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Abstract

The role of the microbiome in health and disease involves complex networks of host genetics,
genomics, microbes and environment. Identifying the mechanisms of these interactions has
remained challenging. Systems genetics in the laboratory mouse enables data-driven discovery of
network components and mechanisms of host-microbial interactions underlying multiple disease
phenotypes. To examine the interplay among the whole host genome, transcriptome and
microbiome, we mapped quantitative trait loci and correlated the abundance of cecal mMRNA,
luminal microflora, physiology and behavior in incipient strains of the highly diverse
Collaborative Cross mouse population. The relationships that are extracted can be tested
experimentally to ascribe causality among host and microbe in behavior and physiology,
providing insight into disease. Application of this strategy in the Collaborative Cross population
revealed experimentally validated mechanisms of microbial involvement in models of autism,
inflammatory bowel disease and sleep disorder.

KEYWORDS: complex traits, genetics, genomics, bioinformatics, behavior

eTOC Blurb- Host genetic diversity provides a variable selection environment and
physiological context for microbiota and their interaction with host physiology. Using a highly
diverse mouse population Bubier et al. identified a variety of host, microbe and potentially
disease interactions.

Highlights:

*18 significant species-specific QTL regulating microbial abundance were identified

*Cis and trans eQTL for 1,600 cecal transcripts were mapped in the Collaborative Cross
*Sleep phenotypes were highly correlated with the abundance of B.P. Odoribacter

*Elimination of sleep-associated microbes restored normal sleep patterns in mice.
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Introduction

Although the human microbiome has been implicated as an important factor in health and
disease (Wen et al., 2008), the mechanisms by which it influences human physiology are largely
unknown. Experiments that manipulate specific genetic, molecular and microbial components of
the microbe—host interface are essential to dissection of these mechanisms (Vijay-Kumar et al.,
2010), but identification of targets for experimental manipulation remains a significant
challenge. However, both microbial community composition and its effects on host health are
modulated by host characteristics that exhibit heritable variation (Benson et al., 2010; Campbell
etal., 2012; McKnite et al., 2012; Snijders et al., 2016), providing the opportunity to identify
genetic variants and associated traits to serve as entry points for investigating key functional
pathways at the microbe—host interface (Knights et al., 2014; McKbnite et al., 2012; Willing et al.,
2010).

Studies of the gut microbiome have produced convincing evidence for a microbial
influence over many host traits including human gastrointestinal (GI1) disorders (Knights et al.,
2014; Machiels et al., 2014; Willing et al., 2010), metabolic traits, diabetes (Vijay-Kumar et al.,
2010; Wen et al., 2008) and obesity (Carlisle et al., 2013; McKnite et al., 2012; Parks et al.,
2013). Perhaps more surprising is the influence of gut microbiota and the metabolites they
produce on brain and behavior (Bravo et al., 2011; Carter, 2013; Lewin et al., 2011). Despite the
importance of these microbial influences, the mechanisms of these interactions often remain
unknown.

There are many well-documented relationships among host genetic variation, intestinal
flora composition and disease reported in human genetic analyses (Deloris Alexander et al.,

2006; Goodrich et al., 2014; Jacobs and Braun, 2014; Knights et al., 2014; Turnbaugh et al.,
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82  2009). Because mice and humans harbor similar microbiota at high taxonomic levels (Krych et
83 al., 2013; Ley et al., 2008), systems genetic analysis in laboratory mice can be an effective tool
84  for discovering the mechanisms of host-microbe interaction in a large-scale, data driven manner.
85  This quantitative genetic approach provides a means of holistic assessment of the relations
86  among host, microbe and disease through the use of population genetic variation, one of the
87  greatest determinants of microbial community composition in mice (Campbell et al., 2012;
88  Deloris Alexander et al., 2006). The study of natural genetic variation (Campbell et al., 2012)
89  and engineered mutations (Spor et al., 2011; Turnbaugh et al., 2006), also enable deep dissection
90 of the biology of the microbiome and discovery of host genetic loci that regulate microbial
91  abundance (Benson et al., 2010; McKnite et al., 2012). The transcriptome provides insight into
92  the host microenvironment by quantifying the relative abundance of transcripts encoding host
93  pathways involved in metabolic responses, the production and presentation of cell-surface
94  antigens, and constituents of the immune system such as the gut associated lymphoid tissue,
95 among other host processes that both shape and respond to gut microbiota.
96 The Collaborative Cross (CC) mouse population, (Chesler et al., 2008; Churchill et al.,
97  2004) constructed from the cross of eight diverse inbred progenitor strains, was designed for
98  high precision, (Philip et al., 2011) and high diversity systems genetic analysis. The host genetic
99  variation among this population results in diverse microbiome compositions (Campbell et al.,
100  2012) and physiological and behavioral phenotypes. Genetic correlations among these
101  characteristics are used to construct systems genetic networks (Figure 1). Interrogation of these
102  networks at the level of transcript, microbe and phenotypes enable the study of mechanisms of
103  microbiota influence on health and disease by identifying causal mechanisms responsible for

104  phenotypic correlations.
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105 Here, we integrated data for host genotype, disease related phenotypes, gut microbiome
106  composition and associated gut gene expression to develop a systems genetic network for the
107  gut-microbiome interaction and its effects on host health. Specifically, we performed an

108 integrative analysis leveraging cecal MRNA levels, luminal microbiome, physiology and

109  behavior from over 100 incipient strains of the CC population. Through the analysis of relations
110  among these measurements, we apply systems genetic analysis to problems in autism-related
111 behaviors, inflammatory bowel disease and sleep.

