

1 Systems genetic discovery of host-microbiome interactions 2 reveals mechanisms of microbial involvement in disease

3

4

5 Running Title: Host genomics, microbial abundance and disease.

6

7 Jason A. Bubier¹, Vivek M. Philip^{1,2}, Christopher Quince³, James Campbell^{4,5}, Yanjiao Zhou¹
8 Tatiana Vishnivetskaya², Suman Duvvuru², Rachel Hageman Blair⁶, Juliet Ndakum¹, Kevin D.
9 Donohue^{7,8}, Charles Phillips⁹, Carmen M. Foster⁴, David J. Mellert¹, George Weinstock¹,
10 Cymbeline T. Culiat², Erich J. Baker¹⁰, Michael A. Langston⁹, Bruce O'Hara^{7,11}, Anthony V.
11 Palumbo⁴, Mircea Podar⁴ and Elissa J. Chesler^{1,2,4}

12

13

14 ¹The Jackson Laboratory

15 ²Genome Science and Technology Program, University of Tennessee and Oak Ridge National
16 Laboratory

17 ³School of Engineering, University of Glasgow, Glasgow G12 8LT, UK.

18 ⁴Biosciences Division, Oak Ridge National Laboratory

19 ⁵Department of Natural Sciences, Northwest Missouri State University, Maryville, MO 64468

20 ⁶ Department of Biostatistics, State University of New York at Buffalo, Buffalo, NY

21 ⁷Signal Solutions, LLC, Lexington, KY;

22 ⁸ Electrical and Computer Engineering Department, University of Kentucky, Lexington, KY

23 ⁹ Electrical Engineering and Computer Science, University of Tennessee

24 ¹⁰School of Engineering & Computer Science, Baylor University, Waco, TX 76798

25 ¹¹ Department of Biology, University of Kentucky, Lexington, KY

26 Corresponding Author:

27 Elissa J. Chesler

28 The Jackson Laboratory

29 600 Main St

30 Bar Harbor ME 04609

31 Elissa.Chesler@jax.org

32 207-288-6453 (office)

33

34

35

36 **Abstract**

37 The role of the microbiome in health and disease involves complex networks of host genetics,
38 genomics, microbes and environment. Identifying the mechanisms of these interactions has
39 remained challenging. Systems genetics in the laboratory mouse enables data-driven discovery of
40 network components and mechanisms of host–microbial interactions underlying multiple disease
41 phenotypes. To examine the interplay among the whole host genome, transcriptome and
42 microbiome, we mapped quantitative trait loci and correlated the abundance of cecal mRNA,
43 luminal microflora, physiology and behavior in incipient strains of the highly diverse
44 Collaborative Cross mouse population. The relationships that are extracted can be tested
45 experimentally to ascribe causality among host and microbe in behavior and physiology,
46 providing insight into disease. Application of this strategy in the Collaborative Cross population
47 revealed experimentally validated mechanisms of microbial involvement in models of autism,
48 inflammatory bowel disease and sleep disorder.

49 **KEYWORDS:** complex traits, genetics, genomics, bioinformatics, behavior

50 **eTOC Blurb-** Host genetic diversity provides a variable selection environment and
51 physiological context for microbiota and their interaction with host physiology. Using a highly
52 diverse mouse population Bubier et al. identified a variety of host, microbe and potentially
53 disease interactions.

54 **Highlights:**

55 ***18 significant species-specific QTL regulating microbial abundance were identified**

56 ***Cis and trans eQTL for 1,600 cecal transcripts were mapped in the Collaborative Cross**

57 ***Sleep phenotypes were highly correlated with the abundance of *B.P. Odoribacter***

58 ***Elimination of sleep-associated microbes restored normal sleep patterns in mice.**

59 **Introduction**

60 Although the human microbiome has been implicated as an important factor in health and
61 disease (Wen et al., 2008), the mechanisms by which it influences human physiology are largely
62 unknown. Experiments that manipulate specific genetic, molecular and microbial components of
63 the microbe–host interface are essential to dissection of these mechanisms (Vijay-Kumar et al.,
64 2010), but identification of targets for experimental manipulation remains a significant
65 challenge. However, both microbial community composition and its effects on host health are
66 modulated by host characteristics that exhibit heritable variation (Benson et al., 2010; Campbell
67 et al., 2012; McKnite et al., 2012; Snijders et al., 2016), providing the opportunity to identify
68 genetic variants and associated traits to serve as entry points for investigating key functional
69 pathways at the microbe–host interface (Knights et al., 2014; McKnite et al., 2012; Willing et al.,
70 2010).

71 Studies of the gut microbiome have produced convincing evidence for a microbial
72 influence over many host traits including human gastrointestinal (GI) disorders (Knights et al.,
73 2014; Machiels et al., 2014; Willing et al., 2010), metabolic traits, diabetes (Vijay-Kumar et al.,
74 2010; Wen et al., 2008) and obesity (Carlisle et al., 2013; McKnite et al., 2012; Parks et al.,
75 2013). Perhaps more surprising is the influence of gut microbiota and the metabolites they
76 produce on brain and behavior (Bravo et al., 2011; Carter, 2013; Lewin et al., 2011). Despite the
77 importance of these microbial influences, the mechanisms of these interactions often remain
78 unknown.

79 There are many well-documented relationships among host genetic variation, intestinal
80 flora composition and disease reported in human genetic analyses (Deloris Alexander et al.,
81 2006; Goodrich et al., 2014; Jacobs and Braun, 2014; Knights et al., 2014; Turnbaugh et al.,

82 2009). Because mice and humans harbor similar microbiota at high taxonomic levels (Krych et
83 al., 2013; Ley et al., 2008), systems genetic analysis in laboratory mice can be an effective tool
84 for discovering the mechanisms of host–microbe interaction in a large-scale, data driven manner.
85 This quantitative genetic approach provides a means of holistic assessment of the relations
86 among host, microbe and disease through the use of population genetic variation, one of the
87 greatest determinants of microbial community composition in mice (Campbell et al., 2012;
88 Deloris Alexander et al., 2006). The study of natural genetic variation (Campbell et al., 2012)
89 and engineered mutations (Spor et al., 2011; Turnbaugh et al., 2006), also enable deep dissection
90 of the biology of the microbiome and discovery of host genetic loci that regulate microbial
91 abundance (Benson et al., 2010; McKnite et al., 2012). The transcriptome provides insight into
92 the host microenvironment by quantifying the relative abundance of transcripts encoding host
93 pathways involved in metabolic responses, the production and presentation of cell-surface
94 antigens, and constituents of the immune system such as the gut associated lymphoid tissue,
95 among other host processes that both shape and respond to gut microbiota.

96 The Collaborative Cross (CC) mouse population, (Chesler et al., 2008; Churchill et al.,
97 2004) constructed from the cross of eight diverse inbred progenitor strains, was designed for
98 high precision, (Philip et al., 2011) and high diversity systems genetic analysis. The host genetic
99 variation among this population results in diverse microbiome compositions (Campbell et al.,
100 2012) and physiological and behavioral phenotypes. Genetic correlations among these
101 characteristics are used to construct systems genetic networks (Figure 1). Interrogation of these
102 networks at the level of transcript, microbe and phenotypes enable the study of mechanisms of
103 microbiota influence on health and disease by identifying causal mechanisms responsible for
104 phenotypic correlations.

105 Here, we integrated data for host genotype, disease related phenotypes, gut microbiome
106 composition and associated gut gene expression to develop a systems genetic network for the
107 gut–microbiome interaction and its effects on host health. Specifically, we performed an
108 integrative analysis leveraging cecal mRNA levels, luminal microbiome, physiology and
109 behavior from over 100 incipient strains of the CC population. Through the analysis of relations
110 among these measurements, we apply systems genetic analysis to problems in autism-related
111 behaviors, inflammatory bowel disease and sleep.

112

113 **Results**

114 ***Microbial community composition of incipient CC Mice***

115 We first determined the cecal microbial community composition of 206 CC mice of both sexes
116 and 102 breeding lines using 454 pyrosequencing of amplicon libraries of the V4 region of the
117 16S SSU (Small Subunit) rRNA gene, revealing 13,632 Operational Taxonomic Units (OTUs).
118 Taxonomic analysis of all sequences using the Ribosomal Database Project naïve Bayesian
119 rRNA classifier (Cole et al., 2009; Cole et al., 2014) indicated a bacterial diversity similar to
120 previously observed communities (Campbell et al., 2012)—Firmicutes comprised 89% of the
121 microbial community and Bacteroidetes (9%) were the second most abundant phylum (Figure
122 S1). In our previous study of replicate mice from the eight CC progenitor strains, we detected
123 more phyla in the founders, but we show here that there are similar predominating phyla
124 (Campbell et al., 2012) in the CC. The median broad-sense heritability of microbial abundance
125 estimated by intraclass correlation in the CC founder strains for each OTU (Table S1) was 0.170,
126 with 339 OTUs having a $H^2 > 0.3$, indicating sufficiently heritable abundance for genetic
127 mapping.

128 ***Microbial Abundance QTLs***

129 We performed quantitative trait locus (QTL) mapping to identify host genetic loci accounting for
130 heritable variation in microbial abundance. There were eighteen statistically significant ($q <$
131 0.05) microbial abundance (*Micab*) QTL (Table 1) among the mapped microbial OTU
132 abundances. The 1.5 logarithm of odds (LOD) confidence intervals for the significant QTL range
133 from 2 to 24 Mb in size, with an average size of 7.5 Mbp. The size is consistent with previous
134 mapping studies in the CC breeding population (Philip et al., 2011; Snijders et al., 2016) and
135 substantially smaller than conventional experimental crosses. This interval size coupled with the

136 extensive genomic data becoming available for the CC founder population enables refinement of
137 the QTLs down to the level of genes and variants in some cases.

138 ***Expression QTLs (eQTL) in the CC Cecum***

139 To characterize the host intestinal state, we profiled mouse mRNA abundance in the cecal tissue
140 surrounding the microbial sample. Transcript abundance estimates were generated for 36,308
141 microarray probes, representing 27,149 genes. Heritability of transcript abundance exceeded
142 $H^2=0.3$ for 1,990 probes in the founder populations. QTL analysis was performed to identify host
143 genomic regions harboring allelic variants that influence the abundance of each probe, resulting
144 in detection of statistically significant QTL ($q<0.05$) for 1,641 probes, corresponding to 1,513
145 genes (Table S2). Of these, 950 loci (57.9%) are cis-eQTL (Figure S2), which contain
146 polymorphisms that are proximal to transcript coding regions. Such loci are useful in identifying
147 expression regulatory mechanisms in the effect of genetic variation on complex traits.

148 ***Genetic correlation analysis reveals relations among genes and microbes.***

149 The characterization of genetically heterogeneous populations enables the multi-scale correlation
150 and clustering of high-dimensional phenotypic data across individuals, including gut microbial
151 abundance for all detected OTUs, intestinal-expressed genes, and disease-related phenotypes.
152 For each of 393 microbial OTUs subject to genetic analysis, a set of co-abundant transcripts were
153 detected across individuals (Table S3). Biclustering of gene-microbe correlations using a
154 biclique enumeration algorithm (Zhang et al., 2014) revealed 318 clusters of multiple cecal
155 microbes and the set of co-abundant transcripts found within the cecal intestine in each cluster.
156 Sets of microbes and associated transcripts were deposited in the GeneWeaver database for
157 access and subsequent comparative analysis with other heterogeneous functional genomic data in
158 the form of gene lists.

159 These sets of correlated transcripts, microbes and disease measures were interrogated
160 along with the microbial QTL and intestinal eQTL to identify the elements of biological
161 networks of host and microbial interactions that were subject to experimental perturbation. From
162 the interrogation of these relationships in systems genetic networks, we extracted specific
163 mechanistic hypotheses for microbe–host interactions. In each of three examples that follow,
164 data were interrogated by starting from a microbial QTL, microbe-transcript cluster, or microbe-
165 physiology trait correlation, respectively, revealing putative relations that could begin to be
166 tested experimentally.

167 ***Genetic characterization of disease-associated microbes reveals potential mechanism of***
168 ***microbial influence of autism-related behavior***

169 Microbial abundances, (*Micab*) QTLs, and cecal eQTLs were integrated to elucidate the
170 mechanism underlying a previously reported association between a microbe, *Enterorhabdus* and
171 autism spectrum disorder (ASD). Some microbial species, including *Enterorhabdus* are more
172 abundant in the valproic acid (VPA)-induced mouse model of autism than non-exposed controls,
173 a phenomenon associated with cecal butyrate production (de Theije et al., 2014). Levels of short-
174 chain fatty acids such as butyric acid have also been associated with other autism models
175 (Kratsman et al., 2016; Morris et al., 2016). Aberrant social behavior, a hallmark of ASD in
176 humans, has been observed in germ free mice (Desbonnet et al., 2014). We found that
177 *Enterorhabdus* is regulated by the *Micab5* locus. We hypothesized that genetic variants
178 influencing abundance of *Enterorhabdus* may also influence ASD-related behaviors.

