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Abstract

One of the biggest challenges in preprocessing pipelines for neuroimaging data is to increase
the signal-to-noise ratio of the data which will be used for subsequent analyses. In the same line,
we suggest in the present work that the application of consensus clustering for brain connectivity
matrices to find subgroups of subjects can be a valid additional ”connectome processing” step
helpful to reduce intra-group variability and therefore increase the separability of distinct classes.
In addition, by partitioning the data before any group comparison, we demonstrate that unique
regions within each cluster arise and bring new information that could be relevant from a clinical

point of view.
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I. INTRODUCTION

In the supervised classification of human connectome data [I], subjects are usually
grouped based on high-level clinical categories (e.g., patients and controls), and typical
approaches aim at deducing a decision function from the labeled training data, see e.g.[2].
Likewise, unsupervised analysis are also usually performed such that one is blind to any phe-
notypic factors and is more interested in finding subgroups of subjects/features with similar
characteristics. There exist in the literature a vast number of clustering algorithms dealing
with this issues (see for example [3] and references in). The emergence of substructures
underlying the data is due to the fact that in general the population of healthy subjects
(as well as those of patients) is usually highly heterogeneous. Consequently, stratification
of groups may be a useful preprocessing stage, so that the subsequent supervised analysis
might exploit the knowledge of the structure of data. A convenient strategy for stratification
of groups involves using phenotypic variables of subjects when available. More interestingly,
stratification may rely on the measured variables, like the human connectome data itself, by
application of clustering algorithms that find natural groupings in the data.

An effective supervised approach, named Multivariate Distance Matrix Regression
(MDMR), has been proposed in [4] for the analysis of gene expression patterns; it tests
the relationship between variation in a distance matrix and predictor information collected
on the samples whose gene expression levels have been used to construct the matrix. The
same method was also applied to the cross-group analysis of brain connectivity matrices [5],
as an alternative to the common method used in connectome-wide association studies, i.e.
mass-univariate statistical analyses, in which the association with a phenotypic variable of
each entry of the brain connectivity matrix, across subjects, is tested. Whilst MDMR has
found wide application, see e.g. [6], its findings may be certainly affected by the heterogene-
ity of classes.

Recently an unsupervised method [7], rooted on the notion of consensus clustering [§],
has been developed for community detection in complex networks [9], when a connectivity
matrix is associated to each item to be classified; in this method, the different features,
extracted from connectivity matrices, are not combined in a single vector to feed the clus-
tering algorithm; rather, the information coming from the various features are combined by

constructing a consensus network [8]. Consensus clustering is commonly used to generate
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stable results out of a set of partitions delivered by different clustering algorithms (and/or
parameters) applied to the same data [I0]; in [7], instead, the consensus strategy was used
to combine the information about the data structure arising from different features so as to
summarize them in a single consensus matrix, which not only provides a partition of subjects
in communities, but also a geometrical representation of the set of subjects. It has been
shown that it is an effective technique for disentangling the heterogeneity that is inherent
to many conditions, and to the cohort of controls. The main similarity with MDMR is that
in both methods a distance matrix in the space of subjects is introduced.

The purpose of this work is to propose the consensus clustering approach in [7] as a
preprocessing stage of MDMR in exploratory analysis, so as to cope with the heterogeneity
of subjects. First, we will test the robustness of our consensus clustering with respect to
the introduction of heterogeneity in the data provided by means of different affects of noise.
Second, we will show that extracting the natural classes present in data and subsequently
performing the supervised analysis between the subgroups found by consensus clustering,
allows to identify variables whose pattern is altered in group comparisons, which are not
identified when the groups are used as a whole. As a result, the proposed approach leads to

an increase in separability.