112
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Results

Microbial community composition of incipient CC Mice

We first determined the cecal microbial community composition of 206 CC mice of both sexes
and 102 breeding lines using 454 pyrosequencing of amplicon libraries of the V4 region of the
16S SSU (Small Subunit) rRNA gene, revealing 13,632 Operational Taxonomic Units (OTUs).
Taxonomic analysis of all sequences using the Ribosomal Database Project naive Bayesian
rRNA classifier (Cole et al., 2009; Cole et al., 2014) indicated a bacterial diversity similar to
previously observed communities (Campbell et al., 2012)—Firmicutes comprised 89% of the
microbial community and Bacteroidetes (9%) were the second most abundant phylum (Figure
S1). In our previous study of replicate mice from the eight CC progenitor strains, we detected
more phyla in the founders, but we show here that there are similar predominating phyla
(Campbell et al., 2012) in the CC. The median broad-sense heritability of microbial abundance
estimated by intraclass correlation in the CC founder strains for each OTU (Table S1) was 0.170,
with 339 OTUs having a H2> 0.3, indicating sufficiently heritable abundance for genetic
mapping.

Microbial Abundance QTLs

We performed quantitative trait locus (QTL) mapping to identify host genetic loci accounting for
heritable variation in microbial abundance. There were eighteen statistically significant (q <
0.05) microbial abundance (Micab) QTL (Table 1) among the mapped microbial OTU
abundances. The 1.5 logarithm of odds (LOD) confidence intervals for the significant QTL range
from 2 to 24 Mb in size, with an average size of 7.5 Mbp. The size is consistent with previous
mapping studies in the CC breeding population (Philip et al., 2011; Snijders et al., 2016) and

substantially smaller than conventional experimental crosses. This interval size coupled with the
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136  extensive genomic data becoming available for the CC founder population enables refinement of
137  the QTLs down to the level of genes and variants in some cases.

138  Expression QTLs (eQTL) in the CC Cecum

139  To characterize the host intestinal state, we profiled mouse MRNA abundance in the cecal tissue
140  surrounding the microbial sample. Transcript abundance estimates were generated for 36,308
141  microarray probes, representing 27,149 genes. Heritability of transcript abundance exceeded

142 H?=0.3 for 1,990 probes in the founder populations. QTL analysis was performed to identify host
143 genomic regions harboring allelic variants that influence the abundance of each probe, resulting
144 in detection of statistically significant QTL (q< 0.05) for 1,641 probes, corresponding to 1,513
145  genes (Table S2). Of these, 950 loci (57.9%) are cis-eQTL (Figure S2), which contain

146  polymorphisms that are proximal to transcript coding regions. Such loci are useful in identifying
147  expression regulatory mechanisms in the effect of genetic variation on complex traits.

148  Genetic correlation analysis reveals relations among genes and microbes.

149  The characterization of genetically heterogeneous populations enables the multi-scale correlation
150 and clustering of high-dimensional phenotypic data across individuals, including gut microbial
151  abundance for all detected OTUs, intestinal-expressed genes, and disease-related phenotypes.
152  For each of 393 microbial OTUs subject to genetic analysis, a set of co-abundant transcripts were
153  detected across individuals (Table S3). Biclustering of gene-microbe correlations using a

154  biclique enumeration algorithm (Zhang et al., 2014) revealed 318 clusters of multiple cecal

155  microbes and the set of co-abundant transcripts found within the cecal intestine in each cluster.
156  Sets of microbes and associated transcripts were deposited in the GeneWeaver database for

157  access and subsequent comparative analysis with other heterogeneous functional genomic data in

158  the form of gene lists.
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159 These sets of correlated transcripts, microbes and disease measures were interrogated
160  along with the microbial QTL and intestinal eQTL to identify the elements of biological

161  networks of host and microbial interactions that were subject to experimental perturbation. From
162  the interrogation of these relationships in systems genetic networks, we extracted specific

163  mechanistic hypotheses for microbe—host interactions. In each of three examples that follow,
164  data were interrogated by starting from a microbial QTL, microbe-transcript cluster, or microbe-
165  physiology trait correlation, respectively, revealing putative relations that could begin to be

166  tested experimentally.

167  Genetic characterization of disease-associated microbes reveals potential mechanism of

168  microbial influence of autism-related behavior

169  Microbial abundances, (Micab) QTLs, and cecal eQTLs were integrated to elucidate the

170  mechanism underlying a previously reported association between a microbe, Enterorhabdus and
171 autism spectrum disorder (ASD). Some microbial species, including Enterorhabdus are more
172  abundant in the valproic acid (VPA)-induced mouse model of autism than non-exposed controls,
173 a phenomenon associated with cecal butyrate production (de Theije et al., 2014). Levels of short-
174  chain fatty acids such as butyric acid have also been associated with other autism models

175 (Kratsman et al., 2016; Morris et al., 2016). Aberrant social behavior, a hallmark of ASD in

176  humans, has been observed in germ free mice (Desbonnet et al., 2014). We found that

177  Enterorhabdus is regulated by the Micab5 locus. We hypothesized that genetic variants

178 influencing abundance of Enterorhabdus may also influence ASD-related behaviors.

179 The microbial abundance QTL for Enterorhabdus (Coriobacteriales Coriobacteriaceae),
180  Micab5b, maps to Chromosome 5, an interval of 4.65 Mbp containing 121 genes (Figure 2A).

181 Identification of cis-eQTLs, expressed genes regulated by local genetic variation, may help to
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182 identify the pathways and processes responsible for the QTL effect, and when there is phenotype
183  and gene expression correlation a regulatory mechanism is most likely. To determine whether
184  any of the genes in the interval are regulated by local expression regulatory polymorphisms, we
185 intersected the list of cecal eQTLs with the 121 genes within the Micab5 confidence interval,
186  revealing two genes with significant cis-eQTL, Tmem116 (probe34138 or ILMN_2624031) and
187  Trafdl (probe_ 34454 or ILMN_2833441). In contrast to Tmem116, Trafd1 is also a gene

188  expression correlate of Enterorhabdus abundance (Spearman’s rho=0.1465, g = 0.0437) and the
189  Trafdl eQTL allelic effect is similar to that of Micab5 (Figure 2B-C). Therefore, Trafd1 is a

