stimuli were presented using Presentation R© soft-626

ware (Version 16.0, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com).627

The display was a semi-transparent screen onto which the stimuli were back-628

projected from a projector located outside of the magnetic shielding room (Vac-629

uumschmelze Hanau, Germany). The display was located 90 cm from the par-630

ticipants. The task was to find out which target (left or right) was the centre631

of the white dot positions, but participants were instructed with a cover story:632

Each target represented a bee hive and the white dot represented a bee. Par-633

ticipants should tell which bee hive is more likely the home of the bee. They634

were additionally instructed to be both accurate and fast, but not too fast at635

the expense of being inaccurate, and not too slow that the trial times out.636

They went through a minimum 210 and maximum 450 trials of training, until637

they reached a minimum of 75% accuracy. Feedback (correct, incorrect, too638

slow, too fast) was provided during the training. After training, a pseudo-main639

block with 200 trials without feedback preceded MEG measurement. After the640

pseudo-main session, the 480 trials in randomized order were presented to each641

participant divided into 5 blocks. The MEG measurement lasted 60 minutes,642

including breaks between blocks. Each trial started with a fixation cross (ran-643

domized, 1200 ms 1500 ms uniform distribution) followed by two yellow target644

dots. After 700 ms, the fixation cross disappeared and the first white dot ap-645

peared. The white dot jumped around the screen and stayed at each location646

for 100 ms, until the participant submitted a response by pressing a button647

using either hand, corresponding to the left / right target, or when the trial648

timed-out (2.5 s). In order to maintain motivation and attention throughout649

the measurement, participants were told to accumulate points (not shown to650

the participants) for correct trials and adequate (not too slow and not too fast,651

non-time-out) RTs. Bonus money in addition to compensation for participating652

in the experiment were given to participants with good performances. RTs and653

choices were collected for each trial for each participant. Although the trial or-654

der was randomized across participants, every participant saw exactly the same655

480 trials.656

4.4 Model of decision making behaviour657

We used a previously described ideal observer model of decision making be-658

haviour that is equivalent to a drift-diffusion model to define decision evidence659

(H. Park et al., 2016; Bitzer et al., 2014). The model postulates a direct linear660

relationship between momentary decision evidence and the x-coordinates of the661

white dot and identifies accumulated evidence as the simple cumulative sum of662

22

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 21, 2019. ; https://doi.org/10.1101/350876doi: bioRxiv preprint 

https://doi.org/10.1101/350876
http://creativecommons.org/licenses/by/4.0/


x-coordinates. Parameters of the model, that are typically fit to behavioural663

responses, only change the slope, or offset of the linear relationship between x-664

coordinates and momentary decision evidence. As we normalised x-coordinates665

before entering them in subsequent analyses, these parameters of the model are666

irrelevant for our purposes. Therefore, the decision making model had no further667

role in our analyses than providing the theoretical link between x-coordinates668

and momentary and accumulated decision evidence.669

4.5 MEG data acquisition and preprocessing670

MEG data were recorded with a 306 channel VectorviewTM device (Elekta Oy,671

Helsinki, Finland), sampled at 1000 Hz. The MEG sensors covered the whole672

head, with triplet sensors consisting of two orthogonal gradiometers and one673

magnetometer at 102 locations. Additionally, three electrode pairs were used674

to monitor eye movement and heart beats at the same sampling rate. The675

raw MEG data was corrected for head movements and external interferences676

by the Signal Space Separation (SSS) method (Taulu, Simola, & Kajola, 2005)677

implemented in the MaxFilterTM software (Elekta Oy) for each block. The678

subsequent preprocessing was performed using MATLAB (Mathworks, Mas-679

sachusetts, United States). The head movement corrected data was high-pass680

and low-pass filtered using a linear phase FIR Kaiser filter (corrected for the681

shift) at cut-off frequencies of 0.33 Hz and 45 Hz respectively, with filter or-682

ders of 3736 and 392, respectively. The filtered data was then down-sampled683

to 250 Hz. Then independent component analysis (ICA) was applied to the684

continuous data using functions in the EEGLAB (Delorme & Makeig, 2004) to685

remove eye and heart beat artefacts. The data dimensionality was reduced by686

principal component analysis to 50 or 60 components prior to running the ICA.687

Components which had high temporal correlations (> 0.3) or typical topogra-688

phies with/of the EOG and ECG signals were identified and excluded. The689

ICA-reconstructed data for each block was combined, and epoched from – 300690

ms to 2500 ms from the first dot onset (zero). Another ICA was applied to691

these epoched data in order to check for additional artefacts and confirm typi-692

