

Title: The Goldilocks Effect: Female geladas in mid-sized groups have higher fitness

Authors: Elizabeth Tinsley Johnson^{1*†‡}, Noah Snyder-Mackler^{2,3*†}, Amy Lu⁴, Thore J. Bergman^{5,6}, Jacinta C. Beehner^{1,5}.

Affiliations:

¹Department of Anthropology, University of Michigan.

²Department of Psychology, University of Washington.

³Center for Studies in Demography & Ecology, University of Washington.

⁴Department of Anthropology, Stony Brook University.

⁵Department of Psychology, University of Michigan.

⁶Department of Ecology and Evolutionary Biology, University of Michigan

*Correspondence to: etinsley@msu.edu and nsmack@uw.edu.

[†]These authors contributed equally to this work.

[‡]Present address: Human Biology Program and Department of Integrative Biology,

College of Natural Science, Michigan State University.

24 **Abstract:** The cost-to-benefit ratio of group-living is thought to vary with group size:
25 individuals in “optimal” groups should have higher fitness than individuals in groups that
26 are too large or small. However, the relationship between group size and individual
27 fitness has been difficult to establish, a gap we address here in the gelada. We
28 demonstrate group size effects on the production of surviving offspring and on female
29 mortality rates, which are largely explained by group-size variation in infanticide risk and
30 foraging competition. We also identify a mechanism by which females may alter group
31 size: in large groups, females groomed with less than half of their group, increasing the
32 likelihood of fissions. Our findings provide insight into how and why group size shapes
33 fitness in long-lived species.

34

35 **Keywords:** optimal group size, fitness, folivore paradox, infanticide, reproduction,
36 survival

37

38

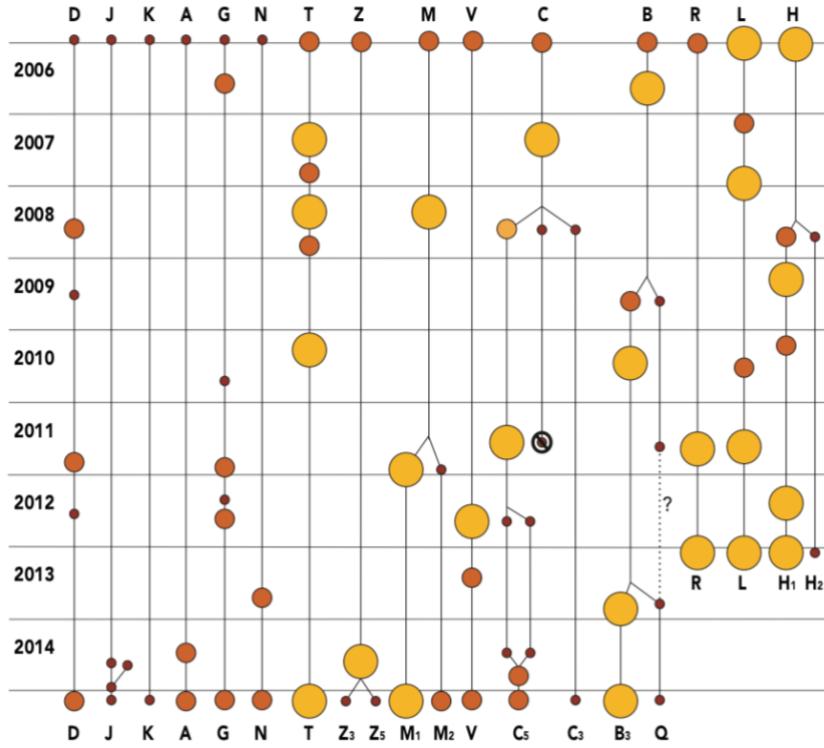
39

40

Main Text:

41 Variability in group size within species reflects a delicate balance of the costs and
42 benefits of group living. For example, in large groups the costs of group-living (e.g.,
43 foraging competition: 1–3) may begin to outweigh the benefits (e.g., decreased
44 predation risk: 1, 4, 5), to the detriment of individual group members. Individuals in
45 “optimal” groups, by contrast, should have the highest lifetime reproductive success
46 (i.e., fitness: 6) compared to others in the population (7). Although the link between
47 group size and fitness has long been suspected, it has been challenging to actually
48 demonstrate with empirical data. This is, in part, because fitness in long-lived species is
49 difficult to measure. Instead, short-term measures of reproductive performance (e.g.,
50 birth rate) are often used as proxies for fitness. But, perhaps more problematic is that
51 the accuracy of measures of fitness (which are more accurate over a longer period of
52 time) are inversely related to the accuracy of measures of group size (which are more
53 accurate over a shorter period of time). To circumvent this problem, we developed a
54 novel measure of reproductive performance that accounts for changes in group size.

55


56 Here, we used a wild primate, geladas (*Theropithecus gelada*), as a test species to
57 identify whether we have evidence for an optimal group size for females and, if so,
58 whether we can identify the selective forces that shape it. Geladas are long-lived,
59 folivorous primates that live in social groups (hereafter, “units”) that vary in size from 1
60 to 13 adult females – variation that is present even within the same population (8). This
61 variability may be due to ecological pressures (e.g., due to the seasonal environment: 9)
62 as well as social pressures. For instance, infanticide is the leading cause of infant

63 mortality: immigrant males kill over half of the dependent infants in a unit (10).
64 Moreover, larger units experience more takeovers than smaller units (11). Females in
65 larger units might therefore incur disproportionately higher costs than females in smaller
66 units.

67

68 We analyzed 9 years of data from 33 units that varied in size (Fig. 1), often month-to-
69 month. To address female fitness, we used two independent measures: (a)
70 *Reproductive performance*: A monthly binary score, where “successful” females (those
71 that produced an infant that survived to 18 months of age, the mean age at weaning for
72 this population: 12) received 1 point for each month of pregnancy and lactation (6
73 months of gestation + 18 months of lactation = 24 successful months). If an infant died
74 before reaching 1.5 years of age, no points were given to the months of
75 gestation/lactation prior to the infant death. Importantly, this monthly reproductive
76 performance variable is associated with a precise measure of group size; (b) *Adult*
77 *female death rate*: The number of adult female deaths out of the number of individual
78 females observed in each unit size each year.

79

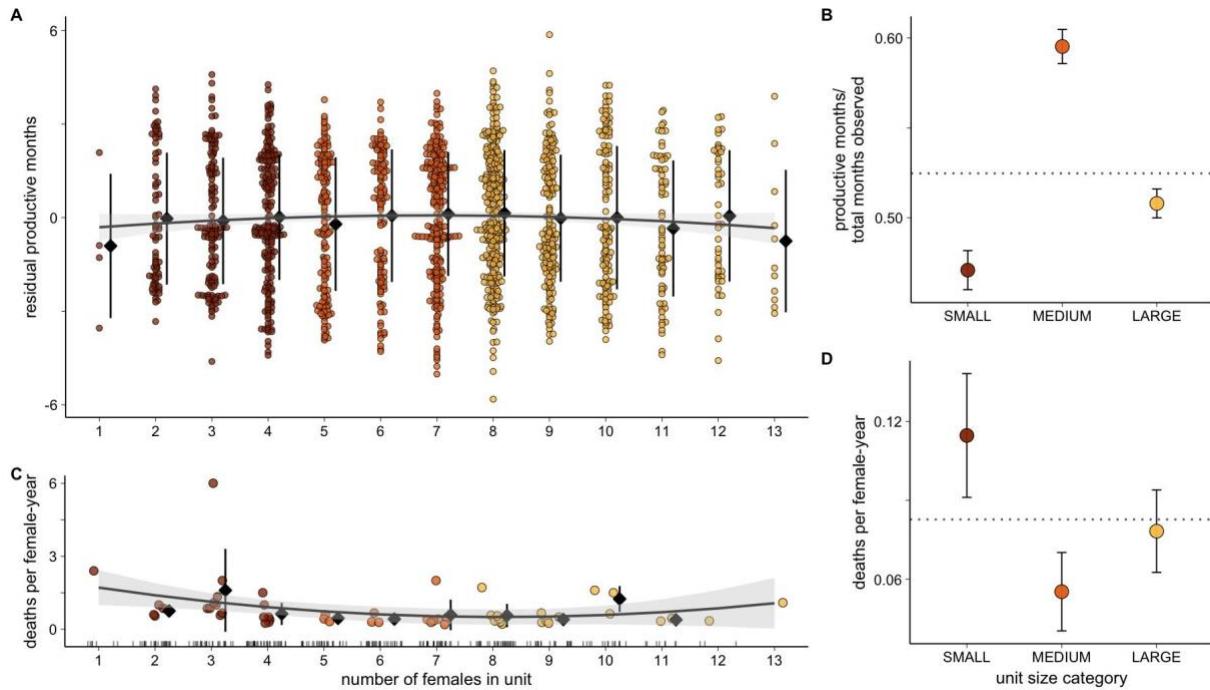


Fig. 1. Changes in unit size over time. Founding units (where observation started in 2006) are coded by letters and arranged along the top axis according to initial size category (which is also indicated by the size and color of the node). Size categories reflect the observed range in variation in unit size during the study period (small = 1-4, in dark red; mid-sized = 5-7, in orange; large = 8+, in yellow), and were used for visualization purposes only. Fissions and fusions are indicated by diagonal lines.