179 The microbial abundance QTL for *Enterorhabdus* (*Coriobacteriales Coriobacteriaceae*),
180 *Micab5*, maps to Chromosome 5, an interval of 4.65 Mbp containing 121 genes (Figure 2A).
181 Identification of cis-eQTLs, expressed genes regulated by local genetic variation, may help to

182 identify the pathways and processes responsible for the QTL effect, and when there is phenotype
183 and gene expression correlation a regulatory mechanism is most likely. To determine whether
184 any of the genes in the interval are regulated by local expression regulatory polymorphisms, we
185 intersected the list of cecal eQTLs with the 121 genes within the *Micab5* confidence interval,
186 revealing two genes with significant cis-eQTL, *Tmem116* (probe34138 or ILMN_2624031) and
187 *Traf1* (probe_34454 or ILMN_2833441). In contrast to *Tmem116*, *Traf1* is also a gene
188 expression correlate of *Enterorhabdus* abundance (Spearman's rho=0.1465, q = 0.0437) and the
189 *Traf1* eQTL allelic effect is similar to that of *Micab5* (Figure 2B-C). Therefore, *Traf1* is a
190 genetically plausible candidate. A search of Mammalian Phenotype Ontology (MP) annotations
191 within Mouse Genome Database revealed that *Traf1* interacts with bacterial and viral pattern
192 recognition receptors (e.g., toll-like receptors) thus *Traf1* is a functionally plausible candidate
193 gene for controlling microbial abundance. A search of Comparative Toxicogenomic Database
194 (Davis et al., 2015; de Theije et al., 2014) revealed that VPA and acetaminophen are the top
195 interacting partners of *Traf1*, and that its expression is increased by VPA exposure (Jergil et al.,
196 2011; Kultima et al., 2010). Thus, we hypothesize that perturbation of *Traf1* abundance
197 (through the cis regulatory QTL in the CC population) mimics the effects of VPA exposure on
198 microbial abundance in the VPA autism model. In a test of this hypothesis, *Traf1* knock-out
199 mice were compared to controls on the three-chambered social interaction test, one test of ASD
200 like behavior applied to the VPA model. There was a significant genotype effect such that
201 knock-out mice spent less time interacting with a stranger mouse and more with the object than
202 controls ($F_{\text{genotype}(1,27)} = 7.9864$, $p=0.008$). (Figure 2D). Strikingly, 16S rDNA sequencing of cecal
203 contents of *Traf1* knock-out and controls detected three OTUs corresponding to *Enterorhabdus*,
204 the abundance of which did not differ across sexes or genotypes. However, between the genotype

205 there were only four microbial taxa that differed in their abundance (Figure S3), one of which
206 was *Butyrivibrio*, a known butyric acid-producing organism. One interpretation is that the QTL
207 mapped for *Enterorhabdus* abundance may have been a surrogate for differential butyric acid
208 production, because the *Butyrivibrio* abundance was decreased in the *Traf1* knock-out mice but
209 there was no difference in *Enterorhabdus*. Perhaps the allelic variation in *Traf1* is associated
210 with the abundance of microbes that can produce butyrate with downstream effects on social
211 behavior, suggesting that *Traf1* null mutants may represent a new model for ASD and warrant
212 further study.

213 ***Mapping microbes onto human disease through cross-species integrative functional genomics***
214 ***reveals host gene and microbial mechanisms associated with Inflammatory Bowel Disease***
215 Sets of genes associated with particular OTUs were interrogated using GeneWeaver's (Baker et
216 al., 2012; Baker et al., 2009) tools for cross-species integrative functional genomics. In this
217 approach, sets of genes associated with biological concepts such as disease state or molecular
218 pathway are intersected within and across species to find relations among the biological
219 concepts. To identify candidate host molecular mechanisms associated with intestinal disease,
220 we quantified overlap among sets of transcripts associated with mouse microbial abundance and
221 human intestinal disease.

222 We determined that the abundance of *Roseburia* a bacterial genus from the
223 *Lachnospiraceae* family (order *Clostridiales*) is significantly correlated ($p < 0.05$ and Spearman
224 correlation ≥ 0.5) with the expression of *Cxcr4*, *Oma1*, *Igll1*, *Il1f8* in the CC-intestine (Table
225 S3). Comparison of this set of correlated genes to those identified in published studies of
226 intestinal disease transcriptomics in GeneWeaver revealed significant overlap with several
227 ulcerative colitis and inflammatory bowel disease related gene sets (Jaccard Similarity

228 p<0.000001) (Figure 3A). This analysis shows that *CXCR4: chemokine (C-X-C motif) receptor 4*
229 is a biomarker of ulcerative colitis (UC) and Crohn's Disease (CD) (Merelli et al., 2012; Simi et
230 al., 1987) and the expression of the *Igll1* transcript can distinguish UC from CD in peripheral
231 blood mononuclear cells of UC patients (Burczynski et al., 2006). Furthermore, this genetic
232 analysis has now implicated two additional genes, *Il1f8* and *Oma1*, which are correlated with
233 *Roseburia*, but not currently known to be associated with colitis. QTL *Micab4* regulated
234 *Roseburia* a microbe that, at low intestinal abundance, is just one of the hallmarks of ulcerative
235 colitis (UC) (Chen et al., 2014; Machiels et al., 2014; Willing et al., 2010).

236 The confidence interval for *Micab4* was 9.45 Mbp containing 95 genes (Fig 3B-C). At
237 least five genes, *Id3* (probe18912 or ILMN_2687169), *Luzp1* (probe24933 or ILMN256903),
238 *C1qa*, *C1qb*, and *C1qc* are compelling candidates for regulating *Roseburia* abundance because
239 they either have *cis*-eQTL or they have an immune system function and contain variants with
240 GWAS LOD scores >4 (Figure 3D). Therefore, we hypothesize that perturbation of a gene in the
241 *Micab4* locus will impact *Roseburia* abundance through the indirect genetic regulation of *Cxcr4*
242 and *Igll1* abundance. Of the five candidates, *Id3* and *C1qa* were testable in extant mouse models.
243 *Luzp1* knock-out mice are perinatal lethal (Hsu et al., 2008). There was no evidence of intestinal
244 pathology or abnormal abundance of *Roseburia* in *Id3* deficient mice (SUPP TABLE OF
245 ABUNDACE IN ID3?). In contrast, comparison of wild-type mice to *C1qa* knockout mice, and
246 mice with an intact but human derived *C1qa* gene reveals decreased abundance of *Roseburia* in
247 the intestine of *C1qa* deletion mutants (Figure 4E). Mice with the intact human derived allele had
248 an intermediate *Roseburia* abundance, and did not differ significantly from either the wild-type
249 or *C1qa* deletion mutants. *C1qa*, *C1qb* and *C1qc* encode proteins that form the C1Q multimer in
250 1:1:1 ratio (Reid and Porter, 1976) and are reported to have synchronized transcription in some

251 cells (Chen et al., 2011), therefore a polymorphism influencing one of them may influence the
252 entire complex (Chick et al., 2016). SNP association mapping in the *C1qa* region reveals
253 significant associations with variants for which B6, 129 and NZO alleles have one effect on
254 *Rosburia* abundance and the other strains have an opposing effect. Several 3'UTR variants and
255 synonymous variants have this segregation pattern. An additional SNP in *C1qa*, rs27625206
256 causes an amino acid change at AA16 changing a Thr (polar side chain) to an Ile (non-polar side
257 chain) in A/J, NOD and PWK that may have functional effects. Collectively, these data suggest
258 that genetic variation in the C1 complement system may influence the abundance of *Roseburia*, a
259 colitis related bacterium.

260 ***Genetic correlation of microbial abundance to disease-related traits reveals a microbe***
261 ***associated with sleep.***

262 Correlation of disease-related traits with underlying biomolecular and microbial
263 characteristics across individuals provides a powerful means to identify previously unknown
264 mechanisms of disease. A total of 122 disease-related behavioral and physiological phenotypes
265 were correlated using Kendall's Tau with the abundance of each OTU, revealing 45 significant
266 trait-microbe correlations ($q < 0.05$) (Storey, 2002) (Table 2). Of the trait-microbe pairs, 41
267 contained sleep phenotypes that showed significant associations with 10 different microbes.
268 Among these, OTU 273 *Odoribacter* (ord. *Bacteroidales*, fam. *Porphyromonadaceae*) was the
269 bacterium consistently correlated to the largest number of phenotypes (21), and also significantly
270 correlated with decreased sleep time, among other sleep phenotypes (Table 2, Figure S4A).

271 The *Micab7* on chromosome 7 regulates the relative abundance of *Odoribacter*. The QTL
272 is 3.53 Mbp in size and contains 42 genes (Table 1). The allelic effects for each of the eight
273 founder strain haplotypes are such that the NZO (New Zealand Obese) allele is associated with

274 increased abundance (Figure 4A-C). This is significant because the NZO founder strain is obese
275 and prone to a diabetes phenotype, and previous studies of gut microbiota in obesity and diabetes
276 prone mice revealed that *Odoribacter*, *Prevotella* and *Rikenella* have been found in the
277 microbiota of diabetic *db/db* (BKS.Cg-*Dock7^m* +/+ *Lepr^{db}*/J) mice and are absent among *db/+*,
278 +/+ littermates (Geurts et al., 2011). The *db/db* mice have also been shown to have abnormal
279 sleep patterns in the form of altered sleep-wake regulation (Laposky et al., 2008).

280 We hypothesized that *Odoribacter*, *Lepr* and sleep are connected through a common
281 mechanism. Specifically if the mechanism controlling altered sleep phenotype and the presence
282 of *Odoribacter* in *Lepr* mutant *db/db* mice is the same mechanism that underlies the correlation
283 of *Odoribacter* abundance and sleep in the CC mice, then we suspect overlap between one or
284 more of the QTL positional candidates and the *Lepr* pathway, and that the perturbation of the gut
285 microbiota of *db/db* mice should affect sleep patterns.

286 In order to investigate whether there is overlap between *Micab7* QTL positional
287 candidate genes and *Lepr*, we performed an Ingenuity Pathway Analysis (IPA) of the 42
288 positional candidates, together with the gene *Lepr*. The most likely pathway from this database
289 (Fisher's Exact Test $p < 10^{-14}$) contains the positional candidate genes *Nr2f2* and *Igf1R*
290 interacting with *Lepr* through *Vegf* (Figure 4D).

291 Causal graphical models for phenotype-genotype networks (Rockman, 2008) were used
292 to infer the direct and indirect associations among the results of the IPA, including *Lepr*, *Vegfa*,
293 *Vegfb*, *Vegfc* the two positional candidates *Nr2f2* and *Igf1r*, the leptin pathway and sleep. The
294 network model also included abundance of *Odoribacter*, two sleep traits and the genotypes of the
295 CC mice at the QTL. Bayesian Networks (BNs) are described by directed acyclic graphs (DAG),
296 which can be efficiently decomposed and translated into the joint distribution of variables in the

297 model (Koller and Friedman, 2009). Conditional Gaussian distributions were used to model the
298 relationships between genotype and phenotype, and the network structure was learned using a
299 Markov Chain Monte Carlo (MCMC) sampling scheme (Hageman et al., 2011), and averaging
300 over the top structures (Hoeting et al., 1999). The graphical model is represented as a DAG
301 which can be efficiently decomposed and translated into the joint distribution of variables in the
302 model. If the QTL is associated with the regulation of the *Vegf* pathway, we would expect to see
303 evidence for a network edge between the genotype and at least one of the two positional
304 candidates, the downstream *Lepr* genes and the phenotype. Furthermore, this analysis can
305 determine which positional candidate is most likely influenced by the causal variant. In
306 aggregate summaries of the top 40 graphs, a repeatable relationship among the QTL, the
307 positional candidate *Igf1r*, *Odoribacter* and sleep is observed (Figure 4E). This relationship is
308 observed in the majority of graphs. Therefore there is a plausible interaction among the QTL,
309 *Igf1r* abundance, the leptin pathway, *Odoribacter* and sleep.

