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21 Abstract

22 Cerebellar Purkinje cells mediate accurate eye movement coordination. However, it
23 remains unclear how oculomotor adaptation depends on the interplay between the
24 characteristic Purkinje cell response patterns, namely tonic, bursting, and spike pauses.
25  Here, a spiking cerebellar model assesses the role of Purkinje cell firing patterns in
26  vestibular ocular reflex (VOR) adaptation. The model captures the cerebellar
27  microcircuit properties and it incorporates spike-based synaptic plasticity at multiple
28  cerebellar sites. A detailed Purkinje cell model reproduces the three spike-firing patterns
29  thatare shown to regulate the cerebellar output. Our results suggest that pauses following
30  Purkinje complex spikes (bursts) encode transient disinhibition of targeted medial
31  vestibular nuclei, critically gating the vestibular signals conveyed by mossy fibres. This
32  gating mechanism accounts for early and coarse VOR acquisition, prior to the late reflex
33 consolidation. In addition, properly timed and sized Purkinje cell bursts allow the ratio
34 between long-term depression and potentiation (LTD/LTP) to be finely shaped at mossy
35  fibre-medial vestibular nuclei synapses, which optimises VOR consolidation. Tonic
36  Purkinje cell firing maintains the consolidated VOR through time. Importantly, pauses
37  are crucial to facilitate VOR phase-reversal learning, by reshaping previously learnt
38  synaptic weight distributions. Altogether, these results predict that Purkinje spike burst-

39  pause dynamics are instrumental to VOR learning and reversal adaptation.

40
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41  Author Summary

42 Cerebellar Purkinje cells regulate accurate eye movement coordination. However, it
43 remains unclear how cerebellar-dependent oculomotor adaptation depends on the
44  interplay between Purkinje cell characteristic response patterns: tonic, high-frequency
45  bursting, and post-complex spike pauses. We explore the role of Purkinje spike burst-
46  pause dynamics in VOR adaptation. A biophysical model of Purkinje cell is at the core
47  of a spiking network model, which captures the cerebellar microcircuit properties and
48  incorporates spike-based synaptic plasticity mechanisms at different cerebellar sites. We
49  show that Purkinje spike burst-pause dynamics are critical for (1) gating the vestibular-
50  motor response association during VOR acquisition; (2) mediating the LTD/LTP
51  balance for VOR consolidation; (3) reshaping synaptic efficacy distributions for VOR
52  phase-reversal adaptation; (4) explaining the reversal VOR gain discontinuities during

53  sleeping.

54
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55 Introduction

56  The cerebellum controls fine motor coordination including online adjustments of eye
57  movements [1]. Within the cerebellar cortex, the inhibitory projections of Purkinje cells
58  to medial vestibular nuclei (MVN) mediate the acquisition of accurate oculomotor
59  control [2, 3]. Here, we consider the role of cerebellar Purkinje cells in the adaptation of
60  the vestibular ocular reflex (VOR), which generates rapid contralateral eye movements
61  that maintain images in the fovea during head rotations (Fig 1A). The VOR is crucial to
62  preserve clear vision (e.g., whilst reading) and maintain balance by stabilising gaze
63  during head movements. The VOR is mediated by the three-neuron reflex arc comprised
64  of connections from the vestibular organ via the medial vestibular nuclei (MVN) to the
65  eye motor neurons [3-5]. VOR control is purely feed-forward [6] and it relies on several
66  cerebellar-dependent adaptive mechanisms driven by sensory errors (Fig 1B). Because
67 of its dependence upon cerebellar adaptation, VOR has become one of the most
68 intensively used paradigms to assess cerebellar learning [6]. However, very few studies
69 have focused on the relation between the characteristics spike response patterns of

70  Purkinje cells and VOR adaptation, which is the main focus of this study.

71

72 Figure 1. Vestibular Ocular Reflex (VOR) and cerebellar control loop. (A) Horizontal
73 VOR (h-VOR) protocols compare head rotational movements (input) against the induced
74 contralateral eye movements (output) via two measurements. the VOR gain, i.e. the ratio
75  between eye and head speeds (E, and H,, respectively); and the VOR phase, i.e. the
76  temporal lag between eye and head velocity signals. (B) Cerebellar feed-forward control
77  system comparing a known reference (head velocity or input variable) to the actual

78  output (eye velocity) to quantify an error signal driving adaptation. The cerebellum
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79  compensates for the difference between actual eye (represented as an inverter logic gate
80  inthis scheme) and head velocity profiles. The head velocity consists of a 1 Hz sinusoidal
81  function iteratively presented to the cerebellar model, mimicking the sinusoidal
82  frequency of the head rotation in experimental protocols [7]. (C) Schematic
83  representation of the main neural layers, cells, connections and plasticity sites
84  considered in the cerebellar model. Mossy fibres (MFs) convey the sensory signals from
85  the vestibular organ and they provide the input to the cerebellar network. MFs project
86  sensorimotor information onto granular cells (GCs) and medial vestibular nuclei
87  (MVN). GCs, in turn, project onto Purkinje cells through parallel fibres (PFs). Purkinje
88  cells also receive excitatory inputs from the climbing fibres (CFs). CFs deliver the error
89  signals encoding instructive terms that drive motor control learning. Purkinje cells
90 integrate CF and PF inputs, thus transmitting the difference between head and eye
91  movements. Finally, MVN are inhibited by Purkinje cells and provide the main
92 cerebellar output. The cerebellar model implements different spike timing dependent
93 plasticity mechanisms at multiple sites: PF-Purkinje cell, MF-MVN, and Purkinje cell-

94  MVN synapses.

95

96 Purkinje cells provide the major output of the cerebellum through MVN. Purkinje
97  cells receive two main excitatory (glutamatergic) afferent currents (Fig 1C). The first
98  excitatory input originates from the parallel fibres (PFs), i.e. the axons of the granule
99  cells (GCs). The second comes from the climbing fibres (CFs), i.e. the projections of the
100  inferior olive (I0) cells. These excitatory inputs drive Purkinje cell simple or complex
101  spike patterns, respectively [8, 9]. Simple spikes of Purkinje cells are elicited topically
102 at high frequencies [10, 11]. Complex spikes consist of a fast initial large-amplitude

103 spike followed by a high-frequency burst [12]. This burst is made of several slower
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104  spikelets of smaller amplitude separated from one another by 2-3 ms [12-14]. Complex
105  spikes are caused by the activation of a single IO neuron that produces a large electrical
106  event in the soma of the post-synaptic Purkinje cell. This electrical event generates
107  calcium-mediated action potentials in the Purkinje cell dendrites that, in turn, shape the
108  complex spike. Simple spike activity is, in fact, mostly suppressed during complex
109  spiking [14]. After each CF-evoked burst, a spike pause prevents Purkinje cells from
110 either resuming their tonic or bursting firing for a period that depends on the length of
111 the complex spike [15]. The CF-evoked spike burst-pause sequences of Purkinje cell
112 responses critically regulate the inhibitory (GABAergic) drive of MVN synapses, which
113 determines the cerebellar output during sensorimotor adaptation. Therefore,
114 understanding the dynamics of the characteristic Purkinje cell spike patterns is relevant
115  to linking cerebellar cell properties to cerebellar-dependent behavioural adaptation.
116  Recent studies have paved the road in gaining knowledge on the behavioural implication
117  of Purkinje cell spike modes [2, 14, 16]. In particular, Herzfeld and colleagues have
118  demonstrated that the cerebellum encodes real-time motion of the eye through the
119  organisation of Purkinje cells into clusters that share similar CF projections from the 10
120 [2]. The combined activity of bursting and silent Purkinje cell populations can predict
121 both the actual speed and direction of rapid accurate eye movements (saccades).
122 However, these studies have not assessed the interplay between the different Purkinje
123 cell spike patterns and the plasticity mechanisms at stake at MVN synapses in shaping
124  sensorimotor adaptation. MVN neurons, in addition to receiving the inhibitory inputs
125  from Purkinje cells, are also innervated by the excitatory afferents from the mossy fibres
126 (MFs), which convey vestibular signals about head movements (Fig 1C). This vestibular
127  information also converges onto Purkinje cells through the mossy fibre-granule cell-

128  parallel fibre pathway (MF-GC-PF; Fig 1C). Therefore, the characteristics firing patterns
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129  of Purkinje cells are likely to play a key role in driving the associative plasticity
130  mechanisms operating at MF-MVN excitatory synapses [17-19] and at Purkinje cells-
131  MVN inhibitory synapses [20-23]. The CF-evoked spike burst-pause sequences of
132 Purkinje cells depend indeed upon the activation of CFs, which are assumed to convey
133 a ‘teaching’ signal encoding sensory error information [6, 14, 24]. Therefore, the
134  properties of the CF-evoked spike burst-pause patterns (e.g., the relative duration of the
135  bursts versus the pauses) reflect sensory error related information [14, 16]. The
136  activation of CFs is critical for inducing different forms of plasticity at PF-Purkinje cell
137  synapses and, indirectly, at Purkinje cell-MVN synapses [25, 26]. Importantly, plasticity
138 at MF-MVN synapses also seems to be dependent on Purkinje cell signals [27-29],
139  generated through the MF-GC-PF pathway and through CF activation. Some
140  computational studies have proposed that plasticity mechanisms at MF-MVN and
141  Purkinje cell-MVN synapses are key factors in determining cerebellar adaptive gain
142 control [27, 28, 30]. These models support the hypothesis of a two-state cerebellar
143 adaptation process [31, 32], with a fast adaptive phase mediated by the cerebellar cortex
144  (involving plasticity at Purkinje cell synapses) and a slow adaptive process occurring in
145  deeper structures, involving plasticity at MVN synapses [29, 31-35]. However, these
146  computational studies do not account for the interaction between the different spiking
147  modes of Purkinje cells (in particular CF-evoked spike burst-pause dynamics) and the

148  distributed plasticity mechanisms underpinning cerebellar adaptive control [30].