190 genetically plausible candidate. A search of Mammalian Phenotype Ontology (MP) annotations
191  within Mouse Genome Database revealed that Trafdl interacts with bacterial and viral pattern
192  recognition receptors (e.g., toll-like receptors) thus Trafd1 is a functionally plausible candidate
193  gene for controlling microbial abundance. A search of Comparative Toxicogenomic Database
194  (Davis et al., 2015; de Theije et al., 2014) revealed that VPA and acetaminophen are the top

195 interacting partners of Trafdl, and that its expression is increased by VPA exposure (Jergil et al.,
196  2011; Kultima et al., 2010). Thus, we hypothesize that perturbation of Trafd1 abundance

197  (through the cis regulatory QTL in the CC population) mimics the effects of VPA exposure on
198  microbial abundance in the VPA autism model. In a test of this hypothesis, Trafd1 knock-out
199  mice were compared to controls on the three-chambered social interaction test, one test of ASD
200  like behavior applied to the VPA model. There was a significant genotype effect such that

201  knock-out mice spent less time interacting with a stranger mouse and more with the object than
202  controls (Fgenotype(1,27) = 7.9864, p=0.008). (Figure 2D). Strikingly, 16S rDNA sequencing of cecal
203  contents of Trafd1 knock-out and controls detected three OTUs corresponding to Enterorhabdus,

204 the abundance of which did not differ across sexes or genotypes. However, between the genotype
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205  there were only four microbial taxa that differed in their abundance (Figure S3), one of which
206  was Butyrivibrio, a known butyric acid-producing organism. One interpretation is that the QTL
207  mapped for Enterorhabdus abundance may have been a surrogate for differential butyric acid
208  production, because the Butyrivibrio abundance was decreased in the Trafd1 knock-out mice but
209  there was no difference in Enterorhabdus. Perhaps the allelic variation in Trafd1 is associated
210  with the abundance of microbes that can produce butyrate with downstream effects on social
211  behavior, suggesting that Trafd1 null mutants may represent a new model for ASD and warrant
212  further study.

213  Mapping microbes onto human disease through cross-species integrative functional genomics
214  reveals host gene and microbial mechanisms associated with Inflammatory Bowel Disease
215  Sets of genes associated with particular OTUs were interrogated using GeneWeaver’s (Baker et
216  al., 2012; Baker et al., 2009) tools for cross-species integrative functional genomics. In this

217  approach, sets of genes associated with biological concepts such as disease state or molecular
218  pathway are intersected within and across species to find relations among the biological

219  concepts. To identify candidate host molecular mechanisms associated with intestinal disease,
220  we quantified overlap among sets of transcripts associated with mouse microbial abundance and
221  human intestinal disease.

222 We determined that the abundance of Roseburia a bacterial genus from the

223  Lachnospiraceae family (order Clostridales) is significantly correlated (p<0.05 and Spearman
224 correlation > 0.5) with the expression of Cxcr4, Omal, Igll1, 111f8 in the CC-intestine (Table
225  S3). Comparison of this set of correlated genes to those identified in published studies of

226  intestinal disease transcriptomics in GeneWeaver revealed significant overlap with several

227  ulcerative colitis and inflammatory bowel disease related gene sets (Jaccard Similarity
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228  p<0.000001) (Figure 3A). This analysis shows that CXCR4: chemokine (C-X-C maotif) receptor 4
229 is a biomarker of ulcerative colitis (UC) and Crohn’s Disease (CD) (Merelli et al., 2012; Simi et
230 al., 1987) and the expression of the Igll1 transcript can distinguish UC from CD in peripheral
231  blood mononuclear cells of UC patients (Burczynski et al., 2006). Furthermore, this genetic

232  analysis has now implicated two additional genes, 111f8 and Omal, which are correlated with
233  Roseburia, but not currently known to be associated with colitis. QTL Micab4 regulated

234 Roseburia a microbe that, at low intestinal abundance, is just one of the hallmarks of ulcerative
235  colitis (UC) (Chen et al., 2014; Machiels et al., 2014; Willing et al., 2010).

236 The confidence interval for Micab4 was 9.45 Mbp containing 95 genes (Fig 3B-C). At
237  least five genes, 1d3 (probe18912 or ILMN_2687169), Luzpl (probe24933 or ILMN256903),
238 Clga, Clgb, and Clqc are compelling candidates for regulating Roseburia abundance because
239  they either have cis-eQTL or they have an immune system function and contain variants with
240 GWAS LOD scores >4 (Figure 3D). Therefore, we hypothesize that perturbation of a gene in the
241  Micab4 locus will impact Roseburia abundance through the indirect genetic regulation of Cxcr4
242 and Igll1 abundance. Of the five candidates, 1d3 and C1lga were testable in extant mouse models.
243  Luzpl knock-out mice are perinatal lethal (Hsu et al., 2008). There was no evidence of intestinal
244  pathology or abnormal abundance of Roseburia in 1d3 deficient mice (SUPP TABLE OF

245 ABUNDACE IN ID3?). In contrast, comparison of wild-type mice to C1ga knockout mice, and
246  mice with an intact but human derived Clqa gene reveals decreased abundance of Roseburia in
247  the intestine of C1ga deletion mutants (Figure 4E). Mice with the intact human derived allele had
248  an intermediate Roseburia abundance, and did not differ significantly from either the wild-type
249  or Clga deletion mutants. C1ga, C1lgb and Clgc encode proteins that form the C1Q multimer in

250  1:1:1ratio (Reid and Porter, 1976) and are reported to have synchronized transcription in some
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251  cells (Chen et al., 2011), therefore a polymorphism influencing one of them may influence the
252  entire complex (Chick et al., 2016). SNP association mapping in the Clga region reveals

253  significant associations with variants for which B6, 129 and NZO alleles have one effect on

254  Rosburia abundance and the other strains have an opposing effect. Several 3’UTR variants and
255  synonymous variants have this segregation pattern. An additional SNP in Clqga, rs27625206

256  causes an amino acid change at AA16 changing a Thr (polar side chain) to an Ille (non-polar side
257  chain) in A/J, NOD and PWK that may have functional effects. Collectively, these data suggest
258  that genetic variation in the C1 complement system may influence the abundance of Roseburia, a
259  colitis related bacterium.

