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Abstract

Successfully predicting the future states of systems that are complex, stochastic and
potentially chaotic is a major challenge. Model forecasting error (FE) is the usual measure of
success; however model predictions provide no insights into the potential for improvement.
In short, the realized predictability of a specific model is uninformative about whether the
system is inherently predictable or whether the chosen model is a poor match for the system
and our observations thereof. Ideally, model proficiency would be judged with respect to the
systems’ intrinsic predictability — the highest achievable predictability given the degree to
which system dynamics are the result of deterministic v. stochastic processes. Intrinsic
predictability may be quantified with permutation entropy (PE), a model-free,
information-theoretic measure of the complexity of a time series. By means of simulations we
show that a correlation exists between estimated PE and FE and show how stochasticity,
process error, and chaotic dynamics affect the relationship. This relationship is verified for a
dataset of 461 empirical ecological time series. We show how deviations from the expected
PE-FE relationship are related to covariates of data quality and the nonlinearity of ecological
dynamics.

These results demonstrate a theoretically-grounded basis for a model-free evaluation of a
system’s intrinsic predictability. Identifying the gap between the intrinsic and realized
predictability of time series will enable researchers to understand whether forecasting
proficiency is limited by the quality and quantity of their data or the ability of the chosen
forecasting model to explain the data. Intrinsic predictability also provides a model-free
baseline of forecasting proficiency against which modeling efforts can be evaluated.

Glossary

Active information: The amount of information that is available to forecasting models
(redundant information minus lost information; Fig. 1).

Forecasting error (FE): A measure of the discrepancy between a model’s forecasts and the
observed dynamics of a system. Common measures of forecast error are root mean squared
error and mean absolute error.

Entropy: Measures the average amount of information in the outcome of a stochastic
process.

Information: Any entity that provides answers and resolves uncertainty about a process.
When information is calculated using logarithms to the base two (i.e. information in bits), it is
the minimum number of yes/no questions required, on average, to determine the identity of
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the symbol (Jost 2006). The information in an observation consists of information inherited
from the past (redundant information), and of new information.

Intrinsic predictability: the maximum achievable predictability of a system (Beckage et al.
2011).

Lost information: The part of the redundant information lost due to measurement or
sampling error, or transformations of the data (Fig. 1).

New information, Shannon entropy rate: The Shannon entropy rate quantifies the average
amount of information per observation in a time series that is unrelated to the past, i.e., the
new information (Fig. 1).

Nonlinearity: When the deterministic processes governing system dynamics depend on the
state of the system.

Permutation entropy (PE): permutation entropy is a measure of the complexity of a time
series (Bandt & Pompe, 2002) that is negatively correlated with a system’s predictability
(Garland et al. 2015). Permutation entropy quantifies the combined new and lost information.
PE is scaled to range between a minimum of 0 and a maximum of 1.

Realized predictability: the achieved predictability of a system from a given forecasting
model.

Redundant information: The information inherited from the past, and thus the maximum
amount of information available for use in forecasting (Fig. 1).

Symbols, words, permutations: symbols are simply the smallest unit in a formal language
such as the letters in the English alphabet i.e., {*A”, “B”,..., “Z”}. In information theory the
alphabet is more abstract, such as elements in the set {*up”, “down”} or {*1”, “2”, “3”}. Words,
of length m refer to concatenations of the symbols (e.g., up-down-down) in a set.
Permutations are the possible orderings of symbols in a set. In this manuscript, the words
are the permutations that arise from the numerical ordering of m data points in a time series.
Weighted permutation entropy (WPE): a modification of permutation entropy (Fadlallah et
al., 2013) that distinguishes between small-scale, noise-driven variation and large-scale,
system-driven variation by considering the magnitudes of changes in addition to the
rank-order patterns of PE.

Introduction

Understanding and predicting the dynamics of complex systems are central goals for many
scientific disciplines (Weigend & Gershenfeld 1993, Hofman et al. 2017). Ecology is no
exception as environmental changes across the globe have led to repeated calls to make the
field a more predictive science (Clark 2001, Petchey et al. 2015, Dietze et al. 2018, Dietze
2017). One particular focus is anticipatory predictions, forecasting probable future states in
order to actively inform and guide decisions and policy (Mouquet et al. 2015, Maris et al.
2018). Robust anticipatory predictions require a quantitative framework to assess ecological
forecasting and diagnose when and why ecological forecasts succeed or fail.

Forecast performance is measured by realized predictability (see glossary), often
quantified as the correlation coefficient between observations and predictions, or its
complement, forecasting error (FE) measures, such as root mean squared error (RMSE).
Hence, realized predictability is in part determined by the model used as for any given
system, different models will give different levels of realized predictability. Furthermore, it can
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be unclear, from realized predictability alone, whether the system is stochastic or the model
is a poor choice.

By contrast, the intrinsic predictability of a system is an absolute measure that represents
the highest achievable predictability (Lorenz 1995, Beckage et al. 2011). The intrinsic
predictability of a system can be approximated with model-free measure of time series
complexity, such as Lyapunov exponents or permutation entropy (Boffetta et al. 2002,
Bandt & Pompe 2002, Garland et al. 2015). In principle, intrinsic predictability has the
potential to indicate whether the model, data, or system are limiting realized predictability.
Thus, if we know the intrinsic predictability of a system and its realized predictability under
specific models, the difference between the two is indicative of how much predictability can
be improved (Beckage et al. 2011).

Here we formalize a conceptual framework connecting intrinsic predictability and realized
predictability. Our framework enables comparative investigations into the intrinsic
predictability across systems and provides guidance on where and why forecasting is likely
to succeed or fail. We use simulations of the logistic map to demonstrate the behaviour of
PE in response to time series complexity and the effects of both process and measurement
noise. We confirm a general relationship between PE and FE, using a large dataset of
empirical time series and demonstrate how the quality, length, and nonlinearity in particular
of these time series influences the gap between intrinsic and realized predictability and the
consequences for forecasting.

Conceptual framework

The foundation for linking intrinsic and realized predictability lies in information theory and
builds on research demonstrating a relationship between PE and FE for complex computer
systems (Garland et al. 2015). Information theory was originally developed by Claude
Shannon as a mathematical description of communication (Shannon 1948) but has since
been applied across many disciplines. In ecology, several information-theoretic methods
have proved useful, including the Shannon biodiversity metric in which the probability of
symbol occurrences (see Box 1) is replaced by the probability of species occurrences (Jost
2006, Sherwin et al. 2017), and the Akaike Information Criterion (Akaike 1974) which is
widely used for comparing the performance of alternative models (Burnham & Anderson
2002). Given its importance to our framework, we first provide an introduction to information
theory with special attention to applications for ecological time series. Since our goal is to
inform where, when and why forecasting succeeds or fails; we then i) describe how
information may be partitioned into new and redundant information based on permutation
entropy, ii) demonstrate how redundant information is exploited by different forecasting
models, and iii) examine the relationship between permutation entropy and realized
predictability and how it can inform forecasting.