149 The spiking cerebellar model presented here addresses these issues within a VOR
150  adaptation framework (Figs 1A,B). We simulate horizontal VOR (h-VOR) experiments
151  with mice undertaking sinusoidal (~1 Hz) whole body rotations in the dark [36]. The

152 model incorporates the main anatomo-functional properties of the cerebellar
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153  microcircuit, with synaptic plasticity mechanisms at multiple cerebellar sites (Fig 1C;

154  see Materials & Methods).

155 Results

156  Spike burst—pause properties of model Purkinje cell responses

157  The detailed Purkinje cell model reproduces the characteristic response patterns
158  observed experimentally: tonic simple spiking (20-200 Hz), complex spiking (bursts
159  with high-frequency spikelet components up to 600 Hz), and post-complex spike pauses
160  (Fig 2A). In the model, CF discharges trigger transitions between the Purkinje cell Na"
161  spike output, CF-evoked bursts, and post-complex spike pauses. As evidenced in [37],
162  in in-vitro slice preparations at normal physiological conditions, 70% of Purkinje cells
163 spontaneously express a trimodal oscillation: a Na" tonic spike phase, a Ca-Na" bursting
164  phase, and a hyperpolarised quiescent phase. On the other hand, Purkinje cells also show
165  spontaneous firing consisting of a tonic Na" spike output without Ca- Na" bursts [37-
166  39]. McKay et al. [37] report Purkinje cell recordings exhibiting a tonic Na’ phase
167  sequence followed by CF-evoked bursts (via complex spikes) and the subsequent pause
168  (Fig 2A). The frequency of Purkinje cell Na” spike output decreases with no correlation
169  with the intervals between CF discharges. The model mimics this behaviour under

170  similar CF discharge conditions (Fig 2B).

171 The duration of model post-complex spike pauses increases linearly with burst
172 duration (Fig 2C; R*=0.82, p<0.0001). To assess the relation between burst and pause
173 duration, the depolarisation current injected through PF was maintained constant whilst
174  progressively increasing the intensity of CF stimulation. Only inter-spike intervals (ISIs)
175  immediately following complex spikes were considered for this analysis. The model

176  replicates the linear relation between spike pause duration and pre-complex spike ISI
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177  duration observed through electrophysiological recordings [40] (Fig 2D; R*=0.9879;
178  p<0.0001). This relation was measured by maintaining the CF stimulation constant
179  whilst incrementally increasing the amplitude of the PF input current. The probability
180  distribution of post-complex spike ISIs is also consistent with experimental data [40]
181  (Fig 2E). The kurtosis (‘peakedness’) of the ISI distribution is 4.24, which is in the range
182  of kurtosis values measured after tetanisation of mouse Purkinje cells [40]. Finally,
183  model post-complex spike ISI values are skewed rightward (positive skewness value of
184  0.6463), consistently with the asymmetric distribution shape observed experimentally

185 [40].
186

187  Figure 2. Spike burst—pause properties of model Purkinje cell responses. (A) Simulated
188  (left) and electrophysiological (right) recordings of Purkinje cell spike outputs in
189  response to CF spike excitatory postsynaptic potentials occurring at physiological
190  frequencies (arrows) (data from [37]). CF discharges trigger transitions between
191  Purkinje cell Na"* spike output and CF-evoked bursts and pauses via complex spikes.
192 Here, the Purkinje cell model was run on the EDLUT simulator (see Methods). (B)
193 Simulated (left) and experimental (vight) Purkinje cell tonic spike frequency during CF
194 discharges aligned with spike-grams in A (data from [37]). N=10 Purkinje cells were
195  simulated to compute the tonic spike frequency. (C) In the model, CF signals modulate
196  both the burst size (i.e., the number of spikes within the burst) and the duration of post-
197  complex spike pauses, which are linearly correlated. Here, the Purkinje cell model was
198  run on the Neuron simulator (see Methods). (D) Relation between pause duration and
199  pre-complex spike (pre—CS) inter spike intervals (ISIs) when increasing the amplitude
200  of the injected current: model data (red circles, n=1000) vs. experimental data [40]

201 (grey to black dots). Grey-to-black lines represent individual cells (n=10). The blue
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202  dashed line is the linear regression curve fitting model data. The model captures the
203 linear relation between spike pause duration and pre-complex spike ISI duration
204  observed electrophysiologically [40]. (E) Distribution of ISI values following the
205  complex spike (post-CS). The ISI duration is normalised to pre-CS ISI values. The
206  Kurtosis for the distribution of post-CS ISI values is 4.24. The skewness is positive
207  (0.6463), thus indicating an asymmetric post-CS ISI distribution. Kurtosis and skewness

208  values were consistent with Purkinje cell data [40)].

209

210  Role of cerebellar Purkinje spike burst-pause dynamics in VOR adaptation

211 We assessed h-VOR adaptation by simulating a 1 Hz horizontal head rotation to be
212 compensated by contralateral eye movements (Fig 1A). First, we tested the role of
213 Purkinje spike burst-pause dynamics in the absence of cerebellar learning, i.e. by
214 blocking synaptic plasticity across all model projections (i.e., MF-MVN, PF-Purkinje
215  cell, Purkinje cell-MVN). Synaptic weights were initialised randomly and equally within
216  each projection set. The CF input driving Purkinje cells was taken as to signal large
217  retina slips, which generated sequences of complex spikes made of 4 to 6 burst spikelets
218  [14] (Fig 3A, top). The elicited Purkinje spike burst-pause sequences shaped the
219  temporal disinhibition of targeted VN neurons, allowing the incoming input from MFs
220  todrive MVN responses (Fig 3A, middle). This facilitated a coarse baseline eye motion
221  (Fig 3A, bottom). Blocking complex spiking in the Purkinje cell model (through the
222 blockade of muscarinic voltage-dependent channels, see Methods) prevented MF
223 activity from eliciting any baseline MVN compensatory output (Fig 3B). These results
224 suggest that the gating mechanism mediated by Purkinje spike burst-pause sequences,
225  which encode transient disinhibition of MVN neurons, is useful for early and coarse

226  VOR, prior to the adaptive consolidation of the reflex through cerebellar learning.
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227

228  Figure 3. Purkinje post—complex spike pauses act as a gating mechanism for early
229  coarse VOR in the absence of cerebellar adaptation. Only half of h-VOR cycle is
230  represented. Two equal cerebellar network configurations except for the Purkinje cell
231 dynamics were compared under equal stimulation. (A) The first model accounts for CF-
232 evoked Purkinje spike burst-pause dynamics. CF stimulation generates complex spikes
233 and subsequent post—complex spike pauses. The latter allows MFs to drive directly the
234 immediate activation of MVN, which facilitates an early but rough eye movement
235  compensation for head velocity. (B) The second model only exhibits Purkinje tonic firing
236  (i.e., complex spiking is blocked through the blockade of muscarinic voltage-dependent
237  channels, see Methods), which prevents MFs from eliciting any baseline MVN
238  compensatory output. See S3-1 and S3-2 Figs for a sensitivity analysis of parameters
239 regulating the LTD/LTP balance at PF-Purkinje cell and MF-MVN synapses. See also
240  S§3-3 Fig for the same parameter sensitivity analysis in the absence of Purkinje spike

241  burst-pause dynamics.

242

243 We then activated the LTD/LTP plasticity mechanisms at MF-MVN, PF-Purkinje
244 cell, and Purkinje cell-MVN synapses (see Materials & Methods). During 10000 s, the
245  model faced a 1 Hz horizontal head rotation, and cerebellar h-VOR learning took place
246  to generate compensatory contralateral eye movements. A sensitivity analysis identified
247  the critical LTD/LTP balance at MF-MVN and PF-Purkinje cell synapses in order to
248  achieve VOR adaptation (in terms of both gain and phase). This analysis predicts a very
249  narrow range of values for which LTP slightly exceeding LTD at MF-MVN synapses
250  ensures learning stability through time. By contrast, PF-Purkinje cell synapses admitted

251  a significantly broader range for the LTD/LTP ratio (S3-1 and S3-2 Figs). The same
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252  parameter sensitivity analysis for the cerebellar model with no bursting and pause
253  dynamics shows a much wider range of values for the LTD/LTP balance at both PF-

254  Purkinje cell and MF-MVN synapses (S3-3 Fig).

255 A comparison of VOR adaptation accuracy in the presence vs. absence of CF-
256  evoked Purkinje spike burst-pause dynamics shows that VOR gain plateaued three times
257  faster in the presence of Purkinje complex spikes (Fig 4A, left). Also, the VOR gain
258  converged to [0.8-0.9], which is consistent with experimental recordings in mice [36],
259  monkeys [41], and humans [42]. Conversely, without Purkinje bursting-pause dynamics
260  the VOR gain saturated to a value >1 (i.e., over learning) at the end of the adaptation
261  process. In terms of VOR phase, convergence to 180° (i.e., well synchronised counter-
262  phase eye movements) was reached after approximately 1000 s under both conditions

263  (Fig 4A, right).