310 ***Broad spectrum antibiotic treatment alters sleep pattern in *Lepr*^{db} / *Lepr*^{db} mice.***

311 We then evaluated whether the presence of *Odoribacter* in *Lepr*^{db} mice could explain the
312 altered sleep behavior reported in these mice. To eliminate *Odoribacter*, mice were given
313 antibiotic treatment continuously from conception. As expected (Savage and Dubos, 1968) this
314 broad spectrum treatment resulted in increased fecal contents of the cecum observed at dissection
315 in both genotypes (Figure S3B), however, it also resulted in a genotype specific effect on sleep
316 architecture. The percent sleep time for the antibiotic treated *db/db* mice over a 72 hour period
317 showed a genotype × treatment interaction in a repeated measure MANOVA; Genotype ×
318 Treatment $F_{(71,45)} = 2.1199$, $p = 0.0040$ (Figure 5A-D). Fourier amplitude analysis of the cyclic
319 activity between 4 and 7 hour periods (Figure 5E), showed a significant genotype × treatment

320 effect ($F_{(3,120)} = 12.2193$, $p < 0.0001$) and individual LS Means Student t-test showed significant
321 differences between control *db/db* and all three other groups (Table S4). V4 sequencing of cecal
322 contents from *db/db* mice showed seven microbial taxonomic units that were absent in the
323 antibiotic treated case and elevated in the water vehicle controls, including the two from the
324 family containing *Odoribacter* (Figure 5F). Therefore, we conclude that *Odoribacter* abundance
325 influences sleep architecture in a manner regulated by genetic variation in *Igf1r* through the
326 *Vegf/Leptin* pathway.

327

328 **DISCUSSION**

329 Using systems genetics and integrative functional genomics in the CC population, we
330 traversed biological networks of genotypes, gene expression, microbes and disease-related
331 phenotypes to identify host-microbial mechanisms underlying autism-, inflammatory bowel
332 disease- and sleep-related phenotypes. The high allelic variation and precision of the incipient
333 CC mouse population allowed us to map loci that control the abundance of 18 particular
334 microbes, which could be further decomposed using SNP analysis, haplotype association and
335 gene prioritization methods. Intestinal transcriptome profiling resulted in detection of ~1,600
336 significant eQTL and multiple clusters of transcripts and microbes whose abundances are jointly
337 modified by genetic variation. Through genetic correlation network analysis, we relate these
338 systems genetic networks to disease related phenotypes obtained in the same population of mice,
339 and through cross-species integrative genomics, we relate the transcriptional correlates of
340 microbial abundance to the transcriptional correlates of human disease.

341 Allelic variants influence the structure of microbial communities by creating conditions
342 that promote or inhibit colonization by certain species (Spor et al., 2011). One way in which
343 allelic variation manifests its effects is through the direct or indirect alteration of transcript
344 abundance and the host environment, thereby impacting colonization. Other sources of variation
345 may influence transcript abundance, including the presence of microbiota and their metabolites,
346 disease states, and environmental variation. These sources of variation and their association with
347 microbiota and disease can be detected through genetic correlation and probabilistic network
348 analyses. By identifying network components and assessing causal relations among them through
349 experimental perturbation, it is possible to understand the mechanisms of these relationships.

350 Using the incipient CC breeding population we have identified chromosomal loci across
351 the genome, associated with the abundance of a variety of bacteria. We have identified eQTL in
352 and clusters of microbes whose abundance correlates with the altered expression of sets of genes
353 and disease related phenotypes. From each path of interrogation of the systems genetic network,
354 we were able to confirm disease association and augment these observations with mechanistic
355 insights into three disease areas. The systems genetic analysis of mouse intestinal microbiota
356 enabled the discovery of multiple novel microbe-disease relationships. Some of these are
357 supported by existing studies and others by new experimental evidence presented herein.

358 Previous work in humans has associated the specific microbial composition of the gut
359 with autism-spectrum disorder, (De Angelis et al., 2013; Hsiao et al., 2013) and therefore,
360 understanding how host and microbe interactions operate in a mouse model of ASD may lead to
361 a better mechanistic understanding of the role of gut microbes in autism. The abundance of
362 *Enterorhabdus* has been previously associated with valproic acid induced social behavior deficits
363 and cecal short chain fatty acid metabolites (butyric acid) (*de Theije et al., 2014*), but the host
364 mechanism mediating this effect and the presence of a naturally occurring host state that mimics
365 the inducible model were unknown. Detecting a QTL for *Enterorhabdus* abundance and
366 relating it to genetic regulation of *Traf1* abundance enabled us to hypothesize and ultimately
367 demonstrate that perturbation of *Traf1* influences social behavior. *Traf1* is known to influence
368 inflammatory processes (Sanada et al., 2008) with broad effects on microbial colonization.
369 Maternal infection during pregnancy and the resulting production of inflammatory molecules,
370 has been shown to alter the fetal brain and produce autism-like behaviors in mice (Malkova et
371 al., 2012). In the case of the VPA model of autism, *Traf1* expression is increased by valproic
372 acid (Jergil et al., 2011; Kultima et al., 2010), perhaps allowing for increased colonization by

373 *Enterorhabdus* and resulting the differential microbial production of short chain fatty acids
374 known to influence autism-related behavior (MacFabe, 2015).

375 Cross-species interrogation of intestinal disease genomics studies enabled extrapolation
376 from mouse gene expression correlates of microbial abundance to differential gene expression in
377 human gastrointestinal disorders. We identified gastrointestinal transcripts associated with the
378 abundance of *Roseburia* (*Clostridiales, Lachnospiraceae*), regulated by the *Micab4* QTL. The
379 mouse locus containing the *Roseburia* abundance QTL on chromosome 4 is syntenic with a
380 region of Chromosome 1 in human that has been repeatedly implicated in UC, IBD and Celiac
381 disease (1p36.11 (Barrett et al., 2009; Dubois et al., 2010), 1p36.12 (Anderson et al., 2011;
382 Barrett et al., 2009; Jostins et al., 2012) 1p36.13 (Anderson et al., 2011; Barrett et al., 2009;
383 Ellinghaus et al., 2012; Franke et al., 2010; Jostins et al., 2012; Silverberg et al., 2009; Yang et
384 al., 2013)). Therefore, finding the genetic variant underlying *Roseburia* abundance in the mouse
385 may reveal mechanisms causing the dysbiosis seen in IBD. The locus contains complement
386 proteins (*C1qa*, *C1qb*, *C1qc*), *Id3*, and *Luzp1*, compelling genetic candidates that also have high
387 functional relevance due to their role in innate and adaptive immunity. Perturbation of *C1qa*, but
388 not *Id3*, influences *Roseburia* abundance, and it is reasonable to speculate that other variants may
389 exhibit similar effects.

390 Genetic correlation from mouse phenotype to microbial abundance enabled the
391 identification of host and microbe influences on sleep architecture. The general role of microbes
392 in sleep particularly in the cytokine response to infection is well documented (Krueger and Toth,
393 1994). Previous work in rabbits (Toth and Krueger, 1989) has shown that altered sleep patterns
394 occur in response to an infectious challenge and that the sleep response is related to the type of
395 infectious organism. Here we report for the first time the relationship between the abundance of a

396 specific microbe and sleep. OTU273- *Odoribacter* (*Bacteroidales*, *Porphyromonadaceae*),
397 regulated by the *Micab7* locus, was correlated with multiple sleep phenotype measures. Genomic
398 network analyses revealed that the primary candidate gene for the QTL is *Igf1r*, a gene likely to
399 function in the regulation of sleep as the somatotropic axis and IGF-1 signaling and sleep are
400 intimately related (Obal et al., 2003). Perturbation of this pathway in the db/db *Lepr* mutant
401 mouse is associated with elevated abundance of *Odoribacter* and an abnormal sleep phenotype,
402 both of which we have shown can be restored to normal values through antibiotic treatment. The
403 observation that indigenous microbes could affect sleep patterns suggests the potential for
404 probiotic development in adjusting sleep patterns in those with clinical sleep disorders. Recent
405 studies indicate a relationship between microbiota abundance and ultradian rhythms (Thaiss et
406 al., 2014), and microbes of the *Odoribacter* were among five genera that decreased in the feces of
407 intermittent hypoxia model of sleep apnea (Moreno-Indias et al., 2015).

408 In each of the above disease related studies, we utilized systems genetic networks to
409 identify, model and validate the relationships among host genetics, genomics, microbiota and
410 disease. The mouse provides an efficient, well-controlled system in which to employ this
411 approach, though it is amenable to application in human populations. We demonstrated that
412 using mouse genetics, we can identify relations that can be extrapolated to humans, though well-
413 known issues in mechanistic conservation and direct translation must be considered. For
414 example, despite high conservation across human and mouse genomes, specific biological
415 mechanisms are not always entirely conserved, though the functional output of pathways and
416 involvement in disease may be. Our approach to this challenge is to exploit network overlap, to
417 identify elements of mouse networks that can be translated to human genetic and genomic
418 networks, which we expect to function similarly but perhaps differ in the details of specific

419 allelic variants, genetic mechanisms and particular microbiota involved. By developing our study
420 around holistic quantitation of both host and microbe, in contrast to typical studies of individual
421 perturbations and a specific focus on microbiota, we are able to generate broader networks
422 amenable to integration and extrapolation to disease mechanisms. Much remains to be done in
423 the functional validation of the conservation of these mechanisms.

424 In all studies of the interplay among host environment, microbiota and disease, the causal
425 mechanisms underlying associations must be considered. Genetic variation influences the host
426 environment creating conditions that are hospitable or inhospitable ecological niches for gut
427 microbiota. Identifying the precise causal genetic variants underlying microbial composition is a
428 lengthy process that has become more tractable with the advent of deep sequencing of the CC
429 founders, high precision mapping populations including the Diversity Outbred derived from the
430 CC, and the ability to integrate functional genomic data from other sources including epigenetic
431 modification, non-coding variants, and disease associations.

432 By exploiting genetic heterogeneity among organisms, we were able to extract
433 mechanistic relations among host, microbe and disease. The systems genetic strategy employed
434 herein provides a wealth of data resources that can be further interrogated by investigators with
435 an interest in specific host genes, variants, microbes and disease related phenotypes.

436 Furthermore, the strategy we present can be readily deployed in other genetically diverse
437 populations to provide efficient, holistic assessment of microbial and host mechanisms of
438 disease. Extracting these disease relevant mechanistic networks will provide insight into the
439 complex interplay of host and microbe, revealing potential sources of disease etiology and points
440 of therapeutic intervention.

441

442 **Acknowledgements:** David Durtschi, Gene Barker and Ann Wymore performed genotyping and
443 gene expression analysis for all samples. Darla Miller for her work with the Collaborative Cross
444 at ORNL. Matthew Vincent produced the ‘deSNPed’ version of the Illumina probes for the CC
445 founder strains. Jennifer Ryan, Neil Cole, Christine Rosales, Laura Anderson and Samantha
446 Burrill conducted db sleep studies and dissections. Gaylynn Wells and Stacey Rizzo performed
447 the 3-chamber social interaction test. Ashley Hunt and Amanda Ackovitz populated the
448 GeneWeaver database with published studies of intestinal disease. This research was sponsored
449 by the Laboratory Directed Research and Development Program of Oak Ridge National
450 Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract
451 DE-AC05-00OR22725.

452
453 **Author Contributions:** Jason A. Bubier wrote the paper and performed experiments, Vivek M.
454 Philip designed the sample collection, genotyping and oversaw the analysis, Christopher Quince,
455 James H. Campbell, Yanjiao Zhou, Tatiana Vishnivetskaya, Suman Duvvuru performed
456 statistical analyses, Rachel Hageman-Blair performed probabilistic network modeling, Juliet
457 Ndukum performed trait correlation analyses, Kevin D. Donohue and Bruce F. O’Hara designed
458 the sleep system and associated algorithms, and assessed sleep data, Charles Phillips, Carmen M.
459 Foster, Cymbeline T. Culiat oversaw genotyping analysis, David J Mellert assisted with data
460 analysis and writing the manuscript, George Weinstock and Yanjiao Zhou performed the 16S
461 sequencing and analysis in the follow up experiments, Erich J. Baker implemented the
462 GeneWeaver system, Michael A. Langston developed graph algorithms and oversaw graph
463 analysis, Anthony V. Palumbo, Mircea Podar supervised the gut pyrosequencing study and

464 microbial clustering, and Elissa J. Chesler oversaw all aspects of the project and manuscript
465 preparation.

466 **Figure Legends**

467 **Figure 1.** The system genetic model and gut microbiomics. Genetic variation in a host
468 population together with the environment interact to affect gene expression in the host, microbial
469 abundance and disease related traits. There is significant bi-directional interplay among the
470 microbiome, host gene expression and disease related phenotypes, however, the effect of host
471 genotype is unidirectional, and therefore causal.

472 **Figure 2- *Enterorhabdus* abundance in the cecum.** a) Genome scan showing a large significant
473 QTL ($p<0.01$) on chromosome 5 for regulation of *Enterorhabdus* abundance. Horizontal lines
474 represent permutation based significance thresholds from the top down highly significant $p<0.01$,
475 significant, $p<0.05$, highly suggestive, $p<0.1$, suggestive, $p<0.63$ b) Detailed map of
476 Chromosome 5. Allelic effect plots of eight founder coefficients of the QTL mixed model
477 representing the effect of each founder haplotype on phenotype. The NOD/LtJ allele on
478 Chromosome 5 is associated with increased abundance c) Overlapping proximal (cis) eQTL for
479 *Traf1* expression on chromosome 5 with a similar NOD/LtJ driving increased expression.
480 d) *Traf1*-KO mice spent more time interacting with the object, and less time with the stranger
481 than their wild-type litter mates.

