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Traveling patterns of neuronal activity — brain waves — have been observed across a breadth
of neuronal recordings, states of awareness, and species, but their emergence in the human
brain lacks a firm understanding. Here, we analyze the complex nonlinear dynamics that
emerge from modeling large-scale spontaneous neural activity on a whole-brain network
derived from human tractography. We find a rich array of three-dimensional wave patterns,
including traveling waves, spiral waves, sources, and sinks. These patterns are metastable,
such that multiple spatiotemporal wave patterns are visited in sequence. Transitions between
states correspond to reconfigurations of underlying phase flows, characterized by nonlinear
instabilities. These metastable dynamics accord with empirical data from multiple imaging
modalities, including electrical waves in cortical tissue, sequential spatiotemporal patternsin
resting-state MEG data, and large-scale waves in human electrocorticography. By moving the
study of functional networks from a spatially static to an inherently dynamic (wave-like)
frame, our work unifies apparently diverse phenomena across functional neuroimaging
modalities and makes specific predictions for further experimentation.
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Introduction

A central aim in neuroscience is to understand how complex brain dynamics emerge from
brain structure. Thus far, attention has been largely directed toward understanding long-time
averaged measures of brain activity such as correlations and power spectra — that is, static
summaries of the underlying dynamics. While the importance of dynamics has long been
known in electrophysiology experiments, human neuroimaging has been slow to embrace this
additional information. But this is rapidly changing, due to advances in imaging technology,
such as fast functional magnetic resonance imaging (fMRI), and accompanying analysis
methods. Time-varying analyses have recently revealed richer dynamics than previously
appreciated: brain activity exhibits switching between metastable states [1], stochastic jumps
between multistable states [2], transiently-expressed functional networks [3], and large-scale
waves [4]. Yet with the exception of the pathological strongly-nonlinear dynamics in
epileptic seizures [5, 6], theory and modeling have fallen behind the body of empirical
results. Various empirical debates have appeared in this vacuum, such as the existence and
nature of non-stationary (dynamic) functional connectivity [3, 7, 8]. Models with
physiologically-meaningful parameters have much to contribute here, through their ability to
specify candidate causes of complex patternsin empirical data[9].

Waves are a canonica example of dynamical phenomena in biological systems [10]. A
diversity of neuronal wave patterns have been observed on mesoscopic [11-15] and whole-
brain scales [4, 16-18]. These waves are not merely epiphenomena: For example, they have
been reproducibly observed in visual processing [19] — carrying the primary stimulus-evoked
response in visual cortex [11, 20]; reflecting information flow in response to dynamic natural
scenes [21]; encoding directions of moving stimuli [22]; encoding stimulus positions and
orientations [23]; underlying bistable perceptua rivalry [24]; reinforcing recent visual
experience [25]; and also occur pathologically during visual hallucinations [26]. Waves have
been observed in primary motor cortex, where they mediate information transfer during
movement preparation [12], can be induced by optogenetic stimulation [27], and revea the
nature of the excitability of neural tissue [28]. They have also been implicated in
sensorimotor processing of saccades [29], propagating seizure fronts [30, 31], and observed
during sleep with a possible role in memory consolidation [4]. Waves have been reported in
diverse neuroimaging modalities including voltage-sensitive dyes (VSD) [11, 20, 25, 32-34],
local field potentials [12, 15, 21, 22, 29], electrocortigraphy [4], electroencephalography
(EEG) [16, 17], magnetoencephalography (MEG) [35], fMRI [24]; and inferred from close
analysis of psychophysical phenomena [36]. The widespread occurrence of cortical waves
opens many questions [18]: What is their basis? Is each instance a uniquely determined
phenomenon or do there exist deeper unifying principles? How do particular waves appear
and disperse, and how do they relate to stationary patterns of activity? Computational models
are required to tackle these questions.