An information-theoretic perspective
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A first step towards predicting the future of any system is understanding if the observations
of that system contain information about the future, i.e. does the system have a memory.
The total information in each observation can be thought of as a combination of information
that came from past states (i.e., redundant information) and information that is only
available in the present state (i.e., new information).

When there is a substantial amount of information transmitted from the past to the present
(figure 1Aiii), the system is said to be highly redundant. In other words, future states depend
greatly on the present and past states. In these cases, very little new information is
generated during each subsequent observation of the system and the resulting time series
is, in theory, highly predictable (has high intrinsic predictability).

Conversely, in systems dominated by stochasticity, the system state at each time point is
mostly independent of past states (figure 1Ai). Thus, all of the information will be “new”
information, and there will be little to no redundancy with which to train a forecasting model.
In this case, regardless of model choice, the system will not be predictable (has low intrinsic
predictability).

Imperfect observations introduce uncertainty or bias into time series, and thereby affect the
redundant information that is available or perceived. Observation errors in particular will
reduce the redundant information available to forecasting models, thus lowering the realized
predictability. We refer to this reduction as lost information, which is not an innate property
of the system but is the result of the practical limitations of making measurements and any
information-damaging processing of the data (Fig. 1B, Box 2). As such, lost information can
be mitigated and is an important leverage point for ecologists to improve their forecasts. For
example, replicate measurements or other forms of data integration that increase estimation
accuracy and reduce bias will reduce information loss and can improve forecasts.

Permutation entropy

Permutation entropy (PE) is a measure of time series complexity that approximates the rate
at which new information is being generated along a time series (Box 1). PE approximates
and is inversely related to intrinsic predictability by quantifying how quickly the system
generates new information. Time series with low permutation entropy have high redundancy
and are expected to have high intrinsic predictability (Garland et al. 2015).

PE uses a symbolic analysis that translates a time series into a frequency distribution of
words (see glossary for definition). The frequency distribution of words is then used to
assess the predictability of the time series. For example, a time series in which a single word
(i.e. a specific pattern) dominates the dynamics has high redundancy and thus future states
are well predicted by past states. In contrast, a random time series, in which no single
pattern dominates, would produce a nearly uniform frequency distribution of words, with
future states occurring independently from past states. Hence, by quantifying the frequency
distribution of words, PE approximates how much information is transmitted from the past to
the present, corresponding to the intrinsic predictability of a time series.
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When observations are imperfect PE measures the joint influence of new information (from
either internal or external processes) and lost information (due to the observation process as
well as data processing). We refer to the redundant information that is not lost and remains
available as active information, which is the information that can be exploited by
forecasting models.

Forecasting and redundant information

Realized predictability is highest when the chosen forecasting model exploits all the active
information contained in a time series. For illustration, we forecast the oscillating abundance
of a laboratory ciliate population (Veilleux 1976) with three different approaches (Figure 1C):
i) the mean of the time series (a model which uses relatively little of the active information),
ii) a linear autoregressive integrated moving-average model (ARIMA) that uses the
local-order structure of the time series in addition to the mean (a model which uses an
intermediate amount of the active information), and iii) empirical dynamic modelling (EDM)
that can incorporate nonlinearities, when present, in addition to the mean and local-order
structure (a model which can feasibly use more active information). The time series was split
into training data and test data. Forecasting models were fit to the training data and used to
make forward predictions among the test data. The forecast performance of the models (i.e.
the realized predictability) varied with the amount of information they used, which depended
on structural differences among the models that exploit the active information coming from
the past. EDM and ARIMA had similar performance suggesting that the time series entailed
little nonlinearities for the EDM to exploit.

The relationship between realized and intrinsic predictability

With a perfect forecasting model, realized predictability - measured by forecasting error (FE)
- and intrinsic predictability - measured by permutation entropy (PE) - will be positively
related. More specifically, the relationship will pass through the origin and monotonically
increase up to the maximum limit of PE = 1 (Fig. 1D, the boundary between the white and
grey regions; Garland et al. 2015). In the top right of this figure are systems with high PE
and therefore low redundancy and high forecasting error. In the bottom-left of the figure are
systems with low PE and therefore high redundancy and low forecast error. The boundary is
the limit for a perfect model that maximizes the use of active information.

Lost information complicates the interpretation of the PE - FE relationship by obscuring the
system’s actual intrinsic predictability. We illustrate this case in figure 1D using two
hypothetical systems: one with high intrinsic predictability and a large amount of lost
information, and one with lower intrinsic predictability but relatively little lost information.
Despite the differences in the redundancy of two systems, the PE of their time series can be
very similar (even identical) because PE does not differentiate between new and lost
information.

For this example, both systems in figure 1D start with high FE relative to their PE. Selecting
more appropriate forecasting models causes a reduction in FE but no change in PE.
Reducing lost information (e.g. by increasing the frequency of measurements) decreases
both PE and FE. The system with a high redundancy and a low Shannon entropy rate has
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a greater overall potential for improving forecasting skill through the recovery of lost
information. In contrast, the system with low redundancy has limited scope to further improve
forecasting skill; forecasting is less limited by lost information, but rather by its lower
redundancy. As such, the lowest possible forecast error will be substantially higher in the
second system than in the first system because the intrinsic predictability of the second is
inherently lower and cannot be changed.
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Figure 1A. The total information content of an observation of a system at a given state in
time, S, is depicted by filled circles with past states (S, , and S, ,) represented by shades of
grey. i) lack of overlap between past and present states illustrating a case where no
information is transmitted from past states (i.e. a purely stochastic system), with low
redundancy and high Shannon entropy rate, ii) intermediate overlap indicating a case when
some information is transferred from past to present (i.e. a deterministic system strongly
driven by stochastic forcing), with intermediate redundancy and Shannon entropy rate, iii)
large overlap indicating a case when the current state is mostly determined by the previous
state (i.e. a highly deterministic system), with high redundancy and low Shannon entropy
rate. Note that both the redundancy and Shannon entropy rate of a system are intrinsic
properties of the system and will only change if the system itself changes.