482 **Figure 3.** Hierarchical intersection of gene-microbe associations together with human
483 gastrointestinal disorder literature. a) GeneWeaver output revealing hierarchical intersections of
484 gene sets with the lowest level nodes representing individual gene-sets, and the higher level
485 nodes representing 2-way, 3-way to n-way intersections of the inputs. The arrows show the
486 direction of overlap of the genes. The genes associated with *Roseburia* (*Clostridiales*

487 *Lachnospiraceae*) abundance include *Cxcr4*, *Oma1*, *Igll1*, *Il1f8*. *Cxcr4* has been implicated in
488 two studies of UC and CD disease in humans and *Igll1* has been implicated in CD. **b)** Linkage
489 mapping of microbial abundance using the additive haplotype model reveals a significant QTL
490 ($p < 0.01$) on chromosome 4. Horizontal lines represent permuted significance thresholds from the
491 top down highly significant $p < 0.01$, significant, $p < 0.05$, highly suggestive, $p < 0.1$, suggestive,
492 $p < 0.63$ **c)** Founder coefficients or allelic effects from the linkage model on chromosome 4 show
493 the effects of each founder allele. **d)** The top panel shows the LOD score from association
494 mapping in the QTL confidence interval. The bottom panel shows the genes and non-coding
495 RNAs from the Mouse Genome Informatics database. **e)** Relative abundance of *Roseburia* in
496 wild-type, C1qa deficient and humanized C1qa mice.

497 **Figure 4.** *Odoribacter* abundance in the cecum. **a)** Genome scan showing a significant QTL
498 ($p < 0.01$) peak on chromosome 7. Horizontal lines represent permuted significance thresholds
499 from the top down highly significant $p < 0.01$, significant, $p < 0.05$, highly suggestive, $p < 0.1$,
500 suggestive, $p < 0.63$ **b)** Detailed QTL map on Chromosome 7. Bottom: LOD score across
501 Chromosome 7. Top: Allelic effect plots of eight coefficients of the QTL mixed model
502 representing the effect of each CC founder haplotype on phenotype. The NZO allele on
503 Chromosome 7 is associated with increased abundance of *Odoribacter* **c)** Top: LOD score for
504 SNP association mapping in the QTL support interval (67.1-71.1). Red points indicate SNPs with
505 significant association to *Odoribacter* abundance. Bottom: Genes and non-coding RNAs located
506 in the QTL interval. **d)** Ingenuity Pathway Analysis of the positional candidate genes together
507 with *Lepr* show a network path through *Vegf* and involving either *Nr2f2* or *Igf1r*. **e)** Inferred
508 network relating sleep, microbe abundance, microbial abundance QTL, expression correlations
509 and mutant mice. The network is a consensus representation of the 40 most likely BNs in a

510 MCMC sample. Edge weights correspond to the marginal frequency of each directed edge in the
511 top 40 Bayesian Networks. Sleep1 represents the sleep trait corresponding to the average of
512 continuous sleep lengths over four full days, and sleep 2 represents the sleep trait Activity onset
513 on the fourth day [h].

514 **Figure 5** Mean and standard error for the percent time sleep over a 5 day test. a) Wild type (+/ +
515 and db/+ genotypes) water only, b) Wildtype given antibiotics c) db/db mice water d) db/db mice
516 given antibiotic Genotype and antibiotic treatment have a significant interaction affecting
517 percent sleep time.e-h) FFT of sleep percentage time series. i) FFT Peak Amplitude
518 corresponding to sleep percentage cycles with periods between 4 and 7 hours during the final 4
519 days of the sleep cycle, show significant genotype \times treatment interaction as well as db/db
520 control being significantly different from the other three groups. j-m) Microbes present in the
521 control but absent in the antibiotic treated mice

522 **Table 1.** Significant QTLs for microbial abundance in the cecum of incipient CC mice.

523 **Table 2.** Correlations of disease related phenotypes to microbial abundance.

524 **Supplementary material**

525 **Figure S1 Cecal microbial profile across mouse samples.** Using 16S V4 rRNA gene sequence

526 reads, a majority of cecum microbes belong to the Firmicutes phylum followed by Bacteroides.

527 The other abundant phyla were Proteobacteria (0.6%), Actinobacteria (0.6%).and Synergistetes

528 (0.3%)

529 **Figure S2 eQTL map of cecum transcripts in CC mice.**

530 **Figure S3 Microbes differentially expressed in Traf1 -/- mice compared to wild type**

531 **controls.**

532 **Figure S4 Microbes and Sleep. A)** *Odiobacter* and average percentage of sleep time in dark

533 cycle among CC lines. Kendal's Tau = -0.3314, q-value=0.006104. B) Cecums of Control (left)

534 and antibiotic treated (right) +/- mice

535

536 **Table S1.** Founder strain intraclass correlations, sequences, and genus mapping based on

537 Ribosomal Database Project for Operational Taxonomic Units found in at least 10% of CC

538 mapping population

539

540 **Table S2.** Heritability and eQTLs for cecal intestinal transcript abundance in CC founders and

541 mapping population for probes with strain ICC > .3

542

543 **Table S3.** GeneWeaver Gene Set IDs for sets of transcripts which are co-abundant with specific

544 microbial taxa.

545

546

547 **Table S4.** Post-hoc comparison of mean sleep FFT peak amplitude in db/db and wild-type mice
548 treated with broad spectrum antibiotic or vehicle control.

549

550 **Table S1.** Founder strain intraclass correlations, sequences, and genus mapping based on
551 Ribosomal Database Project for Operational Taxonomic Units found in at least 10% of CC
552 mapping population

553

554 **Table S2.** Heritability and eQTLs for cecal intestinal transcript abundance in CC founders and
555 mapping population for probes with strain ICC >0.3

556 **Table S3.** GeneWeaver Gene Set IDs for sets of transcripts which are co-abundant with specific
557 microbial taxa.

558 **Table S4.** Post-hoc comparison of mean sleep FFT peak amplitude in db/db and wild-type mice
559 treated with broad spectrum antibiotic or vehicle control.

560

561

562 **REFERENCES**

563 Anderson, C. A., Boucher, G., Lees, C. W., Franke, A., D'Amato, M., Taylor, K. D., Lee, J. C.,
564 Goyette, P., Imielinski, M., Latiano, A., *et al.* (2011). Meta-analysis identifies 29 additional
565 ulcerative colitis risk loci, increasing the number of confirmed associations to 47. *Nature*
566 *genetics* *43*, 246-252.

567 Baker, E. J., Jay, J. J., Bubier, J. A., Langston, M. A., and Chesler, E. J. (2012). GeneWeaver: a
568 web-based system for integrative functional genomics. *Nucleic acids research* *40*, D1067-1076.

569 Baker, E. J., Jay, J. J., Philip, V. M., Zhang, Y., Li, Z., Kirova, R., Langston, M. A., and Chesler,
570 E. J. (2009). Ontological Discovery Environment: a system for integrating gene-phenotype
571 associations. *Genomics* *94*, 377-387.

572 Barrett, J. C., Lee, J. C., Lees, C. W., Prescott, N. J., Anderson, C. A., Phillips, A., Wesley, E.,
573 Parnell, K., Zhang, H., Drummond, H., *et al.* (2009). Genome-wide association study of
574 ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. *Nature*
575 *genetics* *41*, 1330-1334.

576 Benson, A. K., Kelly, S. A., Legge, R., Ma, F., Low, S. J., Kim, J., Zhang, M., Oh, P. L.,
577 Nehrenberg, D., Hua, K., *et al.* (2010). Individuality in gut microbiota composition is a complex
578 polygenic trait shaped by multiple environmental and host genetic factors. *Proceedings of the*
579 *National Academy of Sciences of the United States of America* **107**, 18933-18938.

580 Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G.,
581 Bienenstock, J., and Cryan, J. F. (2011). Ingestion of Lactobacillus strain regulates emotional
582 behavior and central GABA receptor expression in a mouse via the vagus nerve. *Proceedings of*
583 *the National Academy of Sciences of the United States of America* **108**, 16050-16055.

584 Burczynski, M. E., Peterson, R. L., Twine, N. C., Zuberek, K. A., Brodeur, B. J., Casciotti, L.,
585 Maganti, V., Reddy, P. S., Strahs, A., Immermann, F., *et al.* (2006). Molecular classification of
586 Crohn's disease and ulcerative colitis patients using transcriptional profiles in peripheral blood
587 mononuclear cells. *The Journal of molecular diagnostics : JMD* **8**, 51-61.

588 Campbell, J. H., Foster, C. M., Vishnivetskaya, T., Campbell, A. G., Yang, Z. K., Wymore, A.,
589 Palumbo, A. V., Chesler, E. J., and Podar, M. (2012). Host genetic and environmental effects on
590 mouse intestinal microbiota. *The ISME journal*.

591 Carlisle, E. M., Poroyko, V., Caplan, M. S., Alverdy, J., Morowitz, M. J., and Liu, D. (2013).
592 Murine gut microbiota and transcriptome are diet dependent. *Annals of surgery* **257**, 287-294.

593 Carter, C. J. (2013). Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive
594 Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological
595 Disorders. *Journal of pathogens* **2013**, 965046.

596 Chen, G., Tan, C. S., Teh, B. K., and Lu, J. (2011). Molecular mechanisms for synchronized
597 transcription of three complement C1q subunit genes in dendritic cells and macrophages. *J Biol*
598 *Chem* **286**, 34941-34950.

599 Chen, L., Wang, W., Zhou, R., Ng, S. C., Li, J., Huang, M., Zhou, F., Wang, X., Shen, B., M, A.
600 K., *et al.* (2014). Characteristics of fecal and mucosa-associated microbiota in Chinese patients
601 with inflammatory bowel disease. *Medicine* **93**, e51.

602 Chesler, E. J., Miller, D. R., Branstetter, L. R., Galloway, L. D., Jackson, B. L., Philip, V. M.,
603 Voy, B. H., Culiat, C. T., Threadgill, D. W., Williams, R. W., *et al.* (2008). The Collaborative
604 Cross at Oak Ridge National Laboratory: developing a powerful resource for systems genetics.
605 *Mammalian genome : official journal of the International Mammalian Genome Society* **19**, 382-
606 389.

607 Chick, J. M., Munger, S. C., Simecek, P., Huttlin, E. L., Choi, K., Gatti, D. M., Raghupathy, N.,
608 Svenson, K. L., Churchill, G. A., and Gygi, S. P. (2016). Defining the consequences of genetic
609 variation on a proteome-wide scale. *Nature* **534**, 500-505.

610 Churchill, G. A., Airey, D. C., Allayee, H., Angel, J. M., Attie, A. D., Beatty, J., Beavis, W. D.,
611 Belknap, J. K., Bennett, B., Berrettini, W., *et al.* (2004). The Collaborative Cross, a community
612 resource for the genetic analysis of complex traits. *Nature genetics* **36**, 1133-1137.

613 Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., Kulam-Syed-Mohideen, A.
614 S., McGarrell, D. M., Marsh, T., Garrity, G. M., and Tiedje, J. M. (2009). The Ribosomal
615 Database Project: improved alignments and new tools for rRNA analysis. *Nucleic acids research*
616 **37**, D141-145.

617 Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., Brown, C. T., Porras-
618 Alfaro, A., Kuske, C. R., and Tiedje, J. M. (2014). Ribosomal Database Project: data and tools
619 for high throughput rRNA analysis. *Nucleic acids research* **42**, D633-642.

620 Davis, A. P., Grondin, C. J., Lennon-Hopkins, K., Saraceni-Richards, C., Sciaky, D., King, B. L.,
621 Wiegers, T. C., and Mattingly, C. J. (2015). The Comparative Toxicogenomics Database's 10th
622 year anniversary: update 2015. *Nucleic acids research* *43*, D914-920.

623 De Angelis, M., Piccolo, M., Vannini, L., Siragusa, S., De Giacomo, A., Serrazzanetti, D. I.,
624 Cristofori, F., Guerzoni, M. E., Gobetti, M., and Francavilla, R. (2013). Fecal microbiota and
625 metabolome of children with autism and pervasive developmental disorder not otherwise
626 specified. *PloS one* *8*, e76993.

627 de Theije, C. G., Wopereis, H., Ramadan, M., van Eijndthoven, T., Lambert, J., Knol, J.,
628 Garssen, J., Kraneveld, A. D., and Oozeer, R. (2014). Altered gut microbiota and activity in a
629 murine model of autism spectrum disorders. *Brain, behavior, and immunity* *37*, 197-206.