The linear treatment of cortical waves under idealized assumptions regarding cortico-cortical
connectivity has been well-studied [37, 38], particularly for standing waves [39, 40], as has
neuronal wave pattern formation in abstract mathematical settings [26, 41-45]. But large-
scale waves and spontaneous transitions between different emergent patterns in models of
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brain dynamics constrained by empirical connectivity data have not been explored. Here, we
show that large-scale metastable waves emerge and dynamicaly evolve on the human
connectome, whereby the system visits multiple patterns in sequence, and no single wave
pattern endures. We first construct a model of macroscopic brain dynamics composed of
local brain regions interacting through diffusion-MRI derived connectivity data. We then
simulate whole-brain dynamics, from which we characterize the emergent metastable wave
dynamics and compare to resting-state data. Finally, we cast these metastable dynamics as
reorganizations of the underlying wave flows, and relate the wave sources and sinks to the
underlying brain anatomy. Importantly, we show that the presence of these waves does not
depend upon the choice of neural model, and is replicated on two independent whole-brain
connectomes.

Results

We modeled large-scale brain dynamics using a network of coupled neural masses [46-51].
This approach has two main components: a local mean-field model that describes neuronal
dynamics in each region, and a structural connectome that introduces connectivity between
regions [9]. We describe the local dynamics of each brain region with a conductance-based
neural mass [52]. The model has three state variables per region: the mean membrane
potential of excitatory pyramidal cells, the mean membrane potential of inhibitory
interneurons, and the average proportion of open potassium ion channels. We concentrate on
dynamics in the absence of noise.

Regions are coupled by connections between the excitatory populations. We use connectomic
data derived from healthy subjects using probabilistic tractography [53]. This yields the
connectivity matrix, which describes direct connections between regions and the strengths of
these connections. Here, we define the connection weights as proportional to the numbers of
streamlines joining each pair of regions, averaged across subjects and divided by the
streamline lengths between regions [53, 54]. A globa coupling constant ¢ scales all the
connection weights, and operates as a tuning parameter that sets the overall excitability of the
brain [55]. We also include delays between regions, which are important [46], particularly for
inter-areal synchronization properties [48, 56]. As a first approximation, we use a constant
delay t for all connections.

The key novel model ingredients here are that we (i) explore a range of coupling strengths
and delays beyond the narrow area of parameter space previously studied; (ii) use higher-
quality and denser connectivity data than previous modeling studies [49, 50]; and (iii) focus
on spatiotemporal dynamics unfolding on a wide range of time scales including the very
short, not just long-time averages.

Emergent wave dynamics

We choose a coupling strength higher than has typically been explored previously [48-50,
56]. Along with short delays, this strong coupling means that each region exerts a strong
influence on its neighbors, which tends to favor local synchronization [52]. Starting from a
broad diversity of random initial conditions, we find that cortical activity reliably and rapidly
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self-organizes into spatiotemporal patterns (Fig. 1). There appears a diversity of patterns of
wave dynamics: traveling waves (Fig. 1a, Supplementary Movie 1), rotating (or spiral) waves
(Fig. 1b, Supplementary Movie 2), and sources and sinks (or breathers) in which activity
either emanates from or converges toward a localized point (Fig. 1c, Supplementary Movie
3). The wave patterns are highly coherent across the cortex, to the extent that most regions
contribute to any given pattern. This large spatial scale is consistent with waves observed in
human sleep spindles [4] and slow-wave sleep [57].