II. MATERIALS AND METHODS
A. DMaterials

The robustness of the consensus clustering algorithm to disentangle the real structure of
data was tested using simulated data for two groups of 15 subjects each, generated using
simTB [11], a toolbox written in MATLAB that allows to simulate functional magnetic
resonance imaging (fMRI) datasets under a model of spatiotemporal separability. Given the
number of sources/components (n¢), repetition time (TR) and a hemodynamic model, the
program yields the time course profile subject to the experimental design (block- and/or
event-related) provided. Our scenario consists of ng = 20 components and TR = 2s, such
that in a event-related experiment the first 10 components of the cohort of group 1 have
high probability (90%) of becoming activated, whereas for the remaining components the

activation is rare (10 %). For subjects of group 2 the situation is the opposite. This scenario
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Sex (M/F) Age Framewise displacement (FWD)
HC (N=118) | 64/54 |31.56 +8.83 0.17 £ 0.15
ADHD (N=40)| 21/19 |32.05+10.4 0.15+£0.11
BP (N=47) 26/21 |35.47+9.16 0.19+£0.13
SCH (N=50) 38/12  [36.46 +8.88 0.25 +0.20

TABLE I: Demographic information for LA5C dataset

could be then considered as the same group of subjects performing two orthogonal task,
where different components get involved.

On the other hand the advantages of using the consensus clustering method as a prepro-
cessing step were explored on two real and public neuroimaging datasets. The first dataset
comprises Healthy Controls (HC) subjects and several pathologies: Attention-deficit hy-
peractivity disorder (ADHD), Bipolar Disorder (BD), Schizophrenia (SCH). Such a dataset
can be found in the UCLA Consortium for Neuropsychiatric Phenomics LA5C Study from
the OpenfMRI database with accession number ds000030 [12], from which we used resting
functional MRI (rfMRI) of 255 subjects: 40 ADHD, 47 BD, 50 SCH and 118 HC. Demo-
graphics information about this cohort can be found in table [l Data were preprocessed with
FSL (FMRIB Software Library v5.0). All volume images were corrected for motion, after
which slice timing correction was applied to correct for temporal alignment. All voxels were
spatially smoothed with a 6mm FWHM isotropic Gaussian kernel and a band pass filter
was applied between 0.01 and 0.08 Hz after intensity normalization. In addition, linear
and quadratic trends were removed. We next regressed out the motion time courses, the
average CSF signal and the average white matter signal. Global signal regression was not
performed. Data were transformed to the MNI152 template, such that a given voxel had a
volume of 3mm x 3 mm x 3mm. Finally we obtained 278 time series, each corresponding
to an anatomical region of interest (ROI), by averaging the voxel signals according to the
functional atlas described in [I3]. Finally, a 278 x 278 matrix of Pearson coefficients amongst
time series for each subject was obtained.

As for the second dataset, it corresponds to unprocessed Resting-State fMRI signal for a
population of healthy controls and Autism Spectrum Disorder (ASD) subjects that can be
found in the Autism Brain Imaging Data Exchange (ABIDE) repository [14], an initiative
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that aims at collecting data of this disorder from laboratories around the world to accelerate
the understanding of its neural bases. Since it is unclear the effect that different scanner
machines can have on the observable results, we decided to avoid this issue by considering
only a sample of 75 subjects for each group acquired at the same site (NYU). For this
subset, we matched age and sex between samples (Wilcoxon rank sum p = 0.27 and y? test
p = 0.29 respectively). Preprocessing of the data was done using FSL, AFNI and Matlab.
Firstly, slice-time correction was applied. Then each volume was aligned to the middle
volume to correct for head motion artefacts followed by intensity normalization. We next
regressed out 24 motion parameters, the average cerebrospinal fluid (CSF) and the average
white matter signal. A band pass filter was applied between 0.01 and 0.08 Hz and linear and
quadratic trends were removed. All voxels were spatially smoothed with a 6 mm full width at
half maximum (FWHM). Finally, FreeSurfer software was used for brain segmentation and
cortical parcellation. A 86 region atlas was generated with 68 cortical regions from Desikan-
Killiany Atlas (34 in each hemisphere) and 18 subcortical regions (9 in each hemisphere:
Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, Accumbens, VentralDC
and Cerebellum). Each subject parcellation was projected to individual functional data and

the mean functional time series of each region was computed.

B. Consensus clustering method

Given a set of matrices of distance among subjects, the consensus clustering proposed
in [7] can be summarised as follows: (i) clusterise each distance matrix using a known
clustering algorithm, (ii) build the consensus network from the corresponding partitions and
(iii) extract groups of subjects by finding the communities of the consensus network thus
obtained.