cal neural topographies from the components. The ICA reconstructed data and693

original data were compared and inspected in order to ensure only artefactual694

trials were excluded. Before statistical analysis we used MNE-Python v0.15.2695

(Gramfort et al., 2014, 2013) to downsample the data to 100 Hz (10 ms steps)696

and perform baseline correction for each trial where the baseline value was the697

mean signal in the period from -300 ms to 0 ms (first dot onset).698

4.6 Source reconstruction699

We reconstructed the source currents underlying the measured MEG signals us-700

ing noise-normalised minimum norm estimation (Dale et al., 2000) implemented701

in the MNE software. To create participant-specific forward models we semi-702

automatically co-registered the head positions of participants with the MEG703

coordinate frame while at the same time morphing the participants’ head shape704
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to that of Freesurfer’s fsaverage by aligning the fsaverage head surface to a set of705

head points recorded for each participant. We defined a source space along the706

white matter surface of the average subject with 4098 equally spaced sources per707

hemisphere and an approximate source spacing of about 5 mm (MNE’s ”oct6”708

option). For minimum norm estimation we assumed a signal-to-noise ratio of 3709

(lambda2 = 0.11). We estimated the noise covariance matrix for noise normali-710

sation (Dale et al., 2000) from the MEG signals in the baseline period spanning711

from 300 ms before to first dot onset in each trial. We further used standard712

loose orientation constraints (loose=0.2), but subsequently picked only the cur-713

rents normal to the cortical mantle. We employed standard depth weighting714

with a value of 0.8 to overcome the bias of minimum norm estimates towards715

superficial sources. We computed the inverse solution from all MEG sensors716

(magnetometers and the two sets of gradiometers) returning dynamic statistical717

parametric maps for each participant. Before some of the subsequent statistical718

analyses we averaged the reconstructed source signals across all sources of a719

brain area as defined by the recently published HCP-MMP parcellation of the720

human connectome project (Glasser et al., 2016).721

4.7 Regression analyses722

Most of our results were based on regression analyses with a general linear723

model giving event-related regression coefficients (Clarke et al., 2013; Hauk et724

al., 2006). We differentiate between a standard regression analysis on events725

aligned at the time when the white dot appeared in each trial, expanded regres-726

sion analyses on events aligned at the times of white dot position changes and727

response-aligned regression analyses.728

4.7.1 Standard regression analysis729

In the standard regression analysis we defined dot-specific regressors with values730

changing only across trials. For example, we defined a regressor for momentary731

evidence (x-coordinate) of the 2nd white dot position presented in the trial.732

For convenience we also call white dot positions (1st, 2nd and so forth in the733

sequence of dot positions) simply ’dots’.734

We only report results of a standard regression analysis in Supplementary735

Figure 1. This analysis included the dot x- and y-coordinates of the first 6 dots736

as regressors of interest (together 12 regressors). Additional nuisance regressors737

were: the response of the participant, a participant-specific trial count roughly738

measuring time within the experiment, an intercept capturing average effects739

and a response entropy. The latter quantified the posterior uncertainty of a740

probabilistic model of the responses (H. Park et al., 2016) that the model had741

about the response for the stimulus presented in that trial after model parame-742

ters were adapted to fit participant responses. Specifically, the wider and flatter743

the posterior predictive distribution over responses of the model for a particu-744

lar trial / dot position sequence was, the larger was the response entropy for745
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that trial. The data for this analysis were the preprocessed magnetometer time746

courses.747

4.7.2 Expanded regression analyses748

Figure 9: Diagram demonstrating the selection of data points entering the ex-
panded regression analyses. Dot positions (d1, d2, d3, . . . ) changed every 100
ms in the experiment (black). Coloured dots indicate times at which signal data
points entered the analysis for a given time from dot position change (dot onset,
shown exemplarily for 80 and 220 ms from dot onset). We only considered time
points up to 200 ms before the response in each trial. Coloured d1, d2, d3 above
the points indicate the dot positions associated with the corresponding signal
data points for the given time from dot onset. For each trial, these pairs of
signal data and dot positions entered the expanded regression analyses.

