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Neurons recorded in behaving animals often do not discernibly respond to sensory
input and are not overtly task-modulated. These nominally non-responsive neurons
are difficult to interpret and are typically neglected from analysis, confounding
attempts to connect neural activity to perception and behavior. Here we describe a
trial-by-trial, spike-timing-based algorithm to reveal the hidden coding capacities of
these neurons in auditory and frontal cortex of behaving rats. Responsive and
nominally non-responsive cells contained significant information about sensory
stimuli and behavioral decisions, and network modeling indicated that nominally
non-responsive cells are important for task performance. Sensory input was more
accurately represented in frontal cortex than auditory cortex, via ensembles of
nominally non-responsive cells coordinating the behavioral meaning of spike timings
on correct but not error trials. This unbiased approach allows the contribution of all
recorded neurons — particularly those without obvious task-modulation — to be

assessed for behavioral relevance on single trials.
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Spike trains recorded from the cerebral cortex of behaving animals can be complex, highly
variable from trial-to-trial, and therefore challenging to interpret. A fraction of recorded
cells typically exhibit trial-averaged responses with obvious task-related features and can
be considered ‘classically responsive’, such as neurons with tonal frequency tuning in the
auditory cortex or orientation tuning in the visual cortex. Another population of responsive
cells are modulated by multiple task parameters (‘mixed selectivity cells’), and have
recently been shown to have computational advantages necessary for flexible behavior!".
However, a substantial number of cells have variable responses that fail to demonstrate any
obvious trial-averaged relationship to task parameters?>. These ‘nominally non-
responsive’ neurons are especially prevalent in frontal cortical regions but can also be
found throughout the brain, including primary sensory cortex* . These response categories
are not fixed but can be dynamic, with some cells apparently becoming nominally non-
responsive during task engagement without impairing behavioral performance’-®. The
potential contribution of these cells to behavior remains to a large extent unknown and

represents a major conceptual challenge to the field?.

How do these nominally non-responsive cells relate to behavioral task variables on single
trials? While there are sophisticated approaches for dissecting the precise correlations
between responsive cells and task structure®*!9-12 there is still a need for complementary
and straightforward analytical tools for understanding any and all activity patterns
encountered'**. Moreover, most behavioral tasks produce dynamic activity patterns
throughout multiple neural circuits, but we lack unified methods to compare activity across

different regions, and to determine to what extent these neurons might individually or
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collectively perform task-relevant computations. To address these limitations, we devised
a novel trial-to-trial analysis using Bayesian inference that evaluates the extent to which

single-unit responses and ensembles encode behavioral task variables.

Results

Nominally non-responsive cells prevalent in auditory and frontal cortex during

behavior

We trained 15 rats on an audiomotor frequency recognition go/no-go task®!3-15 that
required them to nose poke to a single target tone for food reward and withhold from
responding to other non-target tones (Fig. 1a). Tones were 100 msec in duration presented
sequentially once every 5-8 seconds at 70 dB sound pressure level (SPL); the target tone
was 4 kHz and non-target tones ranged from 0.5-32 kHz separated by one octave intervals.
After a few weeks of training, rats had high hit rates to target tones and low false alarm
rates to non-targets, leading to high d' values (mean performance shown in Fig. 1b; each

individual rat included in this study shown in Supplementary Fig. 1).

To correctly perform this task, animals must first recognize the stimulus and then execute
an appropriate motor response. We hypothesized that two brain regions important for this
behavior are the auditory cortex (AC) and frontal cortical area 2 (FR2). Many but not all
auditory cortical neurons respond to pure tones with reliable, short-latency phasic

6,16-21

responses . These neurons can process sound in a dynamic and context-sensitive

manner, and AC cells are also modulated by expectation, attention, and reward structure,
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strongly suggesting that AC responses are important for auditory perception and
cognition*?!-2%, Previously we found that the go/no-go tone recognition task used here is
sensitive to AC neuromodulation and plasticity'®. In contrast, FR2 is not thought to be part
of the canonical central auditory pathway, but is connected to many other cortical regions
including AC?3%6, This region has recently been shown to be involved in orienting
responses, categorization of perceptual stimuli, and in suppressing AC responses during
movement!%?>-27, These characteristics suggest that FR2 may be important for goal-

oriented behavior.

We first asked if activity in AC or FR2 is required for animals to successfully perform this
audiomotor task. We implanted cannulas into AC or FR2 (Supplementary Fig. 2), and
infused the GABA agonist muscimol bilaterally into AC or FR2, to inactivate either region
prior to testing behavioral performance. We found that task performance was impaired if
either of these regions was inactivated, although general motor functions, including
motivation or ability to feed were not impaired (Supplementary Fig. 3; for AC p=0.03;
for FR2 p=0.009 Student’s paired two-tailed t-test). Thus activity in both AC and FR2 may

be important, perhaps in different ways, for successful task performance.

Once animals reached behavioral criteria (hit rates >70% and d’ values >1.5), they were
implanted with tetrode arrays in either AC or FR2 (Supplementary Fig. 4). After recovery,
we made single-unit recordings from individual neurons or small ensembles of 2-8 cells
during task performance. The trial-averaged responses of some cells exhibited obvious

task-related features: neuronal activity was tone-modulated compared to inter-trial baseline
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activity (Fig. 1¢) or gradually increased over the course of the trial as measured by a
ramping index (Fig. 1d; hereafter referred to as ‘ramping activity’). However, 60% of
recorded cells were nominally non-responsive in that they were neither tone modulated nor
ramping according to statistical criteria (Fig. 1e,f; Supplementary Fig. 5; 64/103 AC cells
and 43/74 FR2 cells from 15 animals had neither significant tone-modulated activity or
ramping activity; pre and post-stimulus mean activity compared via bootstrapping and
considered significant when p<0.05; ramping activity measured with linear regression and
considered significant via bootstrapping when p<0.05 and r>0.5; for overall population

statistics see Supplementary Fig. 6).

Novel single-trial, ISI-based algorithm for decoding non-responsive activity

Given that the majority of our recordings were from nominally non-responsive cells, we
developed a general method for interpreting neural responses even when trial-averaged
responses were not obviously task-modulated which allowed us to compare coding
schemes across different brain regions (here, AC and FR2). The algorithm is agnostic to
the putative function of neurons as well as the task variable of interest (here, stimulus

category or behavioral choice).

Our algorithm uses the interspike intervals (ISIs) of individual neurons to decode the
stimulus category (target or non-target) or behavioral choice (go or no-go) on each trial. In
principle, any response property could be used with our method; however, we chose the
ISI because its distribution could vary between task conditions even without changes in the

firing rate building on previous work demonstrating that the ISI distribution contains
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complementary information to the firing rate?®3°. The distinction between the ISI
distribution and trial-averaged firing rate is subtle, yet important. While the ISI is obviously
closely related to the instantaneous firing rate, decoding with the ISI distribution is not
simply a proxy for using the time-varying, trial-averaged rate. To demonstrate this we
constructed three model cells: a stimulus-evoked cell with distinct target and non-target ISI
distributions (Fig. 2a), a stimulus-evoked cell with identical ISI distributions (Fig. 2b), and
a nominally non-responsive cell with distinct target and non-target ISI distributions (Fig.
2¢). These models clearly demonstrate that trial-averaged rate modulation can occur with
or without corresponding differences in the ISI distributions and cells without apparent
trial-averaged rate-modulation can nevertheless have distinct ISI distributions. Taken
together, these examples demonstrate that the ISI distribution and trial-averaged firing rate
capture different spike train statistics. This has important implications for decoding non-
responsive cells that by definition do not exhibit large firing rate modulations but

nevertheless may contain information hidden in their ISI distributions.

For each recorded neuron, we built a library of ISIs observed during target trials and a
library for non-target trials from a set of ‘training trials’. Two different cells from AC are
shown in Fig. 3 and Supplementary Fig. 7a-d, and another cell from FR2 is shown in
Supplementary Fig. 7e-h. These libraries were used to infer the probability of observing
an ISI during a particular trial type (Fig. 3b,c; Supplementary Fig. 7¢,g; left panels show
target in red and non-target in blue). These conditional probabilities were inferred using
non-parametric statistical methods to minimize assumptions about the underlying process

generating the ISI distribution and better capture the heterogeneity of the observed ISI
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distributions (Fig. 3b; Supplementary Fig.7c,g). We verified that our observed
distributions were better modeled by non-parametric methods rather than standard
parametric methods (e.g. rate-modulated Poisson process; Supplementary Fig. 8).
Specifically, we found the distributions using Kernel Density Estimation where the kernel
bandwidth for each distribution was set using 10-fold cross-validation. We then used these
training set probability functions to decode a spike train from a previously unexamined
individual trial from the set of remaining ‘test trials’. This process was repeated 124 times

using 10-fold cross-validation with randomly generated folds.

Importantly, while the probabilities of observing particular ISIs on target and non-target
trials were similar (Fig. 3b; Supplementary Fig. 7¢,g), small differences between the
curves carried sufficient information to allow for decoding. To characterize these
differences, we used the weighted log likelihood ratio (W. LLR; Fig. 3¢; Supplementary
Fig. 7¢,g) to clearly represent which ISIs suggested target (W. LLR >0) or non-target (W.
LLR <0) stimulus categories. Our algorithm relies only on statistical differences between
task conditions; therefore, the W. LLR summarizes all spike timing information necessary
for decoding. Similar ISI libraries were also computed for behavioral choice categories
(Fig. 3b,c; Supplementary Fig. 7¢,g; right panels show go decision in green and no-go in
purple). These examples clearly illustrate that the relationship between the ISIs and task
variables can be non-monotonic: in the cell shown in Fig. 3, short ISIs (ISI <50 msec)
indicated non-target, medium ISIs (50 msec < ISI < 100 msec) indicated target, and longer
ISIs indicated non-target (100 msec < ISI). This non-monotonic relationship would be

impossible to capture with a simple ISI or firing rate threshold.
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The algorithm uses the statistical prevalence of certain ISI values under particular task
conditions (in this case the ISIs accompanying stimulus category or behavioral choice), to
infer the task condition for each trial. Each trial begins with equally uncertain probabilities
about the stimulus categories (i.e., p(target) = p(non-target) = 50%). As each ISI is
observed sequentially within the trial, the algorithm applies Bayes’ rule to update
p(target|ISI) and p(non-target|ISI) using the likelihood of the ISI under each stimulus
category (p(ISIjtarget) and p(ISIjnon-target) (Fig. 3b-d). As shown for one trial of the
example cell in Fig. 3d, ISIs observed between 0-1.0 seconds consistently suggested the
presence of the target tone, whereas ISIs observed between 1.0-1.4 seconds suggested the
non-target category thereby also necessarily reducing the belief that a target tone was
played (Fig. 3d, top trace). After this process was completed for all ISIs in the particular
trial, we obtained the probability of a non-target tone and a target tone as a function of time
during the trial (Fig. 3d). The prediction for the entire trial p(target/ISI) is evaluated at the
end of the trial (in the example trial, p(target|ISI) = 61%; Fig 3d). This process is repeated
for the behavioral choice (Fig 3b-d; right panels; trials separated according to go, no-go;
probabilities of ISIs in each condition generated; conditional probabilities used as
likelihood function to predict behavioral choice on a given trial). The single-trial decoding
performance of each neuron is then averaged over all trials as a measure of the overall

ability of each neuron to distinguish behavioral conditions (Fig. 4a).