630 Deloris Alexander, A., Orcutt, R. P., Henry, J. C., Baker, J., Jr., Bissahoyo, A. C., and
631 Threadgill, D. W. (2006). Quantitative PCR assays for mouse enteric flora reveal strain-
632 dependent differences in composition that are influenced by the microenvironment. *Mammalian*
633 *genome : official journal of the International Mammalian Genome Society* *17*, 1093-1104.

634 Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T. G., and Cryan, J. F. (2014). Microbiota is
635 essential for social development in the mouse. *Mol Psychiatry* *19*, 146-148.

636 Dubois, P. C., Trynka, G., Franke, L., Hunt, K. A., Romanos, J., Curtotti, A., Zhernakova, A.,
637 Heap, G. A., Adany, R., Aromaa, A., *et al.* (2010). Multiple common variants for celiac disease
638 influencing immune gene expression. *Nature genetics* *42*, 295-302.

639 Ellinghaus, D., Ellinghaus, E., Nair, R. P., Stuart, P. E., Esko, T., Metspalu, A., Debrus, S.,
640 Raelson, J. V., Tejasvi, T., Belouchi, M., *et al.* (2012). Combined analysis of genome-wide
641 association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci.
642 *American journal of human genetics* *90*, 636-647.

643 Franke, A., Balschun, T., Sina, C., Ellinghaus, D., Hasler, R., Mayr, G., Albrecht, M., Wittig,
644 M., Buchert, E., Nikolaus, S., *et al.* (2010). Genome-wide association study for ulcerative colitis
645 identifies risk loci at 7q22 and 22q13 (IL17REL). *Nature genetics* *42*, 292-294.

646 Geurts, L., Lazarevic, V., Derrien, M., Everard, A., Van Roye, M., Knauf, C., Valet, P., Girard,
647 M., Muccioli, G. G., Francois, P., *et al.* (2011). Altered gut microbiota and endocannabinoid
648 system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose
649 tissue. *Frontiers in microbiology* *2*, 149.

650 Goodrich, J. K., Waters, J. L., Poole, A. C., Sutter, J. L., Koren, O., Blekhman, R., Beaumont,
651 M., Van Treuren, W., Knight, R., Bell, J. T., *et al.* (2014). Human genetics shape the gut
652 microbiome. *Cell* *159*, 789-799.

653 Hageman, R. S., Leduc, M. S., Korstanje, R., Paigen, B., and Churchill, G. A. (2011). A
654 Bayesian framework for inference of the genotype-phenotype map for segregating populations.
655 *Genetics* *187*, 1163-1170.

656 Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T. (1999). Bayesian model
657 averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a
658 rejoinder by the authors. 382-417.

659 Hsiao, E. Y., McBride, S. W., Hsien, S., Sharon, G., Hyde, E. R., McCue, T., Codelli, J. A.,
660 Chow, J., Reisman, S. E., Petrosino, J. F., *et al.* (2013). Microbiota modulate behavioral and
661 physiological abnormalities associated with neurodevelopmental disorders. *Cell* *155*, 1451-1463.

662 Hsu, C. Y., Chang, N. C., Lee, M. W., Lee, K. H., Sun, D. S., Lai, C., and Chang, A. C. (2008).
663 LUZP deficiency affects neural tube closure during brain development. *Biochem Biophys Res
664 Commun* *376*, 466-471.

665 Jacobs, J. P., and Braun, J. (2014). Immune and genetic gardening of the intestinal microbiome.
666 *FEBS letters* 588, 4102-4111.

667 Jergil, M., Forsberg, M., Salter, H., Stockling, K., Gustafson, A. L., Dencker, L., and Stigson, M.
668 (2011). Short-time gene expression response to valproic acid and valproic acid analogs in mouse
669 embryonic stem cells. *Toxicological sciences : an official journal of the Society of Toxicology*
670 121, 328-342.

671 Jostins, L., Ripke, S., Weersma, R. K., Duerr, R. H., McGovern, D. P., Hui, K. Y., Lee, J. C.,
672 Schumm, L. P., Sharma, Y., Anderson, C. A., *et al.* (2012). Host-microbe interactions have
673 shaped the genetic architecture of inflammatory bowel disease. *Nature* 491, 119-124.

674 Khachatryan, Z. A., Ktsoyan, Z. A., Manukyan, G. P., Kelly, D., Ghazaryan, K. A., and Aminov,
675 R. I. (2008). Predominant role of host genetics in controlling the composition of gut microbiota.
676 *PloS one* 3, e3064.

677 Knights, D., Silverberg, M. S., Weersma, R. K., Gevers, D., Dijkstra, G., Huang, H., Tyler, A.
678 D., van Sommeren, S., Imhann, F., Stempak, J. M., *et al.* (2014). Complex host genetics
679 influence the microbiome in inflammatory bowel disease. *Genome medicine* 6, 107.

680 Koller, D., and Friedman, N. (2009). *Probabilistic graphical models : principles and techniques*
681 (Cambridge, MA, MIT Press).

682 Kratsman, N., Getselter, D., and Elliott, E. (2016). Sodium butyrate attenuates social behavior
683 deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an
684 autism model. *Neuropharmacology* 102, 136-145.

685 Krueger, J. M., and Toth, L. A. (1994). Cytokines as regulators of sleep. *Annals of the New York*
686 *Academy of Sciences* 739, 299-310.

687 Krych, L., Hansen, C. H., Hansen, A. K., van den Berg, F. W., and Nielsen, D. S. (2013).
688 Quantitatively different, yet qualitatively alike: a meta-analysis of the mouse core gut
689 microbiome with a view towards the human gut microbiome. *PloS one* 8, e62578.

690 Kultima, K., Jergil, M., Salter, H., Gustafson, A. L., Dencker, L., and Stigson, M. (2010). Early
691 transcriptional responses in mouse embryos as a basis for selection of molecular markers
692 predictive of valproic acid teratogenicity. *Reproductive toxicology* 30, 457-468.

693 Laposky, A. D., Bradley, M. A., Williams, D. L., Bass, J., and Turek, F. W. (2008). Sleep-wake
694 regulation is altered in leptin-resistant (db/db) genetically obese and diabetic mice. *American*
695 *journal of physiology Regulatory, integrative and comparative physiology* 295, R2059-2066.

696 Lewin, A. B., Storch, E. A., Mutch, P. J., and Murphy, T. K. (2011). Neurocognitive functioning
697 in youth with pediatric autoimmune neuropsychiatric disorders associated with streptococcus.
698 *The Journal of neuropsychiatry and clinical neurosciences* 23, 391-398.

699 Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., Schlegel,
700 M. L., Tucker, T. A., Schrenzel, M. D., Knight, R., and Gordon, J. I. (2008). Evolution of
701 mammals and their gut microbes. *Science* 320, 1647-1651.

702 MacFabe, D. F. (2015). Enteric short-chain fatty acids: microbial messengers of metabolism,
703 mitochondria, and mind: implications in autism spectrum disorders. *Microb Ecol Health Dis* 26,
704 28177.

705 Machiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs, I., Eeckhaut, V., Ballet, V., Claes,
706 K., Van Immerseel, F., Verbeke, K., *et al.* (2014). A decrease of the butyrate-producing species
707 *Roseburia hominis* and *Faecalibacterium prausnitzii* defines dysbiosis in patients with ulcerative
708 colitis. *Gut* 63, 1275-1283.

709 Malkova, N. V., Yu, C. Z., Hsiao, E. Y., Moore, M. J., and Patterson, P. H. (2012). Maternal
710 immune activation yields offspring displaying mouse versions of the three core symptoms of
711 autism. *Brain, behavior, and immunity* *26*, 607-616.

712 McKnite, A. M., Perez-Munoz, M. E., Lu, L., Williams, E. G., Brewer, S., Andreux, P. A.,
713 Bastiaansen, J. W., Wang, X., Kachman, S. D., Auwerx, J., *et al.* (2012). Murine gut microbiota
714 is defined by host genetics and modulates variation of metabolic traits. *PLoS one* *7*, e39191.

715 Merelli, I., Viti, F., and Milanesi, L. (2012). IBDsite: a Galaxy-interacting, integrative database
716 for supporting inflammatory bowel disease high throughput data analysis. *BMC bioinformatics*
717 *13 Suppl 14*, S5.

718 Moreno-Indias, I., Torres, M., Montserrat, J. M., Sanchez-Alcoholado, L., Cardona, F.,
719 Tinahones, F. J., Gozal, D., Poroyko, V. A., Navajas, D., Queipo-Ortuno, M. I., and Farre, R.
720 (2015). Intermittent hypoxia alters gut microbiota diversity in a mouse model of sleep apnoea.
721 *The European respiratory journal* *45*, 1055-1065.

722 Morris, G., Berk, M., Carvalho, A., Caso, J. R., Sanz, Y., Walder, K., and Maes, M. (2016). The
723 Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids
724 in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease. *Mol Neurobiol.*
725 Obal, F., Jr., Alt, J., Taishi, P., Gardi, J., and Krueger, J. M. (2003). Sleep in mice with
726 nonfunctional growth hormone-releasing hormone receptors. *Am J Physiol Regul Integr Comp
727 Physiol* *284*, R131-139.

728 Parks, B. W., Nam, E., Org, E., Kostem, E., Norheim, F., Hui, S. T., Pan, C., Civelek, M., Rau,
729 C. D., Bennett, B. J., *et al.* (2013). Genetic control of obesity and gut microbiota composition in
730 response to high-fat, high-sucrose diet in mice. *Cell metabolism* *17*, 141-152.

731 Philip, V. M., Sokoloff, G., Ackert-Bicknell, C. L., Striz, M., Branstetter, L., Beckmann, M. A.,
732 Spence, J. S., Jackson, B. L., Galloway, L. D., Barker, P., *et al.* (2011). Genetic analysis in the
733 Collaborative Cross breeding population. *Genome Res* *21*, 1223-1238.

734 Reid, K. B., and Porter, R. R. (1976). Subunit composition and structure of subcomponent C1q
735 of the first component of human complement. *Biochem J* *155*, 19-23.

736 Rockman, M. V. (2008). Reverse engineering the genotype-phenotype map with natural genetic
737 variation. *Nature* *456*, 738-744.

738 Sanada, T., Takaesu, G., Mashima, R., Yoshida, R., Kobayashi, T., and Yoshimura, A. (2008).
739 FLN29 deficiency reveals its negative regulatory role in the Toll-like receptor (TLR) and retinoic
740 acid-inducible gene I (RIG-I)-like helicase signaling pathway. *The Journal of biological
741 chemistry* *283*, 33858-33864.

742 Savage, D. C., and Dubos, R. (1968). Alterations in the mouse cecum and its flora produced by
743 antibacterial drugs. *J Exp Med* *128*, 97-110.

744 Silverberg, M. S., Cho, J. H., Rioux, J. D., McGovern, D. P., Wu, J., Annese, V., Achkar, J. P.,
745 Goyette, P., Scott, R., Xu, W., *et al.* (2009). Ulcerative colitis-risk loci on chromosomes 1p36
746 and 12q15 found by genome-wide association study. *Nature genetics* *41*, 216-220.

747 Simi, M., Leardi, S., Tebano, M. T., Castelli, M., Costantini, F. M., and Speranza, V. (1987).
748 Raised plasma concentrations of platelet factor 4 (PF4) in Crohn's disease. *Gut* *28*, 336-338.

749 Snijders, A. M., Langley, S. A., Kim, Y. M., Brislaw, C. J., Noecker, C., Zink, E. M., Fansler,
750 S. J., Casey, C. P., Miller, D. R., Huang, Y., *et al.* (2016). Influence of early life exposure, host
751 genetics and diet on the mouse gut microbiome and metabolome. *Nat Microbiol* *2*, 16221.

752 Spor, A., Koren, O., and Ley, R. (2011). Unravelling the effects of the environment and host
753 genotype on the gut microbiome. *Nature reviews Microbiology* *9*, 279-290.

754 Storey, J. D. (2002). A direct approach to false discovery rates. *Journal of the Royal Statistical*
755 *Society: Series B (Statistical Methodology)* *64*, 479-498.

756 Thaiss, C. A., Zeevi, D., Levy, M., Zilberman-Schapira, G., Suez, J., Tengeler, A. C., Abramson,
757 L., Katz, M. N., Korem, T., Zmora, N., *et al.* (2014). Transkingdom control of microbiota diurnal
758 oscillations promotes metabolic homeostasis. *Cell* *159*, 514-529.

759 Toth, L. A., and Krueger, J. M. (1989). Effects of microbial challenge on sleep in rabbits.

760 FASEB journal : official publication of the Federation of American Societies for Experimental
761 Biology *3*, 2062-2066.

762 Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, R. E., Sogin,
763 M. L., Jones, W. J., Roe, B. A., Affourtit, J. P., *et al.* (2009). A core gut microbiome in obese
764 and lean twins. *Nature* *457*, 480-484.

765 Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., and Gordon, J. I.
766 (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. *Nature*
767 *444*, 1027-1031.