260  Genetic correlation of microbial abundance to disease-related traits reveals a microbe

261  associated with sleep.

262 Correlation of disease-related traits with underlying biomolecular and microbial

263  characteristics across individuals provides a powerful means to identify previously unknown

264  mechanisms of disease. A total of 122 disease-related behavioral and physiological phenotypes
265  were correlated using Kendall’s Tau with the abundance of each OTU, revealing 45 significant
266 trait-microbe correlations (g< 0.05) (Storey, 2002) (Table 2). Of the trait-microbe pairs, 41

267  contained sleep phenotypes that showed significant associations with 10 different microbes.

268  Among these, OTU 273 Odoribacter (ord. Bacteroidales, fam. Porphyromonadaceae) was the
269  bacterium consistently correlated to the largest number of phenotypes (21), and also significantly
270  correlated with decreased sleep time, among other sleep phenotypes (Table 2, Figure S4A).

271 The Micab7 on chromosome 7 regulates the relative abundance of Odoribacter. The QTL
272  is 3.53 Mbp in size and contains 42 genes (Table 1). The allelic effects for each of the eight

273  founder strain haplotypes are such that the NZO (New Zealand Obese) allele is associated with
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274 increased abundance (Figure 4A-C). This is significant because the NZO founder strain is obese
275 and prone to a diabetes phenotype, and previous studies of gut microbiota in obesity and diabetes
276  prone mice revealed that Odoribacter, Prevotella and Rikenella have been found in the

277  microbiota of diabetic db/db (BKS.Cg-Dock7™ +/+ Leprd/J) mice and are absent among db/+,
278  +/+ littermates (Geurts et al., 2011). The db/db mice have also been shown to have abnormal

279  sleep patterns in the form of altered sleep-wake regulation (Laposky et al., 2008).

280 We hypothesized that Odoribacter, Lepr and sleep are connected through a common

281  mechanism. Specifically if the mechanism controlling altered sleep phenotype and the presence
282  of Odoribacter in Lepr mutant db/db mice is the same mechanism that underlies the correlation
283  of Odoribacter abundance and sleep in the CC mice, then we suspect overlap between one or
284  more of the QTL positional candidates and the Lepr pathway, and that the perturbation of the gut
285  microbiota of db/db mice should affect sleep patterns.

286 In order to investigate whether there is overlap between Micab7 QTL positional

287  candidate genes and Lepr, we performed an Ingenuity Pathway Analysis (IPA) of the 42

288  positional candidates, together with the gene Lepr. The most likely pathway from this database
289  (Fisher’s Exact Test p < 101%) contains the positional candidate genes Nr2f2 and 1gf1R

290 interacting with Lepr through Vegf (Figure 4D).

291 Causal graphical models for phenotype-genotype networks (Rockman, 2008) were used
292  toinfer the direct and indirect associations among the results of the IPA, including Lepr, Vegfa,
293  Vegfh, Vegfc the two positional candidates Nr2f2 and Igfllr, the leptin pathway and sleep. The
294  network model also included abundance of Odoribacter, two sleep traits and the genotypes of the
295 CC mice at the QTL. Bayesian Networks (BNs) are described by directed acyclic graphs (DAG),

296  which can be efficiently decomposed and translated into the joint distribution of variables in the
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297  model (Koller and Friedman, 2009). Conditional Gaussian distributions were used to model the
298 relationships between genotype and phenotype, and the network structure was learned using a
299  Markov Chain Monte Carlo (MCMC) sampling scheme (Hageman et al., 2011), and averaging
300 over the top structures (Hoeting et al., 1999). The graphical model is represented as a DAG

301  which can be efficiently decomposed and translated into the joint distribution of variables in the
302  model. If the QTL is associated with the regulation of the Vegf pathway, we would expect to see
303 evidence for a network edge between the genotype and at least one of the two positional

304  candidates, the downstream Lepr genes and the phenotype. Furthermore, this analysis can

305 determine which positional candidate is most likely influenced by the causal variant. In

306  aggregate summaries of the top 40 graphs, a repeatable relationship among the QTL, the

307  positional candidate Igflr, Odoribacter and sleep is observed (Figure 4E). This relationship is
308  observed in the majority of graphs. Therefore there is a plausible interaction among the QTL,
309 Igflr abundance, the leptin pathway, Odoribacter and sleep.

310 Broad spectrum antibiotic treatment alters sleep pattern in Lepr® / Lepr® mice.

311 We then evaluated whether the presence of Odoribacter in Lepr® mice could explain the
312  altered sleep behavior reported in these mice. To eliminate Odoribacter, mice were given

313 antibiotic treatment continuously from conception. As expected (Savage and Dubos, 1968) this
314  broad spectrum treatment resulted in increased fecal contents of the cecum observed at dissection
315 in both genotypes (Figure S3B), however, it also resulted in a genotype specific effect on sleep
316  architecture. The percent sleep time for the antibiotic treated db/db mice over a 72 hour period
317  showed a genotype x treatment interaction in a repeated measure MANOVA,; Genotype X

318  Treatment F (7145 =2.1199, p = 0.0040 (Figure 5A-D). Fourier amplitude analysis of the cyclic

319  activity between 4 and 7 hour periods (Figure 5E), showed a significant genotype x treatment
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320  effect (F,1200= 12.2193, p < 0.0001) and individual LS Means Student t-test showed significant
321  differences between control db/db and all three other groups (Table S4). V4 sequencing of cecal
322  contents from db/db mice showed seven microbial taxonomic units that were absent in the

323 antibiotic treated case and elevated in the water vehicle controls, including the two from the

324  family containing Odoribacter (Figure 5F). Therefore, we conclude that Odoribacter abundance
325 influences sleep architecture in a manner regulated by genetic variation in Igflr through the