Nominally non-responsive cells reveal hidden task information
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Can we uncover hidden task information from nominally non-responsive cells? We found
that nominally non-responsive cells in both AC and FR2 provided significant information
about each task variable (Fig. 4a,b, red). The ability to decode was independent of average
firing rate (Supplementary Fig. 9a-f, 0.30 <r < 0.46), z-score (Supplementary Fig. 9g-
i, -0.05 <r < 0.05), and ramping activity (Supplementary Fig. 9j, -0.02 < r < 0.28).
Stimulus decoding performance was also independent of receptive field properties
including best frequency and tuning curve bandwidth for AC neurons (Supplementary

Fig. 10).

We also observed that task information was distributed across both AC and FR2, and neural
spike trains from individual units were multiplexed in that they often encoded information
about both stimulus category and choice simultaneously (Fig. 4b). To establish that
multiplexing was not simply a byproduct of the correlation between stimulus and choice
variables, an independent measure of multiplexing relying on multiple regression was
applied (Supplementary Fig. 11). Despite the broad sharing of information about
behavioral conditions, there were notable systematic differences between AC and FR2.
Surprisingly, neurons in FR2 were more informative about stimulus category than AC, and
AC neurons were more informative about choice than stimulus category (Fig. 4a,
pac=0.016, psim=0.0013, Mann-Whitney U test, two-sided). Both of these observations
would not have been detected at the level of the PSTH, as most cells in AC were non-
responsive for behavioral choice (no ramping activity, 91/103), yet our decoder revealed
that these same cells were as informative as choice responsive cells (Fig. 4¢, p=0.32 Mann-

Whitney U test, two-sided; red circles indicate cells non-responsive for both variables,
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dark-red cells are choice non-responsive, and black cells are responsive). Similarly, most
cells in FR2 were sensory non-responsive (not tone modulated, 60/74), yet contained
comparable stimulus information to sensory responsive cells (Fig. 4d, p=0.29 Mann-
Whitney U test, two-sided; red cells are non-responsive for both variables, dark-red cells

are sensory non-responsive, black cells are responsive).

To assess the statistical significance of these results, we tested our algorithm on two
shuffled data sets. First, we ran our analysis using synthetically-generated trials that
preserved trial length but randomly sampled ISIs with replacement from those observed
during a session without regard to condition (Fig. 4e). Second, we left trial activity intact,
but permuted the stimulus category and choice for each trial (Fig. 4f). We restricted
analysis to cells with decoding performance significantly different from synthetic spike
trains (all cells in Fig. 4a-d significantly different from synthetic condition shown in Fig.

4e, p<0.05, bootstrapped 1240 times).

To directly assess the extent to which information captured by the ISI distributions in our
data set was distinct from the time-varying rate, we compared the performance from our
ISI-based decoder to a conventional rate-modulated (inhomogeneous) Poisson decoder?!
which assumes that spikes are produced randomly with an instantaneous probability equal
to the time-varying firing rate. As our model cells illustrate (Fig. 2), it is possible to decode
using the ISI distributions even when firing rates are uninformative (Supplementary Fig.
12a). When applied to our dataset, the ISI-based decoder generally outperformed this

conventional rate-based decoder confirming that ISIs capture information distinct from that
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of the firing rate (Supplementary Fig. 12b; Overall stimulus decoding performance:
pac=0.0001, prr2=8%10; Overall choice decoding performance pac=0.0057, prr2=0.02,
Mann-Whitney U test, two-sided). Moreover, comparing single trial decoding outcomes
demonstrated weak to no correlations between the ISI-based decoder and the conventional
rate decoder, further underscoring that these two methods rely on different features of the
spike train to decode (Supplementary Fig. 12¢; stimulus medians: AC=0.10 FR2=0.11;

choice medians: AC=0.07, FR2=0.08).

We hypothesize that ISI-based decoding is biologically plausible. Short-term synaptic
plasticity and synaptic integration provide powerful mechanisms for differential and
specific spike-timing-based coding. We illustrated this capacity by making whole-cell
recordings from AC neurons in vivo and in brain slices (Supplementary Fig. 13a,b), as
well as in FR2 brain slices (Supplementary Fig. 13c). In each case, different cells could
have distinct response profiles to the same input pattern, with similar overall rates but

different spike timings.

Moreover, we note that this type of coding scheme requires few assumptions about
implementation, and does not require additional separate integrative processes to compute
rates or form generative models. Thus ISI-based decoding coding could be generally
applicable across brain areas, as demonstrated here for AC and FR2.

Nominally non-responsive cells reveal hidden selection rule information in a novel

task-switching paradigm
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To further demonstrate the generalizability and utility of our approach, we applied our
decoding algorithm to neurons that were found to be non-responsive in a previously
published study. In this study, rats were trained on a novel auditory stimulus selection task
where depending on the context animals had to respond to one of two cues while ignoring
the other. Rats were presented with two simultaneous sounds (a white noise burst and a
warble). In the “localization” context the animal was trained to ignore the warble and
respond to the location of the white noise burst and in the “pitch” context it was trained to
ignore the location of the white noise burst and respond to the pitch of the warble (Fig. 5a).
The main finding of the study is that the pre-stimulus activity in both primary auditory
cortex and prefrontal cortex encodes the selection rule (i.e. activity reflects whether the
animal is in the localization or pitch context). This conclusion was entirely based on a
difference in pre-stimulus firing rate between the two contexts. The authors reported, but
did not further analyze, cells that did not modulate their pre-stimulus firing rate. In our
nomenclature these cells are “non-responsive for the selection rule”. Using our algorithm
we found that the ISI distributions of these cells encoded the selection rule and were
significantly more informative than the responsive cells (Fig. 5b, pac=5x10°,
pprc<0.0002, Mann-Whitney U test, two-sided). This surprising result demonstrates that
our algorithm generalizes to novel datasets, and may be used to uncover coding for
cognitive variables that are hidden from conventional trial-averaged analyses.
Furthermore, these results indicate that as task complexity increases nominally non-
responsive cells are differentially recruited for successful task execution.

Nominally non-responsive ensembles are better predictors of behavioral errors
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Downstream brain regions must integrate the activity of many neurons and this ISI-based
approach naturally extends to simultaneously recorded ensembles. We therefore asked
whether using small ensembles would change or improve decoding. To decode from
ensembles, likelihood functions from each cell were calculated independently as before,
but were used to simultaneously update the task condition probabilities (p(target | ISI) and
p(go | ISI)) on each trial (Fig. 6a). Analyzing ensembles of 2-8 neurons in AC and FR2
significantly improved decoding for both variables in FR2 and stimulus decoding in AC
(Fig. 6b, pac sim=0.04, prr2 sim=1%107, pac=0.29, Prr2 choice=7* 107, Mann-Whitney U test,
two-sided). This was not a trivial consequence of using more neurons, as the information
provided by individual ISIs on single trials can be contradictory (e.g., compare LLR
functions in Fig. 3¢ and Supplementary Fig. 7¢ for 50 ms <ISIs < 120 ms). For ensemble
decoding to improve upon single neuron decoding, the ISIs of each member of the

ensemble must indicate the same task variable.

Can our decoding method predict errors on a trial-by-trial basis? In general, trial-averaged
PSTHs did not reveal systematic differences between correct and error trials. However,
when we examined single-trial performance with our algorithm, ensembles of neurons in
AC and FR2 predicted behavioral errors (Fig. 6¢). In general, ensembles in AC predicted
behavioral errors significantly better than those in FR2 (Fig. 6¢, for 3-member ensembles:
p=1.2x103, for 4-member ensembles: p=0.03, Mann-Whitney U test, two-sided).
Interestingly, decoding with an increasing number of nominally non-responsive cells
improved error prediction in both AC and FR2 (Fig. 6d, (pac=0.013, prr2=0.046, Welch’s

t-test).
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Recurrent neural network model demonstrates nominally non-responsive cells are
necessary for task performance and synergistically interact with responsive cells

Our data indicate that nominally non-responsive activity encodes hidden task-information
and can predict behavioral errors, but how does it impact task performance? Examining
this question requires network modeling to further explore the dynamics of responsive and
non-responsive cells. We carried out a series of simulated perturbation experiments on a
recurrent neural network trained to perform our frequency recognition task (Fig. 7a,b).
Inactivation of both responsive and non-responsive units impaired task performance (Fig.
7¢) indicating that both sub-populations are necessary to complete the task. Surprisingly,
inactivation of a random subset of units (including both responsive and non-responsive
units) resulted in larger performance decreases than what would be predicted from the
psychometric inactivation curves of responsive and non-responsive units treated
independently (Fig. 7d). This finding suggests that responsive and non-responsive units
have a synergistic effect on overall task performance and that both sub-populations should

be considered in concert to fully understand behavioral performance.

Ensemble consensus-building dynamics underlie hidden task information

While improvements were seen in decoding performance with increasing ensemble size,
the ISI distributions/ISI-based likelihood functions were highly variable across individual
ensemble members. Thus, we wondered if there was hidden task-related structure in the
population activity that evolved over the course of the trial to instantiate behavior. To

answer this question, we examined whether local ensembles share the same representation
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of task variables over the course of the trial. Do they “reach consensus” on how to represent
task variables using the ISI (Fig. 8a)? Without consensus, a downstream area would need
to interpret ensemble activity using multiple disparate representations rather than one
unified code (Fig. 8b). The firing rates and ISI distributions of simultaneously-recorded
units were generally variable across cells requiring an exploratory approach to answer this
question (Fig. 8¢, example three-member ensemble with heterogeneous conditional ISI
distributions). Therefore, we examined changes in the distributions of ISIs across task
conditions, asking how the moment-to-moment changes in the log-likelihood ratio (LLR)
of each cell were coordinated to encode task variables (Fig. 8¢). We focused on the LLR
because it quantifies how the ISI represents task variables for a given cell and summarizes
all spike timing information needed by our algorithm (or a hypothetical downstream cell)

to decode.

We examined how ensembles coordinate their activity moment-to-moment over the course
of the trial by quantifying the similarity of the LLRs across cells in a sliding window.
Similarity was assessed by summing the LLRs of ensemble members, calculating the total
area underneath the resulting curve, and normalizing this value by the sum of the areas of
each individual LLR. We refer to this quantified similarity as ‘consensus’; a high consensus
value indicates that the LLRs generally agree on stimulus or choice while a low value
indicates disagreement at that moment (Fig. 8d). We should emphasize that successful
ensemble decoding (Fig. 6) does not require the LLRs of ensemble members to be related
in any way; therefore, structured LLR dynamics (Fig. 8) are not simply a consequence of

how our algorithm is constructed.
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While the conventional trial-averaged PSTH of non-responsive ensembles recorded in AC
and FR2 showed no task-related modulation, our analysis revealed structured temporal
dynamics of the LLRs (captured by the consensus value). In FR2, sensory non-responsive
ensembles (ensembles in which at least two out of three cells were not tone-modulated)
encode stimulus information using temporally-precise stimulus-related dynamics on
correct trials. The stimulus representation of sensory non-responsive ensembles reached
consensus rapidly after stimulus onset followed by divergence (Fig. 8e, stimulus-aligned,
solid line, Aconsensus, ¢ = 0 to 0.42 s, psnr = 1.3x10* Wilcoxon test, two-sided). Sensory
responsive ensembles in AC increased consensus beyond stimulus presentation, reaching
a maximum ~750 ms after tone onset on correct trials (Fig. 8e stimulus-aligned, dotted
line, Aconsensus, ¢ =0 to 0.81 s, psr = 0.046 Wilcoxon test, two-sided). For choice-related
activity, choice non-responsive ensembles in both regions as well as choice responsive
ensembles in FR2 each reached consensus within 500 ms of the behavioral response (Fig.
8e, response-aligned, Aconsensus, t =-1.0t0 0.0 s, pcnr = 6.6x10, pcr = 0.041 Wilcoxon
test, two-sided). Importantly, this temporally precise pattern of consensus building is not
present on error trials (Fig. 8f, Aconsensus, correct trials vs. error trials, stimulus: psnr=

0.007, psk = 0.065, choice: penr = 0.0048, pcr = 0.065 Mann-Whitney U test, two-sided).