Expanded regression analyses were based on an expanded set of data cre-749

ated by dividing up the data into partially overlapping epochs centred on the750

times of dot position changes. For each time point after this dot onset the data751

contained a variable number of time points depending on how many more dots752

were presented in each individual trial before a response was given by the par-753

ticipant. For example, if a participant made a response after 880 ms in a trial,754

9 dots were shown in that trial (onset of the 9th dot was at 800 ms). If we are755

interested in the time point 120 ms after dot onset (dot position change), this756

gives us 8 time points within that trial that were 120 ms after dot onset. Further757

excluding all time points 200 ms before the response and later, would leave us758

with 6 data points for this example trial. See Figure 9 for an illustration. For759

each time after dot onset and for each participant we pooled all of these data760

points across trials and inferred regression coefficients on these expanded data761

sets. Note that this approach can equally be interpreted as statistical inference762

over how strongly the sequence of momentary evidence caused by the dot up-763

dates is represented in the signal at 100 ms wide steps with a delay given by764

the chosen time from dot onset.765

These analyses included two regressors of interest: momentary evidence (x-766

coordinate) and y-coordinate of the associated dots. We additionally included767

the following nuisance regressors: an intercept capturing average effects, the768

absolute values of x- and y-coordinates, perceptual update variables for x- and769

y-coordinates (Wyart et al., 2012) defined as the magnitude of the change from770
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one dot position to another and accumulated values of x- and y-coordinates.771

Because we found that the accumulated values can be strongly correlated with772

the individual x- and y-coordinates (cf. Supplementary Figure 2), we only used773

accumulated values up to the previous dot in the regressor. For example, if a774

data point was associated with the x-coordinate of the 4th dot, the accumulated775

regressor would contain the sum of only the first three x-coordinates. This776

accumulated regressor is equal to the regressor resulting from Gram-Schmidt777

orthonormalisation of the full sum of x-coordinates with respect to the last778

shown x-coordinate. The accumulated evidence regressor was derived from the779

ideal observer model as the log posterior odds of the two alternatives, but this780

was almost 100% correlated with the simple sum of x-coordinates. The small781

differences between model-based accumulated evidence and sum of x-coordinates782

after normalisation resulted from a small participant-specific offset representing783

the overall bias of the participant towards one decision alternative. Note that784

we do not show any results for this (previous) accumulated evidence regressor.785

In Figure 4, Figure 6, Supplementary Figure 3 and Supplementary Figure786

4 we report results from separate expanded regression analyses in which we re-787

placed the x-coordinate regressor with the sum of x-coordinates and dropped the788

previous accumulated evidence regressor. We did this, because the previous ac-789

cumulated evidence regressor did not allow us to estimate effects of accumulated790

evidence for the first 100 ms after dot onset which is possible with the separate791

regression. We also did not see any benefits from using the previous accumulated792

evidence regressor in comparison to the simple sum of x-coordinates up to the793

current dot. Although the previous accumulated evidence regressor is in princi-794

ple Gram-Schmidt orthogonalised with respect to the current, i.e., last presented795

x-coordinate and therefore provides independent information from the current796

x-coordinate, this is not the orthogonalisation that we are most interested in.797

Ideally we would want to orthogonalise with respect to any information about798

x-coordinates, i.e., momentary evidence including information contributed by799

the whole series of x-coordinates. So, while the previous accumulated evidence800

regressor is orthogonal to the current x-coordinate, it still correlates with the801

x-coordinates of previously presented dots. As accumulated evidence is just the802

sum of x-coordinates, this cannot be prevented so that momentary and accu-803

mulated evidence regressors will always partially capture overlapping effects.804