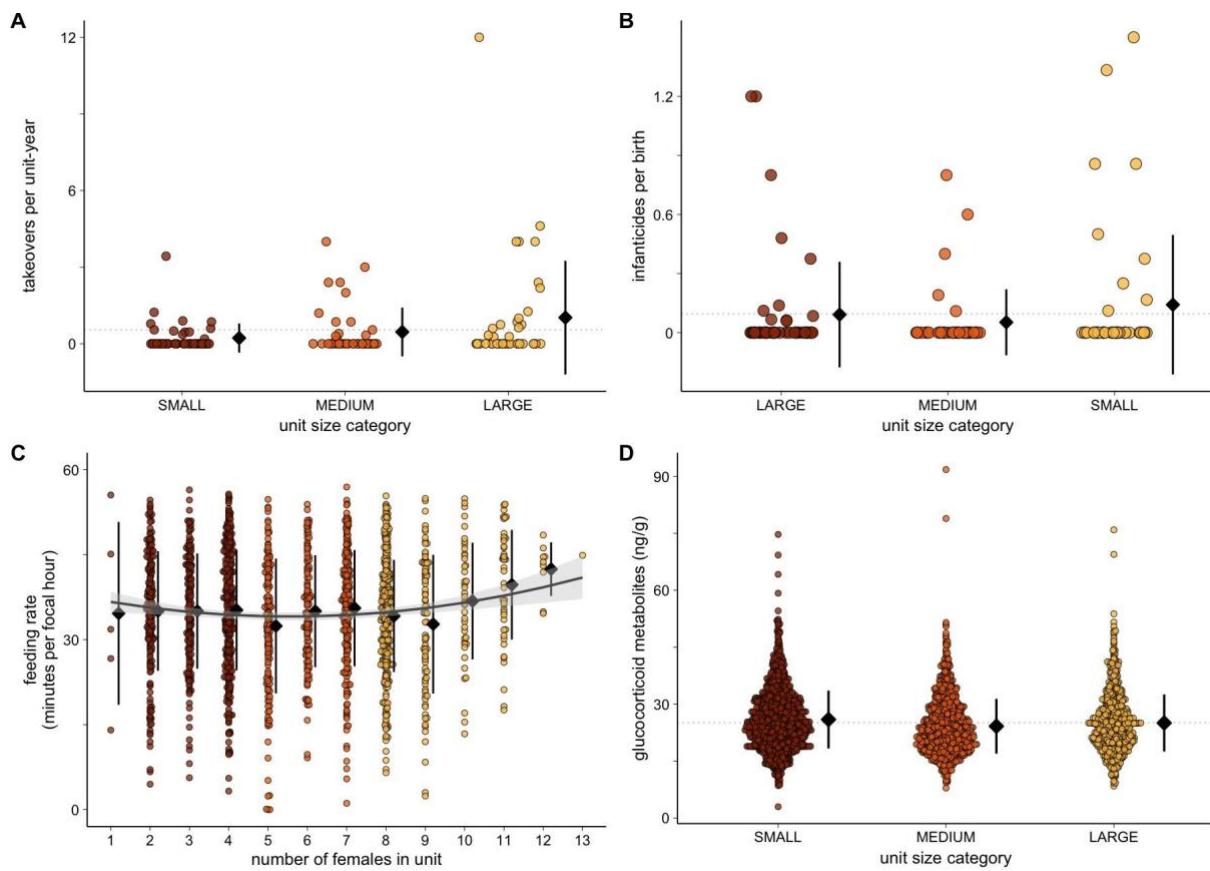
80
81 For our analyses, we defined unit size as the number of adult females in a unit (which is
82 also highly correlated with the total number of individuals in a unit, Fig. S1). Although
83 units in this population can range in size from 1-13 adult females, females in units in the
84 middle of this range (i.e., between 5-7 adult females, hereafter “mid-sized” units)
85 demonstrated the highest fitness. First, females in mid-sized units had the highest
86 reproductive performance (maximum females² estimate = -11.22 +/- 3.30 SE, *p*-value =
87 6.7×10^{-4} , Fig. 2A), with 26.4% more productive months than females in small units and
88 17.2% more productive months than females in large units (Fig. 2B). Second, females in

89 mid-sized units had the lowest mortality (maximum females² estimate = 13.52 +/- 3.01
90 SE, p -value = 7.07×10^{-6} , Fig. 2C), with 51.8% lower mortality than females in small
91 units and 29.4% lower mortality than females in large units (Fig. 2D).

92

Fig. 2. Females in mid-sized units had the highest fitness. (A) Residual productive months (controlling for age) by unit size (number of adult females). Each circle indicates the summed reproductive performance for a female over a 6-month period ($n = 1677$ observations from $n = 185$ females; binning was done for visualization purposes). Black diamonds indicate the mean for each unit size, and error bars indicate the standard deviation around the mean; (B) Total productive months divided by total months observed for all females by unit size category. The dotted horizontal line = 0.53 (the population mean); (C) Female death rates (deaths per female-year observed) by unit size ($n = 32$ distinct units; each point represents a unit-size-year where at least one death occurred, i.e., for each year, we summed the number of deaths for each unit at a specific unit size and controlled for the total female-years observed at that size, $n = 55$ unit-size-years). Unit-size-years where no deaths occurred ($n = 250$ unit-size-years) are represented as tick marks along the x-axis. Black diamonds indicate the mean death rates for each unit size, and error bars indicate the standard deviation around the mean; (D) Female death rates by unit size category. The dotted horizontal line = 0.08 (the population mean). Unit size categories were used for visualization purposes only (see *Supplementary Methods*).

93


94 If mid-sized units are optimal for female fitness, we then asked why. Specifically, can
95 social (male takeovers) and/or ecological (female feeding competition) pressures

96 explain why females living in mid-sized units had higher fitness? Geladas - folivores that
97 feed on widely-dispersed food resources (13, 14) - should face low feeding competition
98 and should, correspondingly, live in large groups for predator protection (15). Yet, this is
99 not the pattern observed across numerous folivore taxa (the “Folivore Paradox”: 15; i.e.,
100 16). The leading hypothesis for why many folivores do not live in larger groups is that
101 smaller groups are less attractive targets for male takeovers and thus infanticide (17–
102 19), although within-group feeding competition may also play a role (20). Therefore, we
103 first examined how infanticide risk, as measured by both takeover frequency and
104 infanticide rates, varied across unit size.

105

106 As reported previously (10, 21), takeover frequency increased with unit size (maximum
107 females estimate = 0.51 +/- 0.20 SE, *p*-value = 1.29 x 10⁻²; Fig. 3A). However,
108 infanticides, the leading cause of infant death (12.3% of all infants born during this study
109 period died of infanticide, accounting for 50.8% of all dependent infant deaths), did not
110 follow this same pattern. Infanticide rates actually decreased with unit size overall
111 (maximum females estimate = -18.35 +/- 6.51 SE, *p*-value = 4.8 x 10⁻³; Fig. 3B), and
112 were lowest in mid-sized units (maximum females² estimate = 24.40 +/- 5.85 SE, *p*-
113 value = 3.0 x 10⁻⁵; Fig. 3B). Thus, while females in large units experienced more
114 frequent takeovers and the highest number of infanticides (17 out of 33 observed
115 infanticides occurred in large units), females in small units experienced the second
116 highest number of infanticides (10 out of 33) such that females in mid-sized units
117 experienced the lowest infanticide rates (rates were identical for both small and large
118 units at 0.14 infanticides / birth; compared to 0.08 infanticides / birth for mid-sized units).