Figure 1B. The total information of an observation (black circle) is composed of new
information and redundant information; redundant information is composed of active and lost
information. A system’s redundancy determines its intrinsic predictability. Information may be
lost due to observation error and data processing (lost information). This reduces the
redundant information that can be used for forecasting (active information). Lost information
is not an intrinsic property of the system but rather represents practical limitations on our
ability to make accurate measurements. The rate at which new information is being
generated (Shannon entropy rate) may be approximated with permutation entropy. Because
permutation entropy quantifies the joint contribution of the Shannon entropy rate and the lost
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information, efforts that minimize the amount of lost information not only maximize the
redundant information that can actively be used for forecasting but also improve the
estimation of the intrinsic Shannon entropy rate.
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Figure 1C. The realized predictability is the degree to which forecast models can exploit the
active information of a time series. Consider, for example, a time-series on the abundance of
a species (black line) of which the first 21 days are used to train (parameterize) three
forecasting models: a forecast that uses the simple mean of the training data set (red), an
Autoregressive integrated moving average (ARIMA) model (green), and an Empirical
Dynamical Model (EDM, blue). The forecasting performance of these models is assessed
using the remaining time series (after day 22). The inset shows the normalized root mean
squared error (nRMSE) as a measure of deviation between predicted and observed values
(i.e. forecast error) for each of the three forecasting models. ARIMA and EDM exploit the
available structure in the data better than the mean forecast, as illustrated by the coloured
wedges filling different amounts of the area of active information.
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Figure 1D. In the relationship between PE and FE a system can be moved toward the ideal
grey boundary with forecast models that make better use of active information or by reducing
information loss, not necessarily in that order. The two panels depict how to reach the
greatest achievable forecasting skill in two different systems that have the same initial
permutation entropy but differ in their relative amounts of new and redundant information

(i.e. they differ in their intrinsic predictability). As these intrinsic properties of the system
cannot be changed, improvements to forecast skill rely on fully exploiting the active
information available (e.g., improved forecasting model) and minimizing information loss
(e.g., improved sampling) to better approximate the true Shannon entropy rate, which
establishes the lower boundary (grey area).
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Box 1 Theory and estimation of PE and WPE

Information theory provides several measures for approximating how much new information
is expected per observation of a system (e.g. the Shannon-entropy rate and the
Kolmogorov-Sinai entropy). However, these measures are only well defined for infinite
sequences of discrete random variables and can be quite challenging to approximate for
continuous random variables, especially if one only has a finite set of imperfect observations.
Permutation entropy is a measure aimed at robustly approximating the Shannon-entropy
rate of a times series (or the Kolmogorov-Sinai entropy if the time series is stationary).

Rather than estimating probability mass functions from symbol frequencies or frequencies
of sequences of symbols, as is done with traditional estimates of the Shannon-entropy rate,
permutation entropy uses the frequencies of orderings of sequences of values; it is an
ordinal analysis (see Fig. B1-1 below for a visual explanation). The ordinal analysis of a time
series maps the successive time-ordered elements of a time series to their value-ordered
permutation of the same size. As an example, if [x,, x,, x;] = [11, 6, 8] then its ordinal
pattern, or word, ¢([x,, x,, x3]), is 2-3-1 since x, <x; <x, (see red time series fragment in
box figure | A). PE is calculated by counting the frequencies of these words (or
permutations) that arise after the time series undergoes this ordinal analysis. That is, given
a time series (box figure | A), let S,, be defined as the set of all permutations (possible
words) n of order (word length) m and time delay t, describing the delay between
successive points in the time series (box figure | B form =3 and © = 1). For each
permutation n© € S,, we estimate its relative frequency of occurrence for the observed time

series after performing ordinal analysis on each delay vector,
_ RiliEN=m, o([x;, X;_15...%,, 1 )=1}]

p(n) = —— , Where || denotes set cardinality (box figure | C). Then
permutation entropy of order m > 2 is calculated as h(m)= — Y p(n)log,(p(n)).
nES,,

Since, 0 < h(m) < log,(m!), it is common to normalize permutation entropy by dividing by
log,(m!) . With this convention, maximal A(m) =1 and minimal h(m) is equal to 0. Since in
the infinite word length limit, permutation entropy is equivalent to the Kolmogorov-Sinai
entropy as long as the observational uncertainty is sufficiently small (Amigo et al. 2005), we
can approximate the intrinsic predictability of an ecological time series by computing

1 —h(m).

For the ordinal analysis of a time series, ranks are only well defined if all values are different.
If some values are equal (so called ‘ties’), the ordinal analysis is not possible. Several
approaches are available to break the ties: the "first" method results in a permutation with
increasing values at each index set of ties, and analogously "last" with decreasing values.
The "random" method puts these in random order whereas the "average" method replaces
them by their mean, and "max" and "min" replaces them by their maximum and minimum
respectively, the latter being the typical sports ranking.

In contrast, an ordinal analyses is also affected by small scale fluctuations due to
measurement noise which can obscure the influence of large scale system dynamics.
Weighted permutation entropy (WPE) reduces the influence of small-scale fluctuations by
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taking into account the relative magnitudes of the time series values within each word
(Fadlallah et al. 2013). That is, each word’s (X, = [x,, X, ..., X,_(,—1y]) contribution to the

probability mass function is weighted by its variance, viz., w(X,) = var(X,). Using this
weighting function, the weighted probability of each permutation is estimated by:
2 wX)) 3(pX)), m)

1<N-m

Pw(m) = where 4(x,y) = lif and only if x=y» and &(x,y) = 0 otherwise. The

2 wlX)

t<N-m

weighted permutation entropy of order m > 2 is then defined as

hy(m)= — 3% p.(@)log,(p,(n)). Similar to PE, the weighted permutation entropy is

nES,
normalized by log,(m!). We use weighted permutation entropy for all analyses presented in
this manuscript.

The estimation of PE to time series requires specifying a order m and time delay t. The
shorter the chosen word length, the fewer possible words there are and the better we can
estimate permutation frequencies. However, the ability to distinguish patterns is limited by
the possible number of unique permutations. Hence, when word lengths are too short or too
long, the frequency distribution is more uniform. In practice the total length of the time series
limits the choice of possible word lengths and hence the number of unique words that can be
resolved (Riedl et al. 2013). Regarding the time delay t, most applications to study the
complexity of a time series use a t = 1 (Riedl et al. 2013). If T > 1, Bandt (2005) notes the
interesting property of the permutation entropy to be small, if the series has main period p for
t=p/2and3p/2, andto be large for t = pand 1 =2 p. We refer to Riedl et al. 2013 who
provide practical considerations regarding setting permutation order m and time delay t .


https://doi.org/10.1101/350017
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/350017; this version posted June 19, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A values =[6, 9, 11, 6, 8, 13, 5, 3]

§ 12.5

g 10.0

< 7.5

2 50

© 25 . , : ,

2 4 6 8
time
B 1-2-3 1-3-2 2-1-3 2-3-1 3-1-2 3-2-1
3
=
& 2
1
permutations n

C

. 0.3

(@)

S 02

3

S —

0.0 : : . . . :
1-2-3 1-3-2 2-1-3 2-3-1 3-1-2 3-2-1

Permutation entropy = - Y p() loga(p(x))

nESn

Figure B1. We illustrate how to estimate permutation entropy from an empirical time series
(A) assuming m = 3 and t = 1. A permutation order m = 3 allows for a set of 6 (i.e. 3!)
permutations, shown in panel B. The occurrence of each permutation = is then counted and
divided by the total number of permutations as an estimate of their proportional frequency
(panel C). For example, permutations 2-3-1 (shown in red) and 3-2-1 are each only found
once in the time series, whereas 1-2-3 and 3-1-2 are found twice, leading to frequencies of
0.17, 0.17, 0.33 and 0.33, respectively. The permutation entropy is then calculated as the
Shannon entropy of proportional frequencies. For the given time series this is 1.92, which is
normalized by log,(3!) yielding a permutation entropy of 0.74.

