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ABSTRACT

The advent of Next Generation Sequencing (NGS) technologies has opened new
perspectives in deciphering the genetic mechanisms underlying complex diseases.
Nowadays, the amount of genomic data is massive and substantial efforts and new
tools are required to unveil the information hidden in the data.

The Genomic Data Commons (GDC) Data Portal is a large data collection platform
that includes different genomic studies included the ones from The Cancer Genome
Atlas (TCGA) and the Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) initiatives, accounting for more than 40 tumor types
originating from nearly 30000 patients. Such platforms, although very attractive, must
make sure the stored data are easily accessible and adequately harmonized.
Moreover, they have the primary focus on the data storage in a unique place, and
they do not provide a comprehensive toolkit for analyses and interpretation of the
data. To fulfill this urgent need, comprehensive but easily accessible computational
methods for integrative analyses of genomic data without renouncing a robust
statistical and theoretical framework are needed. In this context, the R/Bioconductor
package TCGADbiolinks was developed, offering a variety of bioinformatics
functionalities. Here we introduce new features and enhancements of TCGAbiolinks
in terms of i) more accurate and flexible pipelines for differential expression
analyses, ii) different methods for tumor purity estimation and filtering, iii) integration
of normal samples from the Genotype-Tissue-Expression (GTEXx) platform iv)
support for other genomics datasets, here exemplified by the TARGET data.
Evidence has shown that accounting for tumor purity is essential in the study of
tumorigenesis, as these factors promote confounding behavior regarding differential
expression analysis. Henceforth, we implemented these filtering procedures in
TCGADbiolinks. Moreover, a limitation of some of the TCGA datasets is the
unavailability or paucity of corresponding normal samples. We thus integrated into
TCGADbiolinks the possibility to use normal samples from the Genotype-Tissue
Expression (GTEX) project, which is another large-scale repository cataloging gene
expression from healthy individuals. The new functionalities are available in the
TCGABIolinks v 2.8 and higher released in Bioconductor version 3.7.
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Introduction

Cancer is among the leading causes of mortality worldwide, a complex disease where
multiple different mechanisms are in play at the same time. The complexity of cancer
lies in the fact that it is an extremely heterogeneous and can exist in distinct forms
where each cancer type or subtype can be characterized by different molecular profiles
with possible consequences on treatment and prognosis for the patient [1,2]. Advances
in next-generation sequencing are currently making available a massive amount of data
with profiling of samples from cancer patients [3-7].

In this context, numerous large-scale studies have been conducted using state-of-the-art
genome analysis technologies. One of the most important examples is The Cancer
Genome Atlas (TCGA), which started in 2006 as a pilot project aiming to collect and
conduct analyses on an unprecedented amount of clinical and molecular data including
over 33 tumor types spanning over 11,000 patients, subsequently generating more than
2.5 petabytes of publicly available data over the past decade [8-10]. Publicly funded by
The National Institute of Health (NIH), TCGA has made numerous discoveries regarding
genomic and epigenomic alterations that are candidate drivers for cancer development,
and this was achieved through creating an "atlas" and applying large-scale genome-wide
sequencing and multidimensional analyses. These latter efforts have significantly
contributed to high-quality oncology studies, either led by the TCGA research network
or other independent researchers [10], which recently culminated in 27 original
publications from the PanCancer TCGA initiative [11]. In 2016, TCGA was moved under
the umbrella of the broader repository Genomic Data Commons (GDC) Data Portal [12]
together with other studies.

TCGA offers two versions of public data: legacy and harmonized. The legacy data is an
unmodified collection of data that was previously maintained by the Data Coordinating
Center (DCC) using GRCh36 (hg18) and GRCh37 (hg19) as genome reference assembly.
On the other hand, the harmonized version provides data that has been fully
harmonized using GRCh38 (hg38) as a reference genome available through GDC portal.
Many tools have been so far developed to interface with the TCGA data [13-26] and help
with the aggregation, pre- and post-processing of the datasets. Among them,
TCGAbiolinks was developed as an R/Bioconductor package to address the challenges of
comprehensive analyses of TCGA data [17,18,27]. Software packages such as
TCGAbiolinks regularly require enhancements and revisions in light of new biological or
methodological evidence from the literature or new computational requirements
imposed by the platforms where the data are stored.