We still found it informative to present a separate analysis for accumulated ev-805

idence under the premise that the effects of the accumulated evidence regressor806

more strongly relate to accumulated evidence than momentary evidence and807

vice-versa for the momentary evidence regressor. We present a discussion of808

their differences in Supplementary Material.809

4.7.3 Response-aligned regression analyses810

Additional to the first-dot onset and dot onset aligned analyses, we conducted811

response-aligned analyses in which time was referenced to trial-specific response812

times of participants. The regressors in this analysis were the trial-specific choice813

of the participant, trial-time and an intercept. Choice was encoded as -1 for left814
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and +1 for right so that the direction of correlations was compatible with that815

for the evidence regressors. The trial-time regressor simply counted the trial816

number within the experiment per participant. Timed out trials were excluded817

from analysis. As in the other regression analyses we z-scored regressors and818

data across trials before estimating the regression coefficients, except for trial-819

time which was only scaled to standard deviation equal to 1. We ran two820

different analyses in sensor and source space. In sensor space (magnetometers)821

we ran independent univariate regressions for each combination of sensor and822

time so that we ran 102 * 70 regressions with maximally 480 data points (one823

per trial, minus excluded trials). We report results of this analysis in Figure 7824

and Supplementary Figure 6. After having identified time windows of interest825

based on the sensor level results, we aggregated data from the identified times826

into a common regression on source data. To do this we simply pooled the data827

from all times in the time window and ran the regression on this expanded data828

set, then including maximally number of trials * number of time points data829

points. This approach meant that we were automatically estimating the mean830

regression coefficients across the selected time window for each brain area and831

participant. We report results of this analysis in Figure 8.832

4.7.4 Identification of significant source-level effects833

To identify significant correlations between regressors of interest and source sig-834

nals we followed the summary statistics approach (Friston, Ashburner, Kiebel,835

Nichols, & Penny, 2006) and performed two-sided t-tests on the second level836

(group-level, t-tests across participants). We corrected for multiple comparisons837

across time points and brain areas by controlling the false discovery rate using838

the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995). Specifically,839

for identifying significant effects reported in Figure 5 we corrected across 25,340840

tests covering 70 time points (0 to 690 ms from dot onset in 10 ms steps) and841

362 brain areas (180 brain areas of interest per hemisphere plus one collection842

of sources per hemisphere that fell between the area definitions provided by the843

atlas). We report all significant effects of this analysis in Supplementary Data844

Table 1.845

4.7.5 Identification of significant differences in correlation patterns846

We formally investigated the differences in correlation patterns of the response-847

aligned analysis between the two time windows of interest (Figure 8, Supple-848

mentary Figure 6). As we were interested in the differences between spatial849

patterns, we accounted for the overall increase in correlation magnitudes from850

build-up to response window by normalising the correlation magnitudes. This851

normalisation consisted of first shifting the minimum magnitude to 0 and then852

scaling the resulting magnitudes so that their mean equals 1 across sensors or853

brain areas. The initial shift of the magnitudes prevents excessive shrinking of854

magnitude variances for magnitude patterns with overall large magnitudes and855

ensures that the magnitudes have similar distributions across the involved sen-856
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sors or brain areas in both considered time periods. We subsequently computed857

the differences between the selected time periods on the first level and report858

second-level (across participant) statistics.859

The analysis on the source level in principle equalled that of the sensor level,860

but additionally accounted for the fact that most brain areas were not involved861

in encoding the choice. We achieved this by computing the normalisation pa-862

rameters for a time window only across brain areas with a significant effect in863

this time window. However, we then computed magnitude differences for all864

brain areas with a significant effect in at least one of the time windows and865

proceeded with second-level statistics for these areas as before.866
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Brodbeck, C., . . . Hämäläinen, M. S. (2014, February). Mne soft-942

ware for processing meg and eeg data. NeuroImage, 86 , 446–460. doi:943

10.1016/j.neuroimage.2013.10.027944

Hadar, A. A., Rowe, P., Di Costa, S., Jones, A., & Yarrow, K. (2016, November).945

Motor-evoked potentials reveal a motor-cortical readout of evidence accu-946

mulation for sensorimotor decisions. Psychophysiology , 53 , 1721–1731.947

doi: 10.1111/psyp.12737948

Hanks, T. D., & Summerfield, C. (2017, January). Perceptual decision making949

in rodents, monkeys, and humans. Neuron, 93 , 15–31. doi: 10.1016/950

j.neuron.2016.12.003951

Hauk, O., Davis, M. H., Ford, M., Pulvermüller, F., & Marslen-Wilson, W. D.952

(2006, May). The time course of visual word recognition as revealed by953

linear regression analysis of erp data. NeuroImage, 30 , 1383–1400. doi:954

10.1016/j.neuroimage.2005.11.048955

Heekeren, H. R., Marrett, S., & Ungerleider, L. G. (2008, Jun). The neural sys-956