119 Although takeovers of small units were less frequent, when they did occur, immigrant
120 males killed disproportionately more infants than when they took over mid-sized units. In
121 this population, male takeovers dramatically alter female reproductive patterns (9, 22);
122 here we show that females in mid-sized units have a selective advantage over females
123 in smaller or larger units when it comes to these male-mediated birth patterns.

Fig. 3. Both social and ecological factors explain why mid-sized units are optimal. (A) Number of takeovers per unit-year observed. Each circle represents the takeover rate for each unit at a specific size category. The dotted horizontal line indicates the overall mean takeover rate (0.55 takeovers per unit-year); (B) The infanticide rates (number of infanticides per infants born for each unit-size-year) for each unit size category in a given year. Unit-size-years where no infants were born were excluded from the figure ($n = 32$ unit-size-years out of 97 total). The dotted horizontal line indicates the overall mean infanticide rate (0.01 infanticides per birth); (C) Feeding rates for each focal female for each month observed ($n = 4,350$ female-months). Rates were calculated by dividing the total minutes observed feeding by the focal hours observed; (D) Adult female glucocorticoid metabolites (ng/g) by unit size category ($n = 3835$ samples). The dotted horizontal line indicates the overall mean (25.11 ng/g). For all figures, black diamonds reflect the mean for each category, with bars representing the standard deviation.

124

125 Socioecological theory predicts that female competition within a group should select for
126 smaller group sizes, while female competition between groups should select for larger
127 group sizes (23). We therefore examined whether we could detect increased
128 competition in two parameters: the amount of time females spent foraging (24) and
129 female energetic condition as measured by fecal glucocorticoids (25). Specifically, we
130 considered whether foraging effort (as measured by time spent feeding) or
131 glucocorticoid levels (a class of hormones that rise in response to increased metabolic
132 demands) varied across unit size.

133

134 Despite feeding primarily on dispersed grasses (13), we found evidence that geladas
135 may experience feeding competition associated with unit size. Specifically, unit size
136 predicted foraging effort: females in large units spent 53.89% more time foraging than
137 females in small units (large unit category estimate = 4.01 ± 1.92 SE, z -value = 2.09,
138 p -value = 4.2×10^{-2} ; Fig. 3C), and females in mid-sized units spent the least amount of
139 time foraging overall (maximum females² estimate = 2.30 ± 0.72 SE, z -value = 3.18, p -
140 value = 1.5×10^{-3} ; Fig. 3C).

141

142 We found no such group size association with glucocorticoid metabolites (maximum
143 females estimate = -0.91 ± 0.61 SE, p -value = 0.14; maximum females² estimate =
144 0.67 ± 0.44 SE, p -value = 0.13). Previous analysis in this population have indicated
145 that temperature, and not the availability of green grass, most strongly predicts
146 glucocorticoid levels (9, 26). Therefore, thermoregulatory demands, which presumably

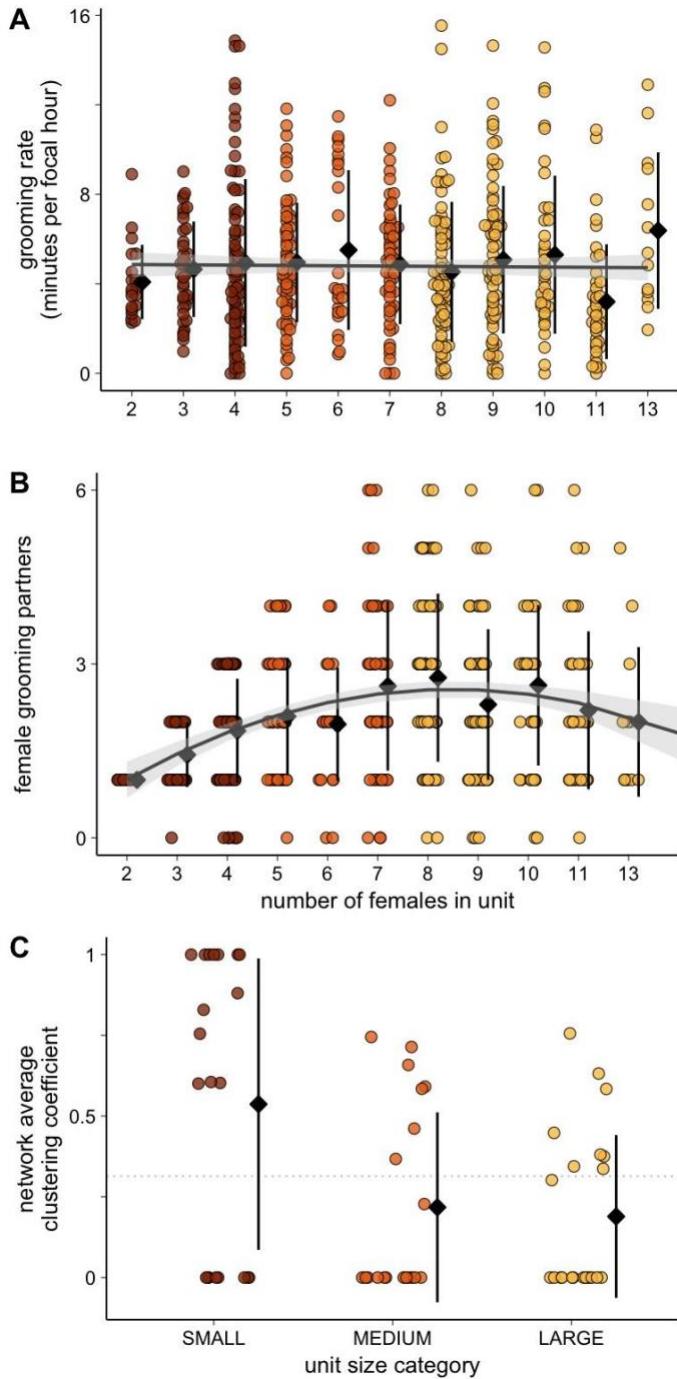
147 affect all individuals equally across units of different size, may constrain metabolic
148 needs more than food does. In addition, individual characteristics (e.g., gregariousness)
149 are likely important predictors of variation in glucocorticoid levels, especially where
150 more social partners may provide certain benefits (e.g., thermoregulatory benefits: 27).
151 Both of these hypotheses warrant further investigation.

152

153 Taken together, our results show that females in mid-sized units appear to display
154 optimal fitness as the result of social and ecological pressures. These findings beg the
155 question: what, if anything, can females in seemingly “suboptimal” units do to improve
156 their situation? As the philopatric sex, female geladas have limited options for
157 “choosing” their unit size. Nevertheless, females have been observed to change their
158 unit size via unit transfers, fissions, and fusions. Unit transfers were rare (n=2; 0.003
159 transfers per female-year) and were only observed in larger units. Fusions were also
160 relatively rare and only observed in smaller units (n=3; 0.004 fusions per female-year).
161 In contrast, fissions were 3 times more common than fusions; females in larger units
162 tended to fission into 2 (or 3) daughter units (9 cases; 0.01 fissions per female-year).
163 Thus, females in suboptimal groups may achieve a more optimally-sized group by
164 forming a smaller unit when they are in large units or by forming a larger unit when they
165 are in small units.

166

167 We next tested how females might induce these changes — hypothesizing that
168 individual-level behaviors may precipitate unit fissions. Individuals in larger groups are
169 less likely to maintain social ties with everyone else in the group -- thus increasing the


170 likelihood of a fission (28–31). In particular, female geladas in small and large units that
171 spend more time feeding, may be more constrained in the amount of time they can
172 devote to grooming (the primary means by which primates maintain social relationships,
173 32), ultimately limiting the number of social ties in these units. To test this possibility, we
174 first examined whether grooming time and/or the number of grooming partners varied by
175 unit size.

