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Abstract   36 

The role of the microbiome in health and disease involves complex networks of host genetics, 37 

genomics, microbes and environment. Identifying the mechanisms of these interactions has 38 

remained challenging. Systems genetics in the laboratory mouse enables data-driven discovery of 39 

network components and mechanisms of host–microbial interactions underlying multiple disease 40 

phenotypes. To examine the interplay among the whole host genome, transcriptome and 41 

microbiome, we mapped quantitative trait loci and correlated the abundance of cecal mRNA, 42 

luminal microflora, physiology and behavior in incipient strains of the highly diverse 43 

Collaborative Cross mouse population. The relationships that are extracted can be tested 44 

experimentally to ascribe causality among host and microbe in behavior and physiology, 45 

providing insight into disease. Application of this strategy in the Collaborative Cross population 46 

revealed experimentally validated mechanisms of microbial involvement in models of autism, 47 

inflammatory bowel disease and sleep disorder.  48 

KEYWORDS: complex traits, genetics, genomics, bioinformatics, behavior 49 

eTOC Blurb- Host genetic diversity provides a variable selection environment and 50 

physiological context for microbiota and their interaction with host physiology. Using a highly 51 

diverse mouse population Bubier et al. identified a variety of host, microbe and potentially 52 

disease interactions.  53 

Highlights:  54 

*18 significant species-specific QTL regulating microbial abundance were identified 55 

*Cis and trans eQTL for 1,600 cecal transcripts were mapped in the Collaborative Cross 56 

*Sleep phenotypes were highly correlated with the abundance of B.P. Odoribacter 57 

*Elimination of sleep-associated microbes restored normal sleep patterns in mice. 58 
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Introduction  59 

Although the human microbiome has been implicated as an important factor in health and 60 

disease (Wen et al., 2008), the mechanisms by which it influences human physiology are largely 61 

unknown. Experiments that manipulate specific genetic, molecular and microbial components of 62 

the microbe–host interface are essential to dissection of these mechanisms (Vijay-Kumar et al., 63 

2010), but identification of targets for experimental manipulation remains a significant 64 

challenge. However, both microbial community composition and its effects on host health are 65 

modulated by host characteristics that exhibit heritable variation (Benson et al., 2010; Campbell 66 

et al., 2012; McKnite et al., 2012; Snijders et al., 2016), providing the opportunity to identify 67 

genetic variants and associated traits to serve as entry points for investigating key functional 68 

pathways at the microbe–host interface (Knights et al., 2014; McKnite et al., 2012; Willing et al., 69 

2010).  70 

Studies of the gut microbiome have produced convincing evidence for a microbial 71 

influence over many host traits including human gastrointestinal (GI) disorders (Knights et al., 72 

2014; Machiels et al., 2014; Willing et al., 2010), metabolic traits, diabetes (Vijay-Kumar et al., 73 

2010; Wen et al., 2008) and obesity (Carlisle et al., 2013; McKnite et al., 2012; Parks et al., 74 

2013). Perhaps more surprising is the influence of gut microbiota and the metabolites they 75 

produce on brain and behavior (Bravo et al., 2011; Carter, 2013; Lewin et al., 2011). Despite the 76 

importance of these microbial influences, the mechanisms of these interactions often remain 77 

unknown.  78 

There are many well-documented relationships among host genetic variation, intestinal 79 

flora composition and disease reported in human genetic analyses (Deloris Alexander et al., 80 

2006; Goodrich et al., 2014; Jacobs and Braun, 2014; Knights et al., 2014; Turnbaugh et al., 81 
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2009). Because mice and humans harbor similar microbiota at high taxonomic levels (Krych et 82 

al., 2013; Ley et al., 2008), systems genetic analysis in laboratory mice can be an effective tool 83 

for discovering the mechanisms of host–microbe interaction in a large-scale, data driven manner. 84 

This quantitative genetic approach provides a means of holistic assessment of the relations 85 

among host, microbe and disease through the use of population genetic variation, one of the 86 

greatest determinants of microbial community composition in mice (Campbell et al., 2012; 87 

Deloris Alexander et al., 2006). The study of natural genetic variation (Campbell et al., 2012) 88 

and engineered mutations (Spor et al., 2011; Turnbaugh et al., 2006), also enable deep dissection 89 

of the biology of the microbiome and discovery of host genetic loci that regulate microbial 90 

abundance (Benson et al., 2010; McKnite et al., 2012). The transcriptome provides insight into 91 

the host microenvironment by quantifying the relative abundance of transcripts encoding host 92 

pathways involved in metabolic responses, the production and presentation of cell-surface 93 

antigens, and constituents of the immune system such as the gut associated lymphoid tissue, 94 

among other host processes that both shape and respond to gut microbiota.  95 

The Collaborative Cross (CC) mouse population, (Chesler et al., 2008; Churchill et al., 96 

2004) constructed from the cross of eight diverse inbred progenitor strains, was designed for 97 

high precision, (Philip et al., 2011) and high diversity systems genetic analysis. The host genetic 98 

variation among this population results in diverse microbiome compositions (Campbell et al., 99 

2012) and physiological and behavioral phenotypes. Genetic correlations among these 100 

characteristics are used to construct systems genetic networks (Figure 1). Interrogation of these 101 

networks at the level of transcript, microbe and phenotypes enable the study of mechanisms of 102 

microbiota influence on health and disease by identifying causal mechanisms responsible for 103 

phenotypic correlations.  104 
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Here, we integrated data for host genotype, disease related phenotypes, gut microbiome 105 

composition and associated gut gene expression to develop a systems genetic network for the 106 

gut–microbiome interaction and its effects on host health. Specifically, we performed an 107 

integrative analysis leveraging cecal mRNA levels, luminal microbiome, physiology and 108 

behavior from over 100 incipient strains of the CC population. Through the analysis of relations 109 

among these measurements, we apply systems genetic analysis to problems in autism-related 110 

behaviors, inflammatory bowel disease and sleep.  111 

112 
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Results 113 

Microbial community composition of incipient CC Mice 114 

We first determined the cecal microbial community composition of 206 CC mice of both sexes 115 

and 102 breeding lines using 454 pyrosequencing of amplicon libraries of the V4 region of the 116 