tems that mediate human perceptual decision making. Nat Rev Neurosci ,957

9 (6), 467–479. doi: 10.1038/nrn2374958

Hubert-Wallander, B., & Boynton, G. M. (2015). Not all summary statistics are959

made equal: Evidence from extracting summaries across time. Journal of960

vision, 15 , 5. doi: 10.1167/15.4.5961

Kandel, E., Jessell, T., Schwartz, J., Siegelbaum, S., & Hudspeth, A. (2012).962

Principles of neural science, fifth edition. McGraw-Hill Education. Re-963

trieved from http://www.principlesofneuralscience.com/964

Kelly, S. P., & O’Connell, R. G. (2013, Dec). Internal and external influences on965

the rate of sensory evidence accumulation in the human brain. J Neurosci ,966

33 (50), 19434–19441. doi: 10.1523/JNEUROSCI.3355-13.2013967

Latimer, K. W., Yates, J. L., Meister, M. L. R., Huk, A. C., & Pillow,968

J. W. (2015, Jul). Single-trial spike trains in parietal cortex reveal dis-969

crete steps during decision-making. Science, 349 (6244), 184–187. doi:970

10.1126/science.aaa4056971

Leech, R., & Sharp, D. J. (2014, January). The role of the posterior cingulate972

cortex in cognition and disease. Brain : a journal of neurology , 137 ,973

12–32. doi: 10.1093/brain/awt162974

Meister, M. L. R., Hennig, J. A., & Huk, A. C. (2013, Feb). Signal mul-975

tiplexing and single-neuron computations in lateral intraparietal area976

during decision-making. J Neurosci , 33 (6), 2254–2267. doi: 10.1523/977

JNEUROSCI.2984-12.2013978

Michelet, T., Duncan, G. H., & Cisek, P. (2010, July). Response competition979

in the primary motor cortex: corticospinal excitability reflects response980

replacement during simple decisions. Journal of neurophysiology , 104 ,981

119–127. doi: 10.1152/jn.00819.2009982

Mostert, P., Kok, P., & de Lange, F. P. (2015). Dissociating sensory from de-983

cision processes in human perceptual decision making. Sci Rep, 5 , 18253.984

doi: 10.1038/srep18253985

30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 21, 2019. ; https://doi.org/10.1101/350876doi: bioRxiv preprint 

https://doi.org/10.1101/350876
http://creativecommons.org/licenses/by/4.0/


Myers, N. E., Rohenkohl, G., Wyart, V., Woolrich, M. W., Nobre, A. C., &986

Stokes, M. G. (2015, Dec). Testing sensory evidence against mnemonic987

templates. Elife, 4 . doi: 10.7554/eLife.09000988

O’Connell, R. G., Dockree, P. M., & Kelly, S. P. (2012, November). A989

supramodal accumulation-to-bound signal that determines perceptual de-990

cisions in humans. Nat Neurosci , 15 (12), 1729–1735. doi: 10.1038/991

nn.3248992
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6 Supplementary Material1040

6.1 Stereotyped temporal correlation profiles across evi-1041

dence regressors1042
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Supplementary Figure 1: Time course of correlations with momentary evidence
repeats for each dot shifted by dot onset times. In the standard regression
analysis there was one regressor for each element in the sequence of dot positions
(dots). This allowed us to see, when after first dot onset, correlations with
the considered dot could be observed. The figure demonstrates exemplarily
for the magnetometer channel with the strongest average correlations that the
correlation time course exhibits roughly a stereotyped profile relative to the
onset time of the dot on the second level. Dotted lines show the same quantity,
but for data that we permuted over trials before the regression analysis.
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6.2 Correlations with accumulated evidence1043