These results reveal that consensus-building and divergence occur at key moments during
the trial for successful execution of behavior in a manner that is invisible at the level of the
PSTH. As sensory and choice non-responsive ensembles participated in these dynamics,

changes in the consensus value cannot simply be a byproduct of correlated firing rate
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modulation due to tone-evoked responses or ramping. While consensus-building can only
indicate a shared representation, divergence can indicate one of two things: (1) the LLRs
of each cell within an ensemble are completely dissimilar or (2) they are ‘out of phase’
with one another — the LLRs partition the ISIs the same way (Fig. 8d, dotted lines), but the
same ISIs code for opposite behavioral variables. This distinction is important because (2)
implies coordinated structure of ensemble activity (the partitions of the ISI align) whereas
(1) does not. To distinguish between these two possibilities we used the ‘unsigned
consensus’, a second measure sensitive to the ISI partitions but insensitive to the sign of
the LLR. Both ‘in phase’ and perfectly ‘out of phase’ LLRs would produce an unsigned
consensus of 1 whereas unrelated LLRs would be closer to 0 (Fig. 8d). For example, in the
second row of Figure 8d, both cells agree that ISIs < 100 ms indicate one stimulus category
and ISIs > 100 ms indicate another, but they disagree about which set of ISIs mean target
and which mean non-target. This results in a consensus value of 0 (out of phase) but an

unsigned consensus value of 1.

Using this metric, we found that the unsigned consensus pattern for nominally non-
responsive ensembles (ensembles with two or more nominally non-responsive members)
were shared between AC and FR2 — increasing until ~750 ms after tone onset on correct
trials (Fig. 8¢, stimulus-aligned, Aconsensus, =0 to 0.89 s, p = 1.7x10"> Wilcoxon test,
two-sided). This intriguing observation reveals the timed coordination of nominally non-
responsive ensembles coincident across brain regions and suggests that these cells may
constitute a distinct functional network separate from that of responsive cells. Nominally

non-responsive ensembles in AC and FR2 also increased their unsigned consensus
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immediately before behavioral response (although values in AC were lower overall; Fig.
8g, response-aligned, Aconsensus, t =-1.0 to 0.0 s, p = 0.0011 Wilcoxon test, two-sided).
This pattern of consensus-building was only present on correct trials but not incorrect trials
(Fig. 8h, Aconsensus compared to error trials, p = 1.9x10° Mann-Whitney U test, two-
sided) suggesting that behavioral errors might result from a general lack of consensus
between ensemble members. In summary, we have shown that cells which appear
unmodulated during behavior do not encode task information independently, but do so by

synchronizing their representation of behavioral variables dynamically during the trial.

Discussion

Using a straightforward, single-trial, ISI decoding algorithm that makes few assumptions
about the proper model for neural activity, we found task-specific information extensively
represented by what appeared to be nominally non-responsive neurons in both AC and
FR2. Furthermore, the degree to which single neurons were task-modulated was
uncorrelated with conventional response properties including frequency tuning. AC and
FR2 each represent both task-variables; furthermore, in both regions we identified many
multiplexed neurons that simultaneously represented the sensory input and the upcoming
behavioral choice including non-responsive cells. This highlights that the cortical circuits
that generate behavior exist in a distributed network — blurring the traditional modular view

of sensory and frontal cortical regions.

Most notably, FR2 has a better representation of task-relevant auditory stimuli than AC.

The prevalence of stimulus information in FR2 might be surprising given that AC reliably
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responds to pure tones in untrained animals; however, when tones take on behavioral
significance, this information is encoded more robustly in frontal cortex, suggesting that
this region is critical for identifying the appropriate sensory-motor association.
Furthermore, the stark improvement in stimulus encoding for small ensembles in FR2
suggests that task-relevant stimulus information is reflected more homogeneously in local
firing activity across FR2 (perhaps through large scale ensemble consensus-building) while

this information is reflected in a more complex and distributed manner throughout AC.

The finding that the ISI-based approach of our algorithm is not reducible to rate despite
their close mathematical relationship raises the question of how downstream regions could
respond preferentially to specific ISIs. Our whole cell recordings from both AC and FR2
demonstrate that different postsynaptic cells can respond differently to the same input
pattern with a fixed overall rate emphasizing the importance of considering a code sensitive
to precise spike-timing (Supplementary Fig. 13). Furthermore, this is supported by
experimental and theoretical work showing that single neurons can act as resonators tuned
to a certain periodicity of firing input’2. This view could also be expanded to larger
neuronal populations comprised of feedback loops that would resonate in response to
particular ISIs. In this case, cholinergic neuromodulation could offer a mechanism for
adjusting the sensitivities of such a network during behavior on short time-scales by

providing rapid phasic signals*>.

It is still unclear what the relevant timescales of decoding might be in relation to

phenomena such as membrane time constants, periods of oscillatory activity, and
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behavioral timescales. Given that our ISI-based decoder and conventional rate-modulated
decoders reveal distinct information, future approaches might hybridize these rate-based

and temporal-based decoding methods to span multiple timescales.

We have also shown that underlying the task-relevant information encoded by each
ensemble is a rich set of consensus-building dynamics that is invisible at the level of the
PSTH. Ensembles in both FR2 and AC underwent stimulus and choice-related consensus
building that was only observed when the animal correctly executed the task. Moreover,
nominally non-responsive cells demonstrated temporal dynamics synchronized across
regions which were distinct from responsive ensembles. This raises the possibility that
nominally non-responsive ensembles constitute a discrete functional network
distinguishable from responsive ensembles. These results underscore the importance of
measuring neural activity in behaving animals and using unbiased and generally-applicable
analytical methods, as the response properties of cortical neurons in a behavioral context

become complex in ways that challenge our conventional assumptions’ -4,
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Methods
Behavior

All animal procedures were performed in accordance with National Institutes of Health
standards and were conducted under a protocol approved by the New York University
School of Medicine Institutional Animal Care and Use Committee. We used 23 adult
Sprague-Dawley male and female rats (Charles River) in the behavioral studies. Animals
were food restricted and kept at 85% of their initial body weight, and maintained at a 12 hr

light/12 hr dark cycle.

Animals were trained on a go/no-go audiomotor task®!3. Operant conditioning was
performed within 12” L x 10” W x 10.5” H test chambers with stainless steel floors and
clear polycarbonate walls (Med Associates), enclosed in a sound attenuation cubicle and
lined with soundproofing acoustic foam (Med Associates). The nose and reward ports were
both arranged on one of the walls with the speaker on the opposite wall. The nose port,
reward port, and the speaker were controlled and monitored with a custom-programmed
microcontroller. Nose port entries were detected with an infrared beam break detector.
Auditory stimuli were delivered through an electromagnetic dynamic speaker (Med

Associates) calibrated using a pressure field microphone (ACO Pacific).

Animals were rewarded with food for nose poking within 2.5 seconds of
presentation of the target tone (4 kHz) and given a short 7-second time-out for incorrectly
responding to non-target tones (0.5, 1, 2, 8, 16, 32 kHz). Incorrect responses include either
failure to enter the nose port after target tone presentation (miss trials) or entering the nose
port after non-target tone presentation (false alarms). Tones were 100 msec in duration and

sound intensity was set to 70 dB SPL. Tones were presented randomly with equal
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probability such that each stimulus category was presented. The inter-trial interval delays

used were 5, 6, 7, or 8 seconds.

For experiments involving muscimol, we implanted bilateral cannulas in either FR2
(+2.0 to +4.0 mm AP, £1.3 mm ML from Bregma) of 7 animals or AC (-5.0 to -5.8 mm
AP, 6.5-7.0 mm ML from Bregma) of 3 animals. We infused 1 pL of muscimol per side
into FR2 or infused 2 pL of muscimol per side into AC, at a concentration of 1 mg/mL.
For saline controls, equivalent volumes of saline were infused in each region. Behavioral
testing was performed 30-60 minutes after infusions. Power analysis was performed to
determine sample size for statistical significance with a power of PB: 0.8; these studies
required at least 3 animals, satisfied in the experiments of Supplementary Fig. 3b,e. For
motor control study, animals could freely nose poke for food reward without presentation

of auditory stimuli after muscimol and saline infusion.

Implant preparation and surgery

Animals were implanted with microdrive arrays (Versadrive-8 Neuralynx) in either AC (8
animals) or FR2 (7 animals) after reaching behavioral criteria of d” > 1.0. For surgery,
animals were anesthetized with ketamine (40 mg/kg) and dexmedetomidine (0.125 mg/kg).
Stainless steel screws and dental cement were used to secure the microdrive to the skull,
and one screw was used as ground. Each drive consisted of 8 independently adjustable
tetrodes. The tetrodes were made by twisting and fusing four polyimide-coated nichrome

wires (Sandvik Kanthal HP Reid Precision Fine Tetrode Wire; wire diameter 12.5 pm).
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The tip of each tetrode was gold-plated to an impedance of 300-400 kOhms at 1 kHz

(NanoZ, Neuralynx).

Electrophysiological recordings & unit isolation

Recordings in behaving rats were performed as previously described®. After the animal
recovered from surgery (~7 days) recordings began once performance returned to pre-
surgery levels. Tetrodes were advanced ~60 um 12 hours prior to each recording session,
to a maximum of 2.5mm (for FR2) or 2.0 mm (for AC) from the pial surface. For recording,
signals were first amplified onboard using a small 16-bit unity-gain preamplifier array
(CerePlex M, Blackrock Microsystems) before reaching the acquisition system. Spikes
were sampled at 30 kS/sec and bandpass filtered between 250 Hz and 5 kHz. Data were
digitized and all above-threshold events with signal to noise ratios > 3:1 were stored for
offline spike sorting. Single-units were identified on each tetrode using OfflineSorter
(Plexon Inc.) by manually classifying spikes projected as points in 2D or 3D feature space.
The parameters used for sorting included the waveforms projection onto the first two
principal components, energy, and nonlinear energy. Artifacts were rejected based on
refractory period violations (< 1 msec). Clustering quality was assessed based on the
Isolation Distance and Lraio sorting quality metrics. To be initially included for analysis,
cells had to have > 3 spikes per trial for 80% of trials to ensure that there were enough ISIs

to reliably estimate the ISI probability density functions.