16S SSU (Small Subunit) rRNA gene, revealing 13,632 Operational Taxonomic Units (OTUs). 117 

Taxonomic analysis of all sequences using the Ribosomal Database Project naïve Bayesian 118 

rRNA classifier (Cole et al., 2009; Cole et al., 2014) indicated a bacterial diversity similar to 119 

previously observed communities (Campbell et al., 2012)—Firmicutes comprised 89% of the 120 

microbial community and Bacteroidetes (9%) were the second most abundant phylum (Figure 121 

S1). In our previous study of replicate mice from the eight CC progenitor strains, we detected 122 

more phyla in the founders, but we show here that there are similar predominating phyla 123 

(Campbell et al., 2012) in the CC. The median broad-sense heritability of microbial abundance 124 

estimated by intraclass correlation in the CC founder strains for each OTU (Table S1) was 0.170, 125 

with 339 OTUs having a H2 > 0.3, indicating sufficiently heritable abundance for genetic 126 

mapping. 127 

Microbial Abundance QTLs 128 

We performed quantitative trait locus (QTL) mapping to identify host genetic loci accounting for 129 

heritable variation in microbial abundance. There were eighteen statistically significant (q < 130 

0.05) microbial abundance (Micab) QTL (Table 1) among the mapped microbial OTU 131 

abundances. The 1.5 logarithm of odds (LOD) confidence intervals for the significant QTL range 132 

from 2 to 24 Mb in size, with an average size of 7.5 Mbp. The size is consistent with previous 133 

mapping studies in the CC breeding population (Philip et al., 2011; Snijders et al., 2016) and 134 

substantially smaller than conventional experimental crosses. This interval size coupled with the 135 
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extensive genomic data becoming available for the CC founder population enables refinement of 136 

the QTLs down to the level of genes and variants in some cases.  137 

Expression QTLs (eQTL) in the CC Cecum 138 

To characterize the host intestinal state, we profiled mouse mRNA abundance in the cecal tissue 139 

surrounding the microbial sample. Transcript abundance estimates were generated for 36,308 140 

microarray probes, representing 27,149 genes. Heritability of transcript abundance exceeded 141 

H2=0.3 for 1,990 probes in the founder populations. QTL analysis was performed to identify host 142 

genomic regions harboring allelic variants that influence the abundance of each probe, resulting 143 

in detection of statistically significant QTL (q< 0.05) for 1,641 probes, corresponding to 1,513 144 

genes (Table S2). Of these, 950 loci (57.9%) are cis-eQTL (Figure S2), which contain 145 

polymorphisms that are proximal to transcript coding regions. Such loci are useful in identifying 146 

expression regulatory mechanisms in the effect of genetic variation on complex traits.  147 

Genetic correlation analysis reveals relations among genes and microbes.  148 

The characterization of genetically heterogeneous populations enables the multi-scale correlation 149 

and clustering of high-dimensional phenotypic data across individuals, including gut microbial 150 

abundance for all detected OTUs, intestinal-expressed genes, and disease-related phenotypes. 151 

For each of 393 microbial OTUs subject to genetic analysis, a set of co-abundant transcripts were 152 

detected across individuals (Table S3). Biclustering of gene-microbe correlations using a 153 

biclique enumeration algorithm (Zhang et al., 2014) revealed 318 clusters of multiple cecal 154 

microbes and the set of co-abundant transcripts found within the cecal intestine in each cluster. 155 

Sets of microbes and associated transcripts were deposited in the GeneWeaver database for 156 

access and subsequent comparative analysis with other heterogeneous functional genomic data in 157 

the form of gene lists.  158 
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These sets of correlated transcripts, microbes and disease measures were interrogated 159 

along with the microbial QTL and intestinal eQTL to identify the elements of biological 160 

networks of host and microbial interactions that were subject to experimental perturbation. From 161 

the interrogation of these relationships in systems genetic networks, we extracted specific 162 

mechanistic hypotheses for microbe–host interactions. In each of three examples that follow, 163 

data were interrogated by starting from a microbial QTL, microbe-transcript cluster, or microbe-164 

physiology trait correlation, respectively, revealing putative relations that could begin to be 165 

tested experimentally.  166 

Genetic characterization of disease-associated microbes reveals potential mechanism of 167 

microbial influence of autism-related behavior 168 

Microbial abundances, (Micab) QTLs, and cecal eQTLs were integrated to elucidate the 169 

mechanism underlying a previously reported association between a microbe, Enterorhabdus and 170 

autism spectrum disorder (ASD). Some microbial species, including Enterorhabdus are more 171 

abundant in the valproic acid (VPA)-induced mouse model of autism than non-exposed controls, 172 

a phenomenon associated with cecal butyrate production (de Theije et al., 2014). Levels of short-173 

chain fatty acids such as butyric acid have also been associated with other autism models 174 

(Kratsman et al., 2016; Morris et al., 2016). Aberrant social behavior, a hallmark of ASD in 175 

humans, has been observed in germ free mice (Desbonnet et al., 2014). We found that 176 

Enterorhabdus is regulated by the Micab5 locus. We hypothesized that genetic variants 177 

influencing abundance of Enterorhabdus may also influence ASD-related behaviors.  178 

The microbial abundance QTL for Enterorhabdus (Coriobacteriales Coriobacteriaceae), 179 

Micab5, maps to Chromosome 5, an interval of 4.65 Mbp containing 121 genes (Figure 2A). 180 

Identification of cis-eQTLs, expressed genes regulated by local genetic variation, may help to 181 
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identify the pathways and processes responsible for the QTL effect, and when there is phenotype 182 

and gene expression correlation a regulatory mechanism is most likely. To determine whether 183 

any of the genes in the interval are regulated by local expression regulatory polymorphisms, we 184 

intersected the list of cecal eQTLs with the 121 genes within the Micab5 confidence interval, 185 

revealing two genes with significant cis-eQTL, Tmem116 (probe34138 or ILMN_2624031) and 186 

Trafd1 (probe_34454 or ILMN_2833441). In contrast to Tmem116, Trafd1 is also a gene 187 

expression correlate of Enterorhabdus abundance (Spearman’s rho=0.1465, q = 0.0437) and the 188 