Regarding the distance matrices calculation in the case of fMRI data, let us consider m
subjects such that each one has a N x N matrix of features, that can for example represent
the brain functional connectivity matrix. We will denote this matrix as {A(i,j)a}, where
a=1,....,mand 1,7 =1,...,N. For each row z, we build a distance matrix for the set
of subjects as follows. Consider a pair of subjects a and (3, and consider the corresponding
patterns {A(i,:),} and {A(i,:)g}; let r be their Pearson correlation. As the distance between

the two subjects, for the node i, we take d,g = 1 — 7; other choices for the distance can be
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used, like, e.g., dog = \/2(1 — r) where r is the Pearson correlation. The m x m distance
matrix d,p corresponding to row 7 will be denoted by Dj;, with ¢« = 1,..., N. The set of
D matrices may be seen as corresponding to layers of a multilayer network [15], each brain
node providing a layer.

Each distance matrix Dj is then partitioned into k£ groups of subjects using k-medoids
method [16]. Subsequently, an m x m consensus matrix C is evaluated: its entry Cygs
indicates the number of partitions in which subjects a and ( are assigned to the same
group, divided by the number of partitions N. Eventually the consensus matrix is averaged
over k ranging in the interval (2-20) so as to fuse, in the final consensus matrix, information
about structures at different resolutions, see [7].

The consensus matrix, obtained as explained before, is eventually partitioned in commu-
nities by modularity maximization, with the consensus matrix C being compared against
the ensemble of all consensus matrices one may obtain randomly and independently per-
muting the cluster labels obtained after applying the k-medoids algorithm to each of the set

of distance matrices. More precisely, a modularity matrix is evaluated as
B=C-P,

where P is the expected co-assignment matrix, uniform as a consequence of the null ensem-
ble here chosen, obtained repeating many times the permutation of labels; the modularity
matrix B is eventually submitted to a modularity optimization algorithm to obtain the out-
put partition by the proposed approach (we used the Community Louvain routine in the
Brain Connectivity Toolbox [I7], which admits modularity matrices instead of connectivity

matrices as input).

C. Multivariate Distance Matrix Regression

The cross-group analysis of brain connectivity matrices has been performed using the
Multivariate Distance Matrix Regression (MDMR) approach as described in [4], [5].

For a fixed brain node i, the distance between connectivity patterns of i with the rest
of the brain was calculated per pair of subjects (u,v) —by calculating Pearson correlation

between connectivity vectors of subject pairs—, thus leading to a distance matrix in the
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subject space for each i investigated. In particular, the following formula was applied

where r¢ is the Pearson correlation between connectivity patterns of i for subjects u and v.
Next, MDMR was applied to perform cross-group analysis as implemented in R [18].
MDMR yielded a pseudo-F estimator (analogous to that F-estimator in standard ANOVA
analysis), which addresses significance due to between-group variation as compared to
within-group variations [I9]. In the particular case when the only regressor variable is
categorical (i.e. the group label), given a distance matrix, one can calculate the total sum

of squares as

1 N N )
SSr==%_ > du (2)

u=1 v=u+1

with N being the total number of subjects. Notice that, from here on, we will consider
Thus, we got a different for each module i. Similarly, the within-group sum of squares can

be written as

Ssw =LY e, 3)

9 u=1 v=u+1
where is the number of subjects per group and a variable equal to 1 if subjects u and v

belong to group g and 0 otherwise. The between-group variation is simply , which leads to

a pseudo-F statistic that reads
SS4

55, (4)

where m is the number of groups. As it was acknowledged in [4], the pseudo-F statistic is not

F=(N-1)

distributed like the usual Fisher’s F-distribution under the null hypothesis. Accordingly, we
randomly shuffled the subject indexes and computed the pseudo-F statistic for each time. A
p-value is computed by counting those pseudo F-statistic values from permuted data greater
than that from the original data respect to the total number of performed permutations.
Nevertheless, in our cross-group analyses, in addition to group label, age, sex and frame-
wise displacement (FWR) were also considered as covariates since their possible confounding
effect in distance variation between subjects. Finally, we controlled for I errors by False dis-

covery rate corrections and set significance threshold at 1%.
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D. The proposed approach