Statistical tests for non-responsiveness
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We used two positive statistical tests for non-responsiveness: one to establish a lack of
tone-modulation, the other to establish a lack of ramping activity. To accommodate the
possibility of tone onset and offset responses, we performed our tone-modulation test on a
100 ms long tone presentation window as well as the 100 ms window immediately after
tone presentation. The test compared the number of spikes during each of these windows
to inter-trial baseline activity as measured by three sequential 100 ms windows preceding
tone onset. Three windows were chosen to account for variability in spontaneous spike
counts. Given that spike counts are discrete, bounded, and non-normal, we used
bootstrapping to evaluate whether the mean change in spikes during tone presentation was
sufficiently close to zero (in our case 0.1 spikes). We subsampled 90% of the spike count
changes from baseline, calculated the mean of these values, and repeated this process 5000
times to construct an empirical distribution of means. If 95% of the subsampled means
values were between -0.1 and 0.1 we considered the cell sensory non-responsive (p<0.05).
The value of 0.1 spikes was chosen to be conservative as it is equivalent to an expected
change of 1 spike every 10 trials. This is a conservative, rigorous method for establishing
sensory non-responsiveness that is commensurate with more standard approaches for

establishing tone responsiveness such as the z-score.

To quantify the observed sustained increase in firing rate preceding the behavioral
response a ramp index was calculated adapted from the ‘build-up rate’ used in previous
literature?!. First, the trial averaged firing rate was determined in 50 msec bins leading up
to the behavioral response. We then calculated the slope of a linear regression in a 500
msec long sliding window beginning 850 msec before behavioral response. The maximum

value of these slopes was used as the ‘ramp index’ for each cell. Cells were classified as
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choice non-responsive if the ramp index did not indicate an appreciable change in the firing
rate (less than 50% change) established via bootstrapping. Cells that were shown to be both
sensory and choice non-responsive were considered nominally non-responsive overall

(Fig. 4a,b, red circles).

Additional firing statistics

Spontaneous average firing rate was established by averaging spikes in a 100 msec time
window immediately prior to tone onset on each trial. To quantify tone modulated
responses observed during stimulus presentation, we calculated z-scores of changes in

spike count from 100 msec before tone onset to 100 msec during tone presentation:

U
z= =
o

where p is the mean change in spike count and o is the standard deviation of the change in

spike count.

Analysis of receptive field properties

Receptive fields were constructed by calculating the average change in firing rate from 50
ms before tone onset to 50 ms during tone presentation. The window used during tone
presentation was identical to that used to calculate the z-score. Best frequency was defined
as the frequency where the largest positive deviation in the evoked firing rate was observed.
Tuning curve bandwidth was determined by calculating the width of the tuning curve

measured at the mean of the maximum and minimum observed evoked firing rates.
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In vivo whole-cell recordings

Sprague-Dawley rats 3-5 months old were anesthetized with pentobarbital. Experiments
were carried out in a sound-attenuating chamber. Series of pure tones (70 dB SPL, 0.5-32
kHz, 50 msec, 3 msec cosine on/off ramps, inter-tone intervals between 50-500 msec) were
delivered in pseudo-random sequence. Primary AC location was determined by mapping
multiunit responses 500-700 um below the surface using tungsten electrodes. In vivo
whole-cell voltage-clamp recordings were then obtained from neurons located 400-1100
um below the pial surface. Recordings were made with an AxoClamp 2B (Molecular
Devices). Whole-cell pipettes (5-9 MQ) contained (in mM): 125 Cs-gluconate, 5 TEACI,
4 MgATP, 0.3 GTP, 10 phosphocreatine, 10 HEPES, 0.5 EGTA, 3.5 QX-314, 2 CsCl, pH
7.2. Data were filtered at 2 kHz, digitized at 10 kHz, and analyzed with Clampfit 10
(Molecular Devices). Tone-evoked excitatory postsynaptic currents were recorded at —70

mV.

In vitro whole-cell recordings

Acute brain slices of AC or FR2 were prepared from 2-5 month old Sprague-Dawley rats.
Animals were deeply anesthetized with a 1:1 ketamine/xylazine cocktail and decapitated.
The brain was rapidly placed in ice-cold dissection buffer containing (in mM): 87 NacCl,
75 sucrose, 2.5 KCI, 1.25 NaH2PO4, 0.5 CaCl2, 7 MgClI2, 25 NaHCO3, 1.3 ascorbic acid,
and 10 dextrose, bubbled with 95%/5% O2/CO2 (pH 7.4). Slices (300—400 pum thick) were
prepared with a vibratome (Leica), placed in warm dissection buffer (32-35°C) for 10 min,

then transferred to a holding chamber containing artificial cerebrospinal fluid at room
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temperature (ACSF, in mM: 124 NaCl, 2.5 KCl, 1.5 MgS04, 1.25 NaH2PO4, 2.5 CaCl2,
and 26 NaHCO3,). Slices were kept at room temperature (22-24°C) for at least 30 minutes
before use. For experiments, slices were transferred to the recording chamber and perfused
(2-2.5 ml min!) with oxygenated ACSF at 33°C. Somatic whole-cell current-clamp
recordings were made from layer 5 pyramidal cells with a Multiclamp 700B amplifier
(Molecular Devices) using IR-DIC video microscopy (Olympus). Patch pipettes (3-8 MQ)
were filled with intracellular solution containing (in mM): 120 K-gluconate, 5 NaCl, 10
HEPES, 5 MgATP, 10 phosphocreatine, and 0.3 GTP. Data were filtered at 2 kHz, digitized
at 10 kHz, and analyzed with Clampfit 10 (Molecular Devices). Focal extracellular
stimulation was applied with a bipolar glass electrode (AMPI Master-9, stimulation
strengths of 0.1-10 V for 0.3 msec). Spike trains recorded from AC and FR2 units during
behavior were then divided into 150-1000 msec fragments, and used as extracellular input

patterns for these recordings.

ISI-based single-trial Bayesian decoding

Our decoding method was motivated by the following principles: First, single-trial spike
timing is one of the only variables available to downstream neurons. Any observations
about trial-averaged activity must ultimately be useful for single-trial decoding, in order to
have behavioral significance. Second, there may not be obvious structure in the trial-
averaged activity to suggest how non-responsive cells participate in behaviorally-important
computations. This consideration distinguishes our method from other approaches that rely
explicitly or implicitly on the PSTH for interpretation or decoding®!%!1-3>-7_ Third, we

required a unified approach capable of decoding from both responsive and non-responsive
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cells in sensory and frontal areas with potentially different response profiles. Fourth, our
model should contain as few parameters as possible to account for all relevant behavioral
variables (stimulus category and behavioral choice). This model-free approach also
distinguishes our method from others that rely on parametric models of neural activity.
These requirements motivated our use of ISIs to characterize neuronal activity. For
non-responsive cells with PSTHs that displayed no systematic changes over trials or
between task conditions, the ISI distributions can be variable. The ISI defines spike timing
relative to the previous spike and thus does not require reference to an external task variable
such as tone onset or behavioral response. In modeling the distribution of ISIs, we use a
non-parametric Kernel Density Estimator that avoids assumptions about whether or not
firing occurs according to a Poisson (or another) parameterized distribution. We used
maximum likelihood to estimate the bandwidth of the Kernel Density Estimator in a data-
driven manner. Finally, the use of the ISI was also motivated by previous work

28-30

demonstrating that the ISI can encode sensory information and that precise spike

timing has been shown to be important for sensory processing in rat auditory cortex’$*°.

Training probabilistic model: Individual trials were defined as the time from
stimulus onset to the response time of the animal (or average response time in the case of
no-go trials). Trials were divided into four categories corresponding to each of the four
possible variable combinations (target/go, target/no-go, non-target/go, non-target/no-go).
Approximately 90% of each category was set aside as a training set in order to determine
the statistical relationship between the ISI and the two task variables (stimulus category,

behavioral choice).
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Each ISI observed was sorted into libraries according to the stimulus category and
behavioral choice of the trial. The continuous probability distribution of finding a particular
ISI given the task condition of interest (target or non-target, go or no-go) was then inferred
using nonparametric Kernel Density Estimation with a Gaussian kernel of bandwidth set
using a 10-fold cross-validation*®’. Because the domain of the distribution of ISIs is by
definition positive (ISI > 0), the logarithm of the ISI was used to transform the domain to
all real numbers. In the end, we produced four continuous probability distributions
quantifying the probability of observing an ISI on a trial of a given type: p(ISIjtarget),
p(ISIjnon-target), p(ISIjgo), and p(ISIjno-go). These distributions were estimated in a 1
second sliding window starting at the beginning of the trial to account for dynamic changes

in the ISI distributions over the course of the trial.

Decoding: The remaining 10% of trials in the test set are then decoded using the
ISI likelihood function described in the previous section. Each trial begins with agnostic
beliefs about the stimulus category and the upcoming behavioral choice (p(target) = p(non-
target) = 50%). Each time an ISI was observed, beliefs were updated according to Bayes’
rule with the four probability distributions obtained in the previous section serving as the
likelihood function. To update beliefs in the probability of the target tone when a particular

ISI has been observed we used the following relationship:

p(ISI|target, t)p(target, t)
p(ISI|target, t)p(target, t) + p(ISI|non-target, t)p(non-target, t)

p(target|ISI,t) =

On the left hand side are the updated beliefs about the probability of a target. When the

next ISI is observed this value would be inserted as p(target, t) on the right side of the
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equation and updated once more. Using the probability normalization, p(non-target, t) can

be determined,
p(target, t) + p(non-target, t) = 1
Similarly, for choice,

p(ISI|go, t)p(go, t)
p(ISI|go, t)p(go,t) + p(ISI|no-go, t)p(no-go, t)

p(gol|ISLt) =

and

p(go,t) + p(no-go,t) = 1

Continuing this process over the course of the trial, we obtain four probabilities — one for
each of the variable outcomes — as a function of time during the trial: p(target, t), p(non-
target, t), p(go,t), and p(no-go, t). At each moment, the total probability of both stimuli
and both choices are 1. The prediction for the entire trial was assessed at the end of the
trial. For comparison to choice probability and latency decoding, the certainty was ignored

and the preferred variable was taken as the prediction with 100% certainty.

The overall likelihood for a spike train is then simply equal to product of the

likelihoods for each ISI observed over the course of the trial,

n
p({ISI;} | target) = np(ISIi | target, t;).
i=1

We used 10-fold cross-validation, meaning the trials in the four stimulus categories
were randomly divided into ten parts and each part took a turn acting as the test set with

the remaining 90% of trials acting as a training set. To estimate the statistical certainty of
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these results we used bootstrapping with 124 repetitions (except in the case of the null

hypotheses where 1240 repetitions were used).

Ensemble decoding: Ensemble decoding proceeded very similarly to the single-unit
case. The ISI probability distributions for each neuron in the ensemble were calculated
independently as described above. However, while decoding a given trial, the spike trains
of all neurons in the ensemble were used to simultaneously update the beliefs about
stimulus category and behavioral choice. In other words, p(stimulus, t) and p(choice, t)
were shared for the entire ensemble but each neuron updated them independently using
Bayes’ rule whenever a new ISI was encountered. The joint likelihood of observing a set
of ISIs during a trial is then the product of the likelihoods of each neuron independently.
For example, for a two neuron ensemble, the combined likelihood, p,,, of observing the

set {ISI;}; from neuron 1 and {ISI;}, from neuron 2 is

p12 ({ISL;}4, {ISI;},| target) = p; ({ISI;}; | target) p,({ISI;}; | target)

where p; is the likelihood of observing a given set of ISIs from neuron ;.

