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Abstract 

Cranial growth and development affects the closely related traits of head circumference (HC) and 

intracranial volume (ICV). Here we model the developmental genetic architecture of HC, showing this is 

genetically stable and correlated with genetic determinants of ICV. Investigating up to 46,000 children 

and adults of European descent, we identify association with final HC and/or final ICV+HC at 9 novel 

common and low-frequency loci, illustrating that genetic variation from a wide allele frequency spectrum 

contributes to cranial growth. The largest effects are reported for low-frequency variants within TP53, 

with 0.5 cm wider heads in increaser-allele carriers versus non-carriers during mid-childhood. 

 

Key words: Head circumference, Intracranial volume, Cranial growth, Genome-wide meta-analysis, 

GSEM, Growth modelling  
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Main 

The size and shape of the vertebrate brain is governed by the internal dimensions of the skull. 

Across vertebrate evolutionary history, major changes to brain size and proportion have been 

accompanied by modifications to skull morphology [1, 2]. This is also true within the lifespan of an 

individual, where developmental changes in brain size and shape must be reflected in changing cranial 

phenotypes.   

Serial measures of maximal head circumference (HC) or occipito-frontal circumference (OFC) 

are routinely obtained to monitor children's cranial growth and brain development during the first years of 

life and abnormal trajectories may indicate a range of neurological conditions [3]. In infants and children, 

HC is highly correlated with brain volume as measured by MRI studies [4, 5], especially in 1.7 to 6 year 

old children, although its predictive accuracy decreases with progressing age [5]. Healthy children from 

around the world, who are raised in healthy environments and follow recommended feeding practices, 

have strikingly similar patterns of growth [6]. The observation that final HC is largely determined by the 

age of 6 years in a large study from the UK [7] is therefore likely to be valid in multiple populations. In 

addition, nutritional status, body size and HC are closely correlated for healthy children during early life, 

and become less related after 24 months of age [8]. While HC properties in early childhood have 

immediate medical relevance, there are also compelling reasons to study HC in adulthood. In the adult 

population skeletal measures continue to act as a permanent measure of peak brain size that is unaffected 

by subsequent atrophic brain changes [9]. In early childhood, HC is likely to proxy overall body size and 

timing of growth, tracking changes in brain size. In older individuals, HC is valuable precisely because 

HC is robust to soft tissue atrophy, solely reflecting an absolute measure of final HC dimension.  

HC is highly heritable and the notion of a developmentally changing, but etiologically 

interrelated, phenotypic expression of HC during the life course is supported by twin studies [10]. 

Reported twin-h2 estimates of 90% in infants, 85–88% in early childhood, 83–87% in adolescence and 

75% in young and mid adulthood [10], with evidence for strong genetic stability between mid-childhood 
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and early adulthood [10]. There are arguments to support the hypothesis that some of the underlying 

genetic factors act by a coordinated integration of signaling pathways regulating both brain and skull 

morphogenesis during development [11]. Especially, cells of early brain and skull are sensitive to similar 

signaling families [11]. Genetic underpinning of potentially shared mechanisms is supported by the fact 

that genome-wide signals for both infant HC and ICV are strengthened when combined [12], irrespective 

of their dissimilar developmental stages. However, genetic investigations studying (near) final HC and 

adult ICV are likely to be more informative on mechanisms underlying developmentally shared growth 

patterning which affect final cranial dimension. Additionally, low-frequency genetic variants, ranging 

between 0.5% to 5% minor allele frequency, have been poorly characterized by previous genome-wide 

association study (GWAS) efforts [13], both due to the small size of previous studies, and the limited 

coverage of lower-frequency markers by the first imputation panels.  

Exploiting whole-genome sequence data together with high-density imputation panels such as the 

joint UK10K and 1000 genomes (UK10K/1KGP) [14] and the haplotype reference consortium (HRC) 

[15], that have previously facilitated the discovery of low-frequency genetic variants for a range of traits 

[16, 17], we carried out GWAS for final HC. Specifically, we aim to 

a)  study low-frequency and common variants for final HC, allowing for age-specific effects through 

meta-analyses of mid-childhood and/or adulthood datasets, 

b)  investigate genetic variants influencing a combined phenotype of (near) final HC and ICV, 

termed final cranial dimension, and 

c)  explore developmental changes in the genetic architecture of HC through longitudinal modelling 

of genetic variances in unrelated individuals as well as growth curve modelling of HC trajectories for 

carriers and non-carriers of high risk variants. 

 
Results 

Genome-wide analysis of HC scores 
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We carried out genome-wide analysis of HC scores using a two-stage developmentally-sensitive 

design (Figure 1a) including (i) pediatric (6 to 9 years of age), (ii) adult (16 to 98 years) and (iii) 

combined pediatric and adult samples comprising up to 18,881 individuals of European origin from 11 

population-based cohorts and 10 million imputed or sequenced genotypes (Supplementary Table S1). In  

inverse-variance weighted meta-analysis (Supplementary Table S2-S4, Figure 2a-c, Supplementary 

Figure S1-S3), we identified three novel regions at chromosome 4q28.1 (HC (Pediatric): lead variant 

rs183336048, effect allele frequency (EAF)=0.02, p=3.0×10-8, Supplementary Figure S5a, S6a), 6p21.32 

(HC (Pediatric)/ HC (Pediatric+adult): lead variant rs9268812, EAF=0.35, p=2.2×10-9, Supplementary 

Figure S5b, S6b) and 17p13.1 (Pediatric+adult: lead variant rs35850753, EAF=0.02, p=2.0×10-8, 

Supplementary Figure S5c, S6c, Figure 3a and b) as associated with HC at an adjusted genome-wide 

significant level (p<3.3×10-8) (Table 1). We followed-up the two signals in HC (Pediatric+adult) in a 

further 973 adults of European descent (mean age 50 years) (Supplementary Table S5, Supplementary 

Figure S6b,c) and replicated directionally consistent evidence for association with rs35850753 at the 

17p13.1 locus (p=4.5×10-5, Table 1). In the combined pediatric, adult and follow-up sample, we observed 

here an increase of 0.24 sex-adjusted SD units in HC per increase in minor T risk allele (p=2.1×10-10, 

Table 1, Figure 3a and b). 