(End of Box 1)
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Box 2 with information on the limitations of PE /| WPE

When analyzing time series, ecologists typically employ a number of data pre-processing
methods. These methods are used to reduce low-frequency trends or periodic signals
(detrending), reduce high-frequency variation (smoothing), standardize across the time
series or reduce the influence of extreme values (transformation), deal with uncertain or
missing data points (gap or sequence removal, and interpolation), to examine specific time
step sizes (downsampling), or to combine different time series (aggregation). The following
table summarizes the anticipated effects on permutation entropy of a suite of commonly
used pre-processing methods. In many cases, whether a method increases or decreases
permutation entropy will depend on the specific attributes of the time series (e.g., its
embedding dimension, autocorrelation, covariance structure, etc.) and the permutation order
(m) at which its permutation entropy is approximated. This is illustrated by specific examples
in Figure B2 which contrasts the permutation entropies (using m = 3) of three hypothetical
time series before (top row) and after (bottom row) the application of (a-b) linear detrending,
(c-d) log-transformation, (e-f) interpolation of a missing or removed data point with a cubic
smoothing spline. As these examples illustrate, with the exception of affine transformations,
every pre-processing method discussed has the ability to alter our estimation of how much
predictive information is contained in a time series. As such, performing pre-processing of a
time series before permutation entropy is determined is not recommended. If the question to
be addressed depends on such pre-processing, then care must be taken to understand how
preprocessing is affecting the information estimate.

Data Examples Effect on Remark
processing
method Permutation Weighted
entropy (PE) permutation
entropy
(WPE)

Detrending Linear, nonlinear Increase or Increase or Effect will depend on attributes of the time series for any chosen
(e.g., GAM), decrease decrease permutation order > 2.
differencing

Transformation (x—X)/o, log(x), None Increase, Normalization or rescaling will have no effect as long as the
“\(x), Fisher, etc. decrease, or | transformation is linear. Nonlinear transformations that compress

none large values (e.g., log(x)) will increase WPE. Nonlinear
transformations that amplify large values (e.g., Fisher) will
decrease WPE.

Gap or Missing data (NAs), Increase or Increase or | Zeros should be retained if they represent true species absences

sequence below detection level decrease decrease (decreasing PE and WPE). Otherwise zeros and constant values

removal (zeros), species can be removed (increasing or decreasing PE and WPE, see
absences (zeros), main text) or replaced by uncorrelated noise (increasing PE and
constant values WPE). The effect of concatenation will depend on attributes of the
(poor precision) time series and gap size. Better to not count words that bridge
gaps.

Interpolation To infer gaps or to Increase or Increase or More likely to decrease than increase. Increases may occur for
make time series decrease decrease some nonlinear methods depending on attributes of the time
equidistant series and the chosen permutation length. Better to ignore

time-step uncertainty, assume equidistance, and not count words
that bridge gaps.
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Smoothing Time-averaging, Decrease Decrease Like linear interpolation decreases PE and WPE by increasing the
time-summation count of only-ascending or only-descending permutations.
Downsampling Regular subsetting Increase or Increase or | Effect will depend on attributes of the time series (particularly its
to increase time-step decrease decrease intrinsic embedding dimension) and the chosen permutation
size length.
Time series Combining species Increase or Increase or Effect will depend on attributes of the time series being
aggregation to functional group decrease decrease aggregated (e.g., their relative magnitudes, covariance, etc.).
(a) PE=0 (c)PE=04 4 (e) PE =0.4
o>
A .
x 7]. x x /
/ !
‘ 1 ‘ o %
Time Time Time
() PE=06_¢o (A)PE=04 o f)PE=06 o
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Figure B2. Anticipated effects of a suite of commonly used pre-processing methods

on (non-weighted) permutation entropy (PE) using three hypothetical time series before (top
row) and after (bottom row) the application of (a-b) linear detrending, (c-d)
log-transformation, and (e-f) interpolation of a missing or removed data point with a cubic
smoothing spline.

(End of Box 2)



https://doi.org/10.1101/350017
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/350017; this version posted June 19, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Materials & Methods

Forecasting with EDM

Empirical dynamic modelling is a set of nonlinear forecasting techniques brought to the
attention of ecologists through the work of Sugihara (1994). The method is based on the
idea that a system’s attractor generating the dynamics of a time series can be reconstructed
via delay coordinate embedding (Takens 1981, Sauer et al. 1991), which can then be used
to forecast system dynamics (e.g., Lorenz 1969, Weigend & Gershenfeld 1993, Farmer &
Sidorowich 1987, Garland et al. 2015, Sauer in Weigend & Gershenfeld 1993, Casdagli &
Eubank 1992, Smith 1992). The variant of these methods we use in this manuscript is based
on the simplex projection and S-map method (Sugihara 1994) through the rEDM package.

The EDM approach first identifies the optimal embedding dimension E of the training data by
fitting a model using simplex projection (Sugihara 1994). The embedding dimension E
determines the number of temporal lags used for the delay coordinate embedding. We
tested values for E between 1 and 10 and selected the value of E with the highest forecast
skill using leave-one-out cross validation (Sugihara 1994). We then fitted the tuning
parameter on the training data using the S-map model. describes the nonlinearity of the
system and was varied in 18 steps between 0 and 10 (with log scaled intervals) to find the
lowest error using leave-one-out cross validation on the training data.

In contrast to other forecasting methods such as ARIMA, the EDM approach searches
across multiple time series models by finding the optimal in sample combination of
embedding dimension and tuning parameter using cross-validation. Due to this model
selection step, EDM tests a suite of forecasting models equal to the combination of and E.
When is 0, the EDM model corresponds to an autoregressive model of the order of the
embedding dimension (i.e. an AR3 model if E = 3). Values of 8 greater than 0 can account
for increasing degrees of state-dependence.