768 Vijay-Kumar, M., Aitken, J. D., Carvalho, F. A., Cullender, T. C., Mwangi, S., Srinivasan, S.,
769 Sitaraman, S. V., Knight, R., Ley, R. E., and Gewirtz, A. T. (2010). Metabolic syndrome and
770 altered gut microbiota in mice lacking Toll-like receptor 5. *Science* *328*, 228-231.

771 Wen, L., Ley, R. E., Volchkov, P. Y., Stranges, P. B., Avanesyan, L., Stonebraker, A. C., Hu, C.,
772 Wong, F. S., Szot, G. L., Bluestone, J. A., *et al.* (2008). Innate immunity and intestinal
773 microbiota in the development of Type 1 diabetes. *Nature* *455*, 1109-1113.

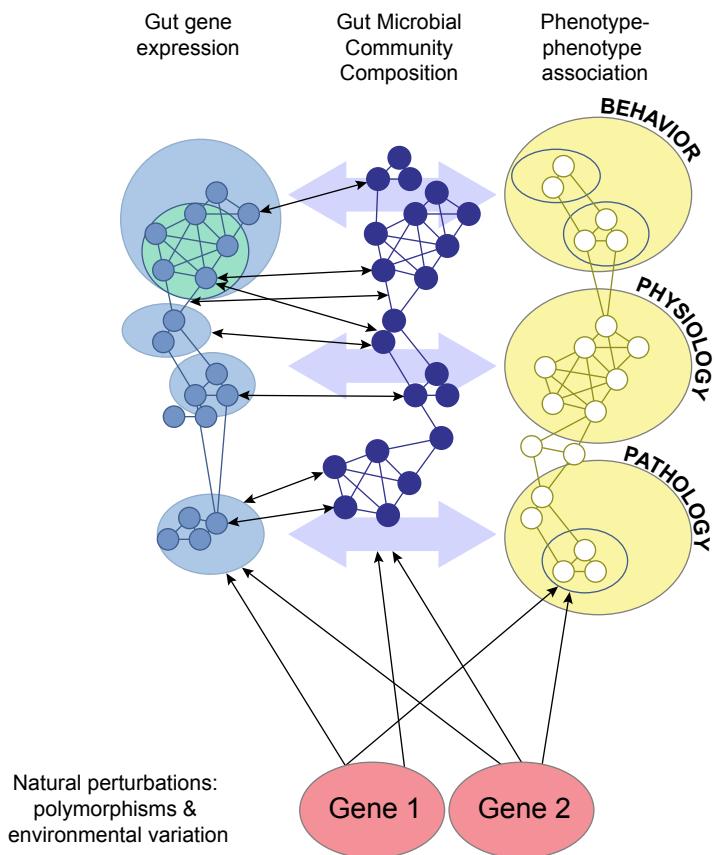
774 Willing, B. P., Dickson, J., Halfvarson, J., Andersson, A. F., Lucio, M., Zheng, Z., Jarnerot, G.,
775 Tysk, C., Jansson, J. K., and Engstrand, L. (2010). A pyrosequencing study in twins shows that
776 gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes.
777 *Gastroenterology* *139*, 1844-1854 e1841.

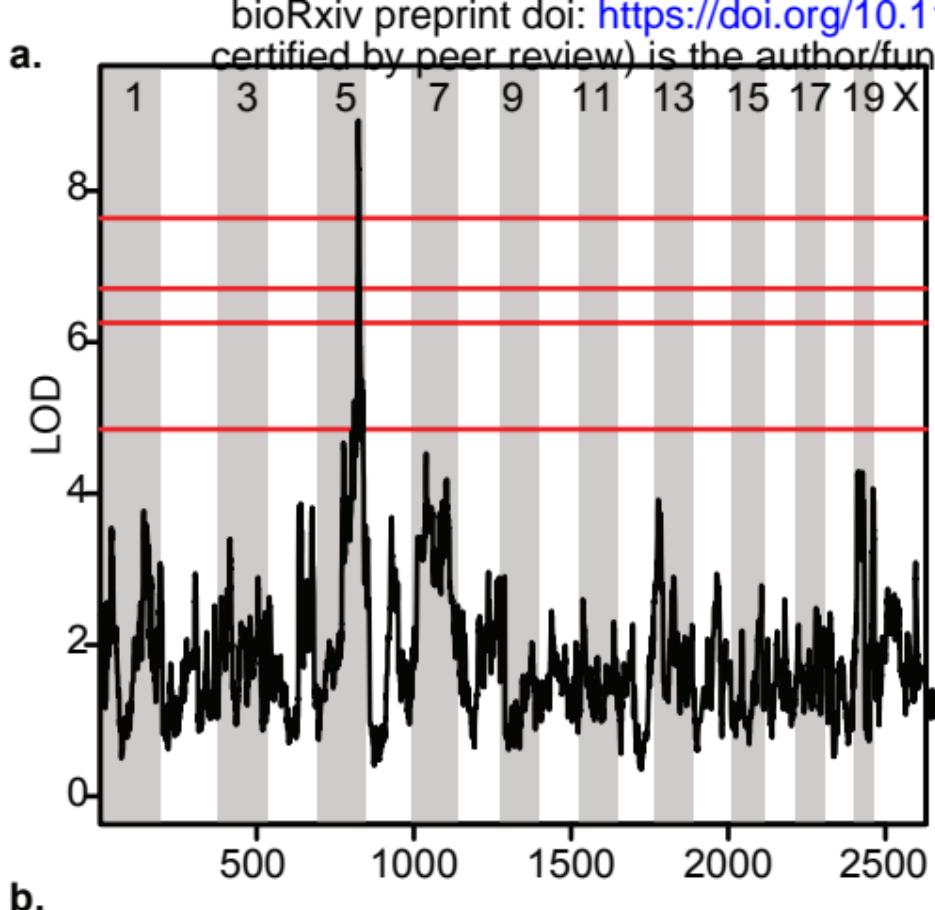
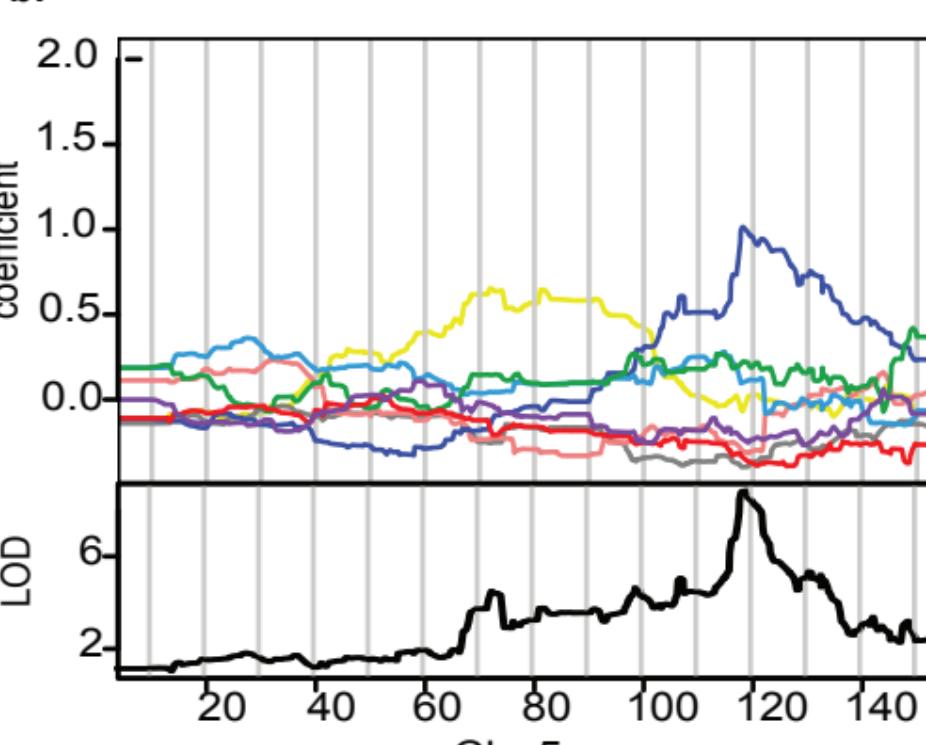
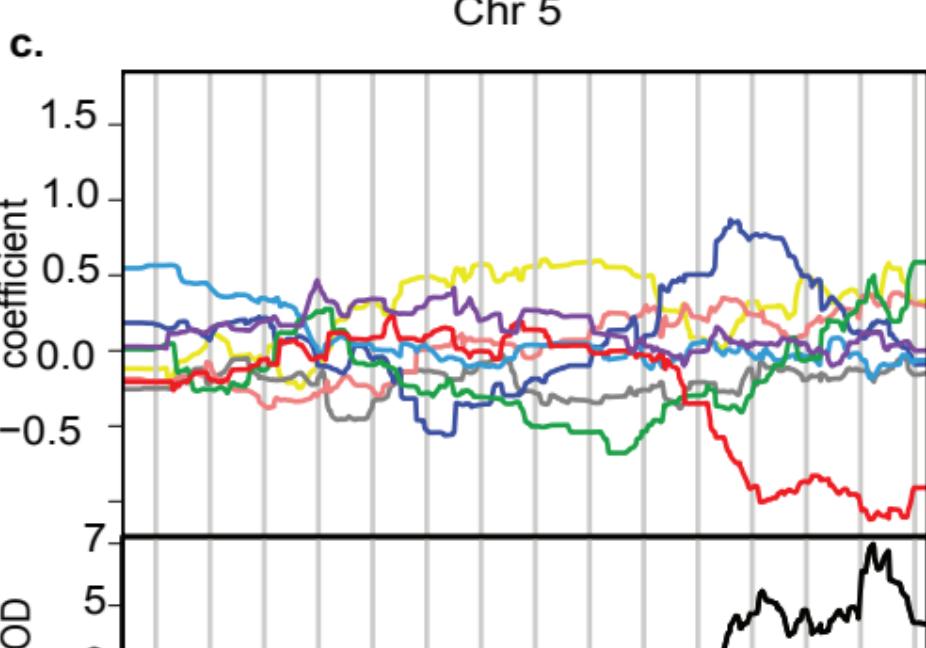
778 Yang, S. K., Hong, M., Zhao, W., Jung, Y., Tayebi, N., Ye, B. D., Kim, K. J., Park, S. H., Lee,
779 I., Shin, H. D., *et al.* (2013). Genome-wide association study of ulcerative colitis in Koreans
780 suggests extensive overlapping of genetic susceptibility with Caucasians. *Inflammatory bowel
781 diseases* *19*, 954-966.

782 Zhang, Y., Phillips, C. A., Rogers, G. L., Baker, E. J., Chesler, E. J., and Langston, M. A.
783 (2014). On finding bicliques in bipartite graphs: a novel algorithm and its application to the
784 integration of diverse biological data types. *BMC Bioinformatics* *15*, 110.