The application of MDMR, to identify altered patterns, is hampered by the heterogeneity
of subjects in the same group (healthy or patients). Therefore we propose here the use of the
consensus clustering approach as a preprocessing stage, to extract the natural classes present
in the group of controls (and/or in the group of patients); subsequently the supervised
analysis of MDMR is to be performed between the pairs of subgroups found by consensus
clustering, so as to identify variables whose pattern is altered in subgroups comparisons,

whilst they are not identified as significantly altered when the groups are used as a whole.

III. RESULTS
A. Simulated data

Our approach is based on the benefit of gain cluster information from each node instead
of using the whole brain. We can visualise this in figure [I} where the group reconstruction
provided by our method is compared with the one yielded by considering the whole correla-
tion matrix as pattern connectivity from which calculate the distance matrix, so the average
is only carried out over different resolutions x when applying k-medoids.

We also assessed the robustness of our method in group reconstruction when gaussian
noise is added to the time series of group 1 (7'S;) and group 2 (7'S3), that can be written

as follows

TSy =TSV +¢7 - A-N7(0,1) (5)
TST =TS9 + ¢ . A-N(0,1), (6)

fori =1...15subjects and j = 1...20 components. A is the amplitude of the perturbations
and ¢;; is a binary matrix allowing us to play with different noise configuration scenarios.
In a first scenario, different values of the noise amplitude A={0.1,0.3,0.5} were applied
to all components and subjects 637:21"15’j:1"20 =1. As we can see in figure [2| only for large
amplitude, noise starts to dominate so much that the consensus algorithm renders group

more compact and mix them together making it incapable of distinguishing between groups

perfectly
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FIG. 1: Comparison of group reconstruction obtained after the application of Louvain community
detection to the modularity matrix B provided by our method using the whole pattern connectivity

matrix (upper left) or the node pattern connectivity (upper right)

In a second scenario, variation of noise according to subsets of components perturbed
was studied. In order to amplify this effects, we restrict noise amplitudes to a fixed
large value A = 0.5. Four subsets of components affected by noise were taken j =
{(1),(1...3),(1...6),(1...10)}. In addition, in order to add more complexity, we con-
sidered the application of noise to 5 subjects of group 1 and 10 of group 2 respectively. As
a consequence, this effect is more notorious in group 2, since for the first 10 components the

activity is lower and therefore more sensitive to noise. When applied to a different number
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FIG. 2: Comparison of the evolution of the modularity matrix B and group reconstruction when

changing the amplitude noise that affects to all the simulated time series for both groups
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FIG. 3: Comparison of the evolution of the modularity matrix B and group reconstruction when

changing the number of components affected by large amplitude noise

of components, this leads to a decrease of intra-group distance of subjects affected (yellowish
areas in the consensus matrices of figure |3) and also a slight approximation between groups
as a consequence of the synchronisation amongst the noised components. Nevertheless, the
consensus clustering is pretty robust when reconstructing both groups

Finally, variation of number of subjects was taken into account. In order to sim-

plify this scenario, we considered that noise only affected group 2 and the first 10 com-

10
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FIG. 4: Comparison of the evolution of the modularity matrix B and group reconstruction when

changing the subjects affected by large amplitude noise

ponents with a large amplitude A = 0.5. The subset of number of subjects are i =
{(1),(1...5),(1...10),(1...15)}. The consensus turns out to be again robust when re-
constructing both groups. For this case, the effect of changing the number of subjects of
group 2 affected by noise makes this group more compact as more subjects are involved
since noise makes them look more similar. This also makes these subjects of group 2 be
more similar with those of group 1 for the first 10 components, but not enough to mix them

together to render them indistinguishable by the consensus method.