Trafd1 eQTL allelic effect is similar to that of Micab5 (Figure 2B-C). Therefore, Trafd1 is a 189 

genetically plausible candidate. A search of Mammalian Phenotype Ontology (MP) annotations 190 

within Mouse Genome Database revealed that Trafd1 interacts with bacterial and viral pattern 191 

recognition receptors (e.g., toll-like receptors) thus Trafd1 is a  functionally plausible candidate 192 

gene for controlling microbial abundance. A search of Comparative Toxicogenomic Database 193 

(Davis et al., 2015; de Theije et al., 2014) revealed that VPA and acetaminophen are the top 194 

interacting partners of Trafd1, and that its expression is increased by VPA exposure (Jergil et al., 195 

2011; Kultima et al., 2010). Thus, we hypothesize that perturbation of Trafd1 abundance 196 

(through the cis regulatory QTL in the CC population) mimics the effects of VPA exposure on 197 

microbial abundance in the VPA autism model. In a test of this hypothesis, Trafd1 knock-out 198 

mice were compared to controls on the three-chambered social interaction test, one test of ASD 199 

like behavior applied to the VPA model. There was a significant genotype effect such that 200 

knock-out mice spent less time interacting with a stranger mouse and more with the object than 201 

controls (Fgenotype(1,27) = 7.9864, p=0.008). (Figure 2D). Strikingly, 16S rDNA sequencing of cecal 202 

contents of Trafd1 knock-out and controls detected three OTUs corresponding to Enterorhabdus, 203 

the abundance of which did not differ across sexes or genotypes. However, between the genotype 204 
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there were only four microbial taxa that differed in their abundance (Figure S3), one of which 205 

was Butyrivibrio, a known butyric acid-producing organism. One interpretation is that the QTL 206 

mapped for Enterorhabdus abundance may have been a surrogate for differential butyric acid 207 

production, because the Butyrivibrio abundance was decreased in the Trafd1 knock-out mice but 208 

there was no difference in Enterorhabdus. Perhaps the allelic variation in Trafd1 is associated 209 

with the abundance of microbes that can produce butyrate with downstream effects on social 210 

behavior, suggesting that Trafd1 null mutants may represent a new model for ASD and warrant 211 

further study.   212 

Mapping microbes onto human disease through cross-species integrative functional genomics 213 

reveals host gene and microbial mechanisms associated with Inflammatory Bowel Disease 214 

Sets of genes associated with particular OTUs were interrogated using GeneWeaver’s (Baker et 215 

al., 2012; Baker et al., 2009) tools for cross-species integrative functional genomics. In this 216 

approach, sets of genes associated with biological concepts such as disease state or molecular 217 

pathway are intersected within and across species to find relations among the biological 218 

concepts. To identify candidate host molecular mechanisms associated with intestinal disease, 219 

we quantified overlap among sets of transcripts associated with mouse microbial abundance and 220 

human intestinal disease. 221 

We determined that the abundance of Roseburia a bacterial genus from the 222 

Lachnospiraceae family (order Clostridales) is significantly correlated (p<0.05 and Spearman 223 

correlation ≥ 0.5) with the expression of Cxcr4, Oma1, Igll1, Il1f8 in the CC-intestine (Table 224 

S3). Comparison of this set of correlated genes to those identified in published studies of 225 

intestinal disease transcriptomics in GeneWeaver revealed significant overlap with several 226 

ulcerative colitis and inflammatory bowel disease related gene sets (Jaccard Similarity 227 
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p<0.000001) (Figure 3A). This analysis shows that CXCR4: chemokine (C-X-C motif) receptor 4 228 

is a biomarker of ulcerative colitis (UC) and Crohn’s Disease (CD) (Merelli et al., 2012; Simi et 229 

al., 1987) and the expression of the Igll1 transcript can distinguish UC from CD in peripheral 230 

blood mononuclear cells of UC patients (Burczynski et al., 2006). Furthermore, this genetic 231 

analysis has now implicated two additional genes, Il1f8 and Oma1, which are correlated with 232 

Roseburia, but not currently known to be associated with colitis. QTL Micab4 regulated 233 

Roseburia a microbe that, at low intestinal abundance, is just one of the hallmarks of ulcerative 234 

colitis (UC) (Chen et al., 2014; Machiels et al., 2014; Willing et al., 2010). 235 

The confidence interval for Micab4 was 9.45 Mbp containing 95 genes (Fig 3B-C). At 236 

least five genes, Id3 (probe18912 or ILMN_2687169), Luzp1 (probe24933 or ILMN256903), 237 

C1qa, C1qb, and C1qc are compelling candidates for regulating Roseburia abundance because 238 

they either have cis-eQTL or they have an immune system function and contain variants with 239 

GWAS LOD scores >4 (Figure 3D). Therefore, we hypothesize that perturbation of a gene in the 240 

Micab4 locus will impact Roseburia abundance through the indirect genetic regulation of Cxcr4 241 

and Igll1 abundance. Of the five candidates, Id3 and C1qa were testable in extant mouse models. 242 

Luzp1 knock-out mice are perinatal lethal (Hsu et al., 2008). There was no evidence of intestinal 243 

pathology or abnormal abundance of Roseburia in Id3 deficient mice (SUPP TABLE OF 244 

ABUNDACE IN ID3?). In contrast, comparison of wild-type mice to C1qa knockout mice, and 245 

mice with an intact but human derived C1qa gene reveals decreased abundance of Roseburia in 246 

the intestine of C1qa deletion mutants (Figure 4E). Mice with the intact human derived allele had 247 

an intermediate Roseburia abundance, and did not differ significantly from either the wild-type 248 

or C1qa deletion mutants. C1qa, C1qb and C1qc encode proteins that form the C1Q multimer in 249 

1:1:1 ratio (Reid and Porter, 1976) and are reported to have synchronized transcription in some 250 
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cells (Chen et al., 2011), therefore a polymorphism influencing one of them may influence the 251 

entire complex (Chick et al., 2016). SNP association mapping in the C1qa region reveals 252 

significant associations with variants for which B6, 129 and NZO alleles have one effect on 253 