 

Figure 1 about here 

Figure 2 about here 

Table 1 about here 

 

Growth curve modelling of HC scores between birth and the age of 15 years in participants of the 

ALSPAC sample, using a stratified Super Imposition by Translation And Rotation (SITAR) model [18] , 

suggested that carriers of the T risk allele at rs35850753 developed larger heads from mid childhood 

onwards (Figure 4), with risk alleles being positively related to individual differences in mean HC 
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(p=6.9x10-12) and HC growth velocity (p=7.1x10-11, Supplementary Table S6). For example, at the age of 

10 years male carriers had a HC score of 54.16 cm and non-carriers a score of 53.63 cm. In comparison, 

female carriers and non-carriers had a score of 53.21 cm and 52.74 cm respectively. rs3585075 resides 

within the tumor suppressor encoding TP53 gene and is not related to any known GWAS locus for HC, 

ICV, brain volume (Supplementary Table S7) nor any locus affecting height [19] when conducting a 

conditional analysis (data not shown). In addition to these novel associations, our analysis replicated 

known signals for infant HC on chromosome 12q24.31 [13] and a previously reported joint signal of 

infant HC and adult ICV on chromosome 2q32.1 [12] (Figure 2c). 

 

Figure 3 about here 

Figure 4 about here 

 

Applying a gene-based test approach [20], multiple HC-associated genes were identified 

(Supplementary Table S8-10). The strongest signal in HC (Pediatric), and to a lesser extent in HC 

(Pediatric+adult), resides at 12q24.31 (lead gene-wide signal MPHOSPH9, p=2.3x10-10) and contains 

single variants in linkage disequilibrium (LD) with known GWAS signals for infant HC [13] (e.g. 

SBNO1, p= 2.0x10-7). The strongest gene-wide signals that did not harbor variants in LD with known or 

novel single GWAS variants were identified at 5q31.3 (lead gene-wide signal SLC4A9 p=6.6x10-9), and at 

16p13.3 (lead gene-wide signal E4F1 p=1.6x10-8), using summary statistics from HC (Pediatric+adult) 

meta-analyses. Gene-based analyses were complemented with studies predicting gene expression levels in 

multiple tissues (Supplementary Table S11). Notably, for the HC (Pediatric) gene-wide signal at 6p21.32, 

including the PRRC2A locus (gene-wide signal p=7.2x10-7), predicted gene expression levels in whole 

blood were found to be inversely associated with HC scores, using S-PrediXcan [21] software (p= 5.7x10-

7; Supplementary Table S11).  
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Genetic architecture of HC scores during development 

Linkage-disequilibrium score regression (LDSC) [22] analyses (Figure 5a, Supplementary Table 

S12) using genome-wide summary statistics suggested that heritability estimates during childhood (6 to 9 

years) are higher (SNP-h2=0.31(SE=0.05)) than in adult samples (16 to 98 years; SNP-

h2=0.097(SE=0.06)), although 95% confidence intervals marginally overlap. The estimated genetic 

correlation [23] between both developmental windows was high (LDSC-rg=1.04(SE=0.39), p=0.0075). 

The LD-score regression intercepts were consistent with one for all HC meta-analyses, suggesting little 

inflationary bias in GWAS (Supplementary Table S12). 

To investigate developmental changes in the genetic architecture of HC scores, we carried out a 

multivariate analysis of genetic variances using genetic-relationship-matrix structural equation modelling 

(GSEM) [24]. Fitting a saturated Cholesky decomposition model (Figure 5b) to HC scores assessed in 

ALSPAC participants (N=7,924) at the ages of 1.5, 7 and 15 years (Supplementary Table S13), we 

observed total SNP-h2 estimates of 0.35 (SE=0.07), 0.43 (SE=0.05), and 0.39 (SE=0.07) respectively 

(Figure 5c). More importantly, this analysis suggested that a large proportion of genetic factors 

contributing to phenotypic variation in HC scores remains unchanged during the course of development, 

with genetic factors operating at the age of 1.5 years explaining 63.1% (SE=9%) and those at age 7 years 

76.5% (SE=5%) of the genetic variance at age 15 years, respectively. Consistently, strong genetic 

correlations were identified among all scores during development (1.5-7 years, rg=0.89 (SE=0.07); 1.5-15 

years, rg=0.79 (SE=0.09); 7-15 years, rg=0.87 (SE=0.04), in support of LD-score correlation analyses.  

 

Figure 5 about here 

 

Genetic correlation of complex phenotypes with HC   

A systematic screen for genetic correlations between HC scores and 235 complex phenotypes 

using LD score regression [23], identified moderate to strong positive genetic correlations (rg≥0.3) with 
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many anthropometric and cognitive / cognitive proxy traits. This includes HC scores during infancy, birth 

weight, birth length, height, extreme height, hip circumference, childhood obesity, waist circumference, 

intelligence scores and ICV (Supplementary Table S14, Figure 5d). Weaker positive genetic correlations 

(0<rg<0.3) were also present for years of schooling, obesity, body mass index and overweight. 

The strongest cross-trait genetic correlation was identified between HC (Pediatric+adult) and ICV 

(rg=0.91(SE=0.16), p=1.6x10-8). However, there was little evidence that SNP-h2 estimates for HC are 

enriched for genes that are highly expressed in brain tissues or chromatin marks in neural and bone 

tissue/cell types, beyond chance (data not shown) studying summary statistics from either of the 

conducted HC meta-analyses. 

 

Combined genome-wide analysis of HC scores and ICV 

Given the prior expectation of similar genetic architectures between HC and ICV, supported 

through genetic correlation analyses, we meta-analyzed both phenotypes by combining HC summary 

statistics from pediatric and adult cohorts (N=18,881) with ICV summary statistics from the CHARGE 

and ENIGMA2 consortia [12] (N=26,577, Figure 1b) using a Z-score weighted meta-analysis (Figure 6, 

Table 2, Supplementary Tables S15, S16). The strongest evidence for novel genetic association in this 

combined cranial dimension analysis was observed for the low-frequency marker rs78378222 

(EAF=0.02; p=7.9×10-11) at the 17p13.1 locus, a functional variant that is in LD with rs35850753, the 

strongest GWAS signal for HC (r2=0.56, p=3.6×10-9, Figure 3a and b). In addition, we identified 8 

independent genetic loci not previously reported for either HC or ICV (Supplementary Table S15). 

Evidence for association at rs9268812, identified in the HC (Pediatric+adult) meta-analysis, decreased, 

although it still passed the threshold for genome-wide significance.  