For example, it is well-recognized that the tumor microenvironment also includes non-
cancerous cells of which a large proportion are immune cells or cells that support blood
vessels and other normal cells such as fibroblast [28,29]. These components can
ultimately alter the outcome of genomic analyses and the biological interpretation of the
results. Recently, an extensive effort was made to systematically quantify tumor purity
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with a variety of diverse methods integrated into a consensus approach across TCGA
cancer types [30], which the tools for analyses of TCGA data should employ.

Other cancer genomic initiatives have been following the TCGA model, such as the
Therapeutically Applicable Research to Generate Effective Treatments (TARGET) which
is an NCI-funded project conducting a large-scale study that seeks to unravel novel
therapeutic targets, biomarkers, and drug targets in childhood cancers by
comprehensive molecular characterization and understanding of the genomic landscape
in pediatric malignancies [31]. Comprehensive support to the analyses of different
genomic datasets with the same workflow is thus essential for both reproducibility and
harmonization of the results.

At last, it is a common practice to use adjacent tissue showing normal characteristics at
a macroscopic or histological level as a control. This advantageous practice concerning
time-efficiency and reduction of patient-specific bias is based on the assumption that
these samples are truly normal. Nevertheless, a tissue that is in the surrounding or
adjacent to a highly genetically abnormal tumor is likely to show cancer-related
molecular aberrations [32], biasing the comparison. Moreover, circulating biomolecules,
originated from cancer cells, can be taken in by the surrounding normal-like cells and
alter their gene expression and processes. TCGA includes non-tumor samples from the
same cancer participants. Furthermore, the pool of TCGA normal samples is often
limited or lacking in TCGA projects. In this context, initiatives such as Recount [33],
Recount2 [34] and RNASEQDB [35] where TCGA data were integrated with normal
healthy samples from the Genotype-Tissue Expression (GTEx) project [36] have the
potential to boost the comparative analyses also for those TCGA datasets where normal
samples are underrepresented or unavailable.

We present new key features and enhancements that we implemented in TCGAbiolinks
version 2.8 and higher in light of recent discoveries on the impact of quantification of
the tumor purity of the samples under investigation [30], the need of a more substantial
amount of normal samples [34], as well as the implementation of robust and statistically
sound workflows for differential expression analyses [37,38] and exploration of
potential sources of batch effects [39].

Design and Implementation
Overview on TCGAbiolinks

For the sake of clarity, we will at first briefly introduce the main functions of
TCGAbiolinks that are extensively discussed in the original publication and a recently
published workflow [17,18]. We advise referring directly to these publications and the
vignette on Bioconductor for more details on the basic functionalities.

The data retrieval is handled by three main functions of TCGAbiolinks: GDCquery,
GDCdownload and GDCprepare and allows to interface with three main platforms: i)
TCGA, ii) TARGET and, iii) The Cancer Genome Characterization Initiative (CGCI)
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(https://ocg.cancer.gov/programs/cgci). TCGAbiolinks also allows to interface with
different genomics, transcriptomics and proteomics platforms, along with to retrieve
clinical data, information on drug treatments, subtypes and biospecimen.

GDCprepare is especially relevant since it allows the user to prepare the gene expression
data for downstream analyses. This step is done by restructuring the data into a
SummarizedExperiment (SE) object [40] that is easily manageable and integrable with
other R/Bioconductor packages or just as a dataframe for other forms of data
manipulation.