176

177 Time spent grooming did not vary according to unit size (maximum females estimate =
178 1.35 ± 4.43 SE; p -value = 0.76; maximum females² estimate = -3.47 ± 3.74 SE; p -
179 value = 0.36; Fig. 4A). This suggests that, even in the face of increasing foraging effort
180 (Fig. 3C), gelada females in all units conserve a set amount of social time. However,
181 while grooming time did not increase with unit size, the number of grooming partners did
182 (range: 0-6; maximum females estimate = 9.19 ± 1.93 SE; p -value = 1.27×10^{-5} ; Fig.
183 4B) -- although this increase was not linear. The mean number of grooming partners
184 reached an asymptote between 2-3 grooming partners in large units (maximum
185 females² estimate = -4.83 ± 1.51 SE; p -value = 1.59×10^{-3} ; Fig. 4B). Therefore, while
186 females in small or mid-sized units groomed with more than half (and, in some cases,
187 all) of the females in their unit, females in large units groomed, on average, with fewer
188 than half of the females available. In addition, because grooming time did not increase
189 even in these large units, females in larger units spent less time socializing with each
190 partner than females in smaller units.

191

192 These changes in individual grooming behavior suggest that larger units could be more
193 vulnerable to fission than smaller units. We tested this using a social network analysis
194 approach: the network average clustering coefficient, which reflects how interconnected
195 members of a group are to one another (e.g., whether an individual's social partners are
196 also partners). The clustering coefficient represents group cohesion, with lower values
197 reflecting a less cohesive group. We found that the clustering coefficient decreased as
198 unit size increased (maximum females estimate = -0.93 +/- 0.41 SE; *p*-value = 3.39 x
199 10⁻²; Fig. 4C). In small units, all individuals were likely to be connected with all other unit
200 members, while in large groups individuals were more fractured.

Fig. 4. Larger units are less socially cohesive than smaller units. **(A)** Total minutes spent grooming by focal hour for each female-year ($n = 557$ female-years). The x-axis reflects the maximum number of females in a unit across the year. **(B)** Number of female grooming partners a focal female was observed to groom with for each year. **(C)** Network average clustering coefficient by unit size category. Each circle indicates the mean clustering coefficient for a unit at a specific size category for each year. For all figures, black diamonds reflect the mean for each unit-size category, with bars representing the standard deviation.

201

202 We hypothesize that when fitness costs accrue in large units, females respond by
203 focusing their interactions on a subset of individuals (33). This alters the social network
204 structure of the group, increasing the odds of a fission. Gelada social organization may
205 offer a unique opportunity for fissions to occur: gelada units form larger aggregations
206 (i.e., “bands”: 34) which may buffer the ecological costs of fissions. In contrast, fusions
207 may be less frequent because leader males of small units limit inter-unit interactions
208 among females. Indeed, the two fusions we observed took place immediately after the
209 disappearance of the leader male in one of the units.

210

211 Taken together, the individual fitness costs associated with living in either small or large
212 gelada groups – due to the combined effect of both social and ecological pressures –
213 points to the major role of balancing selection in shaping optimal group size. Our
214 findings and approach pave the way for future investigations of the fitness
215 consequences of demographic variation in primates and other long-lived species for
216 which paired fitness and demographic measures have been difficult to quantify.

217

218

219 **Acknowledgements:** We would like to thank the Ethiopian Wildlife Conservation
220 Authority (EWCA) and the wardens and staff of the Simien Mountain National Park for
221 their permission and ongoing support for our long-term research project. Additionally,
222 we are grateful to our excellent field team across the years, most especially E. Jejaw, A.
223 Fanta, S. Girmay, J. Jarvey, and M. Gomery for their assistance with field data
224 collection. We also owe thanks to A. Marshall, B. Dantzer, and J. Mitani for providing
225 valuable feedback on data analyses. **Funding:** This work was supported by: National
226 Science Foundation (grant numbers BCS-0715179, IOS-1255974, BCS-1340911);
227 Leakey Foundation; National Institutes of Health (grant number R00-AG051764);
228 National Geographic Society (grant numbers 8100-06, 8989-11); Sigma Xi; Wildlife
229 Conservation Society; and the University of Michigan. **Author contributions:** ETJ,
230 NSM, TJB, and JCB designed the study. ETJ, NSM, AL, TJB, and JCB collected the
231 data. ETJ, NSM, TJB, and JCB analyzed the data. ETJ and NSM wrote the paper, with
232 contributions and edits from all authors. ETJ, NSM, AL, TJB, and JCB provided funding
233 support. **Competing interests:** Authors declare no competing interests. **Data and**
234 **materials availability:** All data, code, and materials used in this analysis are available
235 here: https://github.com/GeladaResearchProject/Tinsley_Johnson_et_al_2018_Biorxiv.
236

237 **References and Notes:**

- 238 1. C. H. Janson, M. L. Goldsmith, Predicting group size in primates: foraging costs
239 and predation risks. *Behav. Ecol.* **6**, 326–336 (1995).
- 240 2. M. Grove, Space, time, and group size: a model of constraints on primate social
241 foraging. *Anim. Behav.* **83**, 411–419 (2012).
- 242 3. A. C. Markham, L. R. Gesquiere, Costs and benefits of group living in primates: an
243 energetic perspective. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **372** (2017),
244 doi:10.1098/rstb.2016.0239.
- 245 4. H. R. Pulliam, On the advantages of flocking. *J. Theor. Biol.* **38**, 419–422 (1973).
- 246 5. C. P. Van Schaik, Why are diurnal primates living in groups? *Behaviour*, 120–144
247 (1983).
- 248 6. T. H. Clutton-Brock, *Reproductive Success: Studies of Individual Variation in*
249 *Contrasting Breeding Systems* (University of Chicago Press, 1988).
- 250 7. L.-A. Giraldeau, The stable group and the determinants of foraging group size. *The*
251 *ecology of social behavior*, 33–53 (1988).
- 252 8. N. Snyder-Mackler, J. C. Beehler, T. J. Bergman, Defining Higher Levels in the
253 Multilevel Societies of Geladas (*Theropithecus gelada*). *Int. J. Primatol.* (2012),
254 doi:10.1007/s10764-012-9584-5.
- 255 9. E. Tinsley Johnson, N. Snyder-Mackler, A. Lu, T. J. Bergman, J. C. Beehler, Social
256 and ecological drivers of reproductive seasonality in geladas. *Behav. Ecol.* (2018),

- 257 doi:10.1093/beheco/ary008.
- 258 10. J. C. Beehner, T. J. Bergman, Infant mortality following male takeovers in wild
259 geladas. *Am. J. Primatol.* **70**, 1152–1159 (2008).
- 260 11. T. J. Bergman, L. Ho, J. C. Beehner, Chest Color and Social Status in Male
261 Geladas (*Theropithecus gelada*). *Int. J. Primatol.* **30**, 791–806 (2009).
- 262 12. E. K. Roberts, A. Lu, T. J. Bergman, J. C. Beehner, Female Reproductive
263 Parameters in Wild Geladas (*Theropithecus gelada*). *Int. J. Primatol.* **38**, 1–20
264 (2017).
- 265 13. J. C. Jarvey, B. S. Low, D. J. Pappano, T. J. Bergman, J. C. Beehner, Graminivory
266 and Fallback Foods: Annual Diet Profile of Geladas (*Theropithecus gelada*) Living
267 in the Simien Mountains National Park, Ethiopia. *Int. J. Primatol.* (2018),
268 doi:10.1007/s10764-018-0018-x.
- 269 14. P. J. Fashing, N. Nguyen, V. V. Venkataraman, J. T. Kerby, Gelada feeding
270 ecology in an intact ecosystem at Guassa, Ethiopia: variability over time and
271 implications for theropith and hominin dietary evolution. *Am. J. Phys. Anthropol.*
272 **155**, 1–16 (2014).
- 273 15. L. A. Isbell, Contest and scramble competition: patterns of female aggression and
274 ranging behavior among primates. *Behav. Ecol.* **2**, 143–155 (1991).
- 275 16. A. Koenig, C. Borries, Feeding competition and infanticide constrain group size in
276 wild hanuman langurs. *Am. J. Primatol.* **57**, 33–34 (2002).