 

Figure 6 about here 

Table 2 about here 
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Adding further genotype information from the HC follow-up cohort (N=973, Figure 1b), 

strengthened the evidence for association at both rs78378222 and rs35850753 (p=8.8×10-13 and p=4.9×10-

11 respectively, total N≤43,529, Figure 3a and b, Supplementary Table S15) corresponding to a change in 

0.19 (SE=0.03) and 0.16 (SE=0.02) standard deviation (SD) units respectively. However, within 

neuroimaging samples only, support for association at rs78378222 was low in the combined CHARGE 

and ENIGMA2 samples [12] (Table 2). In addition, we observed increased statistical evidence for 

association at 9 known markers compared to the original studies for either HC, brain volume or ICV 

(Supplementary Table S16). Note that genetic effects with respect to a combined final cranial dimension 

cannot be translated into absolute units as HC scores and ICV relate to diametric versus volumetric 

properties respectively. 

 

Biological and phenotypic characterization of signals 

rs78378222 resides in the 3' untranslated region (UTR) of TP53 and the C effect allele leads to a 

change in the TP53 polyadenylation signal that results in impaired 3'-end processing for many TP53 

mRNA, while rs35850753 resides within the 5'-UTR of the Δ133 TP53 isoforms and otherwise 

intronically (Figure 3b). Species comparison showed that variation at rs78378222 is highly conserved 

(GERP-score=5.28), while variation at rs35850753 is not (GERP-score=-2.8) (Figure 3b) [25]. According 

to a core 15-state chromatin model, variation at rs78378222, but not at rs35850753, is in LD (r2=0.8) with 

an enhancer in fetal brain (Figure 3b). However, using the FUMA web tool [26], we identified evidence 

for LD between rs35850753cis and nearby cis eQTLs at ATP1B2, TP53, EIF4A1, TNFSF12, TNFSF12-

TNFSF13, TNFSF13 and NLGN2 loci in blood (Supplementary Table S17), but not for rs78378222 (data 

not shown). Specifically, rs35850753 is in modest LD (maximum LD r2=0.22) with TP53 eQTL 

explaining variation in gene level TP53 transcript in blood, with the rare T risk allele being associated 

with lower full-length transcript TP53 levels. There was little support for eQTLs or meQTLs at either 
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rs78378222 or rs35850753 in brain, according to Brain xQTL [27], when adjusted for the number of loci 

tested (data not shown). There was also no evidence for association with Human Embryonic Cranial 

Tissue Epigenomic Data [28] passing a multiple testing threshold (data not shown). 

Finally, we characterized the TP53 association signals for final HC and combined final ICV+HC 

phenotypically using a phenome-wide scan in the UK Biobank, as implemented in PHESANT [29] 

(rs35850753: Supplementary Table S18; rs78378222: Supplementary Table S19). For rs35850753, 

standing height is increased by 0.012 cm (SE=0.002) and sitting height by 0.015 cm (SE=0.003) for each 

increase in minor effect allele. The log odds of having an inpatient primary diagnosis code for “Fracture 

of tooth” increase by 0.42 (SE=0.078) and the log odds of a participant answering "yes" to "ever had 

hysterectomy" by 0.06 (SE=0.011) per effect allele. For each increase in minor effect allele of 

rs78378222, standing height is increased by 0.015 cm (SE=0.002) and sitting height by 0.019 cm 

(SE=0.003). The log odds of a participant answering "yes" to "ever had hysterectomy" by 0.065 

(SE=0.011) per effect allele. Sensitivity analysis adjusting, in addition, for 10 principal components did 

not change the nature of these findings (data not shown). 

 

Discussion 

Investigating up to 46,000 individuals of European descent, this study identifies and replicates 

evidence for genetic association between a novel region on chromosome 17p13.1 and both final HC and 

ICV+HC, implicating low-frequency variants of large effect within TP53. We furthermore demonstrate 

that the genetic architecture of HC is developmentally stable and genetically correlated with ICV. This is 

supported by the identification of 8 further common and rare independent loci that are associated with 

cranial dimension as a combined HC and ICV phenotype, illustrating allele frequency spectrum of the 

underlying genetic architecture.  

For final HC, the strongest evidence for association at 17p13.1 is observed with rs35850753, 

while final cranial dimension is most strongly associated with rs78378222. Both rs35850753 and 
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rs78378222 are low-frequency variants, in partial linkage disequilibrium, and their effect sizes are 

substantially larger than any previously reported GWAS signals for either HC or ICV alone, reaching 

nearly a fifth and quarter of a SD unit change in final cranial dimension and final HC per rare effect allele 

respectively. For HC, this translates into an increase of approximately 0.5 cm in HC between carriers and 

non-carriers of rare alleles at the age of 10 years. Based on longitudinal analyses, it is most likely that 

genetic effects of rs35850753 on final HC start to emerge during mid-childhood, while we have no 

comparable longitudinal data source available to evaluate trajectory effects on cranial dimension. 

TP53 encodes the p53 protein, a transcription factor that binds directly and specifically as a 

tetramer to DNA in a tissue- and cell-specific manner and has a range of anti-proliferative functions, 

lending it the nickname 'guardian of the genome'. The activation of p53 in response to cellular stress 

promotes cell cycle arrest, DNA repair and apoptosis [30]. TP53 mutations are present in approximately 

30% of tumor samples making it one of the most studied genomic loci with over 27,000 somatic and 550 

germline mutations described to date (source - IARC TP53 database [31]). The low-frequency C allele at 

rs78378222 leads to a change in the TP53 polyadenylation signal that results in impaired 3'-end 

processing and termination of many TP53 mRNA isoforms [32], including full length TP53 isoforms, 

although rs78378222 is also in LD with an enhancer region in fetal brain. In contrast, rs35850753 resides 

in the 5΄ UTR of TP53 Δ133 isoforms that are transcribed by an alternative promoter. This leads to the 

expression of an N-terminally truncated p53 protein, initiated at codon 133, lacking the trans activation 

domain [33]. TP53 Δ133 isoforms are known to directly and indirectly modulate p53 activity and 

differentially regulate cell proliferation, replicative cellular senescence, cell cycle arrest and apoptosis in 

response to stress such as DNA damage, including the inhibition of tumor suppressive functions of full-

length p53 [34]. This mechanism is consistent with the observed link between the rs35850753 low-

frequency T allele and lower full length TP53 transcript level. Thus, rare effect alleles at both rs78378222 

and rs35850753 could potentially, via different biological mechanisms, be linked to impaired p53 activity 
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and thus heightened proliferative potential and less apoptosis of normal human cells, consistent with 

larger HC scores and a larger cranial dimension.  