326  Vegf/Leptin pathway.

327
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328 DISCUSSION

329 Using systems genetics and integrative functional genomics in the CC population, we
330 traversed biological networks of genotypes, gene expression, microbes and disease-related

331  phenotypes to identify host-microbial mechanisms underlying autism-, inflammatory bowel

332  disease- and sleep-related phenotypes. The high allelic variation and precision of the incipient
333  CC mouse population allowed us to map loci that control the abundance of 18 particular

334 microbes, which could be further decomposed using SNP analysis, haplotype association and
335  gene prioritization methods. Intestinal transcriptome profiling resulted in detection of ~1,600
336  significant eQTL and multiple clusters of transcripts and microbes whose abundances are jointly
337  modified by genetic variation. Through genetic correlation network analysis, we relate these

338  systems genetic networks to disease related phenotypes obtained in the same population of mice,
339 and through cross-species integrative genomics, we relate the transcriptional correlates of

340  microbial abundance to the transcriptional correlates of human disease.

341 Allelic variants influence the structure of microbial communities by creating conditions
342  that promote or inhibit colonization by certain species (Spor et al., 2011). One way in which

343  allelic variation manifests its effects is through the direct or indirect alteration of transcript

344  abundance and the host environment, thereby impacting colonization. Other sources of variation
345  may influence transcript abundance, including the presence of microbiota and their metabolites,
346  disease states, and environmental variation. These sources of variation and their association with
347  microbiota and disease can be detected through genetic correlation and probabilistic network
348  analyses. By identifying network components and assessing causal relations among them through

349  experimental perturbation, it is possible to understand the mechanisms of these relationships.
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350 Using the incipient CC breeding population we have identified chromosomal loci across
351 the genome, associated with the abundance of a variety of bacteria. We have identified eQTL in
352  and clusters of microbes whose abundance correlates with the altered expression of sets of genes
353 and disease related phenotypes. From each path of interrogation of the systems genetic network,
354  we were able to confirm disease association and augment these observations with mechanistic
355 insights into three disease areas. The systems genetic analysis of mouse intestinal microbiota
356  enabled the discovery of multiple novel microbe-disease relationships. Some of these are

357  supported by existing studies and others by new experimental evidence presented herein.

358 Previous work in humans has associated the specific microbial composition of the gut
359  with autism-spectrum disorder, (De Angelis et al., 2013; Hsiao et al., 2013) and therefore,

360 understanding how host and microbe interactions operate in a mouse model of ASD may lead to
361  a better mechanistic understanding of the role of gut microbes in autism. The abundance of

362  Enterorhabdus has been previously associated with valproic acid induced social behavior deficits
363 and cecal short chain fatty acid metabolites (butyric acid) (de Theije et al., 2014), but the host
364  mechanism mediating this effect and the presence of a naturally occurring host state that mimics
365  the inducible model were unknown. Detecting a QTL for Enterorohabdus abundance and

366  relating it to genetic regulation of Trafd1 abundance enabled us to hypothesize and ultimately
367  demonstrate that perturbation of Trafdl influences social behavior. Trafdl is known to influence
368 inflammatory processes (Sanada et al., 2008) with broad effects on microbial colonization.

369  Maternal infection during pregnancy and the resulting production of inflammatory molecules,
370  has been shown to alter the fetal brain and produce autism-like behaviors in mice (Malkova et
371 al., 2012). In the case of the VPA model of autism, Trafd1 expression is increased by valproic

372  acid (Jergil et al., 2011; Kultima et al., 2010), perhaps allowing for increased colonization by
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373  Enterorhabdus and resulting the differential microbial production of short chain fatty acids

374 known to influence autism-related behavior (MacFabe, 2015).

375 Cross-species interrogation of intestinal disease genomics studies enabled extrapolation
376  from mouse gene expression correlates of microbial abundance to differential gene expression in
377  human gastrointestinal disorders. We identified gastrointestinal transcripts associated with the
378 abundance of Roseburia (Clostridiales, Lachnospiraceae), regulated by the Micab4 QTL. The
379  mouse locus containing the Roseburia abundance QTL on chromosome 4 is syntenic with a

380  region of Chromosome 1 in human that has been repeatedly implicated in UC, IBD and Celiac
381  disease (1p36.11 (Barrett et al., 2009; Dubois et al., 2010), 1p36.12 (Anderson et al., 2011,

382  Barrett et al., 2009; Jostins et al., 2012) 1p36.13 (Anderson et al., 2011; Barrett et al., 2009;

383  Ellinghaus et al., 2012; Franke et al., 2010; Jostins et al., 2012; Silverberg et al., 2009; Yang et
384 al., 2013)). Therefore, finding the genetic variant underlying Roseburia abundance in the mouse
385  may reveal mechanisms causing the dysbiosis seen in IBD. The locus contains complement

386 proteins (Clga, Clgb, Clqc), 1d3, and Luzpl, compelling genetic candidates that also have high
387  functional relevance due to their role in innate and adaptive immunity. Perturbation of C1qa, but
388  not Id3, influences Roseburia abundance, and it is reasonable to speculate that other variants may
389  exhibit similar effects.

390 Genetic correlation from mouse phenotype to microbial abundance enabled the

391 identification of host and microbe influences on sleep architecture. The general role of microbes
392 insleep particularly in the cytokine response to infection is well documented (Krueger and Toth,
393  1994). Previous work in rabbits (Toth and Krueger, 1989) has shown that altered sleep patterns
394  occur in response to an infectious challenge and that the sleep response is related to the type of

395 infectious organism. Here we report for the first time the relationship between the abundance of a
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specific microbe and sleep. OTU273- Odoribacter (Bacteroidales, Porphyromonadaceae),
regulated by the Micab7 locus, was correlated with multiple sleep phenotype measures. Genomic
network analyses revealed that the primary candidate gene for the QTL is Igflr, a gene likely to
function in the regulation of sleep as the somatotropic axis and IGF-1 signaling and sleep are
intimately related (Obal et al., 2003). Perturbation of this pathway in the db/db Lepr mutant
mouse is associated with elevated abundance of Odoribacter and an abnormal sleep phenotype,
both of which we have shown can be restored to normal values through antibiotic treatment. The
observation that indigenous microbes could affect sleep patterns suggests the potential for
probiotic development in adjusting sleep patterns in those with clinical sleep disorders. Recent
studies indicate a relationship between microbiota abundance and ultradian rhythms (Thaiss et
al., 2014), and microbes of the Odorbacter were among five genera that decreased in the feces of
intermittent hypoxia model of sleep apnea (Moreno-Indias et al., 2015).