- 277 17. A. Treves, C. A. Chapman, Conspecific threat, predation avoidance, and resource
278 defense: implications for grouping in langurs. *Behav. Ecol. Sociobiol.* **39**, 43–53
279 (1996).
- 280 18. R. Steenbeek, C. P. van Schaik, Competition and group size in Thomass langurs
281 (Presbytis thomasi): the folivore paradox revisited. *Behav. Ecol. Sociobiol.* **49**, 100–
282 110 (2001).
- 283 19. J. A. Teichroeb, E. C. Wikberg, I. Bădescu, L. J. Macdonald, P. Sicotte, Infanticide
284 risk and male quality influence optimal group composition for Colobus vellerosus.
285 *Behav. Ecol.* **23**, 1348–1359 (2012).
- 286 20. T. V. Snaith, C. A. Chapman, Primate group size and interpreting socioecological
287 models: Do folivores really play by different rules? *Evolutionary Anthropology:*
288 *Issues, News, and Reviews.* **16**, 94–106 (2007).
- 289 21. R. I. M. Dunbar, P. Dunbar, Social dynamics of gelada baboons. *Anim. Behav.* **22**,
290 203–& (1974).
- 291 22. E. K. Roberts, A. Lu, T. J. Bergman, J. C. Beehner, A Bruce effect in wild geladas.
292 *Science.* **335**, 1222–1225 (2012).
- 293 23. E. H. M. Sterck, D. P. Watts, C. P. van Schaik, The evolution of female social
294 relationships in nonhuman primates. *Behav. Ecol. Sociobiol.* **41**, 291–309 (1997).
- 295 24. C. A. Chapman, Ecological constraints on group size in three species of neotropical
296 primates. *Folia Primatol.* **55**, 1–9 (1990).

- 297 25. M. Emery Thompson, Energetics of feeding, social behavior, and life history in non-
298 human primates. *Horm. Behav.* **91**, 84–96 (2017).
- 299 26. J. C. Beehner, C. McCann, Seasonal and altitudinal effects on glucocorticoid
300 metabolites in a wild primate (*Theropithecus gelada*). *Physiol. Behav.* **95**, 508–514
301 (2008).
- 302 27. L. A. D. Campbell, P. J. Tkaczynski, J. Lehmann, M. Mouna, B. Majolo, Social
303 thermoregulation as a potential mechanism linking sociality and fitness: Barbary
304 macaques with more social partners form larger huddles. *Sci. Rep.* **8**, 6074 (2018).
- 305 28. C. Sueur, O. Petit, J. L. Deneubourg, Short-term group fission processes in
306 macaques: a social networking approach. *J. Exp. Biol.* **213**, 1338–1346 (2010).
- 307 29. C. Sueur, J.-L. L. Deneubourg, O. Petit, I. D. Couzin, Group size, grooming and
308 fission in primates: a modeling approach based on group structure. *J. Theor. Biol.*
309 **273**, 156–166 (2011).
- 310 30. R. C. Van Horn, J. C. Buchan, J. Altmann, S. C. Alberts, Divided destinies: group
311 choice by female savannah baboons during social group fission. *Behav. Ecol.*
312 *Sociobiol.* **61**, 1823–1837 (2007).
- 313 31. N. F. Koyama, Matrilineal Cohesion and Social Networks in *Macaca fuscata*. *Int. J.*
314 *Primateol.* **24**, 797–811 (2003).
- 315 32. R. I. M. Dunbar, FUNCTIONAL-SIGNIFICANCE OF SOCIAL GROOMING IN
316 PRIMATES. *Folia Primatol.* **57**, 121–131 (1991).

- 317 33. A. L. Engh *et al.*, Behavioural and hormonal responses to predation in female
318 chacma baboons (*Papio hamadryas ursinus*). *Proc. Biol. Sci.* **273**, 707–712 (2006).
- 319 34. N. Snyder-Mackler, J. C. Beehler, T. J. Bergman, Defining Higher Levels in the
320 Multilevel Societies of Geladas (*Theropithecus gelada*). *Int. J. Primatol.* (2012),
321 doi:10.1007/s10764-012-9584-5.
- 322 35. J. Altmann, Observational study of behavior: sampling methods. *Behaviour* **49**,
323 227–267 (1974).
- 324 36. D. Bates *et al.*, Lme4: Linear mixed-effects models using Eigen and S4 (Version
325 1.1-7). 2014 (2015).
- 326 37. R. C. Team, R: A language and environment for statistical computing. R Core
327 Team, Vienna, Austria (2016).
- 328 38. J. C. Beehler, P. L. Whitten, Modifications of a field method for fecal steroid
329 analysis in baboons. *Physiol. Behav.* **82**, 269–277 (2004).
- 330 39. S. Wasserman, K. Faust, *Social Network Analysis: Methods and Applications*
331 (Cambridge University Press, 1994).
- 332 40. G. Csardi, T. Nepusz, The igraph software package for complex network research.
333 *InterJournal, Complex Systems*. **1695**, 1–9 (2006).
- 334 41. A. Barrat, M. Barthélemy, A. Vespignani, Modeling the evolution of weighted
335 networks. *Phys. Rev. E Stat. Nonlin. Soft Matter Phys.* **70**, 066149 (2004).
- 336 42. D. J. Watts, S. H. Strogatz, Collective dynamics of “small-world” networks. *Nature*.

337 **393**, 440 (1998).

338 43. H. Wickham, *ggplot2*. *WIREs Comp Stat.* **3**, 180–185 (2011).

339

340

341 **SUPPLEMENTARY CONTENT**

342 **Materials and Methods**

343 Text S1. Study site and subjects

344 Text S2. Unit size

345 Text S3. Reproductive performance

346 Text S4. Adult female death rate

347 Text S5. Takeover rate

348 Text S6. Infanticide rate

349 Text S7. Feeding time

350 Text S8. Glucocorticoid metabolites

351 Text S9. Grooming time, partners, and network average clustering coefficient

352 **Figures S1**

353 **Tables S1-S11 (all Tables will be hosted online in a single *.xls file)**

354

355 **AUTHOR CONTRIBUTIONS**

356 ETJ, NSM, TJB, and JCB designed the study. ETJ, NSM, AL, TJB, and JCB collected
357 the data. ETJ, NSM, TJB, and JCB analyzed the data. ETJ and NSM wrote the paper,
358 with contributions and edits from all authors. ETJ, NSM, AL, TJB, and JCB provided
359 funding support.

360

361 **MATERIALS AND METHODS**

362 ***Text S1. Study site and subjects***

363 The data for this study derive from 9 years of observation (2006-2014) on a
364 population of wild geladas living in the Simien Mountains National Park, in northern
365 Ethiopia (13°13.5' N latitude). The Simien Mountains Gelada Research Project
366 (SMGRP, formerly the University of Michigan Gelada Research Project) has collected
367 behavioral, demographic, genetic, and hormonal data from individuals since Jan 2006.
368 All gelada subjects are habituated to human observers on foot and are individually
369 recognizable. Daily precipitation was measured using a rain gauge, while daily
370 maximum and minimum temperatures were measured using a digital thermometer
371 placed in a permanently shaded area. We used longitudinal data from 189 adult females
372 in 33 reproductive units (20 original “founding” units plus 13 “daughter” units resulting
373 from fissions). All adult females had known or estimated birth dates from which we
374 calculated age. The mean age at the mid-point of the study (2010) for all females was
375 12.47 +/- 5.27 SD years; overall range = 4.75 - 27.83 years. Estimated birth dates were
376 calculated based on known dates for other reproductive events (e.g., maturation, first
377 birth, age of oldest offspring, or number of known offspring).

378 We used 15-min focal animal samples (35) to record all social behaviors
379 involving adult females, noting behavioral states (feeding, resting, moving, socializing)
380 and grooming behavior, including total time spent grooming and the identities of
381 grooming partners. This dataset represents 1845.5 hours of focal observation (mean =
382 4.23 +/- 3.57 SD focal hours per female-year).