It is noteworthy that rs78378222 has been associated in particular to risk of cancers of the 

nervous system including glioma [35] and both, rs35850753 and rs78378222 have been robustly 

associated with neuroblastoma [36]. Evidence for neurological phenotypic consequences of TP53 

variation has recently been strengthened by the discovery of TP53 as a risk locus for general cognitive 

function using a gene-based approach [37]. TP53 knockout mouse embryos show furthermore broad 

cranial defects involving skeletal, neural and muscle tissues [38]. Similarly, mouse models for Treacher 

Collins syndrome (a disorder of cranial morphology which arises during early embryological 

development as a result of defects in the formation and proliferation of neural crest cells) could be 

rescued by inhibition of p53 during embryological patterning [39]. In particular, there is support from 

animal and tissue models for a role of p53 in neural crest cell (NCC) development  [38] with NCCs 

supplementing head mesenchyme during fetal development [11, 40]. NCCs also contribute to the 

development of a thick 3-membrane layer called the meninges, that cover the telencephalon [11, 40] and 

directly locate underneath the skull. During postnatal brain growth, the calvarial bones are drawn 

outward, partially due to the expanding meninges, triggering the production of membranous skull bone 

[40]. Moreover, meninges have been thought to play a key role in the coordinated integration of signaling 

pathways regulating both neural and skeletal cranial growth [11]. It is possible to speculate that p53 is 

part of these joint regulatory mechanisms, for example, via Wnt signaling regulation [41]. However, 

beneficial effects of rs35850753 and rs78378222 on growth patterning leading to an increased HC and 

cranial dimension might be counterbalanced by adverse outcomes such as glioblastoma, keeping both 

variants at a lower frequency.  

Combined analysis of HC and ICV, as related measures of final cranial dimension, also identified 

association at 8 further loci, in addition to variation at 17p13.1 and loci previously reported for either 

infant HC and/or adult ICV. This includes the low-frequency variant rs41288837, exerting moderately 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2018. ; https://doi.org/10.1101/349845doi: bioRxiv preprint 

https://doi.org/10.1101/349845
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

large effects that correspond to an approximately 10% decrease in SD units of final cranial dimension per 

rare T allele. rs41288837 is a missense variant in TCF7L1 at 2p11.2, a locus encoding a transcription 

factor mediating Wnt signaling pathways that are known to play an important role in vertebrate neural 

development [42]. The effects of this variant were consistent for both HC and ICV, although each of the 

individual trait analyses was too underpowered to detect association at this variant at a genome-wide 

level. An additional low-frequency variant in this study, rs183336048 at 4q28.1, was identified as 

associated with pediatric HC only, but could not be replicated due to a lack of comparable age-matched 

follow-up cohorts. rs183336048 lies 5' to INTU which encodes a polarity effector 'inturned' with roles in 

neural tube patterning and cilliation [43]. Common variants identified in the ICV+HC combined meta-

analysis also include intronic variation in AKT3 (rs2168812) and CCND2 (rs3217870), which are related 

through the phosphatidylinositol 3-kinase (PI3K-AKT) pathway [44]. Disruption of PI3K-AKT pathway 

components causes megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome and a 

spectrum of related megalencephaly syndromes [45, 46]. This supports previous in silico pathway 

analysis, which nominated PI3K-AKT as candidate pathway for intracranial volume [12].   

 Genetic correlation analyses provided strong evidence for shared genetic determinants between 

HC and both anthropometric (birth weight, height, waist and hip circumference) and cognitive traits, as 

well as ICV. Genetic correlations with waist circumference and hip circumference recapitulate observed 

correlations between the size of the maternal pelvis and the size of the neonatal cranium [47], possibly 

induced because bipedal locomotion limits pelvic size. We also confirmed previously-reported genetic 

links between educational attainment and infant HC [48], and identified additional evidence for genetic 

correlation between HC and intelligence, especially pediatric HC. With strong shared genetic liability 

(genetic correlation coefficient near one), we considered HC and ICV to be related proxy measures of an 

underlying phenotype, which we termed final cranial dimension. This also suggests that estimated skeletal 

volume, a combination of HC, cranial height and cranial length [49], might represent a more accurate, 
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easily accessible and inexpensive measure to enhance power for future genetic analysis using a multi-trait 

approach in combination with ICV [50], exploiting similar volumetric properties. 

Multivariate analyses of genetic variance showed that genetic factors contributing to variation in 

HC during infancy explain the majority of genetic variance during later life, although novel genetic 

influences arise both during mid-childhood and adolescence. This is further reflected in strong GSEM-

based genetic correlations across childhood and adolescence, and strong LDSC-based genetic correlations 

between infant and adult HC. The estimated LDSC-heritability of HC in adult samples was lower than in 

pediatric samples, with only marginally overlapping 95% confidence intervals, implying that phenotypic 

variation in final HC is less well accounted for by genetic influences than in childhood, probably as 

skeletal growth processes have ceased.  

The discovery that low-frequency variation, especially near TP53, is associated with HC 

demonstrates the scientific value of testing for variation in the lower allele frequency spectrum and the 

utility of comprehensive imputation templates. Low-frequency variants identified in this study had larger 

effects than common variants (Supplementary Figures S7 and S8), in keeping with findings from a range 

of complex phenotypes including anthropometric traits [17, 51, 52]. Nevertheless, despite having 

sufficient power to detect low-frequency variation explaining as little as 0.11% of the variance in HC, this 

study was underpowered for rare variant analysis (Supplementary Note 4), underlining the need for even 

larger research efforts. Collectively, our findings provide novel insight into the genetic architecture of 

cranial development and contribute to an improved understanding of its dynamic nature throughout 

human growth and development. 
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Methods 

Study population  

For the discovery analysis, we adopted a two-stage developmental design including cohorts with 

HC scores during childhood (Pediatric HC, mean age 6 to 9 years of age, N=10,600), during adulthood 

(Adult HC, mean age 44 to 61 years of age, N=8,281) and a combination thereof (N=18,881) including 

individuals of European descent from 11 population-based cohorts (Supplementary Table S1, S5, Figure 

1). Cohorts include The Avon Longitudinal Study of Parents and Children (ALSPAC), the Generation R 

Study (GenR), the Western Australia Pregnancy Cohort Study (RAINE), the Copenhagen Prospective 

Study on Asthma in Children (COPSAC2000 and COPSAC2010), the Infancia y Medio Ambiente cohort 

(INMA), the Hellenic Isolated Cohorts HELIC-Pomak and HELIC-MANOLIS, the Orkney Complex 

Disease Study (ORCADES), the Croatian Biobank Korčula (CROATIA-KORCULA), and the Viking 

Health Study-Shetland (VIKING). Within ALSPAC analysis was performed separately in individuals 

with whole-genome sequence data (ALSPAC WGS) and chip-based genotyping (ALSPAC GWA). For 

follow-up, we studied 973 individuals from the Croatian Biobank, Split (CROATIA-SPLIT) 

(Supplementary Table S5). Institutional and/or local ethics committee approval was obtained for each 

study. Written informed consent was received from every participant within each cohort. An overview of 

each cohort can be found in Supplementary Table S1 and S5 with more detailed information in the 

Supplementary Note 1. 