Assessment of forecast error

We quantified forecasting error with the root mean squared error (Hyndman & Koehler

2006),
i (¢; = Pi)z
RMSE = "\ =—— |,

where k is the number of observed c; values (i.e. abundances) and p, are their corresponding
predicted values. To compare forecast errors across time series that vary widely in units and
variability, we normalized their RMSE by the range of observed values using

nRMSE = RVSE

max(c;) — min(c;) *
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Smaller nNRMSE corresponds to smaller forecasting error. Visual summaries of the observed
and predicted dynamics are provided in the supplementary materials, including profiles of E
and and the values chosen for predicting the test data.

Calculation of permutation entropy

We calculated the weighted permutation entropy (WPE) of time series using the methods
outlined in Box 1 (R code will be made available upon publication).

Logistic Map Time Series

To demonstrate how both intrinsic and realized predictability change along a continuum from
simple to complex and chaotic time series, we applied permutation entropy to time series
from a well known population dynamic model, the Logistic Map:

X =X (1-X,).
This model maps the current year’s population size to next year’s population size with simple
density-dependence between non-overlapping generations. Although simple, this first-order,
nonlinear function produces a wide range of dynamical behavior, from stable and oscillatory
equilibria to chaotic dynamics (May 1976). We include this range of behavior by simulating
the logistic map for 500 incremental growth rates between r = 3.4 and r = 3.9. We simulated
each growth rate for 10,000 time steps keeping the last 3000 times steps for analysis.
Weighted permutation entropy of time series was calculated for permutation order, m, from 3
to 5 and for time delay, 7, from 1 to 4. For simplicity, we will refer to weighted permutation
entropy only in the results section and use the generic term permutation entropy everywhere
else. Forecasting error for each time series was calculated using the normalized root mean
squared error of an EDM forecast of the last 200 time steps.

Because ecological systems are influenced by both deterministic and stochastic drivers and
the logistic map is purely deterministic, we sought to evaluate how stochasticity (noise)
affects weighted permutation entropy and forecast error. To do so, we independently added
both observational noise and process noise to the simulated population sizes by drawing
random values from Gaussian distributions with standard deviations of either 0, 0.0001,
0.001, or 0.01 (Bandt & Pompe 2002). If the new population size was not between 0 and 1, a
new value was drawn. Observational noise was added to the population size time series
after the simulation, whereas process noise was added to population size at each time step
during the simulation.

Empirical Time Series Data

For empirical evidence of a relationship between permutation entropy and forecasting error,
we examined a large variety of ecological time series that differ widely in complexity and
data quality. We further investigated whether deviations from the expected general
relationship can be explained by time series covariates such as measurement error (proxied
here by whether the data originated from field versus lab studies), the nonlinearity of the time
series (as quantified by the theta parameter of an EDM), or time series length. This allowed
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us to identify possible predictors of time series complexity and the potential with which the
time series of a system can be moved along the permutation-forecasting error (PE-FE)
relationship to maximize realized predictability.

Time series databases and processing

We compiled laboratory time series from the literature and field time series from the publicly
available Global Population Dynamic Database (GPDD) for our analysis. The GPDD is the
largest compilation of univariate time series available, spanning a wide range of geographic
locations, biotopes and taxa (NERC Centre for Population Biology, 1999, Inchausti & Halley
2001). The GDPP database was accessed via the rGDPP package in R
(https://github.com/ropensci/rgpdd). We added laboratory time series from studies by Becks
et al. 2005, Fussmann et al. 2000, and the datasets used in a meta-analysis by Hiltunen et
al. 2014. Time series with less than 30 observations, gaps greater than 1 time step and more
than 15% of values being equal (and hence having the same rank in the ordinal analysis, i.e.
ties) were excluded, resulting in a total of 461 time series. Each time series was divided into
training (initial %5 of the time series) and test data (the last s of the time series), with the
EDM model performing best on the training set being used to estimate forecast error in the
test set. We calculated the weighted permutation entropy (WPE) of each empirical time
series using a permutation order, m, of 3 and a time delay, t, of 1 . Results were robust to
the choice of m € [2, 5] and t € [1, 4]. The three different ways to deal with ties (i.e.
‘random”, “first”, “average”) did not qualitatively affect the results, with results being robust to
variation in time series minimum length and tie percentage

Statistical analysis

All analyses were performed in the statistical computing environment R (R Development
Core Team, 2018). We used the Ime4 package to fit mixed models to investigate the
relationship between forecast error and permutation entropy (Bates et al. 2015), with
forecasting error being the dependent variable. The independent variables were permutation
entropy, the data type, the number of observations (N), the proportion of zeros in the time
series (zero_prop), the proportion of ties in the time series (ties_prop), and, from the EDM
analysis, the nonlinearity ( ) and the embedding dimension (E) of the time series. The data
type, i.e. whether time series were measured in the lab or in the field, was included with our
hypothesis being that lab measurements have lower observation error. Zero and tie
proportions were included as they pose problems to the estimation of PE, as do short time
series (see Box 2).
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Results

Logistic Map Time Series

The expected relationship between weighted permutation entropy and forecasting error
occured in the simulations of the logistic map. Both WPE and FE generally increase as the
growth rate, r, increases and the dynamics of the logistic map enter the realm of
deterministic chaos (Fig. 2D). Correspondingly, both WPE and FE decline when chaotic
dynamics converge to limit cycles (Fig. 2, gold example with r = 3.84).

The effect of stochastic noise on the WPE-FE relationship depended on the type of noise
considered. While process noise strongly affects both WPE and FE (Fig. 3A) observational
noise affects forecasting error more strongly than WPE (Fig. 3B). Indeed, the relationship
between WPE and FE is largely obscured at high process noise but remains positive at high
observational noise (Fig. 3A,B, top panels), particularly when dynamics are chaotic. When
the dynamics are chaotic, the weighting in WPE is very effective at reducing the influence of
observational noise on estimates of permutation entropy. However, when the dynamics
exhibit stable limit cycles, WPE is sensitive to noise and this depends strongly on the chosen
time delay, t, and word length, m. For example, applying T=2 for a 2-point limit cycle with a
small amount of noise produces a WPE close to one, appearing as white noise as all
permutations occur with equal probability. Limit cycles are best analyzed with t=1 to capture
the oscillations, although with m=3 small amounts of noise still result in two permutations
occurring with equal frequency (1-3-2 or 2-3-1) and so WPE is elevated with respect to the
no-noise case despite the high redundancy of the limit cycles (Fig. 3B, dark blue and gold
points).
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Figure 2. Simulations of the deterministic logistic map with no added process or observation
noise. A) The last 30 time steps of three times series are plotted to demonstrate different
behaviors, including 2-point limit cycles (r = 3.41; dark blue), chaotic behavior (r = 3.73;
green), and 3-point limit cycles within the chaotic realm (r = 3.84; gold). B) A bifurcation
diagram of the logistic map attractor for growth rates between r = 3.4 and 3.9. C) Weighted
permutation entropy (WPE) of the logistic map time series as the growth rate, r, changes for
permutation order, m, of 3 (light grey), 4 (dark grey) and 5 (black), and time delay, of 1. D)
forecast error quantified by the normalized root mean squared error (nRMSE) of an EDM
forecast (E=2, =1)of the last 200 time steps of each simulation plotted against WPE
(m=5, =1). The color coding corresponds to the growth rates in ‘B’.
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Figure 3. The relationship between weighted permutation error (WPE; m=5, =1)and
forecasting error (measured as NnRMSE) at three levels of A) process noise and B)
observational noise. As the y-axis range and scale changes between subplots, the ‘no noise’
case is plotted in grey as a visual reference. The color coding corresponds to the growth
rates in Fig. 2B. Systems with higher process noise exhibit both higher WPE and higher
forecasting error. WPE is robust to observational noise when dynamics are chaotic, however
limit cycles cause elevated estimates of WPE dependent on the choice of m and
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Empirical Time Series Results