785

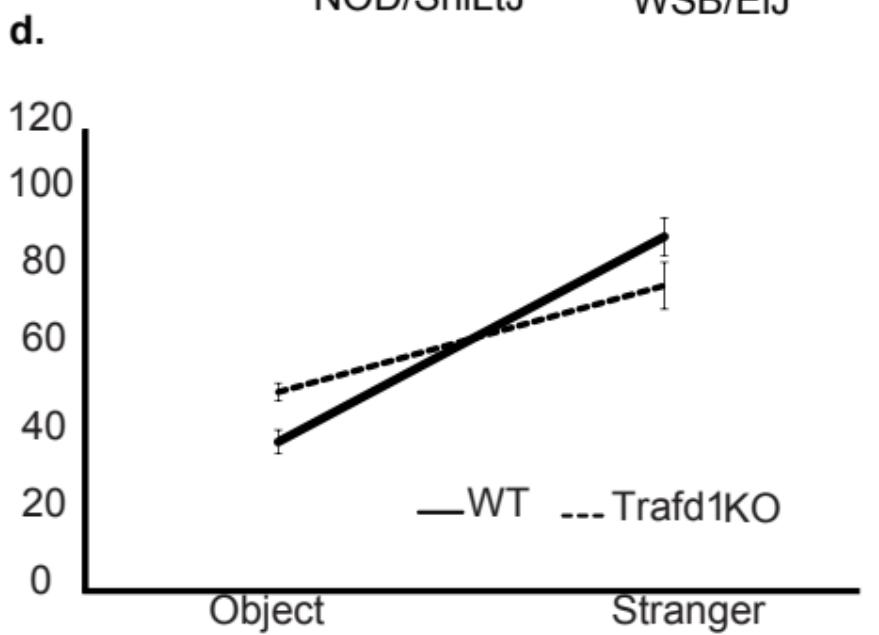
786

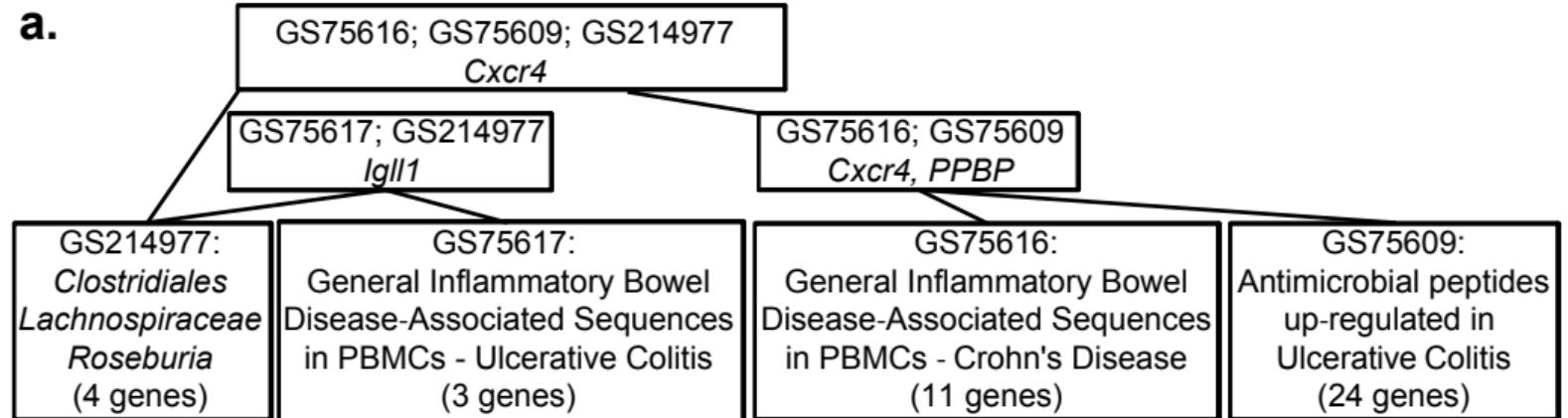
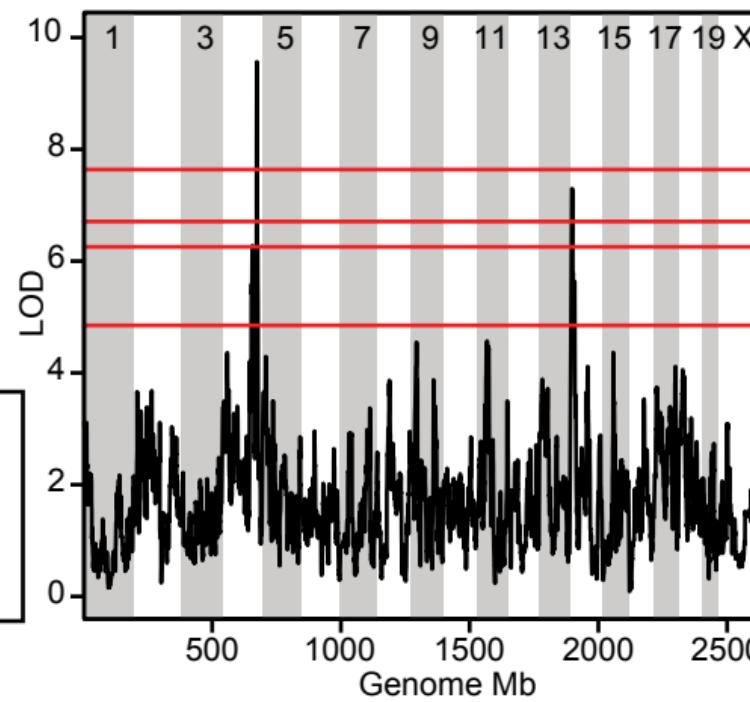
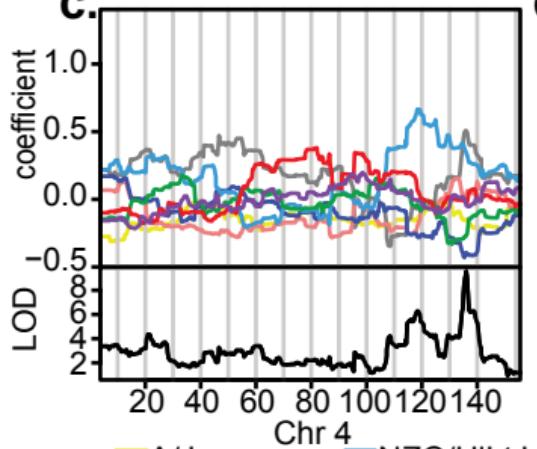
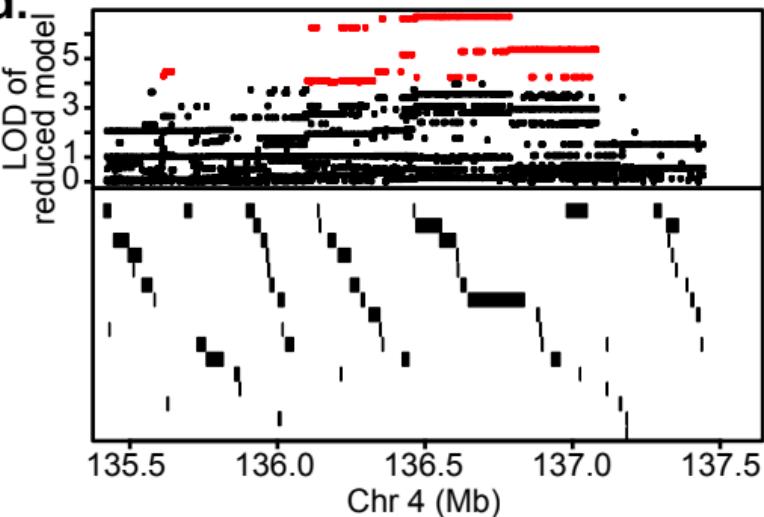
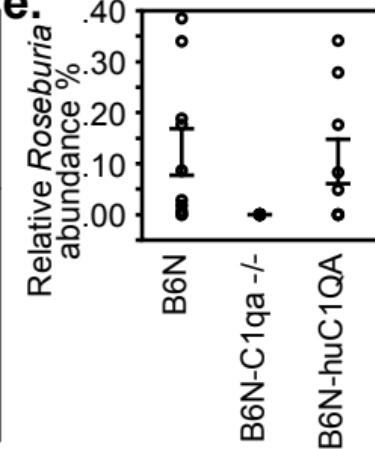




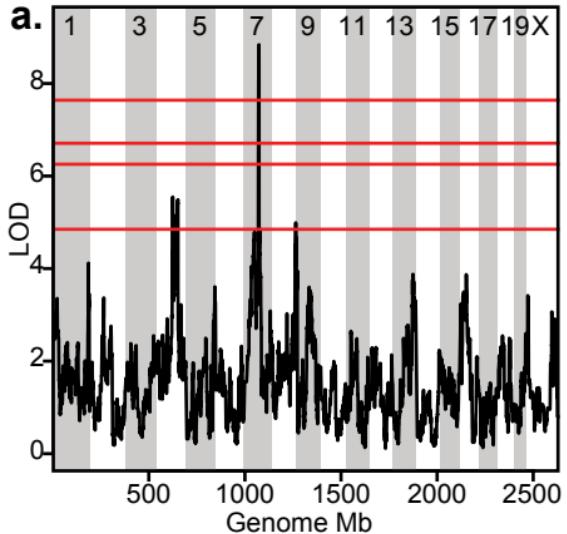
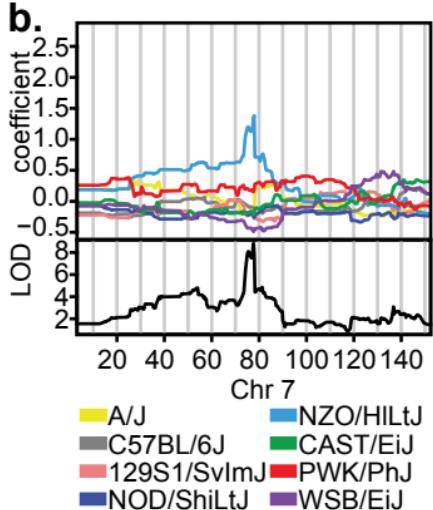
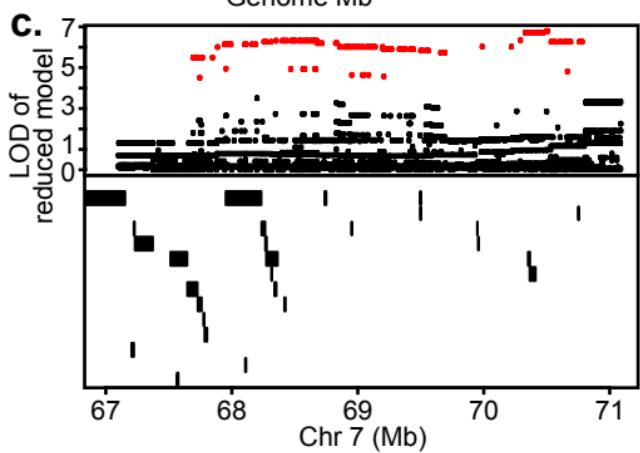
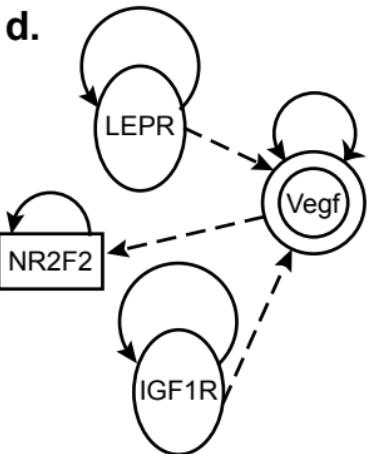
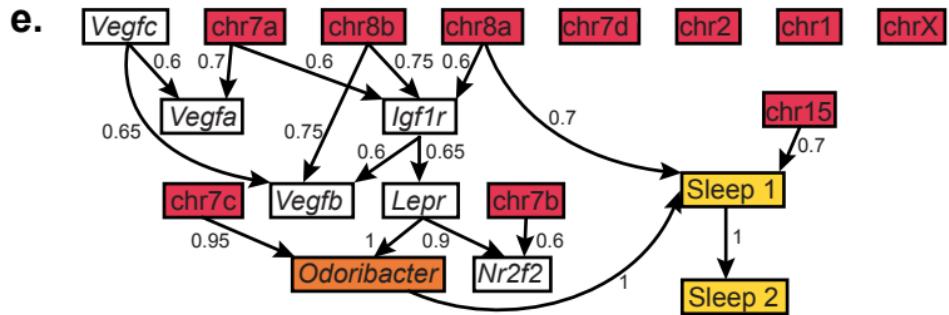
Genome Mb