Supplementary Figure 2: The accumulated evidence is correlated across trials
with the momentary evidence provided by dot positions, the correct choice in a
trial and the choices of the participants. A: Correlation coefficients for all com-
binations of momentary and accumulated evidence for the shown onset times.
For example, the correlation value at row 2, column 4 gives the correlation be-
tween the momentary evidence of the 2nd dot position within a trial and the
accumulated evidence up to the 4th dot position, across trials. B: Comparison
of correlations between accumulated evidence and three trial-wise measures:
the correct choice in a trial (orange line), the momentary evidence at the same
time point (green line, equal to diagonal in A), and the choices of the partici-
pants (blue boxes). The blue boxes show the distribution over participants per
considered dot position.
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6.3 On the relation of momentary and accumulated evi-1044

dence representations1045

The simple mathematical relationship between momentary and accumulated ev-1046

idence (a sum) means that the inferred regression coefficients for either momen-1047

tary or accumulated evidence will always contain contributions from the other1048

type of evidence. In other words, a linear regression analysis (including any1049

form of correlation analysis) will never be able to completely dissociate neural1050

signals relating only to momentary or only to accumulated evidence. However,1051

as inferred coefficients for momentary or accumulated evidence still identify ef-1052

fects of the corresponding type of evidence more strongly than the other type of1053

evidence, we here attempt to further delineate effects relating to momentary and1054

accumulated evidence by investigating specifically differences in their inferred1055

representations. Our analysis suggests that specifically accumulated evidence1056

and not momentary evidence is represented in the MEG magnetometer signals1057

with a central positivity, as already indicated by the inferred coefficients for1058

accumulated evidence shown in Figure 4.1059

Because accumulated evidence is the cumulative sum of momentary evi-1060

dences, accumulated evidence can correlate strongly with the last shown mo-1061

mentary evidence and with momentary evidences shown at previous time points,1062

even though momentary evidences at different time points are themselves un-1063

correlated. To understand the relation between momentary and accumulated1064

evidence effects we, therefore, need to consider the recent history of momentary1065

evidences.1066

To further visualise the relation between momentary and accumulated evi-1067

dence we annotated the correlation time course of accumulated evidence shown1068

in Figure 4 with that of the momentary evidence shown in Figure 3. This is1069

shown in Supplementary Figure 3 where we additionally added two time-shifted1070

replicas of the momentary evidence. These replicas visualise the representations1071

of the x-coordinates of two previous dots such that we see the time points at1072

which x-coordinates of the current and two previous dots are represented in1073

the MEG signals while only the time course of correlations with accumulated1074

evidence up to the current dot are shown. The figure shows that the location of1075

peaks of accumulated evidence can be explained with the location of peaks of1076

momentary evidence (x-coordinates). For example, at 180 ms peaks of accumu-1077

lated evidence and momentary evidence of the current dot coincide. Similarly,1078

the peak of accumulated evidence at 80 ms can be related to the 180 ms peak1079

of momentary evidence of the previous dot (occurring at 80 ms in reference to1080

the current dot onset time). These observations demonstrate that the correla-1081

tions with accumulated evidence are partially driven by representations of the1082

momentary evidence / x-coordinates in the MEG signals.1083

To disentangle representations of accumulated evidence and momentary ev-1084

idence, or dot x-coordinates the time points with large differences in correlation1085

strengths between the two are of greatest interest. The two time points with the1086

largest discrepancies between correlation magnitudes of momentary and accu-1087

mulated evidence were 20 ms and 120 ms after dot onset. Supplementary Figure1088
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Supplementary Figure 3: Peaks and troughs of accumulated evidence correla-
tions coincide with peaks of momentary evidence correlations. Same format as
in Figure 3. Accumulated evidence is plotted as a blue solid line, where black
dots indicate time points of sensor topographies. In addition, we show the mo-
mentary evidence time course (dark grey shade, cf. Figure 3A) and two time-
shifted replicas of it, one shifted by 100 ms to the past (mid grey) and another
shifted by 200 ms to the past (light grey). These time courses, therefore, are
associated with the representation of the momentary evidence / x-coordinates
of the current and the previous two dots in the brain. This visualisation shows
that peaks in accumulated evidence tend to coincide with peaks in momentary
evidences presented at subsequent time points. Larger discrepancies between
correlation magnitudes of momentary and accumulated evidence only occurred
at 20 ms, 120 ms and from about 450 ms after dot onset. At 80 ms and 180
ms topographies slightly shifted towards parietal sensors otherwise effects were
located centrally.
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3 shows that at 20 and 120 ms a drop in magnitude of accumulated evidence cor-1089

relations co-occurred with the 120 ms momentary evidence peaks of the current1090