264 A more accurate VOR gain adaptation in the presence of Purkinje complex spiking
265  reflected a more selective synaptic modulation across learning (Figs 4B-D). In particular,
266  Purkinje spike burst-pause dynamics facilitated a sparser weight distribution at MF-
267 MVN synapses (Fig 4B), which ultimately shaped VOR adaptation [18]. Indeed,
268  Purkinje burst sizes reflected the sensed errors [14], thus regulating the inhibitory action
269  of Purkinje cells on MVN, and inducing error-dependent LTD at MF-MVN synapses
270  (see Materials & Methods). On the other hand, post-complex spike pauses (disinhibiting
271  MVN) induced error-dependent LTP at MF-MVN synapses (the larger the error, the
272 larger the burst size, and the wider the post-complex spike pause, Fig 2B). At the
273  beginning of VOR adaptation, the error was larger, and so were the burst and pause
274  durations. Because the durations of pauses remained always larger than bursts (Fig 2B),
275  LTP dominated over LTD at MF-MVN synapses, increasing the learning rate. Therefore,

276  the spike burst-pause dynamics enhanced the precision of cerebellar adaptation at MVN
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277  cells, by (i) recruiting the strictly necessary MF-MVN projections (i.e., higher kurtosis
278  value of the synaptic weight distribution, Fig 4B), (7i) making a better use of the synaptic
279  range of selected projections (larger standard deviations with lower overall gains; Fig
280  4C), and the rate by (iii) varying synaptic weights selectively (lower averaged synaptic

281  weight variations; Fig 4D).

282

283  Figure 4. Role of Purkinje spike burst-pause dynamics in VOR cerebellar adaptation.
284  (A) VOR gain and phase adaptation with (purple curve) and without (green curve) CF-
285  evoked Purkinje spike burst-pause dynamics.VOR cerebellar adaptation starts with zero
286  gain owing to the initial synaptic weights at PF and MVN afferents (Table 5). Purkinje
287  spike burst-pause dynamics provides better VOR gain adaptation (in terms of both rate
288  and precision) converging to values within [0.8-0.9], which is consistent with
289  experimental data [36, 41, 42] . (B) Purkinje complex spiking allows a sparser weight
290  distribution (with higher Kurtosis) to be learnt at MF-MVN synapses, with significantly
291  lesser MF afferents needed for learning consolidation. (C) The model endowed with
292 Purkinje complex spiking updates less MF afferents during learning consolidation but
293 their synaptic range is fully exploited. (D) The averaged synaptic weight variations are
294 more selective during the adaptive process in the presence of Purkinje spike burst-pause

295  dynamics, yet the standard deviation remains equal.

296

297  Purkinje spike burst-pause dynamics facilitates VOR phase-reversal learning

298  Phase-reversal VOR is induced when a visual stimulus is given simultaneously in phase
299  to the vestibular stimulation but at greater amplitude (10% more) [25]. This creates a

300 mismatch between visual and vestibular stimulation making retinal slips to reverse
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301  direction[43]. Cerebellar learning is deeply affected by VOR phase reversal since the
302  synaptic weight distribution at both PF-Purkinje cell and MF-MVN synapses must be
303  reversed. Here, we first simulated an h-VOR adaptation protocol (1 Hz) during 10000 s
304  (as before). Then, h-VOR phase reversal took place during the next 12000 s. Finally, the
305 normal h-VOR had to be restored during the last 12000 s (Fig 5). Our results suggest
306 that Purkinje spike burst-pause dynamics were instrumental to phase-reversal VOR gain
307 adaptation (Fig 5A), allowing for fast VOR learning reversibility consistently with
308  experimental recordings [3] (Fig 5B). Conversely, the absence of Purkinje complex
309  spiking led to impaired VOR phase-reversal learning with significant interference (Figs
310 5A,B). The two models (i.e., with and without Purkinje complex spiking) behaved
311  similarly in terms of VOR phase adaptation during the same reversal learning protocol

312 (S5-1 Fig).

313

314  Figure 5. Purkinje spike burst-pause dynamics facilitates VOR phase-reversal
315  learning. (A) VOR gain adaptation with (red curve) and without (green curve) Purkinje
316  spike burst-pause dynamics during: VOR adaptation (first 10000 s), phase-reversal
317  learning (subsequent 12000 s), and normal VOR restoration (remaining 12000 s). (B)
318  Purkinje spike burst-pause dynamics provides fast learning reversibility, consistently
319  with experimental recordings [3]. By contrast, phase-reversal VOR learning is impaired
320  in the absence of Purkinje complex spiking. See S5-1 Fig for the time course of VOR

321  phase-reversal learning.

322

323 VOR phase-reversal learning demanded first the reduction of the VOR gain, which

324  can be regarded as a ‘forgetting phase’ (Fig 5B, days 1&2). Then, a ‘synchronisation
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325 phase’ took place with a reverse adaptive action that gradually increased the VOR gain
326  (Fig 5B, days 3&4). During the forgetting phase, LTD dominated over LTP at MF-MVN
327  synapses (Purkinje burst sizes were maximal), thus erasing the memorised weight
328  patterns. During the synchronisation phase, Purkinje post-complex spike pauses led to a
329  dominant LTP at MF-MVN synapses, reversing the learnt configuration. The interplay
330  between bursts and post-complex spike pauses allowed synaptic adaptation at MF-MVN
331  projections to be highly selective, which resulted in a sparser weight distribution as
332  compared to the case without Purkinje complex spiking (Fig 6A). Therefore, VOR
333 reverse learning required the adjustment of fewer MF-MVN synapses, thus facilitating
334  the eye counteraction of the head velocity movement (S6-1 Fig), and the weight
335  distribution was reshaped more efficiently with negligible interferences from the

336  previously learnt patterns (Figs 6B, C).

337

338  Figure 6. Evolution of synaptic weight distributions during VOR phase-reversal
339  learning. (A) Only the sparser and more selective distribution of MF-MVN synaptic
340  weights resulting from the interplay between bursts and post-complex spike pauses
341  facilitates an efficient reshaping of the learnt patterns (B), allowing phase-reversal

342 learning to be achieved (C).

343

344  LTP blockades (by dominant LTD) during REMs explain reversal VOR gain

345  discontinuities between training sessions

346  VOR phase-reversal learning can take place across several days [3] (Fig 5). Dark periods
347  in-between training sessions cause reversal VOR gain discontinuities (Fig 7). This

348  phenomenon has been assumed to result from the decaying of synaptic weights back to
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349  their initial values during sleep [3]. However, the mechanisms underlying this decaying
350 process remain unknown. We explored possible cerebellar LTD/LTP balance
351  modulation scenarios occurring during sleep as a consequence of changes in cerebellar
352 activity. During rapid eye movement sleep (REMs), the mean firing activity of Purkinje
353  cells shows increased tonic firing and decreased bursting in both frequency and size [44].
354  The CF average activity during REMs remains constant at a low frequency regime,
355 showing a tendency in many IO neurons to diminish their overall frequency [45]. The
356  activation of MFs varies during REMs, unrelatedly to any apparent behavioural changes,

357  up to 60 MF/s on average [45].

358 We modelled Purkinje cell, CF and MF activities during REMs. CFs were
359  stochastically activated at 1 Hz [44, 45] following a Poisson distribution (S7-1 Fig). CF
360 activations were also modulated to generate a large event in the Purkinje soma able to
361 elicit bursts of 3 spikes on average [44]. MFs were stochastically activated by mimicking
362  their activity during REMs (with an upper bound firing rate of 8-13 Hz). We tested three
363  hypotheses, based on different levels of cerebellar activity during 6 REMs stages of 3000
364 s each (i.e., 18000 s of simulation) between days 1 and 2. In the first scenario, we
365 considered high levels of MF activity (average firing rate 10 Hz), which led to a
366  dominance of LTP at both PF-Purkinje cell and MF-MVN synapses during REMs.
367  Consequently, the cerebellar model kept ‘forgetting’ the memory traces as during the
368 reversal VOR learning of day 1 (Fig 7, blue curve). In the second scenario, we considered
369 an average MF activity of 2.5 Hz, which made the LTP driven by vestibular activity to
370  counterbalance the LTD driven by the CFs. Under this condition, the cerebellar model
371  consolidated reversal VOR adaptation thus maintaining the synaptic weights at PF-
372  Purkinje and MF-MVN synapses (Fig 7, green curve). Finally, we considered a low level

373 of MF activity (average 1 Hz), which made LTD to block the LTP action driven by the
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374  vestibular (MF) activity. Under this third scenario, the cerebellar model showed a
375  consistent tendency for weights at PF-Purkinje and MF-MVN synapses to decay back
376  towards their initial value (Fig 7, red curve). Therefore, the model predicts that LTP
377  blockade during REMs stages might underlie the reversal VOR gain discontinuities in-

378  between training sessions, in agreement with experimental data [3] (Fig 7, black curve).