383

384 **Text S2. Unit size**

385 The identities of all individuals present in a unit were recorded each day the unit
386 was seen. For each month of the study period, we recorded the total number of adult
387 females in each unit; where changes in unit size occurred (i.e., due to adult female
388 deaths or subadult female maturations), we used the maximum number of adult females
389 in a unit in a given month. We focus on adult females because we have longitudinal
390 records of the number of adults in each unit for the entire study period but only started
391 recording the total number of individuals (including juveniles and infants) in 2012.
392 However, when we compared the maximum number of adult females in a unit to the
393 total number of individuals in a unit for the subset of data where we have both (2012-
394 2014), we found that both values were highly and significantly correlated (Pearson
395 correlation coefficient = 0.91, p -value = 4.5×10^{-218} ; Fig. S1A). We also calculated the
396 maximum number of adult males in each unit for each month, which was not highly
397 correlated with the maximum number of females (Pearson correlation coefficient = 0.08,
398 p -value = 4.5×10^{-2} ; Fig. S1B).

399 Changes in the number of adult females in a unit were either due to female
400 maturations or to deaths. Maturations were recorded as the first observation of a sex
401 skin swelling (details are outlined in 12). Deaths were recorded as the first day an
402 individual was no longer observed with a unit when that individual was consistently
403 absent for three consecutive encounters with that unit (and not observed in a different
404 unit, as in the case of transfers or fissions).

405 Dates of fissions, fusions, and female transfers were assigned to the first day unit
406 females were no longer observed together and subsequently observed either in a
407 separate daughter unit with a new leader male (in the case of fissions), together with

408 non-unit females and a new leader male (in the case of fusions), or associating with a
409 different unit and new leader male (in the case of female dispersals). In all cases, we
410 immediately identified known females in daughter units or new units following their
411 disappearance from their natal unit.

412 Unless noted, all statistical models included the number of females as a
413 continuous predictor variable. However, for visualization purposes, we also categorized
414 unit size into small, medium (i.e., mid-sized), and large units based on the observed
415 range in variation in sizes. Specifically, cut-offs were determined by calculating the
416 tertiles of the observed monthly distribution of sizes: “small” indicates units of less than
417 or equal to 4 adult females; “mid-sized” indicates units between 5 and 7 adult females;
418 “large” indicates units of 8 or more adult females.

419

420 ***Text S3. Reproductive performance***

421 For the majority of infants born during the study period (n = 243 out of 272 total),
422 the date of birth was known within a day or two. For those infants where we did not
423 observe their day of birth (n = 29), we were able to assign the date of birth within 1
424 month of the actual birth date based on established criteria (i.e., the size of the infant,
425 infant motor skills, presence/absence of the umbilical cord; for more details, see 9).
426 From these birth dates we were able to calculate conception dates based on the mean
427 gestation length (n = 183 days; for more details, see: 12).

428 We used a binary scoring system to assign female reproductive performance.
429 Females were “successful” when their infant survived to 1.5 years of age, which is the
430 mean age of weaning in this population (regardless of actual weaning date). Successful

431 females received 1 point for each month of pregnancy and lactation leading up to the
432 designated end point of 1.5 years (6 months gestation + 18 months of lactation = 24
433 successful months). If the infant died before reaching 1.5 years of age, no points were
434 awarded to the months of gestation/lactation prior to the infant death.

435 The disappearance of any infant prior to weaning was assumed to be a case of
436 infant mortality. The cause of mortality was assigned based on the following
437 characteristics: if the infant's mother died at the same time, the cause of death was
438 recorded as "maternal death." If the mother did not die at the same time, and the infant
439 death occurred within 9 months of a takeover, the cause of death was recorded as
440 "infanticide" (9, 10). All other causes of infant deaths were recorded as "unknown."

441 To assess the effects of unit size on female reproductive performance, we
442 constructed a binomial generalized linear mixed-effects model (GLMM) using the *lme4*
443 package (version 1.1-12: 36) in R (version 3.3.2: 37). The dependent binary variable
444 was the monthly success variable for each female-month. We modeled this outcome
445 variable as a function of the following predictors: female age (both the linear and
446 quadratic term, to control for the known effects of female age on reproductive output),
447 maximum number of males in the unit that month (as the number of adult males in a unit
448 varies independently from the number of adult females), and maximum number of
449 females in the unit that month (both the linear and the quadratic term). We controlled for
450 the repeated measures of individual identity, month, and year as random effects.

451 To account for the potential effect of pseudoreplication in our approach we also
452 binned our success variable across two different time periods (3 months and 6 months)
453 and constructed two new binomial GLMMs. For each of these models, the outcome

454 variable was the number of successful months for each female over the given period out
455 of the number of unsuccessful months over the given period. We included individual
456 identity and the time period (i.e., the specific 3- or 6-month window) as random effects.

457 The results of this binning approach (summarized in Table S2 and S3)
458 recapitulated those of our original month-by-month analysis.

459

460 **Text S4. Adult female death rate**

461 For each study year, we calculated the total time (in female-years) each unit was
462 observed at a particular size and summed the number of female deaths observed in that
463 unit at each size. The death rate was calculated for each unit-size as the number of
464 adult female deaths out of the number of individual females observed in that unit size for
465 each year, and was modeled as a function of unit size, controlling for time observed (in
466 female-years) at each size.

467 To assess whether the rate at which adult females died varied by unit size, we
468 first calculated the number of deaths observed for each unit-year and the size of the unit
469 at the time of each death. For each year in our analysis, we summed the total time (in
470 female-years) that we observed each unit at a specific size and matched the time
471 observed at a given size with the total deaths observed that year at that size. We
472 constructed a binomial GLMM using the *lme4* package. The dependent binomial
473 variable was the number of females that died out of the number of females that survived
474 during the time a unit was observed at a specific size. We modeled this outcome
475 variable as a function of the following predictors: unit size (the maximum number of
476 females in the unit, including both the linear and the quadratic term) and the mean age

477 of all unit females observed (to control for the increasing risk of death with age). We
478 controlled for the repeated measures of unit and year as random effects, and to control
479 for observation time we offset our outcome variable by the number of female-years a
480 unit was observed at that specific size in a given year.

481

482 **Text S5. Takeover rate**

483 We recorded the dates of all observed male takeovers ($n = 72$) of known
484 reproductive units (following 9) as well as the number of mature females in the unit at
485 the time of takeover.

486 To assess how infanticide risk varied with unit size, we first considered takeover
487 frequency, as infanticides almost exclusively occur within the context of takeovers. We
488 calculated the total number of takeovers observed according to the size of the unit (i.e.,
489 number of adult females) at the time of takeover. We modeled this number as the
490 dependent variable in a Poisson GLMM, offset by the total observation time (unit-years)
491 of all units at each unit size. We controlled for the repeated effects of unit by including
492 unit as a random intercept. Finally, we included two fixed effect variables: the maximum
493 number of adult females in the unit and the average number of males in each size of
494 unit.

495

496 **Text S6. Infanticide rate**

497 Next, we considered whether infanticide rates varied by unit size. We first
498 calculated the number of infant births for each unit-year and the size of the unit at the
499 time of each birth (total N births = 269). Out of these births, we also calculated the

500 number of infants that subsequently died due to infanticide before reaching 1.5 years of
501 age, i.e., the mean age at weaning in this population (12; total N infanticides = 33). For
502 each year in our analysis, we summed the total time (in female-years) we observed
503 each unit at a specific size and matched the time observed at a given size with the
504 number of births and the subsequent number of infanticides observed that year at that
505 unit size. We constructed a binomial GLMM using the *lme4* package. The dependent
506 binomial variable was the number of births that resulted in an infanticide out of the
507 number of births that did not result in an infanticide. We modeled this outcome variable
508 as a function of unit size at birth (the maximum number of females in the unit, including
509 both the linear and the quadratic term). We controlled for the repeated measures of unit
510 and year as random effects, and to control for observation time, we offset our outcome
511 variable by the number of female-years a unit was observed at that specific size in a
512 given year.

513

514 **Text S7. Feeding time**

515 Feeding time was recorded by noting the broad behavioral state (feeding,
516 moving, resting, or social) continuously throughout each 15-min focal. For each month,
517 we calculated total time spent feeding (minutes per focal hour) and limited our analysis
518 to females that had 3 or more separate focals for that month (≥ 0.75 focal hours: $n =$
519 132 adult females over 58 months of observation).