In each of the above disease related studies, we utilized systems genetic networks to
identify, model and validate the relationships among host genetics, genomics, microbiota and
disease. The mouse provides an efficient, well-controlled system in which to employ this
approach, though it is amenable to application in human populations. We demonstrated that
using mouse genetics, we can identify relations that can be extrapolated to humans, though well-
known issues in mechanistic conservation and direct translation must be considered. For
example, despite high conservation across human and mouse genomes, specific biological
mechanisms are not always entirely conserved, though the functional output of pathways and
involvement in disease may be. Our approach to this challenge is to exploit network overlap, to
identify elements of mouse networks that can be translated to human genetic and genomic

networks, which we expect to function similarly but perhaps differ in the details of specific
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419  allelic variants, genetic mechanisms and particular microbiota involved. By developing our study
420 around holistic quantitation of both host and microbe, in contrast to typical studies of individual
421  perturbations and a specific focus on microbiota, we are able to generate broader networks

422  amenable to integration and extrapolation to disease mechanisms. Much remains to be done in
423  the functional validation of the conservation of these mechanisms.

424 In all studies of the interplay among host environment, microbiota and disease, the causal
425  mechanisms underlying associations must be considered. Genetic variation influences the host
426  environment creating conditions that are hospitable or inhospitable ecological niches for gut

427  microbiota. Identifying the precise causal genetic variants underlying microbial composition is a
428 lengthy process that has become more tractable with the advent of deep sequencing of the CC
429  founders, high precision mapping populations including the Diversity Outbred derived from the
430 CC, and the ability to integrate functional genomic data from other sources including epigenetic
431  modification, non-coding variants, and disease associations.

432 By exploiting genetic heterogeneity among organisms, we were able to extract

433  mechanistic relations among host, microbe and disease. The systems genetic strategy employed
434 herein provides a wealth of data resources that can be further interrogated by investigators with
435 an interest in specific host genes, variants, microbes and disease related phenotypes.

436  Furthermore, the strategy we present can be readily deployed in other genetically diverse

437  populations to provide efficient, holistic assessment of microbial and host mechanisms of

438  disease. Extracting these disease relevant mechanistic networks will provide insight into the

439  complex interplay of host and microbe, revealing potential sources of disease etiology and points
440  of therapeutic intervention.

441
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Figure Legends

Figure 1. The system genetic model and gut microbiomics. Genetic variation in a host
population together with the environment interact to affect gene expression in the host, microbial
abundance and disease related traits. There is significant bi-directional interplay among the
microbiome, host gene expression and disease related phenotypes, however, the effect of host
genotype is unidirectional, and therefore causal.

Figure 2- Enterorhabdus abundance in the cecum. a) Genome scan showing a large significant
QTL (p<0.01) on chromosome 5 for regulation of Enterorhabdus abundance. Horizontal lines
represent permutation based significance thresholds from the top down highly significant p<0.01,
significant, p<0.05, highly suggestive, p<0.1, suggestive, p<0.63 b) Detailed map of
Chromosome 5. Allelic effect plots of eight founder coefficients of the QTL mixed model
representing the effect of each founder haplotype on phenotype. The NOD/LtJ allele on
Chromosome 5 is associated with increased abundance c) Overlapping proximal (cis) eQTL for
Trafd1 expression on chromosome 5 with a similar NOD/LtJ driving increased expression.

d) Traf1-KO mice spent more time interacting with the object, and less time with the stranger
than their wild-type liter mates.

Figure 3. Hierarchical intersection of gene-microbe associations together with human
gastrointestinal disorder literature. a) GeneWeaver output revealing hierarchical intersections of
gene sets with the lowest level nodes representing individual gene-sets, and the higher level
nodes representing 2-way, 3-way to n-way intersections of the inputs. The arrows show the

direction of overlap of the genes. The genes associated with Roseburia (Clostridiales
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487  Lachnospiraceae) abundance include Cxcr4, Omal, Igll1, 111f8. Cxcr4 has been implicated in
488  two studies of UC and CD disease in humans and Igll1 has been implicated in CD. b) Linkage
489  mapping of microbial abundance using the additive haplotype model reveals a significant QTL
490 (p<0.01) on chromosome 4. Horizontal lines represent permuted significance thresholds from the
491  top down highly significant p<0.01, significant, p<0.05, highly suggestive, p<0.1, suggestive,
492  p<0.63 c) Founder coefficients or allelic effects from the linkage model on chromosome 4 show
493 the effects of each founder allele. d) The top panel shows the LOD score from association

494  mapping in the QTL confidence interval. The bottom panel shows the genes and non-coding

495 RNAs from the Mouse Genome Informatics database. e) Relative abundance of Roseburia in
496  wild-type, C1lqa deficient and humanized Clga mice.