379

380  Figure 7. LTP blockades (due to dominant LTD) during REMs explain reversal VOR
381  gain discontinuities between training sessions. We simulated 6 REMs stages (for a total
382  of 18000 s of simulation) between day 1 and 2 of VOR phase-reversal learning. High
383  levels of MF activity (10 Hz) leads to a dominance of LTP at both PF-Purkinje cell and
384  MF-MVN synapses during REMs. Hence, during REMs the cerebellar model keeps
385  ‘forgetting’ the memory traces as during day 1 (blue curve). A smaller MF activity (2.5
386  Hz) leads to a balance of LTP (driven by vestibular activity) and LTD (driven by the
387  CFs). Thus, the model tends to maintain the synaptic weights learnt during day 1 (orange
388  curve). A very low MF activity (1 Hz) makes LTD to block LTP at PF-Purkinje and MF-
380  MVN synapses. Under this third hypothesis, the synaptic weights tend to decay back
390  towards their initial value (purple curve) in accordance with experimental data [3]. See

391  S7-1 Fig for the modelled probabilistic Poisson process underpinning CF activation.

392

393  Purkinje complex spike-pause dynamics under stationary VOR conditions

394  During transient VOR adaptation and phase reversal learning, retina slips were large
395  causing vigorous CF discharges (up to 10 Hz) to encode the sensed errors. Consequently,
396  Purkinje cell complex spike-pauses were elicited at high frequency during adaptation

397  (Fig 8A). As the VOR error decreased, the frequency of CF-evoked Purkinje bursts
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398  decayed to ~1 Hz upon completion of adaptation (Fig 8B). Therefore, during post (and
399  pre) VOR adaptation, model Purkinje tonic Na" spike output dominated and Purkinje
400 cells tended to fire steadily (similar to spontaneous activity) with only rare complex
401  spike-pause firing. Under stationary VOR conditions, (i.e., during pre/post VOR
402  adaptation) model CFs were stochastically activated at ~1 Hz (S7-1 Fig shows the
403  Poisson-based generative model for the IO firing). Such a CF baseline discharge at ~1
404  Hzallowed non-supervised LTP to be counterbalanced at PF-Purkinje cell synapses (see

405  Materials & Methods), thus preserving pre/post cerebellar adaptation.

406 Luebke and Robinson [46] found that directly stimulating CFs at 7 Hz during 30
407  min after 3 days of VOR adaptation would impair the reflex. Model CFs discharged at
408  frequencies larger than 1 Hz only to signal retina slips (i.e., during VOR adaptation).
409  However, a direct (and error independent) high-frequency stochastic stimulation of CFs
410  would lead to VOR impairment. To illustrate this, we simulated a protocol similar to the
411  one used by [46]. As expected, the number of CF-evoked Purkinje burst-pauses
412  increased as the CF frequency was artificially incremented through a 7 Hz direct
413  stimulation (Fig 8A).Therefore, the VOR gain error tended to increase indicating an
414  impairment/blockade of the acquired reflex (Fig 8B) and a decrease in VOR gain even

415  with similar CFs discharges observed during VOR adaptation.
416

417  Figure 8. Purkinje complex spike-pause frequency and VOR gain error during
418  adaptation and post/pre adaptation. (A) The frequency of Purkinje complex spike-
419  pauses diminishes through VOR adaptation from 8-9 Hz to 1-2 Hz under a sinusoidal
420  vestibular stimulus of ~1 Hz. After VOR adaptation, a direct random stimulation of CF’s

421  at 7 Hz during 30 min as in [46] impairs the VOR reflex. (B) Evolution of the VOR gain
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422 error (Mean Absolute Error) during adaptation, post-adaptation, and artificial random

423 stimulation of CFs.

424

425 Discussion

426  Marr and Albus theory [47, 48] elicited a large body of research on the link between the
427  cellular and network properties of the cerebellum and behavioural adaptation. This
428  extensive effort crystallised into a broad range of cerebellar models based on divergent
429  premises. On the one hand, detailed models were grounded on cellular and synaptic
430  properties observed experimentally [49-54]. Most of these biophysical models did not
431  aim at driving behavioural adaptation explicitly through network-level dynamics. On the
432 other hand, numerous large-scale solutions were engineered to be computationally
433  efficient for learning sensorimotor tasks, regardless of the anatomo-functional
434  constraints governing cellular and network cerebellar processes [55-58]. The approach
435  presented here conjugates these two vantage points and focuses on the role of the
436  multiple spiking patterns of Purkinje cells in cerebellar adaptation. It is well known that
437  Purkinje cells can express fast tonic firing as well as a characteristic burst-pause spiking
438  pattern in response to excitatory parallel fibre (PF) and climbing fibre (CF) inputs [40].
439  Nevertheless, we address the still uncovered question of how these different spiking
440  patterns regulate the inhibitory action of Purkinje cells onto targeted medial vestibular
441  nuclei (MVN) and ultimately shape the adaptive behavioural control mediated by the

442  cerebellum.

443 We model cerebellar-dependent adaptation of the rotational vestibulo-ocular
444  reflex (VOR) (Fig 1A). For natural head rotation frequencies (0.5-5.0 Hz), the VOR

445  gain (i.e., eye velocity divided by head velocity) and the VOR phase shift (i.e., the time
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446  lag between eye and velocity profiles) are close to 1 and 180°, respectively [7]. Thus,
447  synchronised counter-phased eye and head movements stabilise visual targets on the
448  fovea, minimising retina slips and improving visual acuity [59]. Cerebellar learning, and
449  particularly Purkinje cell response adaptation, is necessary to mediate online changes in
450  VOR gain control [60, 61]. The cerebellar model presented here mimics the main
451  properties of the cerebellar microcircuit, and it embodies spike-based LTP/LTD
452  plasticity mechanisms at multiple synaptic sites (Fig 1C). At the core of the spiking
453 cerebellar network, a detailed single-compartment model of Purkinje cell reproduces the
454  characteristic tonic, complex spike, and post-complex spike pause patterns [62, 63]. In
455  order to focus on how CF-evoked spike burst-pause dynamics of Purkinje cell responses
456  can regulate the adaptive output of the cerebellum, we also use a Purkinje neuron model
457  that cannot express complex spike firing (i.e., it can only operate in tonic mode). The
458  main finding of this study is that the CF-evoked spike burst-pause dynamics of the
459  Purkinje cell is a key feature for supporting both early and consolidated VOR learning.
460  The model predicts that properly timed and sized Purkinje spike burst-pause sequences
461  are critical to: (1) gating the contingent association between vestibular inputs (about
462  head rotational velocity) and MVN motor outputs (to determine counter-rotational eye
463  movements), mediating an otherwise impaired VOR coarse acquisition; (2) allowing the
464  LTD/LTP balance at MF-MVN synapses to be accurately shaped for optimal VOR
465  consolidation; (3) reshaping previously learnt synaptic efficacy distributions for VOR
466  phase-reversal adaptation. Finally, the model predicts that the reversal VOR gain
467  discontinuities observed after sleeping periods in-between training sessions [3] are due
468  to LTD/LTP balance modulations (and in particular LTP blockades) occurring during

469 REM sleep as a consequence of changes in cerebellar activity.
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470 This work assumes a gradually modulated CF activity capable of instructing a
471  ‘teaching’ signal to Purkinje cells [64]. The type of information conveyed by CFs onto
472  Purkinje cells (and its potential role in sensorimotor adaptation) is under debate. On the
473  one hand, CFs have been hypothesised to carry a binary feedback-error signal computed
474 by 10 [65]. On the other hand, recent studies have questioned the hypothesis of a binary
475  CF signal by demonstrating that the duration of Purkinje cell complex spikes (evoked
476 by CF afferents) can be accurately adjusted based on information that a binary teaching
477  signal could not support [14, 15, 66-68]. Our model embraces this second hypothesis. It
478  must also be noted that the overall assumption about 10-mediated feedback-error
479  learning has been contrasted by a body of research that focused on the periodic nature
480  of CF activity. These works put the CF signalling in relation to the timing aspects of
481  motion [69, 70] and, in particular, to the onset of motion [71]. The controversy about the
482  nature of CF activity has been further roused by the fact that IO functional properties

483  have so far not been univocally identified [60, 72-74].

484 The model presented here captures the fact that similar CF discharges occur during
485  both VOR gain increase and decrease adaptation [75, 76]. CFs encode the retinal slips
486  that drive VOR adaptation [77]. The direction of retinal slips relative to the vestibular
487  stimulus induces either an increase or a decrease in VOR gain [78]. Interestingly, the
488  relation between CF activity and the induction of plasticity at Purkinje cell synapses is
489  described as a gating mechanism that varies under these two VOR adaptation paradigms
490  [76]. Furthermore, optogenetic CF stimulation in VOR gain-decrease paradigms suggest
491  that changes in Purkinje cell complex spike responses do not only depend upon CF
492  activation [76]. Our cerebellar model accounts for these observations by means of the
493  mechanism that balances LTD/LTP plasticity at PF-Purkinje cell synapses. During VOR

494  gain—increase adaptation, LTD predominantly blocks LTP at modelled PF-Purkinje cell
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495  synapses. This results in a synaptic efficacy decrease as a CF spike reaches the target
496  Purkinje cell (error-related signal). In particular, a CF spike is more likely to depress a
497  PF-Purkinje cell synapse if the PF has been active within 50-150 ms of the CF spike
498 arrival [79-81]. Increasing LTD at PF-Purkinje cell synapses reduces the inhibitory
499  action of Purkinje cells on MVN activity, which in turn increases the VOR gain. During
500  VOR gain—decrease adaptation [25, 75], LTP dominates at PF—Purkinje cell synapses,
501  despite the fact that CF inputs are similar to those occurring during gain-increase phases.
502  Araise in synaptic efficacy at PF-Purkinje cell synapses increases the inhibition of MVN
503  neurons, which in turn reduces the VOR gain. LTP at modelled PF-Purkinje cell
504  synapses is non-supervised and it strengthens a connection upon each PF spike arrival at
505  the target Purkinje cell. This plasticity mechanism does not need to modulate the input
506  provided by CFs (and then the CF-evoked spike burst-pause dynamics of Purkinje cells)
507  to counter LTD and decrease the VOR gain, in accordance to in-vitro experiments [82-

508 84].