Rosburia abundance and the other strains have an opposing effect. Several 3’UTR variants and 254 

synonymous variants have this segregation pattern. An additional SNP in C1qa, rs27625206 255 

causes an amino acid change at AA16 changing a Thr (polar side chain) to an Ile (non-polar side 256 

chain) in A/J, NOD and PWK that may have functional effects. Collectively, these data suggest 257 

that genetic variation in the C1 complement system may influence the abundance of Roseburia, a 258 

colitis related bacterium.  259 

Genetic correlation of microbial abundance to disease-related traits reveals a microbe 260 

associated with sleep.  261 

Correlation of disease-related traits with underlying biomolecular and microbial 262 

characteristics across individuals provides a powerful means to identify previously unknown 263 

mechanisms of disease. A total of 122 disease-related behavioral and physiological phenotypes 264 

were correlated using Kendall’s Tau with the abundance of each OTU, revealing 45 significant 265 

trait-microbe correlations (q< 0.05) (Storey, 2002) (Table 2). Of the trait-microbe pairs, 41 266 

contained sleep phenotypes that showed significant associations with 10 different microbes. 267 

Among these, OTU 273 Odoribacter (ord. Bacteroidales, fam. Porphyromonadaceae) was the 268 

bacterium consistently correlated to the largest number of phenotypes (21), and also significantly 269 

correlated with decreased sleep time, among other sleep phenotypes (Table 2, Figure S4A). 270 

The Micab7 on chromosome 7 regulates the relative abundance of Odoribacter. The QTL 271 

is 3.53 Mbp in size and contains 42 genes (Table 1). The allelic effects for each of the eight 272 

founder strain haplotypes are such that the NZO (New Zealand Obese) allele is associated with 273 
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increased abundance (Figure 4A-C). This is significant because the NZO founder strain is obese 274 

and prone to a diabetes phenotype, and previous studies of gut microbiota in obesity and diabetes 275 

prone mice revealed that Odoribacter, Prevotella and Rikenella have been found in the 276 

microbiota of diabetic db/db (BKS.Cg-Dock7m +/+ Leprdb/J) mice and are absent among db/+, 277 

+/+ littermates (Geurts et al., 2011). The db/db mice have also been shown to have abnormal 278 

sleep patterns in the form of altered sleep-wake regulation (Laposky et al., 2008). 279 

We hypothesized that Odoribacter, Lepr and sleep are connected through a common 280 

mechanism. Specifically if the mechanism controlling altered sleep phenotype and the presence 281 

of Odoribacter in Lepr mutant db/db mice is the same mechanism that underlies the correlation 282 

of Odoribacter abundance and sleep in the CC mice, then we suspect overlap between one or 283 

more of the QTL positional candidates and the Lepr pathway, and that the perturbation of the gut 284 

microbiota of db/db mice should affect sleep patterns.  285 

 In order to investigate whether there is overlap between Micab7 QTL positional 286 

candidate genes and Lepr, we performed an Ingenuity Pathway Analysis (IPA) of the 42 287 

positional candidates, together with the gene Lepr. The most likely pathway from this database 288 

(Fisher’s Exact Test p < 10-14) contains the positional candidate genes Nr2f2 and Igf1R 289 

interacting with Lepr through Vegf (Figure 4D). 290 

 Causal graphical models for phenotype-genotype networks (Rockman, 2008) were used 291 

to infer the direct and indirect associations among the results of the IPA, including Lepr, Vegfa, 292 

Vegfb, Vegfc the two positional candidates Nr2f2 and Igfl1r, the leptin pathway and sleep. The 293 

network model also included abundance of Odoribacter, two sleep traits and the genotypes of the 294 

CC mice at the QTL. Bayesian Networks (BNs) are described by directed acyclic graphs (DAG), 295 

which can be efficiently decomposed and translated into the joint distribution of variables in the 296 
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model (Koller and Friedman, 2009).  Conditional Gaussian distributions were used to model the 297 

relationships between genotype and phenotype, and the network structure was learned using a 298 

Markov Chain Monte Carlo (MCMC) sampling scheme (Hageman et al., 2011), and averaging 299 

over the top structures (Hoeting et al., 1999).  The graphical model is represented as a DAG 300 

which can be efficiently decomposed and translated into the joint distribution of variables in the 301 

model. If the QTL is associated with the regulation of the Vegf pathway, we would expect to see 302 

evidence for a network edge between the genotype and at least one of the two positional 303 

candidates, the downstream Lepr genes and the phenotype. Furthermore, this analysis can 304 

determine which positional candidate is most likely influenced by the causal variant. In 305 

aggregate summaries of the top 40 graphs, a repeatable relationship among the QTL, the 306 

positional candidate Igf1r, Odoribacter and sleep is observed (Figure 4E). This relationship is 307 

observed in the majority of graphs. Therefore there is a plausible interaction among the QTL, 308 

Igf1r abundance, the leptin pathway, Odoribacter and sleep.  309 

Broad spectrum antibiotic treatment alters sleep pattern in Leprdb / Leprdb mice.  310 

We then evaluated whether the presence of Odoribacter in Leprdb mice could explain the 311 

altered sleep behavior reported in these mice. To eliminate Odoribacter, mice were given 312 

antibiotic treatment continuously from conception. As expected (Savage and Dubos, 1968) this 313 

broad spectrum treatment resulted in increased fecal contents of the cecum observed at dissection 314 

in both genotypes (Figure S3B), however, it also resulted in a genotype specific effect on sleep 315 

architecture. The percent sleep time for the antibiotic treated db/db mice over a 72 hour period 316 

showed a genotype × treatment interaction in a repeated measure MANOVA; Genotype × 317 

Treatment F (71,45) = 2.1199, p = 0.0040 (Figure 5A-D). Fourier amplitude analysis of the cyclic 318 

activity between 4 and 7 hour periods (Figure 5E), showed a significant genotype × treatment 319 
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effect (F(3,120) = 12.2193, p < 0.0001) and individual LS Means Student t-test showed significant 320 

differences between control db/db and all three other groups (Table S4). V4 sequencing of cecal 321 

contents from db/db mice showed seven microbial taxonomic units that were absent in the 322 

antibiotic treated case and elevated in the water vehicle controls, including the two from the 323 

family containing Odoribacter (Figure 5F). Therefore, we conclude that Odoribacter abundance 324 

influences sleep architecture in a manner regulated by genetic variation in Igf1r through the 325 