 

Genotyping 

Within ALSPAC WGS, whole-genome sequencing data was obtained using a low read depth 

(average 7x) strategy as previously described [52]. Chip based genotyping was performed on various 

commercial genotyping platforms, depending on the cohort (Supplementary Table S1). Prior to the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2018. ; https://doi.org/10.1101/349845doi: bioRxiv preprint 

https://doi.org/10.1101/349845
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

imputation, all cohorts had similar quality control; variants were excluded because of high levels of 

missingness (SNP call rate <98%), strong departures from Hardy-Weinberg equilibrium (p<10-6), or low 

MAF (<1%). Individuals were removed if there were sex discordance, high heterozygosity, low call rate 

(<97.5%) or duplicates. For imputation, the reference panel was either joint UK10K/1000 Genomes [52] 

or the Haplotype Reference Consortium [15]. Additional details can be found in Supplementary Table S1 

and Supplementary Note 1. 

In addition to study-specific quality control measures, central quality control was performed 

using the EasyQC R package [53]. First, variants were filtered for imputation quality score (imputed 

studies only, INFO>0.6), minor allele count (MAC; ALSPAC WGS MAC>4, all imputed studies 

MAC>10) and a minimum MAF of 0.0025. SNPs with MAF discrepancies (>0.30) compared to the HRC 

panel were also excluded. Marker names were harmonized and reported effect and non-effect alleles were 

compared against reference data (Build 37). Variants with missing or mismatched alleles were dropped, in 

addition all insertion/deletions (INDELs), duplicate SNPs and multiallelic SNPs were excluded. The 

reported effect allele frequency for each study was plotted against the frequency in the HRC reference 

data to identify possible strand alignment issues (Supplementary Figure S1, S3). The final number of 

variants passing all quality control tests and the per-study genomic inflation factor (λ) are reported in 

Supplementary Table S1 and S5.  

 

Phenotype preparation 

Pertinent to this study, HC measures in all individual cohorts were transformed into Z-scores 

using a unified protocol. After the removal of outliers (+/- 4 SD within each sample), HC was adjusted for 

age within males and females separately. Residuals for each sex were subsequently transformed into Z-

scores and eventually combined (thus removing inherent sex-specific effects). Note that the phenotype 

transformation within ALSPAC was jointly carried out for both sequenced and genome-wide imputed 

samples. 
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Genetic-relationship structural equation modelling 

Developmental changes in the genetic architecture of HC scores between the ages of 1.5 and 15 

years were modelled using genetic-relationship structural equation modelling (GSEM) [24]. This 

multivariate analysis of genetic variance combines whole-genome genotyping information with structural 

equation modelling techniques using a full information maximum likelihood approach [24]. Changes in 

genetic variance composition were assessed with longitudinal HC scores in ALSPAC participants (7924 

individuals with up to three measures; 1.5 years, N=3,945; 7 years N=5,819; 15 years, N=3,406). HC 

scores were Z-standardised at each age, as described above. Genetic-relationship matrices were 

constructed based on directly genotyped variants in unrelated individuals, using GCTA software [54], and 

the phenotypic variance dissected into genetic and residual influences using a full Cholesky 

decomposition model [24].  

 

Multiple testing correction 

Using Matrix Spectral Decomposition (matSpD) [55], we estimated that we analyzed 1.52 

effective independent phenotypes within this study (Pediatric, Adult and Pediatric+adult HC scores and 

ICV [12] scores) according to LDSC-based genetic correlations [22].  

 

Single variant association analysis 

Single variant genome-wide association analysis, assuming an additive genetic model, was 

carried out independently within each cohort using standard software (Supplementary Table S1, 

Supplementary Note 1). Residualized HC scores (Z-scores) were regressed on genotype dosage using a 

linear regression framework. For cohorts with unrelated subjects (Supplementary Table S1) association 

analysis was carried out using SNPTEST v2.5.0 (-method expected, -frequentist) [56]. Note that HC 
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scores in GenR were, in addition, adjusted for four principal components. Cohorts with related 

participants (HELIC cohorts) utilized a linear mixed model to control for family and cryptic relatedness, 

implemented in GEMMA [57].  

Individual cohort level summary statistics for HC were combined genome-wide with standard 

error-weighted fixed effects meta-analysis, allowing for the existence of age-specific effects through an 

age-stratified design (Figure 1a). We restricted each HC meta-analysis (Pediatric, Adult, Pediatric+adult) 

to variants with a minimum sample size of N>5000. Genomic control correction was applied at the 

individual cohort level and heterogeneity between effects estimates was quantified using the I-squared 

statistic as implemented in METAL [58]. Accounting for the effective number of independent phenotypes 

studied, the threshold for genome-wide significance was fixed at 3.3x10-8 and the threshold for suggestive 

evidence at 6.6x10-6.  

We contacted all studies (known to us) with a) HC information available in later childhood or 

adult samples b) participants of European ancestry and c) genotype data. Studies with whole-genome 

sequencing or densely imputed genotype data (HRC or UK10K/1KG combined templates) were included 

in the HC meta-analysis, while studies with imputation to other templates were reserved for follow-up. 

Following this strategy, the majority of studies were included in meta-analysis, with follow-up in a single 

study. 

 

Identification of known variants and conditional analysis 

Known GWAS signals (p≤5x10-8) were identified from previous studies on HC in infancy [13], 

ICV [12, 59-61] and brain volume [62] using either published or publicly available data (Supplementary 

Table S7). Conditional analysis was performed with GCTA software using summary statistics from HC 

(Pediatric) and HC (Pediatric+adult) meta-analyses (Supplementary Figure S4). In addition, we carried 

out an LD clustering of independent signals from the HC (Pediatric+adult) meta-analysis with respect to 

all known loci. Briefly, LD clustering is an iterative process that starts with the most significant SNP, 
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which is clumped with variants that have pairwise LD of r2 ≥ 0.2 within 500 kb using PLINK v1.90b3w, 

and all variants in LD are removed. Then, the same clumping procedure is repeated for the next top SNP 

and the iteration continues until there are no more top variants with p<10-4. For details, see 

Supplementary Note 2. For sensitivity analysis, we repeated the LD clustering with known loci for height 

as identified through the GIANT consortium (697 known independent height GWAS signals [19], r2=0.2 , 

+/-500 kb). 