Moreover, TCGAbiolinks offers the option to apply normalization methods with the
function TCGAanalyze_Normalization adopting the EDASeq protocol [41], to apply
between-lane normalization to adjust for distributional differences between samples or
within-lane normalization (to account for differences in GC content and gene length).

To guide result interpretation, the TCGAvisualize function allows the user to generate
the plots required for a comprehensive view of the analyzed data using mostly the
ggplot2 package that has incremental layer options (such as Principal Component
Analysis, Pathway enrichment analysis...) [42].

We extended TCGAbiolinks with new functionalities and methods that could boost the
analyses of genomic data and while at the same time not necessarily being limited to the
TCGA initiative.

Toward more generalized analyses of genomic data in GDC

TCGAbiolinks was initially conceived to interact with the TCGA data, but the same
workflow could be in principle extended to other datasets if the functions to handle
their differences in formats and data availability are properly handled. As an example,
we thus now worked to support the SE format also for other GDC datasets, such as the
ones from the TARGET consortium which is included inTCGAbiolinks 2.8. The SE object
provides the advantage of collecting clinical information on the samples (such as patient
gender, age, treatments...) and on genes (ENSEMBL and ENTREZ IDs). One of the major
problems in the study of genomic data is that they are often stored in unconnected silos
with the consequence of stalling the advancements in the analyses[43].The design of
GDCprepare function of TCGAbiolinks thus nicely fulfils the need of standardized and
harmonized ways to process data from different genomics initiatives which could find in
GDC portal the common storage.

Handling batch corrections in TCGAbiolinks: TCGAbatch_correction

High-throughput sequencing or other -omics experiments are subject to unwanted
sources of variability due to the presence of hidden variables and heterogeneity.
Samples are processed through different protocols, depending on the practices followed
by each independent Ilaboratory, involving time factor and multiple people
orchestrating the genomic experiments. Known as batch effects, these sources of
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heterogeneity can have severe impacts on the results by statistically or biologically
compromising the validity of the research [39].

Here, we introduced the TCGAbatch_correction function to address and correct for
different potential sources of batch effects linked to TCGA gene expression data using
the sva R package [39]. The sva package provides a framework for removing artifacts
either by (i) estimating surrogate variables that introduce unwanted variability in high-
throughput high dimensional datasets or (ii) using the ComBat function that employ an
empirical Bayesian framework to remove batch effects related to known sources [44].
Modeling for known batch effects significantly helps improving results by stabilizing
error rates, reducing dependence on surrogates.

In this context, TCGAbatch_correction takes GDC gene expression data as input, extracts
all the needed metadata by parsing barcodes, corrects for a user-specified batch factor,
and also adjusts for any selected cofactor. In cases in which the investigator is not
interested in correcting for batch effects with ComBat or this step is discouraged for the
downstream analyses, the voom (an acronym for variance modeling at the observational
level) transformation can be applied to carry out normal-based statistics on RNA-Seq
gene counts [37] (see below).

The TCGAbatch_correction function also generates plots to compare the parametric
estimates for the distribution of batch effects across genes and their kernel estimates.
Moreover, the so-called Q-Q plots can be produced showing the empirical data of ranked
batch effects on each gene compared to their parametric estimate. Before applying
batch effect corrections, one should verify if there is any evidence of extreme
differences between the kernel and the parametric estimates. Such differences can show
up as bimodality or severe skewness and are due to the inability of the parametric
estimation to pick up the empirical kernel behavior (an example is provided in the case
study on breast cancer below and discussed in Figure 1).

TCGA_MolecularSubtype

Although each cancer is believed to be a single disease, advances in the genomic field
pointed out that each cancer type is much more heterogeneous and different subtypes
can be identified. Bioinformatics applied to genomics data can enable a molecular
understanding of the tumors across different cancer subtypes. Instead of binning all
cases and patients into a single category, differentiating the intrinsic subtypes of each
cancer has provided efficient targeted treatment strategies and prognoses. Cancer
subtypes can be defined according to histology or molecular profiles. Tables with
general annotations from the TCGA publications on classifications of the patients are
provided by the TCGAquery_subtype function [17]. The format of the data is although not
easy to navigate and integrate within other functions.