Vegf/Leptin pathway.  326 

327 
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DISCUSSION 328 

Using systems genetics and integrative functional genomics in the CC population, we 329 

traversed biological networks of genotypes, gene expression, microbes and disease-related 330 

phenotypes to identify host-microbial mechanisms underlying autism-, inflammatory bowel 331 

disease- and sleep-related phenotypes. The high allelic variation and precision of the incipient 332 

CC mouse population allowed us to map loci that control the abundance of 18 particular 333 

microbes, which could be further decomposed using SNP analysis, haplotype association and 334 

gene prioritization methods. Intestinal transcriptome profiling resulted in detection of ~1,600 335 

significant eQTL and multiple clusters of transcripts and microbes whose abundances are jointly 336 

modified by genetic variation. Through genetic correlation network analysis, we relate these 337 

systems genetic networks to disease related phenotypes obtained in the same population of mice, 338 

and through cross-species integrative genomics, we relate the transcriptional correlates of 339 

microbial abundance to the transcriptional correlates of human disease. 340 

Allelic variants influence the structure of microbial communities by creating conditions 341 

that promote or inhibit colonization by certain species (Spor et al., 2011). One way in which 342 

allelic variation manifests its effects is through the direct or indirect alteration of transcript 343 

abundance and the host environment, thereby impacting colonization. Other sources of variation 344 

may influence transcript abundance, including the presence of microbiota and their metabolites, 345 

disease states, and environmental variation. These sources of variation and their association with 346 

microbiota and disease can be detected through genetic correlation and probabilistic network 347 

analyses. By identifying network components and assessing causal relations among them through 348 

experimental perturbation, it is possible to understand the mechanisms of these relationships.  349 
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Using the incipient CC breeding population we have identified chromosomal loci across 350 

the genome, associated with the abundance of a variety of bacteria. We have identified eQTL in 351 

and clusters of microbes whose abundance correlates with the altered expression of sets of genes 352 

and disease related phenotypes. From each path of interrogation of the systems genetic network, 353 

we were able to confirm disease association and augment these observations with mechanistic 354 

insights into three disease areas. The systems genetic analysis of mouse intestinal microbiota 355 

enabled the discovery of multiple novel microbe-disease relationships. Some of these are 356 

supported by existing studies and others by new experimental evidence presented herein.  357 

Previous work in humans has associated the specific microbial composition of the gut 358 

with autism-spectrum disorder, (De Angelis et al., 2013; Hsiao et al., 2013) and therefore, 359 

understanding how host and microbe interactions operate in a mouse model of ASD may lead to 360 

a better mechanistic understanding of the role of gut microbes in autism. The abundance of 361 

Enterorhabdus has been previously associated with valproic acid induced social behavior deficits 362 

and cecal short chain fatty acid metabolites (butyric acid) (de Theije et al., 2014), but the host 363 

mechanism mediating this effect and the presence of a naturally occurring host state that mimics 364 

the inducible model were unknown. Detecting a QTL for Enterorohabdus abundance and 365 

relating it to genetic regulation of Trafd1 abundance enabled us to hypothesize and ultimately 366 

demonstrate that perturbation of Trafd1 influences social behavior. Trafd1 is known to influence 367 

inflammatory processes (Sanada et al., 2008) with broad effects on microbial colonization. 368 

Maternal infection during pregnancy and the resulting production of inflammatory molecules, 369 

has been shown to alter the fetal brain and produce autism-like behaviors in mice (Malkova et 370 

al., 2012). In the case of the VPA model of autism, Trafd1 expression is increased by valproic 371 

acid (Jergil et al., 2011; Kultima et al., 2010), perhaps allowing for increased colonization by 372 
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Enterorhabdus and resulting the differential microbial production of short chain fatty acids 373 

known to influence autism-related behavior (MacFabe, 2015).  374 

Cross-species interrogation of intestinal disease genomics studies enabled extrapolation 375 

from mouse gene expression correlates of microbial abundance to differential gene expression in 376 

human gastrointestinal disorders. We identified gastrointestinal transcripts associated with the 377 

abundance of Roseburia (Clostridiales, Lachnospiraceae), regulated by the Micab4 QTL. The 378 

mouse locus containing the Roseburia abundance QTL on chromosome 4 is syntenic with a 379 

region of Chromosome 1 in human that has been repeatedly implicated in UC, IBD and Celiac 380 

disease (1p36.11 (Barrett et al., 2009; Dubois et al., 2010), 1p36.12 (Anderson et al., 2011; 381 

Barrett et al., 2009; Jostins et al., 2012) 1p36.13 (Anderson et al., 2011; Barrett et al., 2009; 382 

Ellinghaus et al., 2012; Franke et al., 2010; Jostins et al., 2012; Silverberg et al., 2009; Yang et 383 

al., 2013)). Therefore, finding the genetic variant underlying Roseburia abundance in the mouse 384 

may reveal mechanisms causing the dysbiosis seen in IBD. The locus contains complement 385 

proteins (C1qa, C1qb, C1qc), Id3, and Luzp1, compelling genetic candidates that also have high 386 

functional relevance due to their role in innate and adaptive immunity. Perturbation of C1qa, but 387 

not Id3, influences Roseburia abundance, and it is reasonable to speculate that other variants may 388 

exhibit similar effects.  389 

Genetic correlation from mouse phenotype to microbial abundance enabled the 390 

identification of host and microbe influences on sleep architecture. The general role of microbes 391 

in sleep particularly in the cytokine response to infection is well documented (Krueger and Toth, 392 