Synthetic spike trains

To test the null hypothesis that the ISI-based single-trial Bayesian decoder performance
was indistinguishable from chance, synthetic spike trains were constructed for each trial of
a given unit by randomly sampling with replacement from the set of all observed ISIs
regardless of the original task variable values (synthetic spike trains, Fig. 4e). In principle
under this condition, ISIs should no longer bear any relationship to the task variables and

decoding performance should be close to 50%. For single-unit responses, this
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randomization was completed 1240 times. Significance from the null was assessed by a
direct comparison to the 124 bootstrapped values observed from the true data to the 1240
values observed under the null hypotheses. The p-value was determined as the probability
of finding a value from this synthetic condition that produced better decoding performance

than the values actually observed as in a standard permutation test.

As a secondary control, we used a traditional permutation test whereby observed
spike trains were left intact, but the task variables that correspond to each spike train were
randomly permuted (condition permutation, Fig. 4f). This process was completed 1240

times.

Rate-modulated Poisson decoding

To decode using the trial-averaged firing rate, we implemented a standard method®! which
uses the probability of observing a set of n spikes at times #;, ..., ¢, assuming those spikes
were generated by a rate-modulated Poisson process (Supplementary Fig. 12). First, we
use a training set comprising 90% of trials to estimate the time-varying firing rate for each
condition from the PSTH (Tiarget(£), Thon-target (£), Tgo (t), Tno-go (t)) by Kernel Density
Estimation with 10-fold cross-validation. The remaining 10% of spike trains are then
decoded using the probability of observing each spike train on each condition assuming

they were generated according to a rate-modulated Poisson process

1 Ty
p({t;} | target) = N1 (rtarget(tl) rtarget(tz) rtarget(tn)) exp <_ f rtarget(t) dt) )

T;
where T; and T are the beginning and end of the trial respectively. This likelihood function

is straightforward to interpret: the first product is the probability of observing spikes the
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spikes at the times they were observed (where the 1/N! term serves to divide out by the
number of permutations of spike labels) and the exponential term represents the probability
of silence in the periods between spikes. For comparison with our method, we can
reformulate this equation using interspike intervals, if we first break up the exponential

integral into domains that span the observed interspike intervals.

1 t1 ty
p({t;} | target) = N (narget(tl) exp (— f Tiarget (£) dt)) X (narget(tz) exp (— f Tiarget (£) dt))

Tr
X (exp <_ f Ttarget (t) dt) )

Collecting the first and last terms relating to trial start and trial end as

ty
Li(tli Ti) = rtarget(tl) exp <_f rtarget(t) dt)
T;
Tr
Lf(tn'Tf) = exp <_ f rtarget(t) dt) ’
tn
this becomes
1 n-1 ti+At;
p({ti} I target) = mLi 1_[ rtarget(ti + Ati) exp <_f rtarget(t) dt) Lf;
' i=1 ti

where 4¢; is the time difference between spikes # and #;+;. The interpretation of each term
in the product is straightforward: it is the infinitesimal probability of observing a spike a
time A¢ after a spike at time # multiplied by the probability of observing no spikes in the
intervening time. In other words, it is simply p(ISI | target, t), the probability of
observing an ISI conditioned on observing the first spike at time ¢, as predicted by the
assumption of a rate-modulated Poisson process. We can easily verify that this term is

normalized which allows us to write,
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t+ISI

p(ISI | target, t) = Tiargec(t + ISI) exp (—f Tiarget (£) dt).
t

With the exception of the terms relating to trial start and end, we can then view the
likelihood of a spike train as resulting from the likelihood of the individual ISIs (just as

with our ISI-decoder),

n—1
1
p({t} | target) =L Ly (1_[ pSI, | target, ti)>,
' i=1

with the key difference that these ISI probabilities are inferred from the firing rate rather

than estimated directly using non-parametric methods.

Inferring the ISI distribution predicted by a rate-modulated Poisson process

To compare the ISI distribution inferred using non-parametric methods to one predicted by
a rate-modulated Poisson process we use the relationship above to calculate the predicted
probability of observing an ISI of given length within the 1 second window used for our
non-parametric estimates. The formula above assumes a spike has already occurred at time
t, so we multiply by the probability of observing a spike at time , p(t | target) = rarget (t),
to obtain the total probability of finding an ISI at any given point in the trial.

p(ISI, t | target) = p(ISI | target, t) p(t | target)

t+ISI

= rtarget(t) rtarget(t + ISI) exp <_f rtarget(t) dt)-
t

In other words, the probability of observing an ISI beginning at time t is simply the

probability of observing spikes at times ¢ and ¢ + ISI with silence in between.
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The probability of observing an ISI at any time within a time window spanning w;
to wris simply the integral of this ISI probability as a function of time across the window.

To ensure the final spike occurs before wythe integral spans w; to (wr - ISI),
Wf—ISI
p(ISI | w;, wy, target) = C‘lf p(ISI, t | target) dt
wi

where C is a normalization constant which ensures p(ISI | w;, wy, target) integrates to 1,

Wr=w; Wf—ISI
C= f (f p(ISI, t | target) dt) dISI.
0 wi

Regression based method for verifying multiplexing
For each cell, we fit a Logit model for both the stimulus and choice decoding probabilities
on individual trials with the true stimulus category and behavioral choice as regressors. We
then calculated the extent to which the stimulus decoding probability was determined by
true stimulus category by subtracting the regression coefficient for stimulus from that of
choice (Supplementary Fig. 11a, x-axis, stimulus selectivity index); when this number is
positive it indicates that stimulus was a stronger predictor of stimulus decoding on a trial-
by-trial basis. The same process was repeated for choice (Supplementary Fig. 11a, y-axis,
choice selectivity index). According to this analysis we took multiplexed cells to be those
that were positive for both measures (Supplementary Fig. 11a, orange symbols, 19/90
cells). In other words, multiplexed cells were cells for which stimulus decoding
probabilities were primarily a result of true stimulus category and choice decoding
probabilities were primarily a result of true behavioral choice.

Given the moderate negative correlation for these indices we projected each of

these points onto their linear regression to create a one-dimensional regression-based
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uniplexing index. Cells with a value near zero are the multiplexed cells described above
and cells with positive or negative values are primarily stimulus or choice selective
(Supplementary Fig. 11a).

We compared the uniplexing values produced by this regression method to those
produced by examining only the average decoding performance for stimulus and choice
(Supplementary Fig. 11b). A decoding-based uniplexing index was defined as the
difference between average stimulus and choice decoding for each cell. When these two
values are comparable this measure returns a value close to zero and the cell is considered
multiplexed; moreover, cells that are uniplexed for stimulus or choice receive positive and
negative values respectively just as with the regression based measure. While the overall
magnitude of these two measures need not be related, both measures of multi/uniplexing
rank cells on a one-dimensional axis from choice uniplexed to multiplexed to stimulus

uniplexed centered on zero.

Weighted log likelihood ratio
The log likelihood ratio (LLR) was calculated by first calculating the conditional ISI
probabilities and then taking the difference of the logarithm of these distributions. For
stimulus,

LLR gtimuies (ISD = log,(p(ISl|target) ) — log,(p(ISI|non-target)),
and for choice,

LLR 0ice (ISI) = logz(p(ISIIgo)) — logz(p(ISIIno-go)).

The weighted LLR weights the LLR according to the prevalence of a given ISI. For

stimulus,
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W. LLR gtimuius (ISI) = p(ISI) [logz(p(ISIItarget)) - logz(p(ISIInon-target))],

and for choice,

W. LLR gpice (ISI) = p(ISI) [logz(p(ISIIgo)) — logz(p(ISIIno-go))].

Consensus and unsigned consensus

The consensus value evaluates the extent to which the LLR (or weighted LLR) is shared
across an ensemble. It is the norm of the sum of the LLRs (W. LLRs) divided by the sum
of the norms. In principle, the functional norm can be anything but in this case we used the

£1 norm (the absolute area under the curve),

Il = [Ir ol ax,

The for an n-member ensemble, the consensus is then

IZ7, LR,
" ILLR

Consensus =
For the unsigned consensus, we first generate every permutation of the LLRs used and their
inverses, -LLR, up to an overall sign. For example, for a pair of LLRs there are only two
options,

(LLR1, LLR») or (LLR1, -LLR>),
and for three LLRs there are four options,
(LLR1, LLR», LLR3), (-LLR1, LLR>, LLR3), (LLR1, -LLR>, LLR3),
or (LLR;, LLRy, -LLR3).

The consensus is then calculated over each these sets and the maximum value is taken to

be the value of the unsigned consensus.
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Recurrent neural network model
1. Network elements
We construct a network of N recurrently connected “firing rate” model neurons to perform
a facsimile of the auditory discrimination task. Each model neuron is characterized by an
activation variable x; and nonlinear response function ¢p(x) = tanh (x) that describes its
firing rate. N = 1000 neurons for Fig. 7. Our results are independent of network size (tested
on a range from N=1000-10,000) and instead depend on the relative fraction of neurons
with specific response properties (to be described).

We denote the connections between model neurons by the NxN synaptic weight
matrix J (Fig. 7a) The individual synaptic weights are initially chosen independently and

randomly from a Gaussian distribution with mean and variance given by (/;;) = 0 and
J U)i =g’/ N, where g sets the initial strength of recurrent synapses. We used g values

between 0.5 and 0.7 so that units are weakly connected prior to training. The entries of J
are either held fixed or modified during training depending on the fraction of plastic
synapses*!.

The activation variable for each network neuron x; is determined by

dxi N
T = TNt gzjij¢(xj) + h;.
=1

In the above equation, T = 10 ms is the time constant of each unit in the network which
sets the time scale of network dynamics and h; is the external input to unit i. The network

equations are integrated using Euler method with an integration time step, df = 1 ms.

2. Design of Inputs and Network Outputs
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Auditory input, h; = u; f;, is provided to 10% of the network units through the vector of
input weights, u. To represent the auditory stimuli used in the experiment, f;, is modeled
as a square pulse of duration 100 ms and amplitude proportional to the frequency of the
sound used experimentally, ranging from 0.5 kHz to 32 kHz in octave increments (see left
panel of Fig. 7a). On each trial the network receives one of these “auditory” inputs. After
network training, it should respond only to the “target tone” of 4 kHz with an output pulse
modeled by f,,:(t) and produce no response to the other, “non-target tones” (see right
panel of Fig. 7a).

The output of the network z(t) is defined as a sum of unit firing rates from the 90%
of the units not directly driven by the tone, and weighted by a vector of readout weights,
w, such that z(t) = }.; w; ¢(x;). Successful performance is achieved by matching z(t) to
the overall output f,,(t) by modifying the readout weights w using recursive least
squares’® (see also section 3 below) .

In addition to the auditory inputs h;, a fraction (75% of N) of the network units
sometimes receive stochastic noise during training to ascertain through decoding that they
were nominally non-responsive units (see section 3 below). This injected noise varies
randomly and independently at every time step as a Gaussian random variable between 0

and 1, drawn from a zero mean and unit variance distribution. Its amplitude is scaled by

0.5*/dt/t.

3. Network Training and Evaluating Performance

During training, inputs of individual neurons whose weights are plastic are compared

directly with target functions to compute a set of error functions. In fullFORCE?*, these
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target functions are generated by the units in an almost identical, auxillary network in
which there are no plastic synapses. However, this network receives the target output
four () as an external input, which allows it to perform the task trivially. The recurrent
connections of the auxillary network are also sampled as described above, but with a g
value between 1.2 and 1.5, which have been shown to be effective for this method*!.