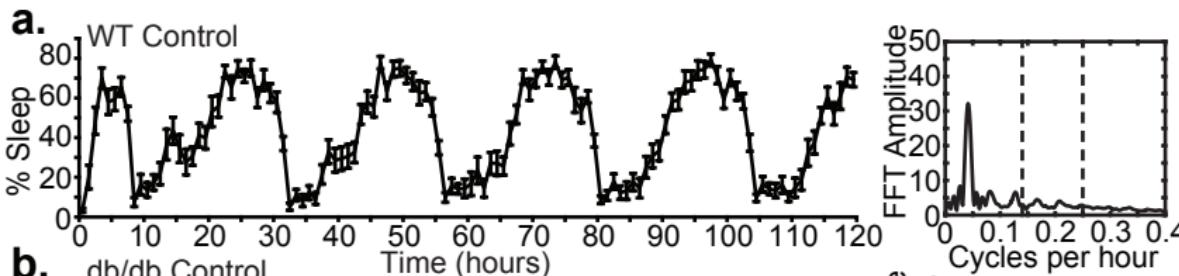
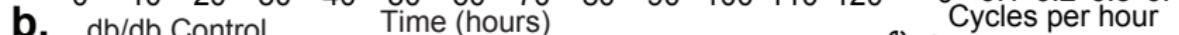
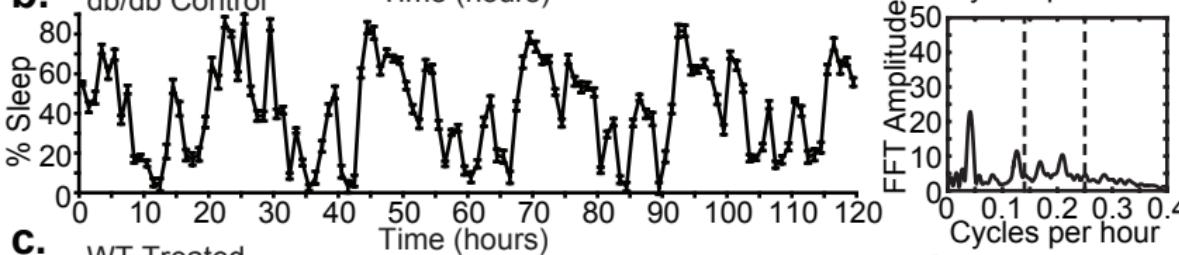
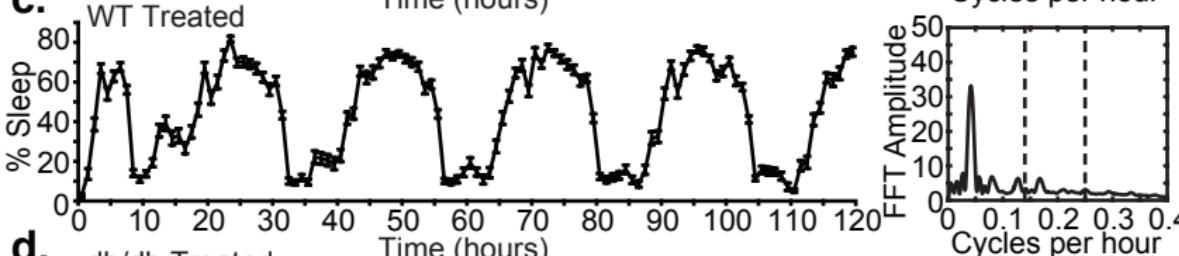
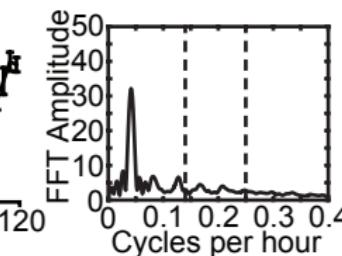
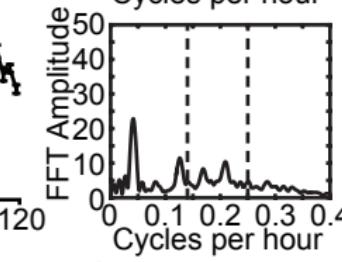
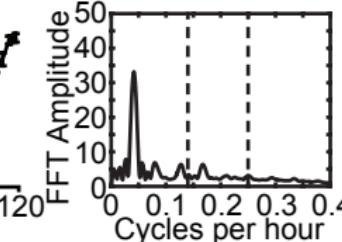
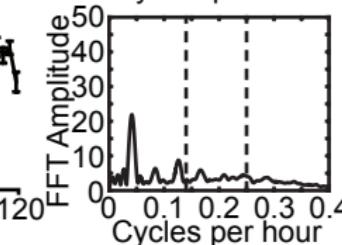
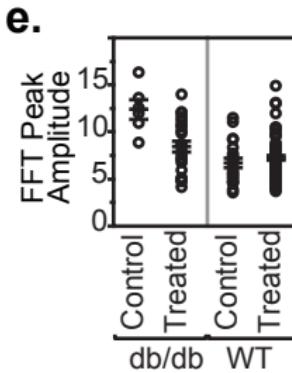
■ A/J	■ NZO/HILtJ
■ C57BL/6J	■ CAST/EiJ
■ 129S1/SvImJ	■ PWK/PhJ
■ NOD/ShiLtJ	■ WSB/EiJ



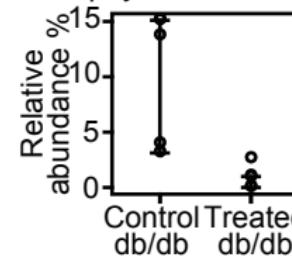
a.**b.****c.****d.****e.**

A/J NZO/HILtJ
C57BL/6J CAST/EiJ
129S1/SvImJ PWK/PhJ
NOD/ShiLtJ WSB/EiJ

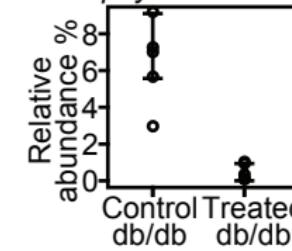




f. *OTU-3*
Porphyromonadaceae



f. *OTU-12*
Porphyromonadaceae



MGI QTL Symbol	QTL Name	Chr	Peak LOD Score	Peak Marker	Position Mm 9 (bp)	1.5 LOD Interval	p-value	Size (Mbp)	Gene Weaver GSID	
Micab1	Microbial abundance of Clostridiales Ruminococcaceae Oscillibacter 1	1	8.20	rs32084678	13,279,810	rs6275656	rs31653681	0.0033	6.34	217070
Micab2	Microbial abundance of Bacteroidales Porphyromonadaceae Paludibacter 2	3	8.23	rs31103355	108,854,325	rs31431100	rs37044521	0.0029	4.09	217071
Micab3	Microbial abundance of Clostridiales Lachnospiraceae Marvinbryantia 3	3	8.13	rs30089246	37,569,141	rs30552223	rs30158956	0.0037	2.03	217072
Micab4	Microbial abundance of Clostridiales Lachnospiraceae Roseburia 4	4	9.57	rs32690134	136,028,098	rs27619452	rs3685172	0.0005	9.45	217077
Micab5	Microbial abundance of Coriobacteriales Coriobacteriaceae Enterorhabdus 5	5	8.84	rs6377391	119,128,609	rs29633871	rs6354701	0.0009	4.65	217078
Micab6	Microbial abundance of Clostridiales Lachnospiraceae Sporobacterium 6	5	8.42	rs8265964	138,359,981	rs32246505	rs32318125	0.002	4.00	217079
Micab7	Microbial abundance of Bacteroidales Porphyromonadaceae Odoribacter 7	7	8.84	rs31494696	77,651,351	rs33107817	rs6373775	0.0009	3.53	217080
Micab8	Microbial abundance of Clostridiales Ruminococcaceae Lactonifactor 8	7	8.88	rs47611520	47,761,932	rs3661776	rs6176297	0.0009	13.55	217081
Micab9	Microbial abundance of Bacteroidales Porphyromonadaceae Odoribacter 9	7	8.60	rs31494696	77,651,351	rs33107817	rs6373775	0.0013	4.00	217082
Micab10	Microbial abundance of Clostridiales Lachnospiraceae Anaerostipes 10	8	9.61	rs32936112	47,123,375	rs6281843	rs31252778	0.0003	14.36	217083
Micab11	Microbial abundance of Clostridiales Incertae Sedis XIV Blautia 11	8	9.49	rs33429737	31,919,239	rs6399870	rs50110045	0.0005	5.19	217084
Micab12	Microbial abundance of Clostridiales Clostridiaceae Caminicella 12	9	8.29	rs30372085	80,440,479	rs30432532	rs33695839	0.0029	7.37	217092
Micab13	Microbial abundance of Erysipelotrichales Erysipelotrichaceae Turicibacter 13	10	8.87	rs29327022	88,018,183	rs6338556	rs6265280	0.0009	24.62	217093
Micab14	Microbial abundance of Bacteroidales Bacteroidaceae Bacteroides 14	11	8.14	rs26971743	58,783,410	rs6314621	rs26972849	0.0036	6.30	217094
Micab15	Microbial abundance of Clostridiales Lachnospiraceae Syntrophococcus 15	15	9.47	rs6388530	93,634,974	rs31931586	rs49819430	0.0005	10.43	217095
Micab16	Microbial abundance of Bacteroidales Porphyromonadaceae Tannerella 16	19	8.10	rs30320578	47,732,625	rs36280504	rs30760881	0.004	6.39	217096
Micab17	Microbial abundance of Clostridiales Ruminococcaceae Hydrogenoanaerobacterium 17	X	8.50	rs6292190	155,749,346	rs29276152	rs29306363	0.0017	5.59	217097
Micab18	Microbial abundance of Clostridiales Lachnospiraceae Lachnobacterium 18	X	8.20	rs6213950	163,790,061	rs8255374	rs31682358	0.0033	3.01	217098

Phenotype	Kendall Tau	p-value	q-value	Microbe (order, family, genus)	1
Peak activity time from dark onset averaged over all baseline days [h]	0.29	5.12E-06	0.036	<i>Clostridiales</i> <i>Lachnospiraceae</i>	<i>Acetitomaculum</i>
Peak activity time from dark onset averaged over all baseline days [h]	-0.29	7.44E-06	0.049	<i>Bacteroidales</i> <i>Bacteroidaceae</i>	<i>Bacteroides</i>
Peak activity time from dark onset after sleep deprivation [h]	-0.31	2.27E-06	0.017	<i>Bacteroidales</i> <i>Bacteroidaceae</i>	<i>Bacteroides</i>
Average percentage of sleep time over all baseline days [%]	-0.30	5.24E-06	0.036	<i>Bacteroidales</i> <i>Porphyromonadaceae</i>	<i>Barnesiella</i>
Glucose concentration [mmol/L]	0.31	2.98E-06	0.022	<i>Clostridiales</i> <i>Lachnospiraceae</i>	<i>Coprococcus</i>
Peak activity time from dark onset averaged over all baseline days [h]	0.27	5.37E-06	0.037	<i>Clostridiales</i> <i>Lachnospiraceae</i>	<i>Coprococcus</i>
Activity onset averaged over all baseline days [h]	0.32	5.52E-07	0.008	<i>Lactobacillales</i> <i>Lactobacillaceae</i>	<i>Lactobacillus</i>
Average of continuous sleep length over dark cycle in four full days [s]	0.31	8.36E-07	0.009	<i>Lactobacillales</i> <i>Lactobacillaceae</i>	<i>Lactobacillus</i>
Average of continuous sleep length over dark cycle for all baseline days [s]	0.32	5.89E-07	0.008	<i>Lactobacillales</i> <i>Lactobacillaceae</i>	<i>Lactobacillus</i>
Peak activity time from dark onset averaged over all baseline days [h]	0.29	4.77E-06	0.034	<i>Lactobacillales</i> <i>Lactobacillaceae</i>	<i>Lactobacillus</i>
Tail clip latency [s]	0.31	1.02E-06	0.010	<i>Lactobacillales</i> <i>Lactobacillaceae</i>	<i>Lactobacillus</i>
Creatinine concentration [mmol/L]	0.47	8.26E-08	0.006	<i>Clostridiales</i> <i>Ruminococcaceae</i>	<i>Lactonifactor</i>
Activity onset averaged over all baseline days [h]	-0.29	2.55E-06	0.019	<i>Bacteroidales</i> <i>Porphyromonadaceae</i>	<i>Odoribacter</i>
Average of continuous sleep lengths over the light cycle in four full days [s]	-0.29	5.19E-06	0.036	<i>Bacteroidales</i> <i>Porphyromonadaceae</i>	<i>Odoribacter</i>
Average of continuous sleep lengths over the light cycle for all baseline days [s]	-0.28	5.61E-06	0.038	<i>Bacteroidales</i> <i>Porphyromonadaceae</i>	<i>Odoribacter</i>
Average of continuous sleep lengths over the dark cycles in four full days [s]	-0.31	1.13E-06	0.011	<i>Bacteroidales</i> <i>Porphyromonadaceae</i>	<i>Odoribacter</i>
Average of continuous sleep lengths over the dark cycle for all baseline days [s]	-0.30	1.90E-06	0.015	<i>Bacteroidales</i> <i>Porphyromonadaceae</i>	<i>Odoribacter</i>
Average of continuous sleep lengths over four full days [s]	-0.31	6.05E-07	0.008	<i>Bacteroidales</i> <i>Porphyromonadaceae</i>	<i>Odoribacter</i>
Average of continuous sleep lengths over all baseline days [s]	-0.30	1.41E-06	0.012	<i>Bacteroidales</i> <i>Porphyromonadaceae</i>	<i>Odoribacter</i>
Peak activity time from dark onset averaged over all baseline days [h]	-0.31	7.52E-07	0.009	<i>Bacteroidales</i> <i>Porphyromonadaceae</i>	<i>Odoribacter</i>
Peak activity time from dark onset after sleep deprivation [h]	-0.31	6.24E-07	0.008	<i>Bacteroidales</i> <i>Porphyromonadaceae</i>	<i>Odoribacter</i>
Percentage of sleep over a two hour period prior to sleep deprivation [%]	-0.31	1.19E-06	0.011	<i>Bacteroidales</i> <i>Porphyromonadaceae</i>	<i>Odoribacter</i>
Percentage of sleep time over the dark cycle of four full days [%]	-0.32	2.80E-07	0.007	<i>Bacteroidales</i> <i>Porphyromonadaceae</i>	<i>Odoribacter</i>
Percentage of sleep time over four full days [%]	-0.33	1.22E-07	0.006	<i>Bacteroidales</i> <i>Porphyromonadaceae</i>	<i>Odoribacter</i>
Tail clip latency [s]	-0.29	3.91E-06	0.028	<i>Bacteroidales</i> <i>Porphyromonadaceae</i>	<i>Odoribacter</i>
Average percentage of sleep time over all baseline days [%]	-0.30	6.44E-06	0.043	<i>Clostridiales</i> <i>Lachnospiraceae</i>	<i>Roseburia</i>