 

Combined meta-analysis of head-circumference and intracranial volume  

We carried out a weighted Z-score meta-analysis of the combined HC (Pediatric+adult) meta-

analysis and the largest publicly available genome-wide statistics on intracranial volume (ICV; 

N=26,577) based on data from Cohorts for Heart and Aging Research in Genomic Epidemiology 

(CHARGE) and the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium 

[12]. A weighted Z-score meta-analysis was carried out using METAL [58] using standardized regression 

coefficients and 12,124,458 imputed or genotyped variants, assuming a genome-wide threshold of 

significance at p≤3.3x10-8. 

We used the Z-scores (Z) from the METAL output to calculate the standardized regression 

coefficient (β) for each SNP and trait [63] 
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where SNP j has an effect allele frequency (EAFj) and ��� is standard deviation of the phenotype, which is 

assumed to equal one for standardised traits. The standard error (SE) is calculated as 
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Gene based analysis 

Gene based tests for association were performed using MAGMA [20], which calculates gene-

based test statistics from SNP-based test statistics, position-based gene annotations and a linkage 

disequilibrium reference panel of UK10K haplotypes using an adaptive permutation procedure. SNP-

based test statistics were annotated using mapping files with a 50 kb symmetrical window around genes. 

For gene definition, we used all 19,151 protein-coding gene annotations from NCBI 37.3 and corrected 

for the number of genes and effective phenotypes tested, using an adjusted Bonferroni-threshold of 

1.7x10-6. 

 

S-PrediXcan  

We used S-PrediXcan [21] as a summary-statistic based implementation of PrediXcan to test for 

association between tissue-specific imputed gene expression levels and HC. This approach first predicts 

the transcriptome level using publicly available transcriptome datasets. Then, it infers the association 

between gene and phenotype of interest, by using the SNP-based prediction of gene expression as weights 

(predicted from the previous step) and combines it with evidence for SNP association based on 

phenotype-specific GWAS summary statistics. We predicted gene expression levels for cerebellum (4778 

genes; GTEx v6p; Supplementary Note 3), cortex (3177 genes; GTEx v6p; Supplementary Note 3) and 

whole blood (6669 genes; DGN; Supplementary Note 3) using an adjusted Bonferroni threshold of p< 

2.3x10-6 across all tissues tested. 

 

Linkage-disequilibrium score heritability and genetic correlation 

Linkage-disequilibrium score regression (LDSC) [22] was carried out to estimate the joint 

contribution of genetic variants as tagged by common variants (SNP-h2) to phenotypic variation in HC. 

The method is based on GWAS statistics and exploits LD patterns in the genome and can distinguish 

confounding from polygenic influences [22]. To estimate LDSC-h2, genome-wide χ2-statistics are 
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regressed on the extent of genetic variation tagged by each SNP (LD-score). The intercept of this 

regression minus one estimates the contribution of confounding bias to inflation in the mean χ2-statistic. 

LD score regression was performed with LDSC software and based on the set of well-imputed HapMap3 

SNPs (~1,145,000 SNPs with minor allele frequency (MAF) > 5% and high imputation quality such as an 

INFO score of 0.9 or higher) and a European reference panel of LD-scores. LD-score correlation analysis 

can be used to estimate the genetic correlation (rg ) between distinct samples by regressing the product of 

test statistics against the same LD-score [23]. Bivariate LD score correlation was performed with the 

LDHub platform [64] v1.9.0. We assessed the genetic correlation between HC scores and a series of 235 

phenotypes (excluding UK Biobank) comprising anthropometric, cognitive, structural neuroimaging and 

other traits as described in Zheng et al. [64], with an adjusted Bonferroni threshold of p<1.4x10-4.  

 

Stratified LD Regression: Cell Type Expression and Epigenomics 

Stratified LD score regression [65] is a method for partitioning heritability from GWAS summary 

statistics with respect to genes that are expressed in specific tissue/cell types. We applied this method to 

HC summary statistics to evaluate whether the heritability of HC is enriched for genes that are highly 

expressed in brain tissues. GTEx v6p (Supplementary Note 3) provided gene expression data from 13 

brain tissue/cell types. Each of these tissue annotations was added to the baseline model and enrichment 

was calculated with respect to 53 functional categories. This is for each functional category the proportion 

of SNP-h2 divided by the proportion of SNPs in that category. We performed stratified LD score 

regression with independent data from the Roadmap Epigenomics consortium and ENCODE project 

(Supplementary Note 3), where we restricted the analysis to 55 chromatin marks identified in neural and 

bone tissue/cell types. Similar to the deriving enrichment in gene expression, each annotation was added 

to the baseline model. Chromatin analysis includes the union and the average of cell-type specific 

annotations within each mark. The joint gene expression and chromatin enrichment analysis, we applied a 
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multiple testing of p<4.8x10-4 accounting for 68 neural and bone tissues/cell types tested (data from 

GTEx v6p, ENCODE and Roadmap; Supplementary Note 3). 

 

 

Functional annotation for novel signals 

We investigated whether the novel GWAS significant signals from both HC (Pediatric) and HC 

(Pediatric+adult) meta-analyses were associated with Human Embryonic Craniofacial Tissue Epigenomic 

Data [28]. In addition, functional consequences of novel variants were explored using two web-based 

tools: Brain xQTL [27] and FUMA [26]. The threshold for multiple testing for eQTL was adjusted 

according to the number of genes near the studied novel signals and their proxy SNPs (r2=0.2 and 

±500kb). In analysis of Brain xQTL, we corrected for multiple testing of p<7.4x10-4 to account for 68 

genes tested. For FUMA, the eQTL analysis, multiple testing of p<7.6x10-4 was applied to adjust for 42 

genes and, 24 blood and brain tissues/cell types (Supplementary Note 3).  