1994). Previous work in rabbits (Toth and Krueger, 1989) has shown that altered sleep patterns 393 

occur in response to an infectious challenge and that the sleep response is related to the type of 394 

infectious organism. Here we report for the first time the relationship between the abundance of a 395 
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specific microbe and sleep. OTU273- Odoribacter (Bacteroidales, Porphyromonadaceae), 396 

regulated by the Micab7 locus, was correlated with multiple sleep phenotype measures. Genomic 397 

network analyses revealed that the primary candidate gene for the QTL is Igf1r, a gene likely to 398 

function in the regulation of sleep as the somatotropic axis and IGF-1 signaling and sleep are 399 

intimately related (Obal et al., 2003). Perturbation of this pathway in the db/db Lepr mutant 400 

mouse is associated with elevated abundance of Odoribacter and an abnormal sleep phenotype, 401 

both of which we have shown can be restored to normal values through antibiotic treatment. The 402 

observation that indigenous microbes could affect sleep patterns suggests the potential for 403 

probiotic development in adjusting sleep patterns in those with clinical sleep disorders. Recent 404 

studies indicate a relationship between microbiota abundance and ultradian rhythms (Thaiss et 405 

al., 2014), and microbes of the Odorbacter were among five genera that decreased in the feces of 406 

intermittent hypoxia model of sleep apnea (Moreno-Indias et al., 2015). 407 

 In each of the above disease related studies, we utilized systems genetic networks to 408 

identify, model and validate the relationships among host genetics, genomics, microbiota and 409 

disease. The mouse provides an efficient, well-controlled system in which to employ this 410 

approach, though it is amenable to application in human populations. We demonstrated that 411 

using mouse genetics, we can identify relations that can be extrapolated to humans, though well-412 

known issues in mechanistic conservation and direct translation must be considered. For 413 

example, despite high conservation across human and mouse genomes, specific biological 414 

mechanisms are not always entirely conserved, though the functional output of pathways and 415 

involvement in disease may be. Our approach to this challenge is to exploit network overlap, to 416 

identify elements of mouse networks that can be translated to human genetic and genomic 417 

networks, which we expect to function similarly but perhaps differ in the details of specific 418 
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allelic variants, genetic mechanisms and particular microbiota involved. By developing our study 419 

around holistic quantitation of both host and microbe, in contrast to typical studies of individual 420 

perturbations and a specific focus on microbiota, we are able to generate broader networks 421 

amenable to integration and extrapolation to disease mechanisms. Much remains to be done in 422 

the functional validation of the conservation of these mechanisms. 423 

In all studies of the interplay among host environment, microbiota and disease, the causal 424 

mechanisms underlying associations must be considered. Genetic variation influences the host 425 

environment creating conditions that are hospitable or inhospitable ecological niches for gut 426 

microbiota. Identifying the precise causal genetic variants underlying microbial composition is a 427 

lengthy process that has become more tractable with the advent of deep sequencing of the CC 428 

founders, high precision mapping populations including the Diversity Outbred derived from the 429 

CC, and the ability to integrate functional genomic data from other sources including epigenetic 430 

modification, non-coding variants, and disease associations.  431 

By exploiting genetic heterogeneity among organisms, we were able to extract 432 

mechanistic relations among host, microbe and disease. The systems genetic strategy employed 433 

herein provides a wealth of data resources that can be further interrogated by investigators with 434 

an interest in specific host genes, variants, microbes and disease related phenotypes. 435 

Furthermore, the strategy we present can be readily deployed in other genetically diverse 436 

populations to provide efficient, holistic assessment of microbial and host mechanisms of 437 

disease. Extracting these disease relevant mechanistic networks will provide insight into the 438 

complex interplay of host and microbe, revealing potential sources of disease etiology and points 439 

of therapeutic intervention.  440 

  441 
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Figure Legends 466 

Figure 1. The system genetic model and gut microbiomics. Genetic variation in a host 467 

population together with the environment interact to affect gene expression in the host, microbial 468 

abundance and disease related traits. There is significant bi-directional interplay among the 469 

microbiome, host gene expression and disease related phenotypes, however, the effect of host 470 

genotype is unidirectional, and therefore causal.  471 

Figure 2- Enterorhabdus abundance in the cecum. a) Genome scan showing a large significant 472 

QTL (p<0.01) on chromosome 5 for regulation of Enterorhabdus abundance. Horizontal lines 473 

represent permutation based significance thresholds from the top down highly significant p<0.01, 474 

significant, p<0.05, highly suggestive, p<0.1, suggestive,  p<0.63 b) Detailed map of 475 

Chromosome 5. Allelic effect plots of eight founder coefficients of the QTL mixed model 476 

representing the effect of each founder haplotype on phenotype. The NOD/LtJ allele on 477 

Chromosome 5 is associated with increased abundance c) Overlapping proximal (cis) eQTL for 478 

Trafd1 expression on chromosome 5 with a similar NOD/LtJ driving increased expression.  479 

d) Traf1-KO mice spent more time interacting with the object, and less time with the stranger 480 

than their wild-type liter mates.   481 

Figure 3. Hierarchical intersection of gene-microbe associations together with human 482 

gastrointestinal disorder literature. a) GeneWeaver output revealing hierarchical intersections of 483 

gene sets with the lowest level nodes representing individual gene-sets, and the higher level 484 

nodes representing 2-way, 3-way to n-way intersections of the inputs. The arrows show the 485 

direction of overlap of the genes. The genes associated with Roseburia (Clostridiales 486 
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Lachnospiraceae) abundance include Cxcr4, Oma1, Igll1, Il1f8. Cxcr4 has been implicated in 487 

two studies of UC and CD disease in humans and Igll1 has been implicated in CD. b) Linkage 488 

mapping of microbial abundance using the additive haplotype model reveals a significant QTL 489 

(p<0.01) on chromosome 4. Horizontal lines represent permuted significance thresholds from the 490 

top down highly significant p<0.01, significant, p<0.05, highly suggestive, p<0.1, suggestive, 491 

p<0.63  c) Founder coefficients or allelic effects from the linkage model on chromosome 4 show 492 

the effects of each founder allele. d) The top panel shows the LOD score from association 493 

mapping in the QTL confidence interval. The bottom panel shows the genes and non-coding 494 

RNAs from the Mouse Genome Informatics database. e) Relative abundance of Roseburia in 495 

wild-type, C1qa deficient and humanized C1qa mice. 496 

Figure 4. Odoribacter abundance in the cecum. a) Genome scan showing a significant QTL 497 

(p<0.01) peak on chromosome 7. Horizontal lines represent permuted significance thresholds 498 

from the top down highly significant p<0.01, significant, p<0.05, highly suggestive, p<0.1, 499 

suggestive, p<0.63 b) Detailed QTL map on Chromosome 7. Bottom: LOD score across 500 

Chromosome 7. Top: Allelic effect plots of eight coefficients of the QTL mixed model 501 

representing the effect of each CC founder haplotype on phenotype. The NZO allele on 502 