509 The model suggests that CF-evoked Purkinje cell spike burst-pause dynamics are
510 critical to shape MF-MVN synapses, as to optimise the accuracy and consolidation rate
511  of VOR adaptation. We show that burst and spike pause sequences facilitate sparser MF-
512 MVN connections, which increases coding specificity during the adaptation process.
513 The results predict that the spike burst-pause dynamics should be central to retune MF-
514  MVN synapses during VOR phase-reversal adaptation. First, it is shown that blocking
515  complex spike responses (and post-complex spike pauses) in Purkinje cells impairs
516  reverse VOR adaptation. More strikingly, the results indicate that Purkinje cell bursting
517  and spike pauses ensure the reversibility of the adaptation process at MF-M VN synapses.
518 Bursts selectively facilitate LTD at MF-MVN connections, which rapidly erases

519  previously learnt memory traces at these synapses. Subsequently, post-complex spike
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520  pauses induce strong LTP at MF-MVN synapses, which allows the cerebellar output to
521  become rapidly reverse-correlated to the sensed error. In addition, the memory
522 consolidation of VOR adaptation during sleeping [3, 85, 86] is also supported by the CF-
523  evoked Purkinje cell spike burst-pause dynamics. CF stochastically activations at a low
524 frequency (0.9 Hz) during REMs stages maintain a base Purkinje bursting that ultimately
525  facilitates LTP blockades at PF-Purkinje cell and MF-MVN synapses, and it preserves

526  the on-going learning process.

527 The cerebellar model endowed with CF-evoked Purkinje cell spike burst-pause
528  dynamics performs better, in terms of adaptation accuracy and consolidation rate, than
529  a model with Purkinje cells expressing tonic firing only. CF-evoked spike burst-pause
530 patterns appear particularly useful in a disruptive task such as VOR phase-reversal
531 adaptation. Nevertheless, our results indicate that complex spikes, post-complex spike
532 pauses, and their relative modulation, are not essential for VOR control learning and
533  adaptation. This is in agreement with recent experimental findings challenging the
534 hypothesis that Purkinje cell complex spikes are necessarily required in cerebellar
535  adaptation, and suggesting that their role in motor learning is paradigm dependent [74,
536  87]. Overall, this work provides insights on how the signals provided by the CFs may
537  instruct, either directly or indirectly, plasticity at different cerebellar synaptic sites [64].
538  The results point towards a key role of CF-evoked Purkinje cell spike burst-pause
539  dynamics in driving adaptation at downstream neural stages. This testable prediction
540 may help to better understanding the cellular-to-network principles underlying

541  cerebellar-dependent sensorimotor adaptation.

Page 23 of 48


https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/347252; this version posted June 14, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

542  Materials & Methods

543 VOR Analysis and Assessment

544  We simulated horizontal VOR (h-VOR) experiments with mice undertaking sinusoidal
545  (~1 Hz) whole body rotations in the dark [36]. The periodic functions representing eye
546  and head velocities (Fig 1A) were analysed through a discrete time Fourier transform.
547  The VOR gain was calculated as the ratio between the first harmonic amplitudes of the

548  forward Fourier eye— and head—velocity transforms:

Aeye—velocity
1

549 VOR GAIN G = W (1)
550 In order to assess the VOR shift phase, the cross-correlation of the eye and head
551  velocity time series was computed:

def +®
552 xcorr =(x*y)[r]= 2 %" (n)y(n+y) 2)

553 where x" is the complex conjugate of x, and y the lag (i.e. shift phase). The ideal eye

554  and head velocity lag is 0.5 after normalisation, with cross-correlation values ranged

555  within [-1, 1], which is equivalent to a phase shift interval of [-360° 360°].
556  Cerebellar Spiking Neural Network Model

557  The cerebellar circuit was modelled as a feed—forward loop capable of compensating
558 head movements by producing contralateral eye movements (Fig 1B). The connectivity
559  and the topology of the simulated cerebellar network involved five neural populations:
560 mossy fibres (MFs), granule cells (GCs), medial vestibular nuclei (MVN), Purkinje
561  cells, and inferior olive (IO) cells [29, 88-91]. During simulated 1 Hz head rotations,

562  sensorimotor activity was translated into MF activity patterns that encoded head
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563  velocity. MFs transmitted this information to both MVN and GCs. The latter generated
564  asparse representation of head velocity signals, which was sent to Purkinje cells through
565  the PFs. Purkinje cells were also driven by the CFs, which conveyed the teaching signal
566  encoding sensory error information (i.e., retina slips due to the difference between actual
567  and target eye movements, [77]). Finally, Purkinje cells’ output inhibited MVN neurons,
568  which closed the loop by shaping cerebellar-dependent VOR control. The CF-Purkinje
569  cell-MVN subcircuit was divided in two symmetric micro-complexes for left and right
570  h-VOR, respectively. The input-output function of the cerebellar network model was
571  made adaptive through spike-timing dependent plasticity (STDP) at stake at multiple
572  sites (Fig 1C). These STDP mechanisms led to both long-term potentiation (LTP) and
573  long-term depression (LTD) of the ~50000 synapses of the cerebellar model see [92].
574  This spiking neural network model was implemented in EDLUT [81, 93, 94]an efficient

575  open source simulator mainly oriented to real time simulations.

576  Purkinje cell model

577  Weconsidered a detailed Purkinje cell model [62, 63] consisting of a single compartment

578  with five ionic currents:

v
579 dt
~ge, - (V—=125)—g,-(V+70)—g, -M-(V+95)

——gn (1 +95)-g o [V (v 30)- o
580  with g, denoting a delayed rectifier potassium current, g ,, a transient inactivating
581  sodium current, g, a high-threshold non-inactivating calcium current, g, a leak

582  current, and g,, a muscarinic receptor suppressed potassium current (see Table 1).
583

584

Page 25 of 48


https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/347252; this version posted June 14, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

585

586

587

588

589
590

591

592

Table 1. Ionic conductance densities

Conductance type

Soma (mho/cm2)

& y —delayed rectifier potassium current

e —transient inactivating sodium current

&, high threshold

gy —muscarinic receptor

& — leak current (anomalous rectifier)

0.01

0.125

0.001

0.75

0.02

The dynamics of each gating variable evolved as follows:

xo[V]—x

im e 4

]

where x indicates the variables n, h, ¢, and M. The implemented equilibrium function is

determined by the term X, [V] and time constant 7_ [V] (Table 2).

Table 2. Ionic conductance kinetic parameters

Steady—state
Conductance type
Activation/Inactivation

Time constant (ms)

1
& i —delayed rectifier X, [V] = —553
potassium current J+e 10
&g, —transient 1
. . . . x0 [V] V-59.4
inactivating sodium E
current I+e "

1
m, [V] m, [V] = s M

I+e 17

V+10
0.25+4.35-e 1 ifV <10
n[V]=
0.25+4.35-¢ 1 ifV>10
1.15
7, [V] =015+ V4335
I+e
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8, high threshold

g g —muscarinic

receptor suppressed
potassium current

Forward Rate Function (CZ)

Backward Rate Function ( ,8 )

16
a= ]+e—040()72»(V—5)
0.3
e

I+e °

5 0:02:( +89)

V+8.9

e 5

V=70

B=0.001-¢ '

Steady—state

Activation/Inactivation

Time constant(ms)

a 1
x[V]= n[V]=
a+pf a+pf
593
594 The sodium activation variable was replaced and approximated by its equilibrium

595  functionm, [V] M-current presents a temporal evolution significantly slower than the

596 rest of the five variables thus provoking a slow-fast system able to reproduce the

597  characteristic Purkinje cell spiking modes (Fig 2).

598 The final voltage dynamics for the Purkinje [62, 63]cell model was given by:

—gK~n4-(V+95)—gNa-mU[V]3'h~(V—50)—gw~cz~(V—]25)—gL-(V+70)—gM~M~(V+95)+

Injected Current
Membrane Area

599 4V _
dt

600

601

Membrane Capaci tance

)

602  where the parameters Membrane Area and Membrane Capacitance are provided in

603  Table 3, and Injected Current is the sum of all contributions received through individual

604  synapses (see Egs. 68 below).

605
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606  Table 3. Geometrical parameters:

Geometrical parameters

Cylinder length of the soma 15 ym
Radius of the soma 8 um
Membrane Capacitance l uF / cm’
Axial resistivity 100 Q- cm (axom) 250 > _ .y, (dendrites)
Number of segments 1
607
608 First, we validated the detailed Purkinje cell model (Egs. 3-5) in the Neuron

609  simulator. Subsequently, we reduced the Purkinje cell model to make it compatible with
610 an event-driven lookup table (EDLUT simulator
611  https://github.com/EduardoRosLab/edlut) for fast spiking neural network simulation
612  [81, 93]. In the reduced Purkinje cell model, Ix and Iy, currents were implemented
613  through a simple threshold process that triggers the generation of a triangular voltage
614  function each time the neuron fires [95]. This triangular voltage depolarisation drives
615  the state of ion channels similarly to the original voltage depolarisation during the spike

616  generation.

617  Other cerebellar neuron models

618  The other cerebellar neurons (granule cells, MVN cells, ...) were simulated as leaky
619  integrate—and—fire (LIF) neurons, with excitatory (AMPA) and inhibitory (GABA)

620  chemical synapses:

dv

621 Cm : d";%’ = gAMPA (t).(EAMPA _Vm—c)+gGABA (t)'(EGABA _Vm—c)+Grest .(Erest _Vm—c) (6)
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622  where C,, denotes the membrane capacitance, E4yp4 and Eg4p4 are the reversal potential
623  of each synaptic conductance, E,. is the resting potential, and G,.y indicates the
624  conductance responsible for the passive decay term towards the resting potential.
625  Conductances gimps and gg4p4 integrate all the contributions received by each receptor
626  type (AMPA and GABA) through individual synapses and they are defined as decaying

627  exponential functions [81, 96]:

0 . 1<,

628 8 ampa (t) = (1) (7
& ampa (to) e, 1>,

629
0 . 1<,

630 864 (t) = (t=ty) ®)

864 (to)'e_rmm , >4

631  with 7 representing the simulation time, 7 being the time arrival of an input spike, and
632  74up4 and tg4p4 denoting the decaying time constant for AMPA and GABA receptors,

633  respectively.