 

UK Biobank phenome scan  

To characterize the phenotypic spectrum of identified HC signals, we conducted a phenome scan 

on 2,143 phenotypes in the UK Biobank cohort [66], using PHESANT [29] software. Analyses were 

restricted to participants of UK ancestry (UK Biobank specified variable). One from each pair of related 

individuals, individuals with high missingness, heterozygosity, gender mismatch and putative 

aneuploidies were excluded. Genotype dosage at lead single variants identified in GWAS was converted 

into best-guess genotypes using PLINK v1.90b3w. Linear, ordinal logistic, multinomial logistic and 

logistic regressions were fitted to test the association between genotype and continuous, ordered 

categorical, unordered categorical and binary outcomes respectively. Analyses were adjusted for age, sex 

and genotyping chip, and, for sensitivity analysis, 10 principal components. A conservative Bonferroni 
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threshold was applied accounting for a total of 11,056 tests performed and 2 genotypes tested (p<2.26×10-

6).  

 

HC growth curve modelling 

Trajectories of untransformed HC (cm) spanning birth to 15 years were modelled in 6,225 

ALSPAC participants with up to 13 repeat measures (17,269 observations) using a mixed effect SITAR 

model [18]. SITAR comprises a shape invariant mixed model with a single fitted curve, where individual 

curves are matched to the mean curve by modelling differences in mean HC, differences in timing of the 

pubertal growth spurt and differences in growth velocity [18]. Individuals with large measurement errors, 

i.e. with HC scores at younger ages exceeding scores at later ages (by more than 0.5 SD of the grand 

mean) as well as outliers (with residuals outside the 99.9% confidence interval) were excluded. The best 

fitting model was identified using likelihood ratio tests and the Bayesian Information Criterion and 

included four fixed effects for splines, a fixed effect for differences in mean HC and a fixed effect for sex, 

in addition to two random effects for differences in mean HC and growth velocity. Stratified models were 

fitted for carriers and non-carriers of increaser-alleles at candidate loci. To examine the relationship 

between genotype dosage and differences in HC and growth velocity, these random effects were 

regressed on genotype dosage using a linear model.  

 

Data availability 

Genome-wide summary statistics have been deposited at The Language Archive, a public data archive 

hosted by the Max Planck Institute for Psycholinguistics. Data are accessible with a persistent identifier:  

https://hdl.handle.net/1839/181fe1c9-70b8-4ede-845a-6ed0b8070f75 
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Tables and Figures Legend 
 
Table 1: Genome-wide meta-analysis of final head circumference (HC): Novel loci 

Meta-analysis Variant Chr Position 
(b37) 

EA EAF Discovery Follow-up Discovery + follow-
up 

 

β (SE) p N pHet β (SE) p N β (SE) p   N 
HC(Pediatric) rs183336048 4 128302747 T 0.02 0.31 (0.06) 3.0×10-8 10,303 0.62 - - - - - - 
HC(Pediatric+adult) rs9268812a 6 32424568 A 0.35 0.07 (0.01) 1.3×10-9 18,881 0.85 0.01(0.05) 0.87 973 0.07(0.01) 2.1×10-9 19,557 
HC(Pediatric+adult) rs35850753 17 7578671 T 0.02 0.22 (0.04) 2.0×10-8 18,584 0.21 0.64(0.16) 4.5×10-5 973 0.24(0.04) 2.1×10-10 19,557 

Genome-wide meta-analysis of head circumference scores in pediatric and adult samples as described in Figure 1a; Evidence for association was assessed using standard error-weighted 
fixed effects meta-analysis. Only independent variants (Linkage disequilibrium (LD)-r2< 0.2 within +/- 500 kb) reaching nominal evidence for genome-wide significance (p<5x10-8) are 
shown. The adjusted threshold for genome-wide significance is 3.3x10-8, accounting for multiple testing.  
ars9268812 is in linkage disequilibrium with rs9268668 (r2=0.60) that passes the genome-wide significance threshold within the HC(Pediatric) meta-analysis (Supplementary Table S2).  
Position, base pair position; EA, effect allele; EAF, effect allele frequency; β, effect estimate; SE standard error; p, p-value; N, sample size; pHet , p-value 
for heterogeneity statistic (based on Cochran’s Q-test for heterogeneity).  
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Table 2: Genome-wide combined meta-analysis of intracranial volume (ICV) and head circumference (HC): Novel loci  
Variant Chr Position(b37) EA EAF ICV HC (Pediatric + adult) ICV+HC (Pediatric + adult) 

β* (SE) p N β* (SE) p N β* (SE) p N 
rs2168812 1 243777066 A 0.18 0.05(0.01) 9.0x10-6 26,577 0.06(0.01) 1.5x10-5 18,881 0.05(0.01) 2.3x10-9 45,458 
rs4513262 2 10181457 T 0.21 0.05(0.01) 7.7X10-7 26,455 0.04(0.01) 2.3X10-3 18,881 0.05(0.01) 2.9x10-8 45,336 
rs41288837 2 85531116 T 0.03 -0.10(0.03) 1.0x10-4 26,179 -0.15(0.03) 1.6x10-6 17,737 -0.11(0.02) 7.2x10-9 43,916 
rs429150a 6 32075563 T 0.52 0.04(0.01) 3.1x10-5 24,242 0.04(0.01) 1.0x10-4 18,881 0.04(0.01) 3.9x10-8 43,122 
rs9268812 6 32424568 A 0.35 0.02(0.02) 3.0x10-1 59,57 0.07(0.01) 1.3x10-9 18,881 0.05(0.01) 1.6x10-8 24,838 
rs11154343 6 126412953 T 0.31 -0.05(0.01) 1.7x10-8 26,577 -0.03(0.01) 1.2x10-2 18,881 -0.04(0.01) 1.0x10-8 45,458 
rs7808664a 7 32917550 A 0.37 -0.04(0.01) 1.2x10-6 26,577 -0.03(0.01) 2.0x10-3 18,881 -0.04(0.01) 3.6x10-8 45,458 
rs148974918 10 112033051 T 0.05 -0.08(0.02) 9.4x10-5 26,577 -0.1(0.02) 1.6x10-5 18,881 -0.08(0.02) 2.4x10-8 45,458 
rs3217870 12 4400111 T 0.62 -0.03(0.01) 1.0x10-4 26,577 -0.05(0.01) 7.0x10-7 18,881 -0.04(0.01) 3.1x10-9 45,458 
rs2066827 12 12871099 T 0.77 0.05(0.01) 3.9x10-6 19,990 0.05(0.01) 9.3x10-5 18,881 0.05(0.01) 5.4x10-9 38,871 
rs35850753b 17 7578671 T 0.02 0.1(0.03) 1.5x10-3 23,972 0.21(0.04) 2.0x10-8 18,584 0.14(0.02) 3.6x10-9 42,556 
rs78378222b 17 7571752 T 0.02 0.15(0.04) 1.4x10-5 23,634 0.21(0.04) 1.5x10-7 17,737 0.17(0.03) 7.9x10-11 41,371 