and previous dots. This drop in magnitude of accumulated evidence correlations,1091

therefore, resulted from an interaction with the centro-parietal anti-correlation1092

of the MEG signal with x-coordinates (cf. Figure 3A, topography at 120 ms).1093

Put differently, at these time points the representations of accumulated evidence1094

and x-coordinates in the MEG signal were incompatible so that through the1095

correlation between accumulated evidence and x-coordinates the correlations1096

of accumulated evidence with the MEG signal were diminished as the MEG1097

signal simultaneously represented the incompatible x-coordinates. Despite this1098

interaction, however, we still observed positive correlations with accumulated1099

evidence in central sensors mirroring the topography, although weaker, at later1100

time points with strong effects, for example at 320 ms (Supplementary Figure1101

3, bottom). This affirms that specifically accumulated evidence is represented1102

with a topography featuring a central positivity in the MEG signal.1103

At 80 ms and 180 ms the sensor topographies for accumulated evidence1104

deviated somewhat from a central to a more centro-parietal positivity. We1105

reported above that the peaks of accumulated evidence coincided with peaks1106

of momentary evidence at these time points. These momentary evidence peaks1107

corresponded to the 180 ms momentary evidence peak in relation to dot onset1108

which had a centro-parietal topography as shown in Figure 3A. So the shift1109

from central to centro-parietal positive correlations with accumulated evidence1110

can be explained by the interaction with the representation of the momentary1111

evidence at these time points. Notice, however, that the positive correlations1112

with accumulated evidence still cover central locations more strongly than the1113

corresponding effects for momentary evidence at 180 ms (Supplementary Figure1114

4). This also indicates that accumulated evidence tended to be represented with1115

a central positivity.1116
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Supplementary Figure 4: Correlations between magnetometer signals and accu-
mulated evidence are more central than those for momentary evidence at 180 ms
after dot onset. Top: Topographies repeated from Figure 3 and Supplementary
Figure 3 at the indicated times. Bottom: Difference topographies where we sub-
tracted the topography of the momentary evidence at 180 ms from those of the
accumulated evidence. The difference topographies show that the accumulated
evidence had stronger correlations in central sensors while the momentary evi-
dence had stronger correlations in mid-parietal sensors. Additionally, accumu-
lated evidence had stronger correlations in posterior lateral sensors, especially
on the left.
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6.4 Choice correlations correspond to difference between1117

average signals for right minus left choices1118

Supplementary Figure 5: The choice correlations 30 ms after the response shown
in Figure 7 emerge from the difference between right and left button responses.
For this analysis we repeated the response-aligned regression analysis, but re-
placed the intercept and choice regressors with regressors for the left and right
choices. The resulting regression coefficients are approximately proportional to
the average signal in trials with a left, or right choice, respectively (the estimated
coefficients are equal to the average signals, if the two response regressors are
encoded with 0s and 1s and are the only regressors in the analysis, or their corre-
lation with the other regressors is exactly 0). The topographies for left and right
above show second-level t-values for the regression coefficients at 30 ms after
the response. The topography on the right hand side shows their difference.
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6.5 Topography differences for choice correlations before1119

and around the response1120

Supplementary Figure 6: Around the response choice correlations were stronger
than before the response over central sensors. We formally tested the apparent
differences in topographies of choice correlations shown in Figure 7 for time
points -120 ms and 30 ms. As we were interested in the spatial patterns and
not absolute value differences within sensors, we scaled the coefficient estimates
(β) across sensors, but within time points and participants for this analysis so
that their mean magnitude across sensors was equal to 1. We then computed
the difference between time points within each participant and sensor. The
colouring in the plot shows the mean of these differences across participants.
We further applied a t-test across participants within each sensor and corrected
the resulting p-values for false discovery rate at α = 0.01 across sensors. The
white dots in the figure indicate sensors which exhibited a significant difference
after multiple comparison correction. Together with the topographies shown in
Figure 7 the results of this analysis confirm that before the response occipital
sensors had stronger anti-correlation with choice than around the response. In
contrast, fronto-lateral sensors exhibited stronger anti-correlation around the
response than before the response. Furthermore, the strongest difference oc-
curred in central sensors which exhibited a relatively stronger correlation with
choice around the response than before the response.
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