B. LAS5C dataset

The application of the consensus clustering method to the brain matrices in the four
groups yields the consensus matrices depicted in figure[5], which have been ordered according
to the membership configuration found by the community Louvain routine. For the healthy
group, this algorithm detects three communities of 55, 54 and 8 respectively. For ADHD
group, it finds 2 clusters of 21 and 15 subjects. For BD group, it detects 3 clusters of 17,
21, 8 subjects and for SCH group 3 of 14, 25 and 9. In all cases, communities with fewer
subjects than 5 have considered as outliers.

Likewise, the consensus clustering algorithm allows to extract more homogeneous sub-
groups of subjects, as it can be noticed from figure [5, where the mean intra-group distance

distribution produced by the collection of distance matrix for each pattern connectivity is

11
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FIG. 5: Consensus matrices and the reduction of the mean intra-group distance per node after

applying the consensus clustering method

exhibited. We stress that the inter-subjects distance is highly significantly smaller for the
clusters w.r.t the whole groups, as estimated by means of a Wilcoxon rank-sum test.
Furthermore, having more homogeneous clusters is translated in a variability decrease
which leads in some cases to a gain in separability when clusters are introduced in between
group comparison studies. In figure [6] we show this by means of the empirical cumulative

distribution function for the uncorrected p-values from each possible comparison between

12
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FIG. 6: Empirical cumulative function for the uncorrected p-values in all possible comparisons

involving on partitioned group

whole and cluster comparison within a healthy versus pathologic group setup. As we can
see, the comparisons when no clustering has been performed (represented as thick lines)
begin to accumulate larger p-values in contrast to the case when some of the clusters are
involved. Concerning partition of the healthy group, we can see that a procedure selecting
and recruiting of subjects with similar characteristics of those subjects within the cluster 2

in our healthy control sample would optimise the node association with the pathology. In

13
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FIG. 7: Unique node for clusters in each disorder

addition, ADHD, which lacks of significant results when being involved in group-comparisons
as a whole, develops significance gain improvement when clusterised using the consensus
algorithm. In contrast, for both BD and SCH clusters such an improvement only takes
place to some of their clusters and as a consequence, the consensus algorithm can also help
filter out "noisy” subjects which have less in common with the pathology in study.

On the other hand, application of consensus clustering to brain connectivity matrices

of pathologies can also help unmask substructures whose underlying properties are unique
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and that might be worth studying. For example, concerning the comparisons with healthy
subjects of the ADHD group after been partitioned, we obtain for cluster 1 59 significant
nodes that are not present neither in cluster 2 nor when this group is taken as a whole; we will
denote these nodes as "unique nodes” for cluster 1, meaning that only the comparison with
cluster 1 leads to point out their altered pattern w.r.t. pathological conditions. Likewise, 7
nodes are unique for cluster 2 of the same disorder group. Regarding comparison with the
BD group, there are 61 unique nodes which are recognized as significant for cluster 1 and 46
for Cluster 2. Finally, 113 nodes arise as being significantly associated with the whole group
of schizophrenia, whereas substructure inspection increases this number to 128 and 132 for
cluster 1 and 2, exhibiting both 27 different unique nodes. Both cluster 1 of BD group
and cluster 3 of SCH keep subjects with associated with both pathologies and therefore
no association is found whatsoever. Regions affected by unique nodes in each pathology is
represented in figure [7]

Higher significant regions for cluster 1 of ADHD lie in cortical regions from the Lateral
Occipital Cortex, superior division, the Cingulate Gyrus, posterior division and Lingual
Gyrus and involve functions from the visual and dorsal attention system. Cluster 2 have
also incidence from parts of the lingual gyrus in addition to postcentral Gyrus, the superior
parietal Lobule and the supramarginal Gyrus, anterior division -all with roles attached at
the dorsal attention system- and a small portion of the cerbellum.

On the other hand, regarding the BD group, the default mode system fundamentally
emerges in cluster 2 with cortical regions in the Frontal pole, temporal pole, the Inferior
Temporal Gyrus, anterior division and the Precuneus. Cluster 3 includes the postcentral
gyrus and the left thalamus, which take part in sensorimotor functions, and parts of the
cerebellum and the Occipital Fusiform Gyrus.