Only the weights between 25% of the network units are modified through
fullFORCE*! (typically picked at random from the network, but in the cases when noise is
used during training, these are noise-free). During training, these synapses undergo
modification by a recursive least squares procedure, comparing the activity of the selected
units to the activity of neurons in the auxiliary network. As a result of this partial
reconfiguration of the network, the trained units evolve into the subpopulation of
responsive (R) units, whereas the remaining 75% remain nominally non-responsive
(NNR). Units are confirmed to be nominally non-responsive using the following two
methods: first, in noise-free simulations, by verifying that their activity fluctuations
remained below a threshold of 10% (responsive neurons demonstrated fluctuations greater
than this threshold); and second, by attempting to decode the output from the activity of
different subpopulations.

The convergence of the fullFORCE algorithm was assayed by 1) directly
comparing the output of the network z(t) with the target function, f,,:(t), and 2) by
calculating and tracking the squared error between the individual unit rates and their
targets, both during training and at the end of the simulation. Starting from a random initial
state, each network is trained for 500 trials of duration 300 ms (3,000 time steps) in Fig. 7.

The behavioral performance of the trained network is computed as a percentage of
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trials in which the network produced a pulsed output (green trace in the right panel of Fig.
7a) in response to the target tone (input schematized in the left panel of Fig. 7a) and
produced 0 in response to the non-target tone (purple trace in right panel of Fig. 7a). A
typical trained network of 1000 neurons was able to perform the task to a percent correct
level of 100% (Fig. 7b). Performance was evaluated in the same way after silencing
neurons in the responsive or nominally nonresponsive cohort, or alternatively, in a
randomly selected fraction of network neurons (Fig. 7¢,d).

The predicted decrease in decoding performance for a random subset of the network
seen in panel Fig. 7d (Dpeq) was derived from the psychometric inactivation curves of
each subpopulation treated independently. D4, Was calculated by assuming the decrease
in decoding performance is a linear sum of the decreases due to the inactivated responsive

cells (Dg) and the decreases due to the nonresponsive cells (Dynr) present in the mixed

ensembles,
Dpreq.(N) = Dr(Ng) + Dynr(Nnng),

where N is the total number of neurons inactivated and Ni (Nyyg) are the expected
number of responsive (nominally non-responsive) units included in the randomly

inactivated fraction (In our case, N; = 0.25 N and Nyyg = 0.75 N).

Analysis of selection rule encoding from Rodgers & DeWeese 2014

Using our novel ISI-based decoding algorithm, we analyzed cells found to be non-
responsive in a previously published study®. Briefly, rats were trained on a novel auditory
stimulus selection task where animals had to respond to one of two cues while ignoring the

other depending on the context. Rats held their nose in a center port for 250 to 350 ms and
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were then presented with two simultaneous sounds (a white noise burst played from only
the left or right speaker and a high or low pitched warble played from both speakers). In
the “localization” context animals were trained to ignore the warble and respond to the
location of the white noise burst and in the “pitch” context they were trained to ignore the
location of the white noise burst and respond to the pitch of the warble. Cells recorded from
both primary auditory cortex and prefrontal cortex (prelimbic region) were shown to be
responsive to the selection rule during the pre-stimulus period (i.e. firing rates differed
between the two contexts). Non-responsive cells were reported but not further analyzed.
We confirmed that these nominally non-responsive cells satisfied our own positive
statistical criteria for non-responsiveness (described above) by comparing their average
spiking activity in the 100 ms immediately preceding stimulus onset across contexts. To
determine whether the prestimulus activity of nominally non-responsive cells also encoded
the selection rule, we decoded the task context (localization vs. pitch) on single-trials using
our ISI-based decoding algorithm. Cells shown in Fig. Sb were deemed statistically
significant when compared to the decoding performance of a control using synthetically

generated data (p<0.05).

Statistical analysis

All statistical analyses were performed in Python, MATLAB, or GraphPad Prism 6.
Datasets were tested for normality, and appropriate statistical tests applied as described in
the text (e.g., Student’s paired t-test for normally distributed data, Mann-Whitney U test

and Wilcoxon matched-pairs signed rank test for non-parametric data).
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Figure 1. Recording from AC or FR2 during go/no-go audiomotor task. a. Behavioral schematic
for the go/no-go frequency recognition task. Animals were rewarded with food for entering the
nose port within 2.5 seconds after presentation of a target tone (4 kHz) or given a 7- second time-
out if they incorrectly responded to non-target tones (0.5, 1, 2, 8,16, or 32 kHz). b. Behavioral
responses (nose pokes) to target and non-target tones (hit rates: 88 + 7%, false alarms: 7 + 5%,

N=15 rats). c. Left, AC unit with significant tone modulated responses during target trials (red; top


https://doi.org/10.1101/347617
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/347617; this version posted June 28, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

panel, average evoked spikes = 0.55) and non-target trials (blue; bottom panel, average evoked
spikes = 0.92). Rasters of individual trials as well as the firing rate histogram and moving average
are shown. Histograms of average firing rate during a trial were constructed using 25 ms time bins.
A moving average of the firing rate was constructed using a Gaussian kernel with a 20 ms standard
deviation. Black circles represent behavioral responses. Right, population averages for all target
(n=23) or nontarget (n=34) responsive singe-units from AC. d. Left, FR2 unit with ramping
activity (green; ramp index = 2.82). Trials here are aligned to response time. Diamonds indicate
stimulus onset. Right, population average for all ramping single-units from FR2 (n=21). e. Left,
FR2 unit that was not significantly modulated during target trials (red; average evoked spikes =
.041, p<.001, 2,000 bootstraps). Black circles here represent behavioral responses. Right,
population averages for all target (n=44) or non-target (n=44) non-responsive single-units from
FR2 f. Left, FR2 unit lacking ramping activity (green, ramp index = -1.0, p<.001, 2,000

bootstraps). Right, population average for all non-ramping single-units from FR2 (n=44).


https://doi.org/10.1101/347617
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/347617; this version posted June 28, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

A Example neuron 1: Distinct trial-averaged PSTHSs and IS| distributions

PSTHs ISI distributions
Target Non-target
500 500 -
>
— =06 -
i‘_gzso g
20.4 -
~ 0 =
13 802-
;ch, %57 g p(ISI | target)
E% 0 T T 1 0 T T 1 o 0.0 - T pE|SI | non—ltarget) :
L= o0 05 1.0 0.0 05 1.0 1 10 100 1000
Time (s) Time (s) ISI (ms)

b Example neuron 2: Distinct trial-averaged PSTHs and identical I1SI distributions
500 . e

Trial

N

()]

o
o o
H o

o
N
1

Probability density

o
o
1

Firing rate
(Spikes/s)

T T
0.0 05 1.0 0.0 05 1.0 ) 10 100 1000
Time (s) Time (s) ISI (ms)

Cc Example neuron 3: Identical trial-averaged PSTHs and distinct I1SI distributions
500

Trial
N
(<))
o

o

(2}

o
~
1

N
o o
1
N
a
1

o

)

1

Probability density

Firing rate
(Spikes'/s)
o
o
o
o

: : . . 10 100 1000
Time (s) Time (s) ISI (ms)

Figure 2. ISIs capture information distinct from trial-averaged rate. Three simulated example
neurons demonstrating that differences in the ISI are not necessary for differences in the trial-
averaged firing rate to occur (and vice versa). Each trial was generated by randomly sampling
from the appropriate conditional ISI distribution. Evoked responses were generated by shifting

trials without altering the ISI distributions such that one spike during stimulus presentation is
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found at approximately 30 ms (with a variance of 10 ms). a. Example neuron with both an
evoked target response and a difference in the conditional ISI distributions on target and non-
target trials. b. Example neuron with an evoked target response but identical conditional ISI
distributions. ¢. Example nominally non-responsive neuron with no distinct trial-averaged
activity relative to the pre-stimulus period that nevertheless is generated by distinct ISI

distributions.
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Figure 3. ISI-based algorithm for decoding behavioral variables from AC and FR2 single-units.

a. Single-unit activity was first sorted by task condition, here for target trials (red) and non-target

trials (blue). All ISIs following stimulus onset and before behavioral choice were aggregated into

libraries for each condition (average response time is used on no-go trials) as shown for a sample

trial. b. Probability of observing a given ISI on each condition was generated via Kernel Density

Estimation on libraries from a. Left, target (red) and non-target (blue) probabilities. Right, go

(green) and no-go (purple). c. Relative differences between the two stimulus conditions (or choice

conditions) was used to infer the actual stimulus category (or choice) from an observed spike train,

in terms of weighted log likelihood ratio (W. LLR) for stimulus category (p(ISI)*(logop(ISIjtarget)

- log>(ISIjnon-target)); on left) and behavioral choice (p(ISI)*(log p2(ISIjgo) - log>(ISIjno-go)); on
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right). When curve is above zero the ISI suggests target (go) and when below zero the ISI suggests
non-target (no-go). d. Probability functions from ¢ were used as the likelihood function to estimate
the prediction of a spike train on an individual trial (bottom). Bayes’ rule was used to update the
probability of a stimulus (top) or choice (bottom) as the trial progressed and more ISIs were

observed. The prediction for the trial was assessed at the end of the trial.
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Figure 4. Decoding performance of single-units recorded from AC or FR2. a. Decoding
performance of single-units for stimulus category and behavioral choice in AC (open circles) and
FR2 (filled circles) restricted to those statistically significant relative to synthetically-generated
spike trains (p<0.05, permutation test, two-sided). Central symbol with error bars represents group
medians and top and bottom quartiles (*p=0.02, **p=0.001, Mann-Whitney U test, two-sided).
Black symbols, responsive cells; red symbols, nominally non-responsive cells. b. Decoding
performance for choice versus stimulus, restricted to those statistically significant relative to
synthetically-generated spike trains for either stimulus, choice, or both (p<0.05, permutation test,

two-sided). Black symbols, responsive cells; red symbols, nominally non-responsive cells. c.
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Choice decoding performance in AC of nominally non-responsive cells (red) and choice non-
responsive (dark-red) versus choice responsive cells (black; i.e. ramping cells). Decoding
performance was not statistically different (p=0.32 Mann-Whitney U test, two-sided). Central
symbol with error bars represents group medians and top and bottom quartiles. d. Stimulus
decoding performance in FR2 for nominally non-responsive cells (red) and sensory non-responsive
(dark-red) versus choice responsive cells (black; i.e. ramping cells). Decoding performance was
not statistically different (p=0.29, Mann-Whitney U test, two-sided). Central symbol with error
bars represents group medians and top and bottom quartiles. e. Decoding performance for choice
versus stimulus, applied to spike trains synthetically generated from sampling (with replacement)
over all ISIs observed without regard to stimulus category or behavioral choice. Black, responsive
cells; red, nominally non-responsive cells. Error bars represent standard deviation. f. Decoding
performance for choice versus stimulus, applied to spike trains left intact but trial conditions
(stimulus category and behavioral choice) were randomly permuted (1000 permutations per unit).