For this reason, we designed a new function TCGA_MolecularSubtype and of manually
curated molecular subtypes for a total of 13 cancer types (Table 1). Collectively, we
have molecular subtype annotation for 4768 individuals (of which 4469 with RNA-Seq
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data available). The function also allows fetching the subtype information not only for
each cancer type, but also at for each TCGA barcode (i.e., for each individual sample).

In particular, the information used to classify cancer subtypes is the one used and the
most recently published by the Pan-Cancer works from the TCGA consortium
(http://bicinformaticsfmrp.github.io/TCGAbiolinks/subtypes.html#pancanceratlas sub
types: curated molecular subtypes). An alternative is also the function added in the
context of the Pan-Cancer studies, namely PanCancerAtlas_subtypes, which provides
molecular subtypes (in the column Subtype_Selected) for 24 cancer types and 7,734
TCGA’s samples. These new functions have the advantage that the data are a curation
retrieved from synapse directly and thus up-to-date
(https://www.synapse.org/#!Synapse:syn8402849).

Recently we showed the advantage of using those functions to have a resource (in the

same place) to quickly retrieve molecular subtypes in Pan-cancer studies and compares
to novel defined stemness index [45] and immune subtypes [46] for individual TCGA’s
samples.

TCGAtumor_purity

The tumor microenvironment encloses cellular and non-cellular units that play a critical
role in the initiation, progression, and metastasis of the tumor [30,47,48].

An important concept to retain from the TME definition is the "tumor purity’ which is
defined as the proportion of carcinoma cells in a tumor sample. In previous times,
tumor purity used to be estimated through visual inspection with the assistance of a
pathologist and by image analysis. Currently, with the advent of computational methods
and the use of genomic features such as somatic mutations, DNA methylation, and
somatic copy-number variation (CNV), it is feasible to estimate tumor purity [28].

To account for tumor purity in the TCGAbiolinks workflow, we designed the
TCGAtumor_purity function that filters data according to one of the following five
methods: i) ESTIMATE (Estimation of Stromal and Immune cells in Malignant Tumor
tissues using Expression data) [49]; ii) ABSOLUTE to infer tumor purity from the
analysis of somatic DNA aberrations [50]; iii) LUMP (Leukocytes Unmethylation) that
uses the average of 44 detected non-methylated immune-specific CpG sites [30]; iv) IHC,
the Nationwide Children’s Hospital Biospecimen Core Resource provided stain slides
containing eosin and haemtoxylin which are processed using image analysis techniques
to generate a tumor purity estimate [30]; v) Consensus measurement of Purity
Estimation (CPE), a consensus estimate from the four methods mentioned above [30].
CPE is calculated as the median purity level after normalization of the values from the
four methods and correcting for the means and standard deviations and it is the default
option by the TCGAtumor_purity function.

TCGAanalyze_DEA Extension

We revised and expanded the pre-existing TCGAbiolinks function that performed
differential expression analyses (DEAs) calling the commonly used R package edgeR
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[38]. In the former available version of TCGAbiolinks, only a pairwise approach (for
example, control versus case) was applied to a matrix of count data and samples to
extract differentially expressed genes (DEGs). In particular the former
TCGAanalyze_DEA function implemented two options: (i) the exactTest framework for a
simple pairwise comparison, or (ii) the GLM (Generalized Linear Model) where a user
faces a more complex experimental design involving multiple factors. However, in the
latter case, the design of the function allowed the user to provide arguments for case
and control only thus being incompatible with multifactor experiments, for which GLM
methods are particularly suited [51]. We thus implemented a different design to
improve the functionality of TCGAanalyze_DEA by providing the ability to analyze RNA-
Seq data in a more general and comprehensive way. The user is now able to apply edgeR
with a more sophisticated design matrix and to use the limma-voom method, an
emerging gold standard for RNA-Seq data [52]. Furthermore, modeling multifactor
experiments and correcting for batch effects related to TCGA samples is now an option
in the updated version of TCGAanalyze_DEA. The new arguments for the function allow
to account for different sources of batch effects in the design matrix, such as the plates,
the TSS (Tissue Source Site), the year in which the sample was taken, and to account for
the patient factor in the case of paired normal and tumor samples. Moreover, an option
is provided to apply two different pipelines to the study of paired or unpaired samples,
namely limma-voom and limma-trend pipelines. A contrast formula is provided to
determine coefficients and design contrasts in a customized way, as well as the
possibility to model a multifactor experimental design.