Finally, SCH community representation obtained through the consensus algorithm exhibit
a well differentiated structure, with cluster 1 focusing mainly on the back parts of the brain
with the Postcentral Gyrus, Precuneous Cortex and Lingual Gyrus and play roles from the
somatosensory and visual systems, and cluster 2 involving basically the prefrontal cortex
and some parts of the Superior frontal Gyrus whose functions can be assigned to the default

mode network.
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FIG. 8: modularity matrix B ordered after label structure provided by community detection for

healthy (left) and autistic (right) group
IV. ABIDE DATASET

Application of the consensus clustering algorithm and subsequent community detection
algorithm to both groups leads to the ordered community structure provided by the consen-
sus matrices in figure [§] For healthy group, the modularity matrix B yields 3 modules of 18,
36 and 19 subjects respectively. In contrast, division of autism group consists of two mod-
ules of 30 and 38 patients respectively. Moreover, a Wilcoxon Rank sum test performed on
ASD community partition separates subjects statistically by age (p = 0.0028) and framewise
displacement (p < 0.0001) (see fig[d).

On the other hand, we can see in figure that the statistical significance is overall
stronger when a partitioned case is involved. In particular, it is notable how cluster 3 of
healthy group shows all the benefits of applying the consensus clustering method since it
gathers the healthy subjects with the highest connectome difference in comparison with
autistic subjects. Moreover, this pronounced case corresponds to the scenario where the
decrease of intra-group distance (cluster is more homogeneous) also follows an increase of
the inter-group distance (left panel of figure . This also happens less notoriously for

cluster 1 of autism group. In the rest of the cases, even though clusters become more
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FIG. 9: Age and FWD distribution for ASD clusters

compact, such a behaviour does not take place, given that, since we are clustering each
group separately, maximum separation between classes does not need to be guaranteed.
Nevertheless, the gain in statistical significance for some of the case might allow to unmask
regions not observed significantly different at first and therefore be further exploited by a
more thorough exploratory analysis.

When analysed together both groups each as a whole, MDMR yields only 2 significant
regions (region 57 and 83) as explained by group-label variation between subjects, whereas
this number increases to 13 and 70 for age and FWR respectively, showing an important effect
of the observed variance based on these last variables. However, applying first consensus
clustering to the healthy group produces 3 clusters such that, when comparing with the ASD
group, one cluster yields 52 significant nodes, being 48 not in any other possible comparison.
Likewise, both clusters obtained by partitioning ASD group lead to 16 and 9 significant nodes
when compared with healthy group and most importantly, 14 and 6 of them respectively
only observable in each cluster. Therefore, not only do we gain separability by means of an
increase of significant nodes, but also our approach allows us to unmask unique regions not
visible whatsoever when using standard whole groups comparisons.

From a clinical point of view, the emergence of unique nodes can be important and lie

in brain regions whose implications on the development of the pathology should be further
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FIG. 10: Uncorrected p-values distribution for all possible comparisons involving one partitioned

ABIDE group from the application of the consensus clustering

examined. In our case, concentrating on the ASD case, cluster 1 has 14 regions not presented
neither in cluster 2 versus HC, nor in whole group comparison. These regions are specially
focalised on the right brain hemisphere with the highest overall significance located at the
pars triangularis of the inferior frontal gyrus (p" = 0.0004). Areas in the same hemisphere
involving the frontal pole (p/* = 0.0018) and the precuneus (p'* = 0.0036) and regions
from the the postcentral (p" = 0.0014) and paracentral (p® = 0.0019) in the opposite
hemisphere exhibit also a great significance. On the other hand, the 6 unique significant
nodes of cluster 2 belong to areas in both hemispheres involving the Banks of the Superior
Temporal Sulcus (p" = 0.0021 in the left hemisphere and p®* = 0.0078 in the right) and
the superior temporal lobe (p" = 0.0085 and p'* = 0.0075 respectively); and regions in the
inferior temporal lobe (p'® = 0.0069) and the supramarginal (p®" = 0.0079) in the right

hemisphere.