Error bars represent standard deviation.
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Figure 5. Nominally non-responsive cells in both auditory cortex and prefrontal cortex (PFC)
encode selection rule better than responsive cells. a. Schematic of novel auditory stimulus
selection task. Animals were presented with two simultaneous tones (a white noise burst and
warble) and trained to respond to the location of the sound in the “localization” context while
ignoring pitch and respond to the pitch while ignoring the location in the “pitch” context (figure
adapted from Rodgers & DeWeese 2014, Neuron). b. Decoding performance for nominally non-
responsive cells (similar pre-stimulus firing rates for both pitch and localization blocks) in
primary auditory cortex and prefrontal cortex previously reported but not further analyzed in this
study (red cells), responsive cells in black (***pac=5x10, ***pprc<0.0002, Mann-Whitney U

test, two-sided).
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Figure 6. Decoding performance of neuronal ensembles recorded in AC or FR2. a. Schematic of
ensemble decoding. Left, conditional ISI distributions and corresponding weighted LLR shown
for two simultaneously recorded neurons. Right, an example trial where each neuron’s ISIs and
LLRs are used to independently update stimulus category according to Bayes’ rule. Arrows
indicate the first updates from each neuron. b. Stimulus and choice decoding performance for
ensembles in AC and FR2 for ensembles of increasing size (Comparing smallest with largest

ensembles. Stimulus: *pac=0.04, ***ppro=1x107, Choice: pac=0.29, ***ppro=7x10, Mann-
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Whitney U test, two-sided) ¢. Error prediction performance in AC and FR2 as a function of
ensemble size (*pac=0.03, **prro=0.002; comparison between AC and FR2, for 3-member
ensembles: p=1.2x107, for 4-member ensembles: p=0.03, Mann-Whitney U test, two-sided) d.
Error prediction performance in AC and FR2 as a function of the number of non-responsive cells
in the ensemble (*pac=0.013, *prr2=0.046, Welch’s t-test), 3 and 5 member ensembles in c. shown

for AC and FR2 respectively.
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Figure 7. Recurrent neural network model demonstrates nominally non-responsive cells are
necessary for task performance and synergistically interact with responsive cells. a. Schematic of
network design and task details. A recurrent network of model neurons (N = 1000 units, shown
here with fewer units for illustration purposes) was trained to produce a choice only in response to
a target input (go condition) and no response to non-target inputs (no-go condition). 10% of model
neurons (100 units) received the “auditory” input on each 300ms trial, either a target or a non-

target tone presented from 100 - 200 ms (left panel, fi,) with weights (u), which were generated
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randomly and left fixed during training. Training was done by activity-dependent modification of
the recurrent synaptic weights (black) between responsive units only (R, in gray) and the readout
weights (w, maroon) from all network units. The overall behavioral choice is read out from the
entire network using a readout unit (maroon, fo.;). Bottom panel, activity of an example responsive
and non-responsive unit on a single trial. b. Task performance of trained versus untrained
network. Once trained for 500 steps, these networks were tested for a further 1000 steps or
simulated “trials.” Trained networks demonstrated reliable responses only to the target tone (solid
line and shading indicate mean + standard deviation for 10 instantiations of the network). For
comparison, untrained networks (dotted line and shading indicate mean + standard deviation)
operating under the same stimulation conditions (run for 1000 trials without training) did not
respond to any of the presented “tone” inputs. c¢. Psychometric inactivation curves representing
task performance as a function of the number of inactivated responsive cells (black), nominally
non-responsive cells (red), and a random subset (dashed red and black line). After training,
different fractions of units (between 0 and 10% of units in N=1000 networks, in 0.5%
increments) were selected randomly for inactivation from each subpopulation or the entire network
(i.e., their currents were set to 0). These partially inactivated networks were then tested for an
additional 1000 trials. Data collected from 10 network instantiations (solid line and shading
indicate mean =+ standard deviation). d. Comparison of the psychometric inactivation curve for
random subsets (dashed red and black line) with the predicted curve derived from the responsive

and non-responsive curves treated independently (dashed red and white line).
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Figure 8. Ensemble consensus-building during behavior. a. Schematic of consensus building in a
three-member ensemble. When the LLRs of ensemble members are similar the meaning of any ISI
is unambiguous to a downstream neuron. b. Schematic of a three-member ensemble without
consensus. The meaning of an ISI depends on the upstream neuron it originates from c. ISI
distributions, and LLRs for three members of a sample ensemble. Note that despite differences in
ISI distributions, neuron #1 and neuron #2 have similar weighted log-likelihood ratios (ISIs > 200
ms indicate target, [SIs < 200 ms indicate non-target). d. Consensus values for three illustrative
two-member ensembles. Ensemble 1 members have identical LLRs, agreeing on the meaning of
all ISIs (consensus = 1) and on how the ISIs should be partitioned (unsigned consensus = 1).
Ensemble 2 contains cells with LLRs where the ISI meanings are reversed, disagreeing on meaning
of the ISIs (consensus = 0) but still agree on how the ISIs should be partitioned (unsigned
consensus = 1). Ensemble 3 contains two cells with moderate agreement about the ISI meanings
and partitioning, leading to intermediate consensus and unsigned consensus values (0.5 for each).
e. Left, mean consensus as a function of time from tone onset (stimulus-aligned) on correct trials
for three-member sensory responsive ensembles in AC (two or more members sensory responsive;
black dotted line; n=11 ensembles) and sensory non-responsive ensembles in FR2 (two or more
members sensory non-responsive; dark red solid line; n=101 ensembles). Standard deviation
shown around each mean trendline. FR2 sensory non-responsive cells consistently reached
consensus and then diverged immediately after stimulus presentation (Aconsensus, =0 to 0.42 s,
psnr = 1.3x10* Wilcoxon test, two-sided). AC responsive ensembles (black) increase consensus
until 750 ms (Aconsensus, ¢ = 0 to 0.81 s, psk = 0.046 Wilcoxon test, two-sided). Right, mean
consensus as a function of time to behavioral response (response-aligned) on correct trials for

three-member choice responsive ensembles (two or more members choice responsive; black) in
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FR2 (solid line; n=47 ensembles) and choice non-responsive (two or more members choice non-
responsive; dark red) in AC (dotted line; n=11 ensembles) and FR2 (solid line; n=57 ensembles).
Standard deviation shown around each mean trendline. On correct trials, choice responsive (black)
and choice non-responsive ensembles (dark red) in both regions reached high consensus values
~500 ms before response (Aconsensus, ¢ = -1.0 to 0.0 s, pexr = 6.6x10°6, pcr = 0.041 Wilcoxon
test, two-sided). f. As in e, but for error trials (Aconsensus, correct vs. error trials, stimulus: psnr=
0.007, psr = 0.065, choice: pcxr = 0.0048, pcr = 0.065 Mann-Whitney U test, two-sided). g.
Unsigned consensus index for nominally non-responsive ensembles (two or more members
nominally non-responsive) in AC (dotted line; n=13 ensembles) and FR2 (solid line; n=36
ensembles), stimulus-aligned (left, Aconsensus, = 0 to 0.89 s, p = 1.7x10~°> Wilcoxon test, two-
sided) and response-aligned (right, Aconsensus, ¢ =-1.0 to 0.0 s, p = 0.0011 Wilcoxon test, two-
sided). On correct trials, ensembles reach high values of unsigned consensus ~750 ms after tone
onset and within 500 ms of behavioral response. h. As in g, but for error trials (Aconsensus, correct

vs. error trials, p = 1.9x10 Mann-Whitney U test, two-sided).
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Supplementary Figure 1. Individual response curves from 15 animals included in this study. Each
panel shows data from a different animal including behavioral d' for distinguishing target from
non-target tones. We used a criteria of d' >1 for inclusion in this study. Response curves here are

for an average of 3-4 sessions. Error bars represent S.E.M.
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1mm AP =-5.8 mm from Bregma
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Supplementary Figure 2. Histological placement of cannulas in AC and FR2. a. Example of a
coronal section of a rat implanted with cannulas in primary auditory cortex (AC). The white lines
represent the borders of AC?8. b. Example of a coronal section of a rat implanted with cannulas in

FR2. The white lines represent the borders of FR2%.
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Supplementary Figure 3. Bilateral infusion of muscimol into either AC or FR2 significantly
impairs task performance. a. Behavioral performance after muscimol infusion (red) or saline
control (black) in AC from two individual animals. b. Summary of performance on day before
infusion, after muscimol infusion into AC, and after saline control infusion (N=3 animals).
Performance was impaired after muscimol infusion (p=0.03 Student’s paired two-tailed t-test, *p
<0.05). c. Behavior of one animal allowed to freely nose poke for food without tones being
presented. This behavior was not affected by muscimol inactivation (average of 3 sessions, p>0.99
Wilcoxon matched-pairs signed rank test). Error bars represent S.E.M. d. Behavioral performance
for two animals infused bilaterally with muscimol into FR2. e. Summary of performance before,
during, and after muscimol infusion into FR2 (N=5 animals). Performance was impaired after
muscimol infusion (p=0.009 Student’s paired two-tailed t-test, **p<0.01). f. Muscimol in FR2 did
not impair free nose poking for food without tones being presented in two animals (average of 4

sessions, p=0.62, Wilcoxon matched-pairs signed rank test).
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0.25 mm

1mm AP = 2.9 mm from Bregma

1 mm AP =-54 mm from Bregma

Supplementary Figure 4. Histological placement of electrodes in AC and FR2. a. Example of
electrode tracks and electrolytic lesions in AC. The white lines represent the borders of AC. b.
Example of an electrode track in FR2. The white lines represent the borders of FR2. Left, section

imaged at 10X. Right, the same section imaged at 40X.
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Supplementary Figure 5. Examples of tone evoked, ramping, and nominally non-responsive cells
from AC and FR2. a. Two example tone-evoked cells recorded from AC. Rasters and PSTHs of
target (red) and non-target (blue) trials shown. Stimulus shown as grey bar and black circles
represent behavioral response. (Example #1: average evoked spikes on target tones = 0.55, on non-
target = 0.92. Example #2: average evoked spikes on target tones = 0.096, on non-target = 0.12;
note that example #2 is only non-target tone evoked). b. Example target tone-evoked cell recorded
from FR2. Rasters and PSTHs of target (red) and non-target (blue) trials shown (average evoked
spikes on target tones = 0.37, on non-target = 0.20). c. Example ramping cell recorded from AC.
Rasters and PSTH of go trials (green) shown (ramp index = 2.8). d. Example ramping cell recorded
from FR2 (ramp index = 4.9). Rasters and PSTH of go trials (green) shown. e. Two example
nominally non-responsive cells recorded from AC. Rasters and PSTH of target (red), non-target
(blue), and go (green) trials shown. (Example #1: average evoked spikes on target tones = 0.12,
on non-target = -0.12, ramp index = -0.85; prone<0.001, pramp=0.010, 2,000 bootstraps; Example
#2: average evoked spikes on target tones = -0.020, on non-target = -0.038, ramp index = 1.1;
Ptone<0.001, pramp=0.004, 2,000 bootstraps). f. Two example nominally non-responsive cells
recorded from FR2 (Example #1: average evoked spikes on target tones = 0.081, on non-target =
-0.15, ramp index = 1.4; pione<0.001, pramp=0.019, 2,000 bootstraps; Example #2: average evoked
spikes on target tones = 0.046, on non-target = -0.070, ramp index = 1.8; ptone<0.001, pramp=0.033,

2,000 bootstraps). Rasters and PSTH of target (red), non-target (blue), and go (green) trials shown.
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Supplementary Figure 6. Histograms of a. spontaneous firing rate, b. average number of tone-

evoked spikes, and ¢. ramp index for AC (top) and FR2 (bottom).


https://doi.org/10.1101/347617
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/347617; this version posted June 28, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

a C
0 g ik b el gigh Lo 2 P(SI | Target) p(IS1 | Go)
% 0 4 el s e ,.""‘- a p(IS! | Non-target) p(IS! | No-go)
f 0 SRR MR AR KT 605_ 05 -
S 2 10 g

®“ 0 T T T T 1 & 0.0 1 T T 0.0 . .