The 461 empirical time series vary in length (median = 50, min = 30, max = 197) and, as
measured by WPE, complexity (median = 0.84, min = 0.076, max = 1). Forecasting error
(nRMSE) ranges from 0.0000093 to 1.37, with a median of 0.19. Our analysis shows the
expected positive relationship between permutation entropy and forecast error, with more
complex time series (high WPE) yielding higher forecasting error (Table 1, center panel of
Fig. 4). No difference in mean forecast error nor a difference in slope is detected between
time series originating from lab or field studies (Table 1). Exploring the effects of time series
covariates indicates that longer time series had lower FE, whereas time series with larger
dimensionality (E) and greater nonlinearity (6) as measured by EDM show higher FE (Table
1). These covariates increase the amount of variation in FE explained across time series to
35% (Cl: 29 - 42%). An analysis of the partial R? of all fixed effects in the model revealed
that PE individually explained the largest amount of variation among predictors (21%, Cl: 15
- 27%), followed by time series length (18%, Cl: 12 - 24%), time series nonlinearity 6 (6%,
Cl: 2 - 10%) and the chosen embedding dimension E (4%, 1 - 9%). Zero and tie proportions,
as well as whether time series were from the field or the lab (type) explained less than 1% of
the observed variation.

The PE v. FE relationship allows us to identify time series which were predicted better, equal
to or worse than expected regarding their complexity (Fig. 4 a-f). Time series ‘b’ and ‘c’ fall
along the expected relationship and hence are well predicted despite large differences in
complexity. Time series ‘a’ shows a clear trend which is well predicted. In contrast, time
series ‘d’-'f have higher than expected forecast error. Time series ‘d’ shows higher than
expected error due to a strong outlier in the predicted values early in the test dataset. Time
series ‘e’ is consistently poorly predicted, potentially due to wrong model choice or due to the
short time series length. Time series ' is complex (high PE) with predictions missing the
ongoing downward trend in the test data.
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Table 1: Model table presenting fixed effects of the mixed model analysis relating
forecasting error to permutation entropy (PE), and additional time series covariates.
Parameter estimates (B), 95% confidence intervals (Cl) and p-values are provided.
Forecasting error increases with weighted permutation entropy across 461 ecological time
series.

Forecasting error (hnRMSE)

B Cl p

Fixed Parts

(Intercept) 0.0893 0.0106 — 0.1681 .027
PE 0.4796 0.3944 - 0.5648 <.001
type -0.0751 -0.2988 — 0.1486 511
Sample size (N) -0.0017 -0.0021 - -0.0013 <.001
Zero prop. 0.4062 0.0719 - 0.7405 .018
Ties prop. -0.3344 -0.7698 — 0.1009 133
Embedding dimension (E) 0.0088 0.0051 - 0.0124 <.001
Nonlinearity (theta) 0.0113 0.0072 - 0.0154 <.001

PE:type 0.1006 -0.1714 - 0.3726 469
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Figure 4. Relationship between weighted permutation entropy and forecast error (nRMSE,
note square root scale of y axis) across 461 time series (middle panel) and specific
exemplary time series (observations in black, forecasts in red, a-f). Forecast error increases
with complexity of the time series as indicated by the higher permutation entropy value. The
slope of the relationship was the same for time series from field and laboratory systems. The
upper panels (a-c) show time series with forecast error lower than (a) or as expected (b-c)
given their level of complexity, whereas the lower panels (d-f) illustrate time series which
have higher than expected forecast error.
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Discussion

The urgent need for ecologists to provide operational forecasts to managers and decision
makers requires that we understand when and why forecasts succeed or fail (Clark et al.
2001, Dietze 2017). We propose that the measurement of the intrinsic predictability of an
ecological system can help reveal the origin of predictive uncertainty and indicate whether
and how it can be reduced.

Our results show that realized and intrinsic predictability positively covary. The simulation
study revealed that the relationship can be obscured by stochastic process noise, while
measurement noise led to more scatter but preserved the positive slope (Fig 3). Although
process noise often dominates over measurement noise in ecological time series (Ahrestani
et al. 2013), the positive relationship between intrinsic and realized predictability we revealed
across a wide range of empirical time series supports the applicability of our framework. In
our analysis, permutation entropy explained the largest amount of variation (21%) in forecast
error, followed by time series length, dimensionality and nonlinearity, jointly accounting for
35% of the variation. Time series that fell onto the expected relationship (Fig 4b,c) were well
predicted given their complexity, whereas clear outliers (e.g. Fig 4e) would not require the
use of PE to be identified as such. The relationship however allowed us to identify potential
problems with forecasts of time series that have reasonable forecasts error, but which may
be affected by overfitting (Fig 4a), outliers (Fig 4d) or regime shifts (Fig 4e) that may have
gone unnoticed when looking at FE alone, particularly if applying automated or
semi-automated forecasting methods across hundreds or thousands of time series (White et
al. 2018).