V. DISCUSSION

The incorporation of new techniques for increasing separability in neuroimaging studies

is important for the obtainment of new findings. Our clustering method deals naturally
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with brain connectivity matrices, providing underlying more compact sub-classes beyond
the usual group labels. In addition, the application of the consensus clustering to different
regions of the brain allows us to capture the differences in groups in comparison to using the
whole connectivity matrix. To our best knowledge, this has not been considered yet at least
in the neuroimaging field. On the other hand, consensus matrix gathers all the information
from different resolutions and nodes and encodes this in the consensus matrix. As a conse-
quence, arbitrariness brought about by a priori choice of the number of clusters disappears.
Moreover, clusters found by our method are fairly robust with respect to moderate changes
in amplitude noise. However, given nowadays the strong protocols in experiment design and
the successive denoising steps in the preprocessing pipeline, one would not expect to find
such a noise contaminating the real data.

In addition to variability reduction that allows to elucidate significant pattern connectiv-
ity regions in group comparisons, each cluster found also provides unique information. In
particular, we have shown this for two different datasets which include four different mental
disorders: ADHD, BD, SCH and ASD.

Most of the studies on finding brain alterations in ADHD subjects have been focused on
children, since the symptoms related to this disorder such as inattention, and/or hyperac-
tivity /impulsivity need to be treated since the beginning of their appearance. In our case,

however, our cohort consists of adult subjects and we have found two different clusters car-
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rying both different and unique information. The first cluster comprises a vast anterior brain
area, with Lateral Occipital Cortex and the lingual gyrus and are mainly responsible both
for visual attention. This has already been reported using structural data [20]. The second
one covers a small portion of the brain developing functions from the dorsal attention and
the cerebellum, maybe capturing the cognitive functions of this last structure in attention
tasks [21].

Amongst our findings, our clustering method clearly separates the Default Mode Network
as one of the relevant system embedded in one of the subgroups in Bipolar Disorder and
Schizophrenia. Such a fundamental network has already been reported many times and it is
known to play a crucial role in both mental disorders [22],23]. In our specific clusters, regions
with a disrupted connectivity pattern concentrates on the frontal cortex [24, 25], with also
some areas in the temporal lobe with prominence in bipolar disorder subjects, which may
account for differences when compared with schizophrenia [26H2§].

Interestingly, our method also allows us to provide areas involved in different functional
systems, such as the cerebellum [29-31], the appearance of delusion and hallucinations con-
ducted by disfunction of sensory system located in the postcentral gyrus [32] and lack of
empathy triggered by an hyperactivation of the bilateral lingual gyrus in schizophrenic sub-
jects [33].

On the other hand, our results regarding ASD subject show two clear region domains.
The first one with a clear right asymmetry, with the participation of areas around the Pars
opercularis and Pars triangularis in the Inferior frontal gyrus, and whose individuals usually
exhibit lack of emotions [34H36]. Likewise, this domain also includes sensory-motor areas
such as the postcentral and paracentral gyrus and precuneus and confirm the results observed
in a larger ABIDE cohort of subjects when comparing ASD with typically developing controls
[37]. Second, some parts of the temporal lobe which, in addition to regions in the orbito-
frontal cortex (OFC) and amygdala define the "social brain”. In this case, autistic subjects
specialise for verbally labelling complex visual stimuli and processing faces and eyes, which
compensate amygdala abnormality [3§].

It is worth to stress that the connectivity patterns among brain regions are influenced by
respiration, movement, cardiac phase and other physiological variables, and what we observe
and can infer here (and in most of fMRI studies) is just a higher level view in which all these

actors are conflated.
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VI. CONCLUSIONS

In this work we have proposed the use of the consensus clustering approach developed in
[7] for exploratory analysis, in order to cope with the hetereogeneity of subjects. Extracting
the natural classes present in data and subsequently performing the supervised analysis by
MDMR, between the subgroups found by consensus clustering, allows to identify variables
whose pattern is altered in group comparisons, and which are not highlighted when the
groups are used as a whole. As a result, the proposed approach leads to an increase in
statistical power. We present application of the proposed method to fMRI public data,
looking for brain regions whose connectivity pattern is altered in the group comparisons

which are significantly altered due to the pathology.
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