520 To investigate the relationship between feeding time and unit size, we
521 constructed a series of linear mixed-effects models (LMM) using the *lme4* package. Our
522 dependent variable was the total minutes an individual spent feeding in a given month

523 offset by the time observed that month (focal minutes). We considered seven variables
524 in total. First, we included factors related to the size of the unit: maximum number of
525 males in the unit that month, maximum number of females in the unit that month
526 (including either the linear term or the quadratic term for number of females), and the
527 unit size category (small, medium, large) that matched the size of the unit. Second, we
528 included factors related to the seasonal variation in temperature and food availability:
529 maximum temperature (mean maximum temperature across the previous 30 days) or
530 rain (cumulative rain over the previous 90 days: 9, 13). For maximum temperature, we
531 included either the linear or the quadratic term. Because temperature and rain were
532 correlated (Pearson's correlation: $r = -0.696$, $p < 2.2 \times 10^{-16}$), we ran two sets of LMMs,
533 one that included temperature (or temperature-squared) and one that included rain.
534 Finally, we included factors related to individual condition, which could impact energetic
535 demand: age (maximum female age for the month) and reproductive state (cycling,
536 lactating, or pregnant).

537 We compared all candidate models using AIC and present here the results of the
538 top two models: (i) maximum females², maximum number of males, maximum
539 temperature², maximum female age, and reproductive state (see Table S7) and (ii) the
540 unit size category, maximum number of males, maximum temperature², maximum
541 female age, and reproductive state (see Table S8).

542

543 ***Text S8. Glucocorticoid metabolites***

544 We collected fecal samples from 148 known adult females between 2006 and
545 2014 ($n = 3835$ hormone samples; mean = 26 samples per female; range: 1-150

546 samples per female). Fecal samples were collected using noninvasive methods
547 developed by the SMGRP for hormone extraction and preservation under field
548 conditions (38). All samples were assayed for glucocorticoid metabolites (GCMs) using
549 reagents from the ImmuChem™ double antibody corticosterone ^{125}I RIA kit (MP
550 Biomedicals, LLC, Orangeburg, NY). (For more details on hormone extraction and
551 assay methods see: 9).

552 To assess the effect of unit size on GCMs, we log-transformed GCM values to
553 approximate a normal distribution, and then modeled logGCMs (in a LMM using *lme4*)
554 as a function of the following predictors. First, we included a variety of predictors
555 previously shown to affect female GCMs (9) due to (1) seasonal variation in
556 temperature, (2) individual characteristics, and (3) social events. Specifically, we
557 included mean maximum and mean minimum temperature over the 30 days prior to
558 sample collection, female age (which we included as both a linear and quadratic term),
559 and reproductive state (pregnant, cycling, or lactating), as well as the interactions
560 between age and age-squared and reproductive state. We also included a categorical
561 predictor reflecting whether the sample had been collected in the 30 days following a
562 takeover, and the interaction between takeover and reproductive state.

563 Finally, we included two predictors reflecting unit size: maximum number of unit
564 females (both the linear and quadratic term) and maximum number of unit males. We
565 controlled for the repeated effects of individual identity, month, unit, and year (for
566 results, see Table S9).

567

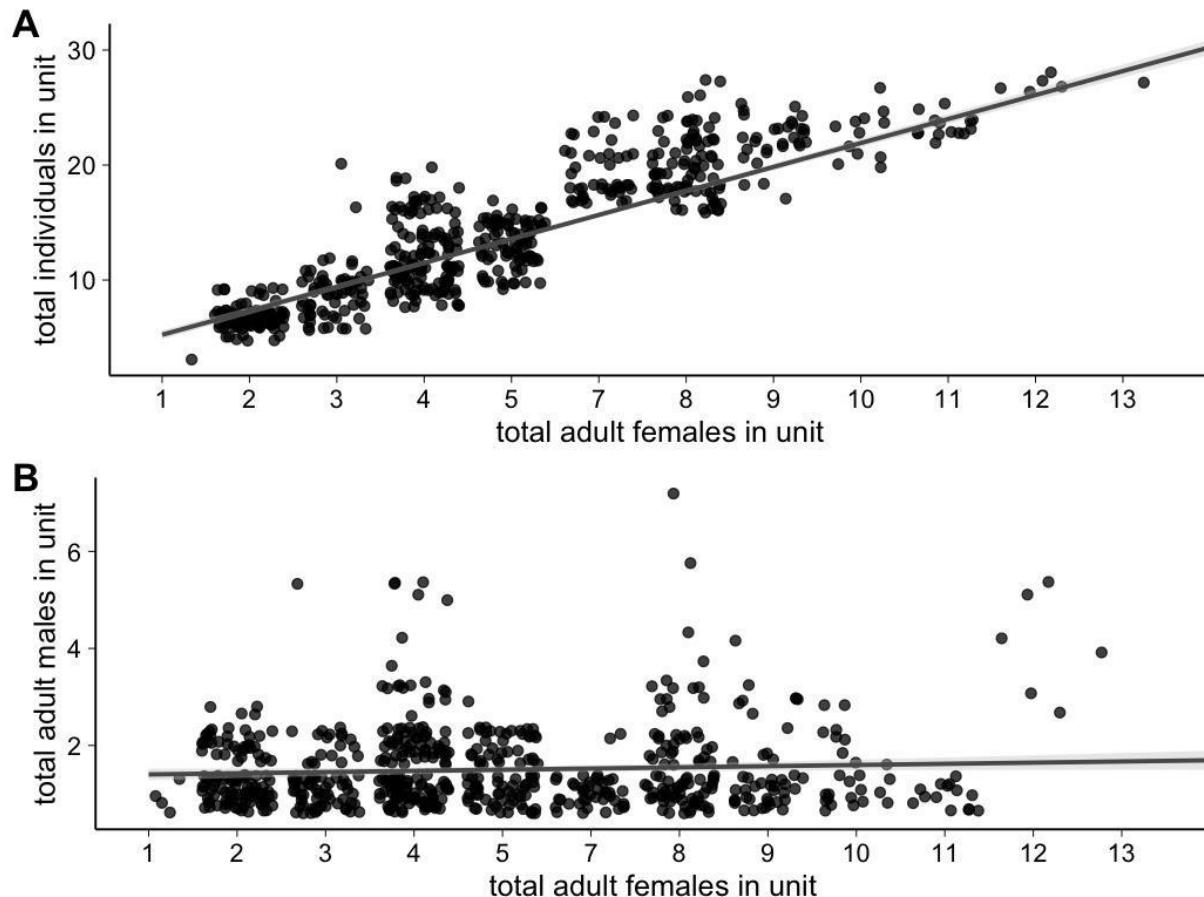
568 **Text S9. Grooming time, partners, and network average clustering coefficient**

569 All grooming interactions, including the duration and identities of grooming
570 partners, were also recorded. For each year, we first calculated *grooming time* (minutes
571 of grooming, both given and received, per focal hour) for all co-resident females (i.e., for
572 all potential grooming partners). We also summed the number of adult female grooming
573 partners each focal was observed to groom with each year to calculate their *total*
574 *number of grooming partners*. Finally, we used social network analysis to assess the
575 global properties of the social network of each unit (39). Specifically, we used the
576 package *igraph* (version 1.0.0, 40, in R to first calculate the individual clustering
577 coefficient, or weighted transitivity, for each female in a unit based on dyadic grooming
578 rates (using the function *transitivity*, 41; at the local, or individual level, the clustering
579 coefficient reflects how embedded an individual is in a social network; i.e., how well-
580 connected they are as well as how well-connected their associates are). We limited this
581 analysis to units with 3 or more adult females, because the clustering coefficient is
582 based on the number of “closed” triangles in a network (i.e., how many triplets each
583 share ties). To assess the interconnectivity of the unit at the global level, or the *network*
584 *average clustering coefficient*, we calculated the mean individual clustering coefficient
585 for all adult females in the same unit each year (42). The network average clustering
586 coefficient indicates the degree to which all individuals in a unit cluster together.