The value of intrinsic predictability to guide forecasting

A major advantage of permutation entropy is the independence from any assumed
underlying model of the system, which makes this “model-free” method highly
complementary to existing model-based approaches. For instance, Dietze (2017) recently
proposed a model-based framework that partitions the contribution of various factors to
predictive uncertainty, including the influence of initial conditions, internal dynamics, external
forcing, parameter uncertainty and process error at different scales. If, for example, the
dominant factor affecting near-term forecasts is deemed to be internal dynamics, then insight
into intrinsic predictability would demonstrate how stable those internal dynamics are.
Similarly, if a lot of variation remains unexplained by the model (i.e. the process error not
explained by the known internal dynamics, initial conditions, external drivers, and estimated
parameters), then “model-free” methods can provide insight into whether that variation is
largely stochastic or contains unexploited structure that could be captured with further
research into the driving deterministic processes. Finally, permutation entropy could be
applied to the predicted dynamics of models to ascertain whether they accurately reflect
properties of the observed dynamics, such as their complexity, similar to comparing the
nonlinearity of a time series with the dynamics of the best model using the the EDM
framework (Storch et al. 2017). Thus, intrinsic predictability provides diagnostic insights into
predictive uncertainty and guidance for improving predictions.
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Comparative assessments of intrinsic predictability

The model-free nature of permutation entropy is advantageous in cross-system and
cross-scale comparative studies of predictability. Whereas comparing all available
forecasting methods on a given time series and predicting with the best-performing method
would give us the best realized predictability (e.g. Ward et al. 2014), we would miss out on
the comparative insight gained from aligning very different time series along the complexity
gradient quantified by permutation entropy. Such a comparison could afford insight into
whether intrinsic predictability differs across levels of ecological organization, taxonomic
groups, habitats, geographic regions or anthropogenic impacts (Petchey et al. 2015).
Determining the most appropriate covariates of monitored species (e.g. body size, life history
traits, and trophic position) that minimize lost information would also inform monitoring
methods. Furthermore, monitoring how realized and intrinsic predictability converge over
time provides a means to judge improvements in predictive proficiency (Petchey et al. 2015,
Houlahan et al. 2017, Dietze 2017). To do so, we need to apply available forecasting models
to the same time series and measure their forecast error in combination with their intrinsic
predictability. The monitoring of predictive proficiency has greatly advanced weather
forecasting as a predictive science (Bauer et al. 2015). The analysis of univariate time series
presented here only begins to put the intrinsic predictability of different systems into
perspective. A primary goal is hence to expand the availability of long-term, highly resolved
time series to determine potential covariates and improve our general understanding of
ecological predictability (Petchey et al. 2015, Ward et al. 2014).

Reliable assessment of intrinsic predictability

Permutation entropy requires time series data of suitable length and sampling frequency to
infer the correct permutation order and time delay (Riedl et al. 2013). Long ecological time
series measured at the appropriate time scales are rare, despite the knowledge that they are
among the most effective approaches at resolving long-standing questions regarding
environmental drivers (Lindenmeyer et al. 2012, Giron-Nava et al. 2017, Hughes et al.
2017). This problem is beginning to be resolved with automated measurements of system
states, such as chlorophyll-a concentrations in aquatic systems (Thomas et al. 2018, Blauw
et al. 2018), assessment of community dynamics in microbiology (Martin-Platero et al. 2018,
Faust et al. 2015, Trosvik et al. 2008), and phenological (Pau et al. 2011) and flux
measurements (Dietze 2017). Such high-frequency, long-term data are likely to provide a
more accurate picture of the range of possible system states, even when systems are
non-ergodic and change through time (e.g. Fig 4f). In fact, given the ease with which it is
computed, PE can be assessed with a moving window across time or space to determine if a
system is stationary or changing. As such, PE may be used as an early warning signal for
system tipping points and critical transitions (Scheffer et al. 2009, Dakos et al. 2017) or to
evaluate the effect of a management intervention on the system state.

Although the full potential of permutation entropy to guide forecasting is not yet realized,
many other fields are starting to take advantage of its diagnostic potential. In paleoclimate
science, permutation entropy has proven useful for detecting hidden data problems caused
by outdated laboratory equipment (Garland et al. 2016), and in the environmental sciences it
has provided insight into model-data deviations of gross primary productivity to further


https://doi.org/10.1101/350017
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/350017; this version posted June 19, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

understand the global carbon cycle (Sippel et al. 2016). In epidemiology a recent study on
the information-theoretic limits to forecasting of infectious diseases concluded that for most
diseases the forecast horizon is often well beyond the time scale of outbreaks, implying
prediction is likely to succeed (Scarpino & Petri 2017).

Our result showing that permutation entropy covaries with forecast error highlights the
potential of using permutation entropy to better understand time series predictability in
ecology and other disciplines.

Acknowledgements

This paper originates from the “sPRED - Synthesizing Predictability Research of Ecological
Dynamics” working group, supported by the Synthesis Centre of the German Centre for
Integrative Biodiversity Research (DFG-FZT-118). FP, AT and OP benefitted from funding by
the Swiss National Science Foundation (grant 31003A_159498 to OP). Al was supported by
the Alexander von Humboldt Foundation. JG was supported by an Omidyar Fellowship from
the Santa Fe Institute. HY is supported by the Gordon and Betty Moore Foundation’s
Data-Driven Discovery Initiative through grant GBMF4563 to Ethan P. White. BR, BCR and
UB acknowledge support by the German Research Foundation (FZT 118). We thank Gregor
Fussmann and Lutz Becks for generously sharing time series data from microcosm
experiments.

References

Ahrestani, F. S. et al. 2013. The importance of observation versus process error in
analyses of global ungulate populations. - Scientific Reports 3: 3125.

Akaike, H. 1974. A new look at the statistical model identification. - IEEE Transactions
on Automatic Control 19: 716-723.

Amigo, J. M. et al. 2005. The permutation entropy rate equals the metric entropy rate for
ergodic information sources and ergodic dynamical systems. - Physica D: Nonlinear
Phenomena 210: 77-95.

Bandt, C. 2005. Ordinal time series analysis. - Ecological Modelling 182: 229-238.

Bandt, C. and Pompe, B. 2002. Permutation Entropy: A Natural Complexity Measure for
Time Series. - Phys. Rev. Lett. 88: 174102.

Bates, D. et al. 2015. Fitting Linear Mixed-Effects Models Using Ime4. - Journal of
Statistical Software 67: 1-48.

Bauer, P. et al. 2015. The quiet revolution of numerical weather prediction. - Nature 525:
47-55.


https://doi.org/10.1101/350017
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/350017; this version posted June 19, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Beckage, B. et al. 2011. The limits to prediction in ecological systems. - Ecosphere 2:
art125.

Becks, L. et al. 2005. Experimental demonstration of chaos in a microbial food web. -
Nature 435: 1226-1229.

Blauw, A. N. et al. 2018. Predictability and environmental drivers of chlorophyll
fluctuations vary across different time scales and regions of the North Sea. -
Progress in Oceanography 161: 1-18.

Boffetta, G. et al. 2002. Predictability: a way to characterize complexity. - Physics
Reports 356: 367-474.

Burnham, K. P. and Anderson, D. R. 2002. Model Selection and Multi-Model Inference:
A Practical Information-Theoretic Approach. - Springer.

1992. Nonlinear Modeling and Forecasting (M Casdagli and S Eubank, Eds.). - CRC
Press.

Clark, J. S. et al. 2001. Ecological Forecasts: An Emerging Imperative. - Science 293:
657-660.