634 Note that we also used the LIF neuronal model (Egs. 6-8) to simulate Purkinje
635  cells that could express tonic spike firing only (Fig 3B). These Purkinje cells without
636  CF-evoked spike burst-pause dynamics provided a coarse phenomenological model
637  reminiscent of Kv3.3-deficient Purkinje neurons (as in Kenc3 mutants, in which the
638 absence of voltage-gated potassium channel Kv3.3 compromises spikelet generation
639  within complex spikes of cerebellar Purkinje cells) [97]. Table 4 summarises the

640  parameters used for each cell and synaptic receptor type.
641
642

643
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Table 4. Parameters of the LIF cell types

Parameter Granule Cell Purkinje LIF Cell MVN Cell
Refractory period Ims 2ms Ims
Membrane capacitance 2pF 40pF 2pF
*Total excitatory 1.3nS-
1nS-100 . InS'7
peak conductance -175000-10%

Total inhibitory

1nS-200 3nS-150 30nS-1
peak conductance
Threshold —40mV —52mV —40mV
Resting potential —70mV -70mV —70mV
Resting conductance 0.2nS 1.6nS 0.2nS
Resting
10ms 25ms 10ms
time constant (T,es,)
Excitatory—synapse
0.5ms 0.5ms 0.5ms
time constant (Typa)
Inhibitory—synapse
10ms 1.6ms 10ms

time constant (t4p4)

Parameters obtained from the following papers:

Granule cell (GC) [98-102]. Only the rapidly decaying component of AMPA is modelled (T pp4
—0.5ms)[103], the presence of slowly decaying components in some GC caused by spillovers of glutamate was
not taken into consideration (tyypy -3mg)[104] Purkinje cell (PC) [102, 105-107]. MVN data were extracted

from unpublished material from Prof. D’ Angelo’s lab.

* Where 10% means the ratio of active connections PF—PC (out of the total 175000 PF’s)

Cerebellar neural population models

Mossy fibres (MFs). N=100 MFs were modelled as LIF neurons (Egs. 6-8). Consistently
with the functional principles of VOR models of cerebellar control [3], the ensemble
MF activity was generated following a sinusoidal shape (1 Hz with a step size of 0.002
ms) to encode head movements [3, 108, 109]. The overall MF activity was based on non-
overlapping and equally sized neural subpopulations that allowed a constant firing rate

of the ensemble MFs to be maintained over time. Importantly, two different times always
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659  corresponded to two different subgroups of active MFs ensuring to the overall constant

660  activity. (Network connectivity parameters summarised in Table 5).

661 Granular cells (GCs). The granular layer included N=2000 GCs and it was implemented

662  as a state generator [110-113], i.e. its inner dynamics produced time—evolving states
663  even in the presence of a constant MF input [56]. The granular layer generated non-
664  overlapped spatiotemporal patterns that were repeatedly activated in the same sequence
665  during each learning trial (1 Hz rotation for 1 s)). 500 different states encoded each
666  second of the 1 Hz learning trial, each state consisting of four non-recursively activated

667  GCs.

668  Climbing fibres (CFs). N=2 CFs carried the teaching signal (from the IO) to the

669  population of Purkinje cells. The two CFs handled clockwise and counter—clockwise
670 sensed errors. CF responses followed a probabilistic Poisson process. Given the
671  normalised error signal £(t) and a random number 7(t) between 0 and 1, a CF fired a
672  spikeif €(t) > n(t), otherwise it remained silent [79, 114, 115]. Thus, a single CF spike
673  encoded well — timed information regarding the instantaneous error. Furthermore, the
674  probabilistic spike sampling of the error ensured a proper representation of the whole
675  error region over trials, while maintaining the CF activity below 10 Hz per fibre (similar
676  to electrophysiological data; [116]. The evolution of the error could be sampled
677  accurately even at such a low frequency [115, 117]. For the sake of computational
678 efficiency, there are only 2 CFs (instead of 20 CFs). In the cerebellum, each PC is
679 innervated by a single CF [118] coming from the associated IO at the olivary system.
680 However, no olivary system is here considered and, consequently, CFs sensing
681  clockwise and counter—clockwise errors are equally activated. It would suffice 1 CF

682  sensing clockwise and 1 CF sensing anti-clockwise errors.
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683  Purkinje cells. N=20 Purkinje cells were divided in two subpopulations of 10 neurons
684  each. Each subpopulation received the inputs from one CF encoding the difference
685  between (either rightward or leftward) eye and head movements. Each Purkinje cell also
686  received 2000 PF inputs. Since real Purkinje cells are innervated by about 150000 PFs
687  [119], the weights of the PF—Purkinje cells synapses of the model were scaled so as to
688  obtain a biologically plausible amount of excitatory drive. Each of the two subgroups of
689 10 Purkinje cells targeted (through inhibitory projections) one MVN cell, responsible
690  for either clockwise or counter-clockwise compensatory motor actions (ultimately

691  driving the activity of agonist/antagonist ocular muscles).

692  Medial Vestibular Nuclei (MVN). The activity of N=2 MVN cells produced the output

693  of the cerebellar model. The two MVN neurons handled clockwise and counter—
694  clockwise motor correction, respectively. Each MVN neuron received excitatory
695  projections from all MFs (which determined the baseline MVN activity), and inhibitory
696  afferents from the corresponding group of 10 Purkinje cells (i.e., the subcircuit 10—
697  Purkinje cell-MVN was organised in a single microcomplex). MVN spike trains were

698  translated into analogue output signals through a Finite Impulse Response filter (FIR)

M
699 [120]. Let x(¢)=> 5(¢~,) denote a MVN spike train, with # being the firing times
j=t

700  of the corresponding neuron. If A(z) indicates the FIR kernel, then the translated MVN

701  output is:
702 Output(t)=(h*x)(t):ih(t—tj) ©)

703 Note that a delay is introduced in the generated analogue signal. This delay is
704  related to the number of filter coefficients and to the shape of the filter kernel /(). In

705  order to mitigate this effect, we used an exponentially decaying kernel:
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M

Kernel:h(t):e o (10)

707  where M is the number of filter taps (one per integration step) and 7, is a decaying factor.

708 At each time step, the output signal value only depends on its previous value and on the

709  input spikes in the same time step. Therefore, this filter is implemented by recursively

710  updating the last value of the output signal. Importantly, this kernel is similar to

711  postsynaptic current functions [121, 122], thus facilitating a biological interpretation.

712 Furthermore, this FIR filter is equivalent to an integrative neuron [123] .

713 Table 5. Summary of neurons and synapses.

Neurons Synaptic weights (nS)
Presynaptic Postsynaptic Number of Initial weight .
Type Weight range
cell number cell synapses P (Detailed/non Detailed PC) & &
M Fi
ossy Fibres ;- nular Cells 8000 AMPA 0.35/0.35*
(100)
Medial
Vestibular 200 AMPA 0.0/0.0 [0, 107 /10, 10]
Nuclei
Climbing ..
Purk 11; 2 AMPA 40/2.
Fibres (2) urkinje Cells 0 0/2.5
Gra‘(l;‘(l)‘gofeus Purkinje Cells 40000 AMPA 3.4/3.75 [0, 3.75] /[0, 5.5]
Purkinje cell Medial
" ( 23; e Vestibular 20 GABA 0.15/0.15 [0 10] /[0, 10]
Nuclei
Medial
Vestibular
Nuclei (2)
714 * Parameter used for generating the Granular layer activity. Since this activity remained invariant
715 during VOR adaptation, it was stored offline in a file and then loaded in computation time.
716
717
718
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719 Synaptic plasticity rules

720  PF—Purkinje cell synaptic plasticity. The LTD/LTP balance at PF—Purkinje cell

721  synapses was based on the following rule (S3-1 Fig shows sensitivity analysis

722 accounting for LTD/LTP balance):

10,1, f—t
LTD AWy pc. (1) = I k I (¢)-dt if PF,isactiveat t
72 3 ! ! _ T LTD spike ’
LTP.AWpyy _pc, (t)=a- Occ. . (1) const. otherwise
724 (11)

725  where AWpr; pcit) denotes the weight change between the j” PF and the target i”
726  Purkinje cell; T;7pis the time constant that compensates for the sensorimotor delay

727  (100ms); o, is the Dirac delta function corresponding to an afferent spike from a PF

728  (i.e., emitted by a GC); and the kernel function k(x) is defined as [92]:

729 k(x) =e " -sin (x)20 (12)
730 The convolution in Eq. 11 was computed on presynaptic PF spikes arriving 100
731  ms before a CF spike arrival, accounting for the sensorimotor pathway delay [65, 114,
732 115, 124]. Note that the kernel k(x) allows the computation to be run on an event—driven
733 simulation scheme as EDLUT [81, 114, 115, 124], which avoids integrating the whole
734  kernel upon each new spike arrival. Finally, as shown in Eq. 11, the amount of LTP at
735  PF-Purkinje cell synapses was fixed, with an increase in synaptic efficacy equal to o

736  each time a spike arrived through a PF to the targeted Purkinje cell.