The function returns two types of objects: either i) a table with DEGs containing for each
gene logF(C, logCPM, p-value, and FDR corrected p-value in case of pairwise comparison,
and/or ii) a list object containing multiple tables for DEGs according to each contrast
specified in the contrast.formula argument.

TCGAquery_Recount2

The Recount project was created as an online resource that comprises gene count
matrices built from 8 billion reads using 475 samples coming from 18 published studies
[33]. This atlas of RNA-Seq count table improves the process of data acquisition and
allows cross-study comparisons since all the count tables were produced from one
single pipeline reducing batch effects and promoting alternative normalization. Recount
was then extended to Recount? consisting of more than 4.4 trillion reads using 70,603
human RNA-seq samples from the Sequence Read Archive (SRA), GTEx, and TCGA that
were uniformly processed, quantified with Rail-RNA [53], and included in the recent
RecountZ interface [34].

For this reason, TCGAquery_RecountZ queries GTEx and TCGA RecountZ2 for all tissues
available on the online platform, providing the flexibility to the user to decide which
tissue source to employ for the calculations.

TCGAquery_RecountsZ integrates normal samples from GTEx and normal samples from
TCGA. If the user wants to use GTEx alone as a source of normal samples, an ad hoc
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curation of the dataset will be needed before applying the functions for pre-processing
of the data and downstream analyses with TCGAbiolinks.

Examples

Below, we illustrate two cases studies as an example of the usage of the new functions
and interpretation of their results.

Case study 1 - A protocol for pre-processing and differential expression analysis of TCGA-
BRCA Luminal subtypes

The TCGA Breast Invasive Carcinoma (BRCA) dataset is the ideal case study to illustrate
the new functionalities of TCGAbiolinks.

We carried out the query, download and pre-processing of the TCGA-BRCA RNA-Seq
data through the GDC portal with a variation of the workflow suggested for the previous
versions of the TCGAbiolinks software (see the script reported in
https://github.com/ELELAB/TCGAbiolinks examples ). Among 1222 BRCA samples
available in GDC, for example purposes, we restricted our analysis to 100 tumor (TP)
samples and 100 normal (NT) samples respectively.

We constructed the SE object as the starting structure displaying information regarding
both genes and samples and containing gene expression table of HTSeqg-based counts
from reads harmonized and aligned to hg38 genome assembly. Afterward, we applied
an Array Array Intensity correlation (AAIC) to pinpoint samples with low correlation
(0.6 threshold for this study) using TCGAanalyze_Preprocessing, which generates a count
matrix ready to be fed to the downstream analysis pipeline. In addition, we normalized
the gene counts for GC-content using TCGAanalyze_Normalization adopting EDASeq
protocol incorporated with TCGAbiolinks.

An exploratory data analysis (EDA) step is now possible within TCGAbiolinks to
understand the quality of the data and to identify possible anomalies or cofounder
effects that need to be taken into account. This can be done estimating the presence of
batch effects through the plots provided by the ComBat function, as described above.
We can call the TCGAbatch_correction function on a log2 transformed instance of the
count matrix. For the sake of clarity, we used, in this example, batch correction on TSS
as a cofounder factor along with accounting for one covariate (cancer VS normal) and
only two batches were retained. The results are reported in Figure 1.