Dakos, V. and Soler-Toscano, F. 2017. Measuring complexity to infer changes in the
dynamics of ecological systems under stress. - Ecological Complexity 32: 144—155.

Dietze, M. C. 2017. Prediction in ecology: a first-principles framework. - Ecol Appl 27:
2048-2060.

Dietze, M. C. et al. 2018. Iterative near-term ecological forecasting: Needs,
opportunities, and challenges. - PNAS: 201710231.

Fadlallah, B. et al. 2013. Weighted-permutation entropy: A complexity measure for time
series incorporating amplitude information. - Phys. Rev. E 87: 022911.

Farmer, J. D. and Sidorowich, J. J. 1987. Predicting chaotic time series. - Phys. Rev.
Lett. 59: 845-848.

Faust, K. et al. 2015. Metagenomics meets time series analysis: unraveling microbial
community dynamics. - Current Opinion in Microbiology 25: 56—66.

Fussmann, G. F. et al. 2000. Crossing the hopf bifurcation in a live predator-prey
system. - Science 290: 1358-1360.

Garland, J. and Bradley, E. 2015. Prediction in projection. - Chaos 25: 123108.


https://doi.org/10.1101/350017
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/350017; this version posted June 19, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Garland, J. et al. 2014. Model-free quantification of time-series predictability. - Physical
Review E 90: 052910.

Garland, J. et al. 2016. A First Step Toward Quantifying the Climate’s Information
Production over the Last 68,000 Years. - Advances in Intelligent Data Analysis XV:
343-355.

Giron-Nava, A. et al. 2017. Quantitative argument for long-term ecological monitoring. -
Marine Ecology Progress Series 572: 269-274.

Glaser, S. M. et al. 2014. Complex dynamics may limit prediction in marine fisheries. -
Fish Fish 15: 616—633.

Hiltunen, T. et al. 2014. A newly discovered role of evolution in previously published
consumer—resource dynamics. - Ecology letters 17: 915-923.

Hofman, J. M. et al. 2017. Prediction and explanation in social systems. - Science 355:
486-488.

Houlahan, J. E. 2016. The priority of prediction in ecological understanding. - Oikos in
press.

Hughes, B. B. et al. 2017. Long-Term Studies Contribute Disproportionately to Ecology
and Policy. - BioScience 67: 271-281.

Hyndman, R. J. and Koehler, A. B. 2006. Another look at measures of forecast
accuracy. - International Journal of Forecasting 22: 679—-688.

Inchausti, P. and Halley, J. 2001. Investigating Long-Term Ecological Variability Using
the Global Population Dynamics Database. - Science 293: 655-657.

Jost, L. 2006. Entropy and diversity. - Oikos 113: 363-375.

Knape, J. and de Valpine, P. 2012. Are patterns of density dependence in the Global
Population Dynamics Database driven by uncertainty about population abundance?
- Ecology Letters 15: 17-23.

Lindenmayer, D. B. et al. 2012. Value of long-term ecological studies. - Austral Ecology
37: 745-757.

Lorenz, E. N. 1969. Atmospheric Predictability as Revealed by Naturally Occurring
Analogues. - J. Atmos. Sci. 26: 636-646.

Lorenz, E. N. 1995. Predictability: a problem partly solved.


https://doi.org/10.1101/350017
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/350017; this version posted June 19, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Maris, V. et al. 2018. Prediction in ecology: promises, obstacles and clarifications. -
Oikos 127: 171-183.

Martin-Platero, A. M. et al. 2018. High resolution time series reveals cohesive but
short-lived communities in coastal plankton. - Nature Communications 9: 266.

May, R. M. and others 1976. Simple mathematical models with very complicated
dynamics. - Nature 261: 459-467.

Melbourne, B. A. and Hastings, A. 2008. Extinction risk depends strongly on factors
contributing to stochasticity. - Nature 454: 100-103.

Mouquet, N. et al. 2015. Predictive ecology in a changing world. - J Appl Ecol 52:
1293-1310.

NERC Centre for Population Biology, Imperial College. 1999. The Global Population
Dynamics Database. in press.

Pau Stephanie et al. 2011. Predicting phenology by integrating ecology, evolution and
climate science. - Global Change Biology 17: 3633-3643.

Petchey, O. L. et al. 2015. The ecological forecast horizon, and examples of its uses
and determinants. - Ecol Lett 18: 597-611.

Riedl, M. et al. 2013. Practical considerations of permutation entropy. - Eur. Phys. J.
Spec. Top. 222: 249-262.

Sauer, T. et al. 1991. Embedology. - J Stat Phys 65: 579-616.

Scheffer, M. et al. 2009. Early-warning signals for critical transitions. - Nature 461:
53-59.

Shannon, C. E. 1948. A mathematical theory of communication. - The Bell System
Technical Journal 27: 379-423.

Sherwin, W. B. et al. 2017. Information Theory Broadens the Spectrum of Molecular
Ecology and Evolution. - Trends in Ecology & Evolution in press.

Sippel, S. et al. 2016. Diagnosing the Dynamics of Observed and Simulated Ecosystem
Gross Primary Productivity with Time Causal Information Theory Quantifiers. -
PLOS ONE 11: e0164960.

Smith, L. A. 1992. Identification and prediction of low dimensional dynamics. - Physica
D: Nonlinear Phenomena 58: 50-76.


https://doi.org/10.1101/350017
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/350017; this version posted June 19, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Storch, L. S. et al. 2017. Stock assessment and end-to-end ecosystem models alter
dynamics of fisheries data. - PLOS ONE 12: e0171644.

Sugihara, G. 1994. Nonlinear Forecasting for the Classification of Natural Time Series. -
Philosophical Transactions: Physical Sciences and Engineering 348: 477-495.

Thomas, M. K. et al. 2018. The predictability of a lake phytoplankton community, over
time-scales of hours to years. - Ecology Letters 21: 619—628.

Trosvik, P. et al. 2008. Characterizing mixed microbial population dynamics using
time-series analysis. - ISME J 2: 707-715.

Veilleux, B. 1976. The analysis of a predatory interaction between Didinium and
Paramecium.

Ward, E. J. et al. 2014. Complexity is costly: a meta-analysis of parametric and
non-parametric methods for short-term population forecasting. - Oikos 123:
652-661.

Weigend, A. S. and Gershenfeld, N. A. 1993. Time Series Prediction: Forecasting The
Future And Understanding The Past. - Routledge.

White, E. P. et al. 2018. Developing an automated iterative near-term forecasting
system for an ecological study. - bioRxiv: 268623.


https://doi.org/10.1101/350017
http://creativecommons.org/licenses/by-nc-nd/4.0/