497  Figure 4. Odoribacter abundance in the cecum. a) Genome scan showing a significant QTL

498  (p<0.01) peak on chromosome 7. Horizontal lines represent permuted significance thresholds
499  from the top down highly significant p<0.01, significant, p<0.05, highly suggestive, p<0.1,

500  suggestive, p<0.63 b) Detailed QTL map on Chromosome 7. Bottom: LOD score across

501 Chromosome 7. Top: Allelic effect plots of eight coefficients of the QTL mixed model

502 representing the effect of each CC founder haplotype on phenotype. The NZO allele on

503 Chromosome 7 is associated with increased abundance of Odoribacter c) Top: LOD score for
504  SNP association mapping in the QTL support interval (67.1-71.1). Red points indicate SNPs with
505 significant association to Odoribacter abundance. Bottom: Genes and non-coding RNAs located
506 inthe QTL interval. d) Ingenuity Pathway Analysis of the positional candidate genes together
507  with Lepr show a network path through Vegf and involving either Nr2f2 or Igflr. e) Inferred

508 network relating sleep, microbe abundance, microbial abundance QTL, expression correlations

509 and mutant mice. The network is a consensus representation of the 40 most likely BNs in a
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MCMC sample. Edge weights correspond to the marginal frequency of each directed edge in the
top 40 Bayesian Networks. Sleepl represents the sleep trait corresponding to the average of
continuous sleep lengths over four full days, and sleep 2 represents the sleep trait Activity onset
on the fourth day [h].

Figure 5 Mean and standard error for the percent time sleep over a 5 day test. a) Wild type (+/+
and db/+ genotypes) water only, b) Wildtype given antibiotics c) db/db mice water d) db/db mice
given antibiotic Genotype and antibiotic treatment have a significant interaction affecting
percent sleep time.e-h) FFT of sleep percentage time series. i) FFT Peak Amplitude
corresponding to sleep percentage cycles with periods between 4 and 7 hours during the final 4
days of the sleep cycle, show significant genotype x treatment interaction as well as db/db
control being significantly different from the other three groups. j-m) Microbes present in the

control but absent in the antibiotic treated mice
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522  Table 1. Significant QTLs for microbial abundance in the cecum of incipient CC mice.

523  Table 2. Correlations of disease related phenotypes to microbial abundance.

524  Supplementary material

525  Figure S1 Cecal microbial profile across mouse samples. Using 16S V4 rRNA gene sequence
526  reads, a majority of cecum microbes belong to the Firmicutes phylum followed by Bacteroides.
527  The other abundant phyla were Protobacteria (0.6%), Actinobacteria (0.6%).and Synergistetes
528  (0.3%)

529  Figure S2 eQTL map of cecum transcripts in CC mice.

530 Figure S3 Microbes differentially expressed in Trafdl -/- mice compared to wild type

531  controls.

532  Figure S4 Microbes and Sleep. A) Odiobacter and average percentage of sleep time in dark
533  cycle among CC lines. Kendal’s Tau = -0.3314, g-value=0.006104. B) Cecums of Control (left)
534  and antibiotic treated (right) +/+ mice

535

536  Table S1. Founder strain intraclass correlations, sequences, and genus mapping based on

537  Ribosomal Database Project for Operational Taxonomic Units found in at least 10% of CC

538  mapping population

539

540 Table S2. Heritability and eQTLs for cecal intestinal transcript abundance in CC founders and
541  mapping population for probes with strain ICC > .3

542

543  Table S3. GeneWeaver Gene Set IDs for sets of transcripts which are co-abundant with specific

544 microbial taxa.
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547  Table S4. Post-hoc comparison of mean sleep FFT peak amplitude in db/db and wild-type mice
548 treated with broad spectrum antibiotic or vehicle control.

549

550 Table S1. Founder strain intraclass correlations, sequences, and genus mapping based on

551  Ribosomal Database Project for Operational Taxonomic Units found in at least 10% of CC

552  mapping population

553

554  Table S2. Heritability and eQTLs for cecal intestinal transcript abundance in CC founders and
555  mapping population for probes with strain ICC >0.3

556  Table S3. GeneWeaver Gene Set IDs for sets of transcripts which are co-abundant with specific
557  microbial taxa.

558  Table S4. Post-hoc comparison of mean sleep FFT peak amplitude in db/db and wild-type mice
559 treated with broad spectrum antibiotic or vehicle control.

560
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QTL LOD Peak Position Size Weaver

Symbol  QTL Name Chr Score Marker Mm 9 (bp) 1.5LOD Interval p-value (Mbp) GSID

Micabl  Microbial abundance of Clostridiales 1 8.20 rs32084678 13,279,810 rs6275656 rs31653681 0.0033 6.34 217070
Ruminococcaceae Oscillibacter 1

Micab2  Microbia abundance of Bacteroidales 3 8.23 rs31103355 108,854,325 rs31431100 rs37044521 0.0029  4.09 217071
Porphyromonadaceae Paludibacter 2

Micab3  Microbial abundance of Clostridiales 3 8.13 rs30089246 37,569,141 rs30552223 rs30158956 0.0037 2.03 217072
Lachnospiraceae Marvinbryantia 3

Micab4  Microbial abundance of Clostridiales 4 9.57 rs32690134 136,028,098 rs27619452  rs3685172 0.0005 9.45 217077
Lachnospiraceae Roseburia 4

Micab5  Microbia abundance of 5 8.84 rs6377391 119,128,609 rs29633871  rs6354701 0.0009 4.65 217078
Coriobacteriales Coriobacteriaceae
Enterorhabdus 5

Micab6  Microbia abundance of Clostridiales 5 8.42 rs8265964 138,359,981 rs32246505 rs32318125  0.002 4.00 217079
Lachnospiraceae Sporobacterium 6

Micab7  Microbia abundance of Bacteroidales 7 8.84 rs31494696 77,651,351 rs33107817  rs6373775 0.0009 353 217080
Porphyromonadaceae Odoribacter 7

Micab8 Microbia abundance of Clostridiales 7 8.88 rs47611520 47,761,932 rs3661776 rs6176297 0.0009 1355 217081
Ruminococcaceae Lactonifactor 8

Micab9 Microbial abundance of Bacteroidales 7 8.60 rs31494696 77,651,351 rs33107817  rs6373775 0.0013 4.00 217082
Porphyromonadaceae Odoribacter 9

Micabl0 Microbial abundance of Clostridiales 8 9.61 rs32936112 47,123,375 rs6281843 rs31252778 0.0003 14.36 217083
Lachnospiraceae Anaerostipes 10