According to the standard defined by the TCGA consortium, 60% purity is the
recommended threshold for analyses [30]. Thus, we applied a filtering step where
tumor samples that show a tumor purity less than 60% median CPE are discarded from
the analysis using the TCGAtumor_purity function of TCGAbiolinks. As a result, a total of
26 samples were discarded with the goal of reducing the confounding effect of tumor
purity on genomic analyses.

We then applied the new TCGAanalyze_DEA to exploit the power of generalized linear
models beyond the control versus case scheme. As an illustrative case, we queried the
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PAM5O0 classification [54] for each of the samples through TCGA_MolecularSubtype and
then provided to the DEA method so the customizable contrast.formula argument can
contain the formula designing the contrasts. Beforehand, data is normalized for GC-
content, as explained above. As a final step, a quantile filtering is applied with a cutoff of
25%), as suggested by the original TCGAbiolinks workflow. Within the TCGAanalyze_DEA
function, it is specified to also perform a voom transformation of the count data, as
detailed above. In Figure 2, we show the results as a Volcano plot performing DEA with
the new implementation of the TCGAanalyze_DEA function. For example, we identified
the dipeptidyl peptidase-IV DPP6 as up-regulated in Luminal breast cancer subtypes
with respect to normal samples. DPP6 belongs to a family of proteases that cleave X-Pro
dipeptides from the N-terminal extremity of proteins. Several active peptides that have
a role in cancerogenesis are enriched in conserved prolines as proteolytic-processing
regulatory elements [55]. DPP6 overexpression could thus cause aberrant cellular
functions. DPP-1V proteins have been also suggested as interesting therapeutic targets
for developing inhibitors of their activity [55].

Case study 2 - Uterine cancer dataset exploiting Recount2

One issue that can be encountered when planning DEA of TCGA data is the fact that
some projects on the GDC portal do not contain normal control samples for the
comparison with the tumor samples. As explained previously, now it is possible to
query data from the RecountZ platform to increase the pool of normal samples and
apply the DEA pipelines of TCGAbiolinks.

For this case study, we used the TCGA Uterine Carcinosarcoma (UCS) dataset to
illustrate this application. We queried, downloaded, and pre-processed the data using a
similar workflow to our previous case study, and then GTEx healthy uterus tissues are
used as a source of normal samples for DEA. Concerning the type of the queried count
data, it is similarly harmonized HTSeq counts aligned to the genome assembly hg38 (see
the script reported in https://github.com/ELELAB/TCGAbiolinks examples). We used
TCGAquery_recount2 function to download tumour and normal uterus samples from the
Recount?2 platform as Ranged Summarized Experiment (RSE) objects.

First, before engaging into DEA, one should keep in mind that the RecountZ resource
contains reads, some of them soft-clipped, aligned to Gencode version 25 hg38 using the
splice-aware Rail-RNA aligner. Moreover, the RSE shows coverage counts instead of
standard read count matrices. Since most methods are adapted to read count matrices,
there are some highly recommended transformations to tackle before DEA. Hence, the
user should extract sample metadata from RSE objects regarding read length and count
of mapped reads to pre-process the data. If one provides a target library size (40 million
reads by default), coverage counts can be scaled to read counts usable for classic DEA
methods according to the equation (1) (possibly with the need to round the counts since
the result might not be of an integer type).