737  MF-MVN synaptic plasticity. The LTD/LTP dynamics at MF-MVN synapses was taken

738  as (Fig. 3-1 shows sensitivity analysis accounting for LTD/LTP balance):
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o (1t
LTD.AWyy ()= J.k — e “Oyr (¢)-dt if PC,isactiveat t
’ O mr-myN ' (13)

LTP. AWy, (f)=a- Surr, . (1) const. otherwise

739 J
740 with AWy aonigy denoting the weight change between the / MF and the target i MVN.
741 0, pey Standing for the temporal width of the kernel; 0, representing the Dirac delta

742  function that defines a MF spike; and the integrative kernel function k(x) defined as [92]:
743 k(x) —e . cos (x)2 (14)

744 Note that there is no need to compensate the sensorimotor pathway delay at this

745  site because it is already done at PF-Purkinje cell synapses (7, ,, in Eq. 11).

746 The STDP rule defined by Eq. 13 produces a synaptic efficacy decrease (LTD)
747  when a spike from the Purkinje cell reaches the targeted MVN neuron. The amount of
748  synaptic decrement (LTD) depends on the activity arrived through the MFs. This activity
749  is convolved with the integrative kernel defined in Eq. (14). This LTD mechanism
750  considers those MF spikes that arrive after/before the Purkinje cell spike arrival within
751  the time window defined by the kernel. The amount of LTP at MF-MVN synapses is
752 fixed (Ito, 1982;[92, 125] , with an increase in synaptic efficacy each time a spike arrives

753  through a MF to the targeted MVN.

754  Purkinje cell-MVN synaptic plasticity. The STDP mechanism implemented at Purkinje

755  cell-MVN synapses [92] consists of a traditional asymmetric Hebbian kernel

YN _post IMVN _pre
LTP-e Themy i by _post 2ty pre
756 AWy, (1) = o (15)
LTD-e  Frem otherwise
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757  where AWpc; myniy is the weight change between the /” PC and the target i MVN,

758 and ;. ,,, are the time constants of the potentiation and depression

O pe s
759  components set to Sms and 15ms respectively ; and LTDpa/LTPrax (0.005/0.005 ) are
760  the maximum weight depression/potentiation change per simulation step. The tmyn post
761  and tmn pre indicate the postsynaptic and presynaptic MVN spike time. This STDP rule
762  is consistent with the fact that plasticity at Purkinje cell-MVN synapses depends on the
763  intensity of MVN and Purkinje cell activities [20-23] and it provides a homeostatic
764  mechanism in balancing the excitatory and inhibitory cell inputs to MVN [90, 126]. The

765  source code is available at URL: http://www.ugr.es/~nluque/restringido/CODE.rar

766  (user: REVIEWER, password: REVIEWER).

767
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1093  Supporting Information
1094  Figure Captions

1095  Figure S3-1. Critical LTD/LTP balance at PF-Purkinje cell and MF-MVN
1096  synapses: sensitivity analysis. Cerebellar adaptation modulates PF-Purkinje cell
1097  synaptic weights as well as MF-MVN synapses [6, 92]. For synaptic adaptation, the
1098  model uses supervised STDP, which exploits the interaction amongst unsupervised and
1099  supervised cell inputs to regulate and stabilise postsynaptic activity. Balancing
1100  supervised STDP, and the resulting synaptic modification dynamics, is critical, given
1101  the high sensitivity of the process that determines the LTD/LTP ratio [127, 128]. A
1102  sensitivity analysis of the parameters governing LTD and LTP, shows that LTP
1103  exceeding LTD values for a narrow range at MF-MVN synapses preserves VOR
1104  learning stability. This holds independently for both VOR gain and phase (A) as well as
1105  for the combination of the two (B). By contrast, PF-Purkinje cell synapses admit broader

1106  limits for the LTD/LTP ratio (A, B).

1107  More detailed description: we systematically simulated LTP/LTD ratio values at PF-
1108  Purkinje cell and MF-MVN synapses within a plausible range that may satisfy the
1109  expected h-VOR outcome. As simulations ran, the solutions were iteratively checked
1110  until finding the set of LTD/LTP ratio values that exhibited the better performance in
1111 terms of h-VOR gain and phase. LTD/LTP balance at each site was modified by
1112 systematically multiplying LTD by 1.5~ where —11 < N < 12 for PF-Purkinje cell and
1113 MF-MVN synapses. For each parameter setting, the cerebellar model underwent 10 000
1114  sec of VOR learning (1Hz head rotation movement to be compensated by contralateral
1115 eye movements. (A) Final VOR gain and phase plotted over the LTD/LTP range of
1116  values that were tested. (B) Combined VOR gain and phase (normalised) as a function

1117  of'the LTD/LTP ratio. At PF-Purkinje cell synapses the LTD/LTP was well balanced for
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1118 N values ranging between [—1, 7]. At MF-MVN the LTD/LTP balance was more critical
1119  since N is within a narrower band range [-1, 0]. The reddish area within the last plot
1120  indicates the optimal parameters range. LTP must exceed LTD at MF-MVN synapses
1121  for optimal VOR performance. This result is consistent with the unsupervised nature of
1122 the LTP for the kernel defined for MF-MVN STDP. Unsupervised LTP with larger
1123 values than LTD takes the MF-MVN synaptic weights to the upper bound of their
1124  synaptic efficacy, thus provoking more MVN activations. In the absence of LTD
1125  counteraction, the cerebellar output is, therefore, upper saturated. LTD driven by
1126 Purkinje cell activity blocks LTP at MF-MVN synapses, thus shaping the cerebellar

1127  compensatory output.

1128  Figure S3-2. LTD/LTP balance at MF-MVN synapses over time. Whilst LTD/LTP
1129  balance was fixed at PF-PC synapses, we modified the LTD/LTP balance at MF-MVN
1130  synapses by systematically varying the ratio by 1.5~ where —11 <N < 12 during a 10000
1131  sec simulation. (A) Final VOR gain and phase plotted as a function of the tested
1132 LTD/LTP range across time. (B) Combined VOR gain and phase (normalised) over time.
1133 A proper balance between LTD and LTP (ratio of approximately 0.4) makes the

1134 cerebellum perform optimally after 750 sec.

1135  Figure S3-3. Parameter sensitivity analysis for the LTD/LTP balance at PF-
1136  Purkinje cell and MF-MVN synapses in the absence of Purkinje spike burst-pause
1137  dynamics. Similar to Fig. 3-1, the parameters regulating the LTD/LTP ratio were
1138  exhaustively tested whilst the cerebellar model without Purkinje complex spiking
1139  underwent h-VOR learning during a 10000 sec simulation. (A) Final VOR gain and
1140  phase plotted over the LTD/LTP range of tested values. (B) Combined VOR gain and

1141  phase (normalised) as a function of the LTD/LTP ratio. LTD/LTP at both PF-Purkinje
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1142 cell synapses is well balanced for N values ranged between [—1, 7]. Thus, the absence of

1143 bursting and pause dynamics leads to a wider range values for the LTD/LTP balance.

1144  Figure S5-1. VOR phase-reversal learning: time course of the VOR phase. (A) VOR
1145  phase adaptation with (red curve) and without (green curve) Purkinje spike burst-pause
1146 dynamics. (B) Focus is on the phase-reversal period and comparison with experimental

1147  data[3].

1148  Figure S6-1. Eye velocity evolution during VOR phase-reversal learning (A) Only
1149  the eye velocity movement corresponding to the sparser and more selective distribution
1150  of MF-MVN synaptic weights is able to counteract the head velocity movement in

1151  counter phase (B), as phase-reversal learning is achieved (C).

1152 Figure S7-1. Climbing fibre activation. In the model, CF responses follow a
1153  probabilistic Poisson process. Given the normalised error signal £(t) obtained from the
1154  retina slip and a random number 1(t) between 0 and 1, the model CF fires a spike if
1155  g(t) > n(t); otherwise, it remains silent[79] A single spike is then able to report timed
1156  information regarding the instantaneous error. Furthermore, the probabilistic spike
1157  sampling of the error ensures that the entire error region is accurately represented over
1158  trials with a constrained CF activity below 10 spikes per second, per fibre (CF activated
1159  between 1-10 Hz). Hence, the error evolution is accurately sampled even at a low
1160  frequency [115, 117]. This firing behaviour is consistent to those observed in

1161  neurophysiological recordings [116].

1162

Page 48 of 48


https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/347252; this version posted June 14, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

>

Head Velocity

Eye Velocity

Peak eye velocity Ev

|

neuron2 : ,
|

\‘i—

= Right < Right
& Righty T WM
9 0.) // \\\
o re) S Y
g —_ HV g - /’, \\\
o TL |/ \
0% o 1s, 28 of y S VOR Gain =
2 t(s) 83T \ 1(s)
o 3 E,/ \ /
K} 200 ms € v N /' 200 ms
I Q N
Left O ey
Phase difference = 180 deg
€ error (driven by climbing fibres)
100 ms sensorimotor delay
Reference variable Controlled variable
X(t) Feed-forward y(t)
/\/ cerebellar
controller
Head velocity Eye velocity
/ LTP/LTD
| Parallel fibres (PFs)
|
L&
| D
e
O Purkinje Granular Cells (GCs)
| @ cells(PCs) k
O ]
| LL
| v ogs\ 4[4 A
| L/
\ g0 D
\\ 6 o L
~_ Y= > = ’//
’M_é;l__:::_}: """"""" A
7 IViedla o
 Vestbuar | vVestibular '@ | =g
! Ganglia | Nuclei o j
! | > : > \Oculomotor
> NN b
~ | |
C!D \ / /
| N 7/
A
Head Nucleus Reticularis Op(t:ize:gt)ém

velocity x(t)

Inferior

olive (IO)O(

Tegmenti Pontis

——{ Excitatory connections =@ Inhibitory connections
—(

Figure 1

Peak head velocity Hv

e
Eye
velocity y(t)


https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/

A

o

n ~
o [$)]