587 To assess the effect of unit size on female social behavior, we constructed three
588 sets of LMMs using the *lme4* package. The outcome variables for each set of models
589 were: (1) *grooming time*: total yearly minutes grooming per focal hour; (2) *grooming*
590 *partners*: total yearly adult female grooming partners per focal female; and (3) *network*
591 *average clustering coefficient*. We modeled each outcome variable as a function of the

592 following predictors: the maximum number of adult females in the unit (including the
593 linear and the quadratic terms), the maximum number of males in the unit, and (for the
594 first two individual-level measures) the focal female's age at the end of the year. We
595 controlled for the repeated effects of individual identity (for *grooming time* and *grooming*
596 *partners*), unit, and year, and limited our analysis to females that had at least one hour
597 of focal observation during the year (four 15-min focals). Each model set included the
598 intercept-only null model, univariate models that considered only a single fixed effect,
599 and multivariate models that considered all combinations of fixed effects. Model fits
600 were compared using AIC and the results of the top model are reported here (see
601 Tables S10-S12).

602


603 Figures were constructed using *ggplot2* (43).

604

605

606 **FIGURES S1.**

607

Fig. S1. The number of adult females in a unit is highly correlated with the total number of individuals in a unit. (A) Total adult females in a unit (x-axis) by the total individuals (y-axis; including juveniles and infants) in a unit for each unit-month. **(B)** Total adult females in a unit (x-axis) by the total adult males (y-axis) in a unit for each unit-month.

608

609

610 **TABLES S1-S12.**

611

Table S1. Results from reproductive performance model (1-month intervals)

Predictor	Standard			
	Estimate	Error	z value	p-value
Female age	-87.70	10.02	-8.75	*** 2.1×10^{-18}
Female age ²	-35.86	4.34	-8.27	*** 1.3×10^{-16}
Maximum males	-0.40	0.04	-11.35	*** 7.1×10^{-30}
Maximum females	-4.03	4.27	-0.94	3.4×10^{-1}
Maximum females ²	-11.22	3.30	-3.40	*** 6.7×10^{-4}

612

613

Table S2. Results from reproductive performance model (3-month intervals)

Predictor	Standard			
	Estimate	Error	z value	p-value
Female age	-52.48	7.28	-7.21	*** 5.6×10^{-13}
Female age ²	-21.61	2.74	-7.89	*** 3.4×10^{-15}
Maximum males	-0.43	0.03	-12.64	*** 1.3×10^{-36}
Maximum females	-2.27	2.64	-0.86	3.9×10^{-1}
Maximum females ²	-4.81	2.09	-2.31	* 2.1×10^{-2}

614

Table S3. Results from reproductive performance model (6-month intervals)

Predictor	Standard			
	Estimate	Error	z value	p-value
Female age	-34.56	5.87	-5.89	*** 3.8×10^{-9}
Female age ²	-16.06	2.05	-7.84	*** 4.6×10^{-15}
Maximum males	-0.41	0.03	-13.33	*** 1.4×10^{-40}
Maximum females	0.73	1.99	0.37	7.1×10^{-1}
Maximum females ²	-4.00	1.58	-2.54	* 1.1×10^{-2}

615

616

Table S4. Results from female death rate model

Predictor	Estimate	Standard Error	z-value	p-value
Maximum females	-23.10	3.12	-7.41	*** 1.3×10^{-13}
Maximum females ²	13.52	3.01	4.49	*** 7.1×10^{-6}
Female age	0.20	0.07	2.63	** 8.5×10^{-3}

617

618

619

620

Table S5. Results from takeover rate model

Predictor	Estimate	Standard Error	z-value	p-value
Maximum females	0.51	0.20	2.49	* 1.3×10^{-2}
Maximum males	0.64	0.18	3.59	*** 3.4×10^{-4}

621

Table S6. Results from infanticide rate model

Predictor	Estimate	Standard Error	z-value	p-value
Maximum females	-18.35	6.51	-2.82	** 4.8×10^{-3}
Maximum females ²	24.40	5.85	4.17	*** 3.0×10^{-5}

622

Table S7. Results from top model for monthly feeding time

Predictor	Estimate	Standard Error	t-value	p-value
Maximum females ²	2.30	0.73	3.16	** 3.2×10^{-3}
Maximum males	-2.12	0.54	-3.92	*** 9.6×10^{-5}
Maximum temperature ²	3.06	1.40	2.18	* 3.1×10^{-2}
Female age	-1.01	0.45	-2.23	* 2.7×10^{-2}
Reproductive state: lactating	1.14	1.05	1.08	2.8×10^{-1}
Reproductive state: pregnant	0.27	1.30	0.21	8.3×10^{-1}

623

Table S8. Results from top model for monthly feeding time (categorical predictor)

Predictor	Estimate	Standard Error	t-value	p-value
Unit category: Medium	-1.89	1.54	-1.23	2.2×10^{-1}
Unit category: Large	4.01	1.92	2.09	* 4.2×10^{-2}
Maximum males	-2.12	0.54	-3.92	*** 3.8×10^{-5}
Maximum temperature ²	3.06	1.40	2.18	* 3.2×10^{-2}
Female age	-1.01	0.45	-2.23	* 2.2×10^{-2}
Reproductive state: lactating	1.15	1.05	1.08	2.7×10^{-1}
Reproductive state: pregnant	0.15	1.30	0.12	9.1×10^{-1}

624

625

626

Table S9. Results from glucocorticoids model

Predictor	Estimate	Standard Error	t-value	p-value
Maximum females	-0.91	0.61	-1.50	1.4 x 10 ⁻¹
Maximum females ²	0.67	0.44	1.53	1.3 x 10 ⁻¹
Maximum males	0.03	0.01	4.73	*** 2.5 x 10 ⁻⁶
Maximum temperature	-0.06	0.01	-5.24	*** 2.5 x 10 ⁻⁷
Minimum temperature	-0.005	0.01	-0.59	5.5 x 10 ⁻¹
Takeover (Y)	0.06	0.02	3.16	** 1.6 x 10 ⁻³
Reproductive state: lactating	0.08	0.01	6.29	*** 3.9 x 10 ⁻¹⁰
Reproductive state: pregnant	0.11	0.01	8.69	*** < 2.0 x 10 ⁻¹⁶
Female age	2.27	0.45	4.99	*** 1.2 x 10 ⁻⁶
Female age ²	-1.97	0.40	-4.90	*** 1.5 x 10 ⁻⁶
Takeover (Y) x Reproductive state: lactating	-0.03	0.04	-0.68	5.0 x 10 ⁻¹
Takeover (Y) x Reproductive state: pregnant	0.25	0.07	3.49	*** 4.9 x 10 ⁻⁴
Reproductive state: lactating x Female age	-1.81	0.70	-2.60	** 9.3 x 10 ⁻³
Reproductive state: pregnant x Female age	-2.58	0.70	-3.68	*** 2.4 x 10 ⁻⁴
Reproductive state: lactating x Female age ²	3.354	0.82	4.30	*** 1.8 x 10 ⁻⁵
Reproductive state: pregnant x Female age ²	2.16	0.78	2.78	** 5.6 x 10 ⁻³

627

Table S10. Results from grooming time model

Predictor	Estimate	Standard Error	t-value	p-value
Maximum females	1.35	4.43	0.31	7.6×10^{-1}
Maximum females ²	-3.47	3.74	-0.93	3.6×10^{-1}
Maximum males	0.48	0.14	3.44	*** 6.4×10^{-4}
Female age	-0.42	0.16	-2.71	** 7.4×10^{-3}

628

Table S11. Results from number of grooming partners model

Predictor	Estimate	Standard Error	t-value	p-value
Maximum females	8.88	1.94	4.58	*** 2.6×10^{-5}
Maximum females ²	-5.17	1.51	-3.42	*** 7.5×10^{-4}
Maximum males	0.08	0.05	1.45	1.5×10^{-1}
Female age	-0.11	0.06	-1.97	. 5.1×10^{-2}

629

Table S12. Results from clustering coefficient model

Predictor	Estimate	Standard Error	t-value	p-value
Maximum females	-0.93	0.41	-2.26	* 3.4×10^{-2}
Maximum females ²	0.41	0.37	1.12	2.7×10^{-1}

630