coverage target
(1) g 9% = scaled read counts
Read Length mapped
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The denominator is the sum of the coverage for all base-pairs of the genome which can
be replaced by the Area under Curve (AUC) [56]. It is possible to use the function
scale_counts from the recount package. After that, we merged the two prepared gene
count matrices, normalized for GC-content and applied the quantile filtered with a 25%
cut-off. The data were then fed to the TCGAanalyze DEA function comparing normal
versus cancer samples with the limma-voom pipeline. Two volcano plots that show the
top down- and up-regulated genes are shown in Figure 3 and 4, respectively. As an
example, we identified the up-regulated gene ADAMZ28 in UCS tumor samples when
compared to the normal ones (logFC = 3.13). ADAM28 belongs to the ADAM family of
disintegrins and metalloproteinases which are involved in important biological events
such as cell adhesion, fusion, migration and membrane protein shedding and
proteolysis. They are often overexpressed in tumors and contribute to promotion of cell
growth and invasion [57]. We also identified other key players in cell adhesion such as
the cadherin CDH1 [58] as top up-regulated genes in UCS .

Availability and Future Directions

The functions illustrated in this manuscript are now available in the version 2.8 of
TCGAbiolinks on Bioconductor version 3.7
(https://bioconductor.org/packages/release/bioc/html/TCGAbiolinks.html ), as well as
through the two Github repositories (https://github.com/ELELAB/TCGAbiolinks and
https: //github.com/BioinformaticsFMRP/TCGAbiolinks/ ).

In addition, we daily provide scientific advices to the github community within our
https://github.com/BioinformaticsFMRP/TCGAbiolinks/issues to solve both software
bugs and proving new functionalities needed/requested by the gGthub communities.
The issues feature is a place where the users of TCGAbiolinks can share their experience
with their analyses and case study that can be addressed by our team or other Github
users as well.

The newly developed functions will allow for the first time to fully appreciate the effect
of using genuinely healthy samples or normal tumor-adjacent samples as a control as
well as to correct for tumor purity of the samples. We provided a more robust and

comprehensive workflow to carry out differential expression analysis with two different

methods and a customizable design matrix, as well as capability to handle batch
corrections, which overall will provide the community with the possibility to use the
same framework for example for benchmarking of differential expression methods
(https://bioconductor.org/packages/release/bioc/vignettes /TCGAbiolinks/inst/doc/e
xtension.html ).
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Table 1. Information on molecular subtypes for TCGA cancer studies as provided by the
TCGA_MolecularSubtype function.

TCGA study Number of samples with both
subtype information and RNASEQ
data available

TCGA-BRCA 942

TCGA-GBM 156

TCGA-LUAD 290

TCGA-UCEC 391

TCGA-KIRC 513

TCGA-HNSC 314

TCGA-LGG 511
TCGA-THCA 549

TCGA-LUSC 193
TCGA-PRAD 377
TCGA-SKCM 66

TCGA-KICH 89

TCGA-ACC 78
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Figure Legends

Figure 1. Example of the exploration of batch effects. Four plots generated by ComBat to correct
for batch effects. For the left panel plots, the red lines are the parametric estimates, and the
black lines are the kernel estimates for the distribution of effects across genes. The right panel
shows Q-Q plots with the red line for the parametric estimate and the ordered batch effects for
each gene (black points). The bottom plots show the analyses for the variances and the top plots
refers to the means. Plots were generated for batches TSS E9 and E2 only to avoid batches
containing only one sample.

Figure 2. DEA analyses of TCGA-BRCA data comparing luminal subtypes with normal samples.
A volcano plot is shown where only those genes with logFC higher than 5 or lower than -5 are
shown as representative up- and down-regulated genes, respectively when comparing the
Luminal subtype to the normal breast samples.

Figure 3. Down-regulated genes in uterine cancer compared to healthy uterus tissue samples.
In the volcano plot, the down-regulated genes with logFC lower than -5 are shown as a result of
DEA carried out comparing primary tumor samples from TCGA-UCS and normal uterus tissue
samples from GTEX.

Figure 4. Up-regulated genes in uterine cancer compared to healthy uterus tissue samples. In
the volcano plot, the up-regulated genes with logFC higher than 5 are shown as a result of DEA
carried out comparing primary tumor samples from TCGA-UCS and normal uterus tissue
samples from GTEx.
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