1 10 100 1000 1 10 100 1000
§ I 05 - Target 05 1Go
B " §
2 o .
53 = 0.0 0.0 \—
c X

[oN

§ @0 T T T T 1 -0.5 1 Non-target -0.5 1 No-go
b 0.0 0.5 1.0 15 2.0 T T T T
40 4= stimulus onset d 1 10 100 1000 1 10 100 1000
i) URSA QLTI P L gy RECR I PN ISI (ms) ISI (ms)
@ 20 i s T AR 00% -
_g 0 ] . o 0 o Stimulus is non-target :
o o = 50% =:_,_¢Non—target
o 8 10 % ° *G-;Target
(% 0 T T T T 1 a 0% - g
) L '8~100% B Choice is no-go f{

_ o R L2 =N
2340 g | wisd W2 50w ——$No-go
£ £ 20 Fb e o RN ) { Go
S o 0% - :

S ¢ 10 “f\/\/\/\j‘/\/\/\/"\/\,\,w/\ '
Z x .
(% 0 T T T T 1 T T II II T | T | | IIII
-2.0 -1.5 -1.0 -0.5 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (s) Time (s
e FR2 B (<)
.80 g
E "_g 40 = p(ISI | Target) p(ISI | Go)
f 5 0.5 1 p(ISI | Non-target) p(ISI'| No-go)
@ 0 S 0.5 4
2 [}
< 825 ;
30.0 5
@0 E 00 T T T 00 T T T
1 10 100 1000 1 10 100 1000
(2]
T 540
= |E20 05_Target 05_Go
D 0 x '
© 220 = A
88 . 0.0 0.0
55 4 = v
z
f -0.5 1 Non-target -0.5 1 No-go
120 7 1 10 100 1000 1 10 100 1000

_ ISI (ms)
©» -8 60
S F ISI (ms)

o 0- % 100% 1 Stimulus is non-target
S 2 2= $Non-target

2 E 50% —=::

225 s = Target

$0.0 a 0% - 4

- q
20 5100% hoice | g

e0 i TSR Choiceis go 9~
og 01 - S 50% __c«::d
g = 3 : S No-go
= 0- S (o, 4
D 2
S £25 1
Z .

22 PNaAL AN |l I T

</>00 T T T T 1 T T T T T T

-2.0 -15 -1.0 -05 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time (s) Time (s)


https://doi.org/10.1101/347617
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/347617; this version posted June 28, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Supplementary Figure 7. Decoding algorithm to determine stimulus category and choice in
single-unit ISIs from AC and FR2 for two additional neurons. a-d. Decoding algorithm applied to
a sample neuron in AC. a. Single-unit activity sorted by stimulus condition: target trials (red) and
non-target trials (blue). Black circles represent the behavioral response. b. Trials aligned to
behavioral response: go (green) and no-go (purple). Black diamonds in both go and no-go trials
represent stimulus onset. ¢. All ISIs during the trial (following stimulus onset and before
behavioral choice) are aggregated into libraries for each condition (average response time is used
on no-go trials). Probability of observing a given ISI on each condition was generated by using
Kernel Density Estimation on the libraries from a. Top left are target (red) and non-target (blue)
probabilities and on right are go (green) and no-go (purple). Below left (right) are the log likelihood
ratios (LLR) for the ISIs conditioned on stimulus category (behavioral choice). When curve is
above zero the ISI suggests target (go); when it is below zero the ISI suggests non-target (no-go).
d. Probability functions from c. were used as the likelihood function to estimate the prediction of
a spike train on an individual trial (bottom). Bayes’ rule was used to update the probability of a
stimulus (top) or choice (bottom) as the trial progresses and more ISIs were observed. Prediction
for the trial was assessed at the end of the trial as depicted by the highlighted dot. e-h. as in a-d

except the decoding algorithm is applied to a neuron from FR2.
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Supplementary Figure 8. Empirical ISI distributions are better modeled using non-parametric
methods. a. ISI histograms from two example cells on target trials with the corresponding non-
parametric Kernel Density Estimate (KDE) distribution (solid lines) and the distribution derived
from a rate-modulated Poisson process (dashed lines). Above each example is the Kullback-
Leibler divergence (Dki) quantifying the difference between these two distributions, and the

difference in the average log-likelihood of the data (ALL) where positive values indicate that the
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data is better described by the non-parametric KDE distribution. b. Constructed examples of the
KL divergence for four pairs of normal distributions with equal standard deviations and various
mean offsets as a visual reference ¢. Summary of all KL divergence values for both stimulus and
choice in AC (white) and FR2 (grey). Bar indicates median and error bars indicate bottom and top
quartiles. d. Summary of difference between log-likelihood of observed data under non-parametric
KDE and rate-modulated Poisson distributions. Positive values indicate KDE distributions are
generically a superior fit for the data (AC: p=1.1x10"15 FR2: p = 1.2x10°!, Wilcoxon signed-rank

test).
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Supplementary Figure 9. Lack of correlations between classical firing rate metrics and stimulus
or choice decoding performance. a. Stimulus and choice decoding performance versus the
spontaneous firing rate for both target and non-target trials, (rac = 0.37, 0.35; rrr2 = 0.38, 0.30). b.
Stimulus and choice decoding performance versus average firing rate for both target and non-target
trials, (rac = 0.39, 0.36; rrr2 = 0.42, 0.33). c. Stimulus and choice decoding performance versus
average firing rate for target trials only, (rac= 0.38, 0.35; rrro = 0.34, 0.30). d. Stimulus and choice
decoding performance versus average firing rate for non-target trials only, (rac= 0.40, 0.35; rrro =
0.39, 0.30). e. Stimulus and choice decoding performance versus average firing rate for go trials
only, (rac = 0.38, 0.37; rrr2 = 0.46, 0.36). f. Stimulus and choice decoding performance versus
average firing rate for no-go trials only, (rac= 0.40, 0.35; rrr2= 0.39, 0.30). g. Stimulus and choice
decoding performance versus z-score for all trials, (rac = 0.01, -0.02; rrr2 = 0.01, -0.01). h.
Stimulus and choice decoding performance versus z-score for target trials only, (rac=-0.04, -0.01;
rrr2 = -0.03, -0.002). i. Stimulus and choice decoding performance versus z-score for non-target
trials only, (rac = 0.01, -0.05; rrr2 = 0.05, 0.02). j. Stimulus and choice decoding performance

versus ramp index, (rac=0.28, 0.07; rrr2= 0.18, 0.09).
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Supplementary Figure 10. Stimulus decoding in AC independent of receptive field properties. a.
Examples of tuning curves from four different neurons constructed from responses in AC. Gray
regions represent S.E.M. b. Stimulus decoding performance as a function of best frequency as
measured relative to the target tone frequency. No significant differences were found between

groups (p>0.2, Mann Whitney U test, two-sided). ¢. Stimulus decoding performance as a function
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of receptive field bandwidth tuning. No significant differences were found between groups (p>0.1,

Mann Whitney U test, two-sided).
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Supplementary Figure 11. Decoding performance is a sufficient measure of uni/multiplexing.
Given the correlation between stimulus category and behavioral choice we used a regression based
analysis to determine whether decoding performance alone was sufficient to establish whether
cells were multiplexed for both behavioral variables. We used multiple regression to create an
alternative definition of multiplexing and uniplexing and then demonstrated this definition
coincides with the one used in the paper based solely on decoding performance. a. Choice
selectivity index versus stimulus selectivity index for single cells. Each index quantifies the extent

to which the corresponding variable was predictive of decoding performance. Multiplexed cells
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(orange symbols) have positive values on both indices. Uniplexed cells (blue symbols) are only
positive for one of the two indices. Each cell was projected on the linear regression (grey line) to
construct a regression-based uniplexing index. Multiplexed cells were close to zero on this
measure and cells uniplexed for stimulus or choice were positive or negative respectively. b. The
decoding-based uniplexing index (difference between stimulus and choice decoding performance)
versus the regression-based index defined in a for AC (left, open symbols) and FR2 (right, filled
symbols). In both regions, these two measures of uni/multiplexing were correlated. ¢. Overall
decoding performance (average of stimulus and choice decoding) for multiplexed cells versus
uniplexed cells in AC (left) and FR2 (right). There were no systematic differences in decoding
performance between multiplexed and uniplexed units (n.s. pac=0.22, prr2=0.11, Mann-Whitney

U test, two-sided).
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Supplementary Figure 12. Information captured by ISI-based decoder distinct from conventional
rate-modulated (inhomogeneous) Poisson decoder. a. Decoding performance comparison for
example neurons shown in Figure 2. Left, Both the trial-averaged firing rate and the ISI
distributions can be used to decode stimulus category for this example neuron. Middle, Only the
firing rate can be used to decode this example. Right, In this case, the ISI distributions can be used
to decode even when the trial-averaged firing rate cannot. b. Comparison of decoding performance
for conventional rate-modulated decoder to our ISI-based decoder. Top row, stimulus decoding,
bottom row, choice decoding. Left, Overall comparison for all cells. Right, Comparison for
responsive and non-responsive cells (Stimulus Overall: ***pxc=0.0001, ***ppro=8x10%, Stimulus
Repsonsive: *pac=0.031, ***ppro=4x10~°, Stimulus Non-responsive:  **pac=0.0019, n.s.
prr2=0.096, Choice Overall: **pac=0.0057, *prro=0.02, Choice Repsonsive: n.s. pac=0.031, n.s.
prr2=0.08, Choice Non-responsive: *pac=0.004, n.s. prr2=0.19, Wilcoxon signed-rank test). Bar
indicates median and error bars designate bottom and top quartiles. ¢. Left, Matthews correlation
coefficient (MCC) between correct predictions of our ISI-based decoder and a conventional rate-
modulated firing rate decoder. A MCC value of 1 indicates each decoder correctly decodes exactly
the same set of trials whereas -1 indicates each decoder is correct on complementary trials. Values
close to 0 indicate that that the relationship between the decoders is close to chance. Typically,
values from -0.5 to 0.5 are considered evidence for weak to no correlation (stimulus median &
interquartile range: AC=0.10, 0.09, FR2=0.11, 0.12; choice median & interquartile range:
AC=0.06, 0.15, FR2=0.08, 0.17). Right, Matthews correlation coefficient (MCC) rescaled by the
maximum possible correlation given the decoding performance of each method remains fixed.

This control demonstrates that the correlation values are not a result of weak decoding performance
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for one of the decoding methods (stimulus median & interquartile range: AC=0.11, 0.11,

FR2=0.12, 0.15; choice median & interquartile range: AC=0.08, 0.17, FR2=0.11, 0.19).
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Supplementary Figure 13. Whole-cell recordings from AC and FR2 neurons showing that
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different cells can have distinct responses to the same input pattern- necessary for ISI-based
decoding by biological networks. In each case, note the reliability of response across trials but
differences in response patterns across cells. a. Two of eight in vivo whole-cell recordings from
anesthetized adult rat primary AC, presenting trains of pure tones at the best frequency for each
cell (top, ‘Stim’). b. Two of nine whole-cell recordings from adult rat AC in brain slices.
Extracellular stimulation was used to present input patterns previously recorded from cortex with
tetrode recordings in behaving rats during the auditory task used here, and responses recorded in
current-clamp near spike threshold. ¢. Two of 11 whole-cell recordings from adult rat FR2 in brain

slices.
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