Chromosome 7 is associated with increased abundance of Odoribacter c) Top: LOD score for 503 

SNP association mapping in the QTL support interval (67.1-71.1). Red points indicate SNPs with 504 

significant association to Odoribacter abundance. Bottom:  Genes and non-coding RNAs located 505 

in the QTL interval. d) Ingenuity Pathway Analysis of the positional candidate genes together 506 

with Lepr show a network path through Vegf and involving either Nr2f2 or Igf1r. e) Inferred 507 

network relating sleep, microbe abundance, microbial abundance QTL, expression correlations 508 

and mutant mice.  The network is a consensus representation of the 40 most likely BNs in a 509 
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MCMC sample.  Edge weights correspond to the marginal frequency of each directed edge in the 510 

top 40 Bayesian Networks. Sleep1 represents the sleep trait corresponding to the average of 511 

continuous sleep lengths over four full days, and sleep 2 represents the sleep trait Activity onset 512 

on the fourth day [h].  513 

Figure 5 Mean and standard error for the percent time sleep over a 5 day test. a) Wild type (+/+ 514 

and db/+ genotypes) water only, b) Wildtype given antibiotics c) db/db mice water d) db/db mice 515 

given antibiotic  Genotype and antibiotic treatment have a significant interaction affecting 516 

percent sleep time.e-h) FFT of  sleep percentage time series. i) FFT Peak Amplitude 517 

corresponding to sleep percentage cycles with periods between 4 and 7 hours during the final 4 518 

days of the sleep cycle, show significant genotype × treatment interaction as well as db/db 519 

control being significantly different from the other three groups. j-m) Microbes present in the 520 

control but absent in the antibiotic treated mice521 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2018. ; https://doi.org/10.1101/349605doi: bioRxiv preprint 

https://doi.org/10.1101/349605
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

Table 1. Significant QTLs for microbial abundance in the cecum of incipient CC mice. 522 

Table 2. Correlations of disease related phenotypes to microbial abundance.  523 

Supplementary material 524 

Figure S1 Cecal microbial profile across mouse samples. Using 16S V4 rRNA gene sequence 525 

reads, a majority of cecum microbes belong to the Firmicutes phylum followed by Bacteroides. 526 

The other abundant phyla were Protobacteria (0.6%), Actinobacteria (0.6%).and Synergistetes  527 

(0.3%)  528 

Figure S2 eQTL map of cecum transcripts in CC mice. 529 

Figure S3 Microbes differentially expressed in Trafd1 -/- mice compared to wild type 530 

controls.  531 

Figure S4 Microbes and Sleep. A) Odiobacter and average percentage of sleep time in dark 532 

cycle among CC lines. Kendal’s Tau = -0.3314, q-value=0.006104. B) Cecums of Control (left) 533 

and antibiotic treated (right) +/+ mice 534 

 535 

Table S1. Founder strain intraclass correlations, sequences, and genus mapping based on 536 

Ribosomal Database Project for Operational Taxonomic Units found in at least 10% of CC 537 

mapping population 538 

 539 

Table S2. Heritability and eQTLs for cecal intestinal transcript abundance in CC founders and 540 

mapping population for probes with strain ICC > .3 541 

 542 

Table S3. GeneWeaver Gene Set IDs for sets of transcripts which are co-abundant with specific 543 

microbial taxa.  544 
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Table S4. Post-hoc comparison of mean sleep FFT peak amplitude in db/db and wild-type mice 547 

treated with broad spectrum antibiotic or vehicle control.  548 

 549 

Table S1. Founder strain intraclass correlations, sequences, and genus mapping based on 550 

Ribosomal Database Project for Operational Taxonomic Units found in at least 10% of CC 551 

mapping population 552 

 553 

Table S2. Heritability and eQTLs for cecal intestinal transcript abundance in CC founders and 554 

mapping population for probes with strain ICC >0.3 555 

Table S3. GeneWeaver Gene Set IDs for sets of transcripts which are co-abundant with specific 556 

microbial taxa.  557 

Table S4. Post-hoc comparison of mean sleep FFT peak amplitude in db/db and wild-type mice 558 

treated with broad spectrum antibiotic or vehicle control.  559 

 560 
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MGI 
QTL 
Symbol QTL Name Chr 

Peak 
LOD 
Score 

Peak 
Marker 

Position  
Mm 9 (bp) 1.5 LOD Interval p-value 

Size 
(Mbp) 

Gene 
Weaver 
GSID 

Micab1 Microbial abundance of Clostridiales 
Ruminococcaceae Oscillibacter 1 

1 8.20 rs32084678 13,279,810 rs6275656 rs31653681 0.0033 6.34 217070 

Micab2 Microbial abundance of Bacteroidales 
Porphyromonadaceae Paludibacter 2 

3 8.23 rs31103355 108,854,325 rs31431100 rs37044521 0.0029 4.09 217071 

Micab3 Microbial abundance of Clostridiales 
Lachnospiraceae Marvinbryantia 3 

3 8.13 rs30089246 37,569,141 rs30552223 rs30158956 0.0037 2.03 217072 

Micab4 Microbial abundance of Clostridiales 
Lachnospiraceae Roseburia 4 

4 9.57 rs32690134 136,028,098 rs27619452 rs3685172 0.0005 9.45 217077 

Micab5 Microbial abundance of 
Coriobacteriales Coriobacteriaceae 
Enterorhabdus 5 