Genome-wide combined meta-analysis of intracranial volume and head circumference scores as described in Figure 1b; Evidence for association was assessed 
using Z-weighted meta-analysis. Standardized estimates were derived as described in the Methods. Only independent variants (Linkage disequilibrium (LD)-r2< 
0.2 within +/- 500 kb) reaching nominal evidence for genome-wide significance (p<5x10-8) are shown. The adjusted threshold for genome-wide significance is 
3.3x10-8, accounting for multiple testing.  
ICV - GWAS statistics as reported by the intracranial volume (ICV) meta-analysis of ENIGMA2 and CHARGE samples, N≤26,577 
HC (Pediatric+adult) - Combined pediatric and adult head circumference meta-analysis, N≤18,881 
a - Passes a nominal threshold for genome-wide significance only (p<5x10-8) 
b - rs78378222 is in linkage disequilibrium with rs35850753 (r2=0.56) that passes the genome-wide significance threshold within the Pediatric+adult HC 
meta-analysis (Supplementary Table S4). 
Position, base pair position; EA, effect allele; EAF, effect allele frequency; β*, Standardized effect estimate; SE, standard error; p, p-value; N, sample size  
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Figure 1. Study design. (a) Head circumference meta-analysis design using a fixed-effect meta-
analysis including different developmental stages. (b) Combined head circumference and intracranial 
volume meta-analysis design using a Z-weighted meta-analysis. ICV - intracranial volume. WGS - 
Whole Genome Sequencing; UK10K/1KG - Joint UK10K/1000 Genomes imputation template; 1KG - 
1000 Genomes imputation template; HRC- The Haplotype Reference Consortium r1. * Due to sample 
dropout only N≤43,529 were available 
 
Figure 2: Genome-wide association with final head circumference (HC). (a) HC(Pediatric): 
N=8,281, (b) HC(Adult): N=10,600 and (c) HC(Pediatric+adult): N=18,881 meta-analysis. The 
dashed line represent the threshold for genome-wide (p<5.0x10-8) significance. Known variants for 
intracranial volume, brain volume and head circumference (Supplementary Table S7) are shown in 
blue. Novel signals (r2=0.2, kb=±500) passing a nominal genome-wide association threshold (p<5x10-

8) are shown with their lead SNP in red. Replicated signals are labelled with a red cross. Genomic 
position is shown according to NCBI Build 37. Accounting for multiple testing, the adjusted level of 
genome-wide significance is p<3.3x10-8. 
 
Figure 3. Regional association plot at 17p13.1 associated with final head circumference (HC) 
and final cranial dimension. (a) Depicts a 800 Mb window and (b) a zoomed view of genetic 
association signals and functional annotations near TP53. Within each plot, in the first panel SNPs are 
plotted with their -log10 p-value as a function of the genomic position (b37). This panel shows the 
statistical evidence for association based on the fixed-effect meta-analysis HC (Pediatric+adult) 
samples, but also for lead signals from including HC follow-up and intracranial volume (ICV) 
samples (see legend for shape coding). SNPs are colored based on their correlation with the HC lead 
signal (rs35850753, pairwise LD-r2-values). The second panel represents the gene region (ENSEMBL 
GRCh37). The third panel in (b) presents the Genomic Evolutionary Rate Profiling (GERP++) score 
of mammalian alignments. The last four panels in (b) show 4 of 15 core chromatin states, present in 
the zoomed view, from the Roadmap Epigenomics Consortium including Embryonic Stem Cells 
(ESC), hESC Derived CD56+ Ectoderm Cultured Cells, Fetal Brain (Male) and Brain Dorsolateral 
Prefrontal Cortex respectively (see legend for color coding). 
 
Figure 4. Stratified head circumference growth model trajectories for rs35850753 carriers (T 
allele) versus non-carriers (C-allele). The growth model was based on untransformed head 
circumference (cm) scores spanning birth to 15 years observed in 6,225 ALSPAC participants with up 
to 13 repeat measures (17,269 observations) using a mixed effect SuperImposition by Translation And 
Rotation (SITAR) model. 
 
Figure 5: Genetic architecture of head circumference (HC). (a) Linkage-disequilibrium score 
SNP-heritability (LDSC-h2) for HC (Pediatric), HC (Adult) and HC (Pediatric+adult) meta-analyses. 
(b) Genetic-relationship matrix structural equation modelling (GSEM) of head circumference during 
development: Path diagram of the full Cholesky decomposition model using longitudinal head 
circumference measures from ALSPAC (1.5 years (N =3,945), 7 years (N=5,819), and 15 years 
(N=3,406)). Phenotypic variance (P1, P2, P3) was dissected into genetic (A1, A2 and A3) and 
residual (E1, E2 and E3) factors. Observed measures are represented by squares and latent factors by 
circles. Single headed arrows ('paths') define relationships between variables. The variance of latent 
variables is constrained to unit variance. (c) Standardized genetic and residual variance components 
for head circumference during development. Variance components were estimated using the GSEM 
model as shown in b. (d)Linkage-disequilibrium score correlation (LDSC-rg) for HC(Pediatric), 
HC(Adult) and HC(Pediatric+adult) and 235 phenotypes: 17 genetic correlation estimates passing a 
Bonferroni threshold (p<0.00014) are shown.  *** p<10-8; **p<10-5; *p<0.00014 
 
Figure 6: Genome-wide association analysis of final cranial dimension  
A genome-wide weighted Z-score meta-analysis of combined head circumference (HC) and 
intracranial volume (ICV) was carried out (ICV+HC (Pediatric+adult): N= 45,458). The dashed line 
represents the threshold for genome-wide (p<5.0x10-8) significance. Known variants for ICV, brain 
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volume and HC are shown in blue (Supplementary Table S7). Novel signals (r2=0.2, kb=±500) 
passing a nominal genome-wide association threshold (p<5 x10-8) are shown with their lead SNP in 
green (Table 2, Table S15). HC (Pediatric + adult) signals identified in this study are shown in red. 
Genomic position is shown according to NCBI Build 37. Accounting for multiple testing, the adjusted 
level of genome-wide significance is p<3.3x10-8. 
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