Micabll Microbial abundance of Clostridiales 8 9.49 rs33429737 31,919,239 rs6399870 rs50110045 0.0005 5.19 217084
Incertae Sedis XV Blautia 11

Micabl2 Microbial abundance of Clostridiales 9 8.29 rs30372085 80,440,479 rs30432532 rs33695839 0.0029 7.37 217092
Clostridiaceae Caminicella 12

Micabl3 Microbial abundance of 10 8.87 rs29327022 88,018,183 rs6338556 rs6265280 0.0009 24.62 217093
Erysipelotrichales Erysipelotrichaceae
Turicibacter 13

Micabl4 Microbial abundance of Bacteroidales 11 8.14 rs26971743 58,783,410 rs6314621 rs26972849 0.0036 6.30 217094
Bacteroidaceae Bacteroides 14

Micabl5 Microbial abundance of Clostridiales 15 9.47 rs6388530 93,634,974 rs31931586 rs49819430 0.0005 10.43 217095
Lachnospiraceae Syntrophococcus 15

Micabl6 Microbial abundance of Bacteroidales 19 8.10 rs30320578 47,732,625 rs36280504 rs307608381 0.004 6.39 217096
Porphyromonadaceae Tannerella 16

Micabl7? Microbial abundance of Clostridiales X 8.50 rs6292190 155,749,346 rs29276152 rs29306363 0.0017 5.59 217097
Ruminococcaceae
Hydrogenoanaerobacterium 17

Micabl8 Microbial abundance of Clostridiales X 8.20 rs6213950 163,790,061 rs8255374 rs31682358 0.0033 3.01 217098

Lachnospiraceae Lachnobacterium 18
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Phenotype

Kendall
Tau

p-value

g-value

Microbe (order, family, genus)

1

Peak activity time from dark onset averaged over all baseline days [h]
Peak activity time from dark onset averaged over all baseline days [h]
Peak activity time from dark onset after sleep deprivation [h]

Average percentage of sleep time over all baseline days [%0]

Glucose concentration [mmol/L]

Peak activity time from dark onset averaged over all baseline days [h]
Activity onset averaged over all baseline days[h]

Average of continuous sleep length over dark cycle in four full days[s]

Average of continuous sleep length over dark cycle for all baseline

days[s]
Peak activity time from dark onset averaged over all baseline days [h]

Tail clip latency [9]

Creatinine concentration [mmol/L]

Activity onset averaged over all baseline days[h]

Average of continuous sleep lengths over the light cyclein four full
days|d]

Average of continuous sleep lengths over the light cycle for al
baseline days| ]

Average of continuous sleep lengths over the dark cyclesin four full

days(s]
Average of continuous sleep lengths over the dark cycle for al baseline

days(s]
Average of continuous sleep lengths over four full days|s]

Average of continuous sleep lengths over all baseline days |9
Peak activity time from dark onset averaged over al baseline days[h]
Peak activity time from dark onset after sleep deprivation [h]

Percentage of sleep over atwo hour period prior to sleep deprivation
[%]

Percentage of sleep time over the dark cycle of four full days[%]
Percentage of sleep time over four full days[%)]

Tail clip latency [9]

Average percentage of sleep time over all baseline days [%0]

0.29
-0.29
-0.31
-0.30
031
0.27
0.32
031
0.32

0.29
031
0.47
-0.29
-0.29

-0.28

-0.31

-0.30

-0.31
-0.30
-0.31
-0.31
-0.31

-0.32
-0.33
-0.29
-0.30

5.12E-06
7.44E-06
2.27E-06
5.24E-06
2.98E-06
5.37E-06
5.52E-07
8.36E-07
5.89E-07

4.77E-06
1.02E-06
8.26E-08
2.55E-06
5.19E-06

5.61E-06

1.13E-06

1.90E-06

6.05E-07
1.41E-06
7.52E-07
6.24E-07
1.19E-06

2.80E-07
1.22E-07
3.91E-06
6.44E-06

0.036
0.049
0.017
0.036
0.022
0.037
0.008
0.009
0.008

0.034
0.010
0.006
0.019
0.036

0.038

0.011

0.015

0.008
0.012
0.009
0.008
0.011

0.007
0.006
0.028
0.043

Clogtridiales
Bacteroidales
Bacteroidales
Bacteroidales
Clogtridiales
Clogtridiales
Lactobacillales
Lactobacillales
Lactobacillales

Lactobacillales
Lactobacillales
Clogtridiales
Bacteroidales
Bacteroidales

Bacteroidales

Bacteroidales

Bacteroidales

Bacteroidales
Bacteroidales
Bacteroidales
Bacteroidales
Bacteroidales

Bacteroidales
Bacteroidales
Bacteroidales
Clogtridiales

Lachnospiraceae
Bacteroidaceae
Bacteroidaceae

Por phyromonadaceae
Lachnospiraceae
Lachnospiraceae
Lactobacillaceae
Lactobacillaceae
Lactobacillaceae

Lactobacillaceae
Lactobacillaceae
Ruminococcaceae

Por phyromonadaceae
Por phyromonadaceae

Por phyromonadaceae
Por phyromonadaceae
Por phyromonadaceae

Por phyromonadaceae
Por phyromonadaceae
Por phyromonadaceae
Por phyromonadaceae
Por phyromonadaceae

Por phyromonadaceae
Por phyromonadaceae
Por phyromonadaceae
Lachnospiraceae

Acetitomaculum
Bacteroides
Bacteroides
Barnesiella
Coprococcus
Coprococcus
Lactobacillus
Lactobacillus
Lactobacillus

Lactobacillus
Lactobacillus
Lactonifactor
Odoribacter
Odoribacter

Odoribacter
Odoribacter
Odoribacter

Odoribacter
Odoribacter
Odoribacter
Odoribacter
Odoribacter
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Odoribacter
Odoribacter
Odoribacter
Roseburia
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