5 8.84 rs6377391 119,128,609 rs29633871 rs6354701 0.0009 4.65 217078 

Micab6 Microbial abundance of Clostridiales 
Lachnospiraceae Sporobacterium 6 

5 8.42 rs8265964 138,359,981 rs32246505 rs32318125 0.002 4.00 217079 

Micab7 Microbial abundance of Bacteroidales 
Porphyromonadaceae Odoribacter 7 

7 8.84 rs31494696 77,651,351 rs33107817 rs6373775 0.0009 3.53 217080 

Micab8 Microbial abundance of Clostridiales 
Ruminococcaceae Lactonifactor 8 

7 8.88 rs47611520 47,761,932 rs3661776 rs6176297 0.0009 13.55 217081 

Micab9 Microbial abundance of Bacteroidales 
Porphyromonadaceae Odoribacter 9 

7 8.60 rs31494696 77,651,351 rs33107817 rs6373775 0.0013 4.00 217082 

Micab10 Microbial abundance of Clostridiales 
Lachnospiraceae Anaerostipes 10 

8 9.61 rs32936112 47,123,375 rs6281843 rs31252778 0.0003 14.36 217083 

Micab11 Microbial abundance of Clostridiales 
Incertae Sedis XIV Blautia 11 

8 9.49 rs33429737 31,919,239 rs6399870 rs50110045 0.0005 5.19 217084 

Micab12 Microbial abundance of Clostridiales 
Clostridiaceae Caminicella 12 

9 8.29 rs30372085 80,440,479 rs30432532 rs33695839 0.0029 7.37 217092 

Micab13 Microbial abundance of 
Erysipelotrichales Erysipelotrichaceae 
Turicibacter 13 

10 8.87 rs29327022 88,018,183 rs6338556 rs6265280 0.0009 24.62 217093 

Micab14 Microbial abundance of Bacteroidales 
Bacteroidaceae Bacteroides 14 

11 8.14 rs26971743 58,783,410 rs6314621 rs26972849 0.0036 6.30 217094 

Micab15 Microbial abundance of Clostridiales 
Lachnospiraceae Syntrophococcus 15 

15 9.47 rs6388530 93,634,974 rs31931586 rs49819430 0.0005 10.43 217095 

Micab16 Microbial abundance of Bacteroidales 
Porphyromonadaceae Tannerella 16 

19 8.10 rs30320578 47,732,625 rs36280504 rs30760881 0.004 6.39 217096 

Micab17 Microbial abundance of Clostridiales 
Ruminococcaceae 
Hydrogenoanaerobacterium 17 

 X 8.50 rs6292190 155,749,346 rs29276152 rs29306363 0.0017 5.59 217097 

Micab18 Microbial abundance of Clostridiales 
Lachnospiraceae Lachnobacterium 18 

X 8.20 rs6213950 163,790,061 rs8255374 rs31682358 0.0033 3.01 217098 
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  1 Phenotype Kendall 
Tau 

p-value q-value Microbe (order, family, genus)  

Peak activity time from dark onset averaged over all baseline days [h] 0.29 5.12E-06 0.036 Clostridiales Lachnospiraceae Acetitomaculum 

Peak activity time from dark onset averaged over all baseline days [h] -0.29 7.44E-06 0.049 Bacteroidales Bacteroidaceae Bacteroides 

Peak activity time from dark onset after sleep deprivation [h] -0.31 2.27E-06 0.017 Bacteroidales Bacteroidaceae Bacteroides 

Average percentage of sleep time over all baseline days [%] -0.30 5.24E-06 0.036 Bacteroidales Porphyromonadaceae Barnesiella 

Glucose concentration [mmol/L] 0.31 2.98E-06 0.022 Clostridiales Lachnospiraceae Coprococcus 

Peak activity time from dark onset averaged over all baseline days [h] 0.27 5.37E-06 0.037 Clostridiales Lachnospiraceae Coprococcus 

Activity onset averaged over all baseline days [h] 0.32 5.52E-07 0.008 Lactobacillales Lactobacillaceae Lactobacillus 

Average of continuous sleep length over dark cycle in four full days [s] 0.31 8.36E-07 0.009 Lactobacillales Lactobacillaceae Lactobacillus 

Average of continuous sleep length over dark cycle for all baseline 
days [s] 

0.32 5.89E-07 0.008 Lactobacillales Lactobacillaceae Lactobacillus 

Peak activity time from dark onset averaged over all baseline days [h] 0.29 4.77E-06 0.034 Lactobacillales Lactobacillaceae Lactobacillus 

Tail clip latency [s] 0.31 1.02E-06 0.010 Lactobacillales Lactobacillaceae Lactobacillus 

Creatinine concentration [mmol/L] 0.47 8.26E-08 0.006 Clostridiales Ruminococcaceae Lactonifactor 

Activity onset averaged over all baseline days [h] -0.29 2.55E-06 0.019 Bacteroidales Porphyromonadaceae Odoribacter 

Average of continuous sleep lengths over the light cycle in four full 
days [s] 

-0.29 5.19E-06 0.036 Bacteroidales Porphyromonadaceae Odoribacter 

Average of continuous sleep lengths over the light cycle for all 
baseline days [s] 

-0.28 5.61E-06 0.038 Bacteroidales Porphyromonadaceae Odoribacter 

Average of continuous sleep lengths over the dark cycles in four full 
days [s] 

-0.31 1.13E-06 0.011 Bacteroidales Porphyromonadaceae Odoribacter 

Average of continuous sleep lengths over the dark cycle for all baseline 
days [s] 

-0.30 1.90E-06 0.015 Bacteroidales Porphyromonadaceae Odoribacter 

Average of continuous sleep lengths over four full days [s] -0.31 6.05E-07 0.008 Bacteroidales Porphyromonadaceae Odoribacter 

Average of continuous sleep lengths over all baseline days [s] -0.30 1.41E-06 0.012 Bacteroidales Porphyromonadaceae Odoribacter 

Peak activity time from dark onset averaged over all baseline days [h] -0.31 7.52E-07 0.009 Bacteroidales Porphyromonadaceae Odoribacter 

Peak activity time from dark onset after sleep deprivation [h] -0.31 6.24E-07 0.008 Bacteroidales Porphyromonadaceae Odoribacter 

Percentage of sleep over a two hour period prior to sleep deprivation 
[%] 

-0.31 1.19E-06 0.011 Bacteroidales Porphyromonadaceae Odoribacter 

Percentage of sleep time over the dark cycle of four full days [%] -0.32 2.80E-07 0.007 Bacteroidales Porphyromonadaceae Odoribacter 

Percentage of sleep time over four full days [%] -0.33 1.22E-07 0.006 Bacteroidales Porphyromonadaceae Odoribacter 

Tail clip latency [s] -0.29 3.91E-06 0.028 Bacteroidales Porphyromonadaceae Odoribacter 

Average percentage of sleep time over all baseline days [%] -0.30 6.44E-06 0.043 Clostridiales Lachnospiraceae Roseburia 
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