Na*spike frequency (Hz)
N
(&)

O

O

120

[e]
o

Pause duration (ms)
N
o

bioRxiv preprint doi: https://doi.org/10.1101/347252; this version posted June 14, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

| |
| |
J - o

Tonic

tof

HMMMMMMMJ“M WWHM 50mV
ot 4 t t ot
1s

20mVv

20ms

o

(XXX XX JNe)

0.02

0.04
Time (s)

Model data

10 cell data

0.06 0.08

Pause

J 20mV

20ms

R'=0.9879 p <0.0001

Figure 2

Pre-CS ISI (ms)

Na™spike frequency (Hz)

Pause duration (ms)

Fraction (%)

Tonic CS Pﬁe
O R L 20mv
1s
100
oAl 2 :.3'
- = = 0 =5
o R K 1% Em
B Ry S
Time (s)
R = 0.82, p <0.0001 o
60/ .
g3
s .3
40} I I
8.
[ J [ ]

20 ‘ ‘ ‘ ‘ ‘ ‘
2 4 6 8 10 12 14
Burst duration (ms)

5,

3 4 5 6 7
Post-CS ISI duration (norm)


https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/347252; this version posted June 14, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A CS Purkinje Cell B no-CS Purkinje Cell
@
(&)
| .2
o =
(0] ~
2 2
=~ o
5 n
o (@)
T ] T T T (ID
I e
z A o ! >
2 A il i ! S
] 111 | ]
Right 1p R R 102 Right 1/ 02
0.5} T N 101 05 101
0 : ] ' I I I I 0 0 Y YV UV TV VVVVUUUUULULUUILILNT 0
o m\/\[V\/ | ol .,
Left -1+ -0.2 Left -1- -0.2
100ms

—— Normalised Head Velocity (deg/s)

—— Normalised Eye Velocity (deg/s)

Figure 3


https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/347252; this version posted June 14, 2018. The copyright holder for this preprint (which was

>

VOR gain

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

0 2000

o

4000

Time (s)

6000

8000

10000

@ Cs Purkinje Cell

CS Purkinje Cell

MF - MVN

Weight distribution (nS)
=
<«

0 50

O

10

MF - MVN
Synaptic weights (nS)
o

10
0 2000

O

MF - MVN
Aw (nS)
N O DN

o

2000

Figure 4

10T Kurtosis = 4.2131 !
0

Kurtosis = 3.855

100 150 200
MF Tag
IS ITITIT TR E
4000 6000 8000 10000
Time (s)
4000 6000 8000 10000
Time (s)

O | | | | |
0 2000 4000 6000 8000 10000
Time (s)
@ n0o-CS Purkinje Cell

no-CS Purkinje Cell

Kurtosis = 2.1074

0 50 100 150 200
MF Tag

PRI I S AT LLT
o) TRERRERRRERRITERIIERLE

0 2000 4000 6000 8000 10000
Time (s)
2
SEAAL
270"
0 2000 4000 6000 8000 10000
Time (s)

Righward correction ll H

Leftward correction [ |


https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/347252; this version posted June 14, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Phase-reversal VOR
1 L
}"“-.-
o, .
3 | LR
> | A\ Tl |
(DDC 05 - M.. ‘ :
=y o :
oL \ W
0 8000 16000 24000 32000
/ Time (s)

VOR gain

10000 pay 1 Day 2 Day 3 Day 4
50 min 50 min

50 min 50 min

Time (s)

B Wild mice data @ CS Purkinje Cell @ no-CS Purkinje Cell

Figure 5


https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/347252; this version posted June 14, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

CS Purkinje Cell no-CS Purkinje Cell
A - =
£ Kurtosis = 4.21 S Kurtosis = 1.74
c 10 c
Z 0 Z 0
£ il £ 3
T2 0 t=10000s <2
Lo L ®
S5 S5
= 10 =
-% Kurtosis = 3.85 -% 4 Kurtosis = 2.11
= 0 50 100 150 200 < 0 50 100 150 200
MF Tag MF Tag
%) %)
= Kurtosis = 4.12 = Kurtosis = 1.45
Z5 z5s
= g S3
= t=22000 s =
L Lo
= = o
'-05')) Kurtosis = 1.91 .-053" Kurtosis = 1.37
= 100 150 200 = 0 50 100 150 200

MF tag MF Tag

%) n
= Kurtosis = 2.0 e Kurtosis = 1.36
c 10 c
zS <8
= >
=2 o t=32000s =2
L »n L. »
=T =0
c 10 =
'% Kurtosis = 3.23 .% Kurtosis = 1.543
= ‘ 50 100 150 200 = 0 50 100 150 200
MF Tag MF Tag

Righward correction Il W

Leftward correction [ |

Figure 6


https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/347252; this version posted June 14, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

@ Wild mice data
M LTD blockades LTP over night
- B LTD and LTP in balance over night
- W LTP dominates over night
o
S
c S |
® 2
O ©
14 ©
@) <
> o
=
L
0
day 1
50 min
Time

Figure 7


https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/347252; this version posted June 14, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A

Cf stimulation at

. VOR adaptation Post/Pre VOR adaptation 7 Hz during 30 min

N

5 8 [ L] : : " - 'f - L] [ ] L]

g 6f - | | .

>< e .l L] [ ] i i

2 4} SR ! .. o

E " - l..f."l m I~ -. ".'. ou ..‘..fl "amn -.F:

o .l.. H'..l ‘:.l-. ' L] .I..'. ‘...-.....f-’ +

o 2 L : L [] [] [] :

O ! ! i ! i |

- 0 2000 4000 : 6000 8000 10000

o6 | |

= | | |

5 | |

E 04t | |

q) | |

£ L | !

® ! :

c) I

x 0.2~ . b

e | | X | ! |

> 0 2000 4000 6000 8000 10000
Time (s)

Figure 8


https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/347252; this version posted June 14, 2018. The copyright holder for this preprint (which was

A not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.
VOR Gain VOR Phase
300.00 300.00 120°
° o
O 40.00 ©)] 40.00
o2 o2 140°
HE 775 B2 775
a > a -}
5o 1.00 55 1.00 | ’
" " : 160
o o
0.135 0.135
0.03 0.03 180°
0.005 0.025 0.18 1.35 7 52 0.005 0.025 0.18 1.35 7 52
LTD/LTP LTD/LTP
MF - MVN MF - MVN
R VOR
Gain & Phase
300.00
=40.00
@)
0 £ 7.75
SE
07
H 5 1.00
o
0.135
0.03
0.005 0.025 0.18 1.35 7 52
LTD/LTP
MF - MVN

Figure S3-1


https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/347252; this version posted June 14, 2018. The copyright holder for this preprint (which was
A not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

VOR Gain VOR Phase

1 52
7
oS S
Q > Q S 1.35
E L:_ 0.5 E L:_
—= —1= 0.18 ] 60°
0.025
0 0.005 180°
0 2000 6000 10000 0 2000 6000
Time (s) Time (s)
VOR
B Gain & Phase
1
0.5
n$
5= 0
S,
s

Figure S3-2


https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/347252; this version posted June 14, 2018. The copyright holder for this preprint (which was
A not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

VOR Gain VOR Phase
300.00 1 300.00 120°
3 40.00 S 4000
() (0] o

= o = 140

SRS 05 B E 775

alry a &

F% 100 £ &

-1 . — I 1.00 o
L L 160
0 0135 EREC

0.03 0 0.03 = ' 180°
0.005 0.025 0.18 1.35 7 52 0.005 0.025 0.18 1.35 7 52
LTD/LTP LTD/LTP
MF - MVN MF - MVN
VOR
B Gain & Phase
300.00 — ‘ 1
3 0.5
(0]

ac

5 0

al

B
L
o -0.5

-1
0.005 0.025 0.18 1.35 7 52
LTD/LTP
MF - MVN

Figure S3-3


https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/347252; this version posted June 14, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

VOR Phase-reversal VOR *ﬁ

—~ # el
> 150 T
RS
S 100+
@© 9
< |
s
x 50,
O i
> o |

0! | \ - |

0 8000 16000 24000 32000

Time (s)

150

100

VOR phase (deg)

50

@ no-CS Purkinje Cell

B Wild mice data @ CS Purkinje Cell

Figure S5-1


https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/347252; this version posted June 14, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

CS Purkinje Cell

Right 1

?

/aAN

Left_ ]

Right 4

;

J
3

Left )

D
;

5

Figure S6-1

t=10000 s

500ms

t=22000 s

500ms

t=32000 s

500ms

no-CS Purkinje Cell

Right 4

D
|

0]
Left_1U/
Right 1
OM
Left_1M


https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/

Numberof Samples

Poisson distribution
Probability of ocurrence

bioRxiv preprint doi: https://doi.org/10.1101/347252; this version posted June 14, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1000

800

600

400

200

0.4

0.3

0.2

0.1

IO 1Hz average

10 20
Frequency (Hz)

0

10 20
No. of ocurrences

Figure S7-1

10 4.75Hz average

IO 8Hz average

2500 2500
2000 2000
1500 - 1500
1000 1000
500 500
00 10 20 00 10 20
Frequency (Hz) Frequency (Hz)
0.4 0.4
0.3 0.3
0.2 0.2
0.1 A=4 01 A=8
00 16 20 00 16 20

No. of ocurrences

No. of ocurrences

IO 10Hz average

3000

2000

1000

00 10 20
Frequency (Hz)
0.4
0.3
0.2
0.1 A=10
00 16 20

No. of ocurrences


https://doi.org/10.1101/347252
http://creativecommons.org/licenses/by/4.0/

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 7
	Page 14