Propagation speeds represent a succinct and testable attribute of such predicted waves. Wave
propagation speeds (see Methods) collated over all wave patterns and brain regions show an
approximately lognormal distribution (Fig. 2a). Speeds across all regions and time points in
our model have a median of 26 m s™ although they vary widely with 10" percentileat 14 m's
! and 90™ percentile a 64 m s™*. We next asked whether the speeds are homogenous across
the brain. To test this, we calculated the mean speed in each brain region across all wave
patterns. Nodal mean speeds range from 23-52 m s* (Fig. 2b), slower than the nodal
maximum speeds and considerably narrower than the full set of instantaneous speeds. Nodal
speed is associated with node degree such that hubs tend to support lower speeds than
peripheral nodes (r = -0.17, p = 8.1x 107°; Supplementary Figure 1), consistent with
heterogeneity of time scales found in prior work [48]. Spatialy, the main trend is that nodal
speeds are roughly bilaterally symmetric, and increase with distance from midline (Fig. 2c).
However, there is additional spatial structure (Fig. 2d). The regions supporting faster wave
fronts form a roughly contiguous zone in each hemisphere, spanning from the frontal |obe to
the occipital lobe, via the parietal lobe and posterior aspects of the temporal |obe. Slower
regions primarily occur on the midline and toward the anterior pole of the temporal lobe. The
bimodal nature of the speed distribution (Fig. 2b) suggests that slow and fast regions partition
into two somewhat distinct clusters.
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Figure 1: Large-scale wave patterns in the model. Ten snapshots of the dynamics of the
pyramidal mean membrane potential V at latencies indicated on the time axes, for (a) a
traveling wave; (b) a rotating wave; and (C) a pattern with sinks (red areas shrinking for
latencies 0-3 ms) and diffuse sources (broad red areas emerging for latencies 6-9 ms). These
results are for strong coupling ¢ = 0.6 and short delay T = 1 ms.
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Figure 2: Wave propagation speeds. (a) Histogram of logio(speed) across al nodes and
times. (b) Histogram of average speed (in m s?) at each node. Red line shows a kernel
density estimate. (c) Mean speed in each region as a function of the lateral distance from the
midline. (d) Spatia distribution of nodal mean speeds as viewed (clockwise from left) from
the top, right, and back. These results are for strong coupling ¢ = 0.6 and short delay 7 = 1
ms, asin Fig. 1. Source data are provided as a Source Datafile.

To place this in terms of the classic functional networks, we assigned brain regions to twelve
subnetworks (somatomotor hand, somatomotor mouth, cingulo-opercular, auditory, default
mode, memory, visual, fronto-parietal, salience, subcortical, ventral attention, and dorsal
attention) according to a broadly-used functional subdivision of the brain [58]
(Supplementary Figure 2). The top ten fastest nodes lie in the somatomotor hand, auditory,
default mode, fronto-parietal, and ventral attention networks. The top ten slowest nodes lie
also in the default mode (thus indicating a wide diversity in its wave speeds), plus memory
and visual regions.

M etastabl e transitions

The observed diversity of types of wave patterns (i.e., traveling waves, rotating waves, and
sources and inks) occurs for a fixed set of parameters — the dynamics shown in Fig. 1
transition spontaneously between different patterns Supplementary Movie 4). The system
dwells in a single wave pattern for many repeats of a particular wave oscillation, then
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exhibits a relatively rapid reconfiguration into the next pattern. These are spontaneous
transitions that occur in the absence of noise or other external inputs. This rules out
multistability as a mechanism for the transitions, which requires the application of a
perturbation to kick the system between attractors [2, 59]. Instead, what we observe is
metastability, a form of “winnerless competition” whereby the system's orbits visit multiple
patterns in sequence, and no single pattern endures [59].

To quantify these metastable transitions, we use the fact that any particular wave pattern is
composed of specific phase relationships that vary relatively smoothly across space and time.
The waves we observe have long wavelengths on the whole-brain scale, so signals averaged
over a large area of cortex typicaly do not cancel out, as would be expected if short
incoherent wavelengths dominated. To capture a metric of these patterns, we hence partition
the brain into the two hemispheres and calculate the instantaneous coherence within each
hemisphere (see Methods). We then calculate the sliding-window, time-lagged cross-
correlation between these two intrahemispheric coherences. We term this the
interhemispheric cross-correation function.

As a particular wave pattern propagates across the brain, this pattern of correlated phase lags
between the hemispheres is relatively constant. To see this, notice that during a metastable
pattern (Fig. 3a), the same "signature” (alternating blue and red as a function of lag) persists
on the time scale of hundreds of milliseconds, varying relatively slowly in time within any
individual pattern (as shown by the way the blue and red stripes evolve slowly). At the time
of a metastable transition, the large-scale wave pattern breaks up and disorganized short
wavelengths dominate. Thus, the metastable wave signatures are separated by narrow periods
of time with relatively low correlation between the hemispheres. That is, metastable
transitions exhibit a brief desynchronization during which wave patterns reconfigure.

Here we used an interhemispheric partition, but any partition can be used in principle. We
additionally tested partitions along the anteroposterior and dorsoventral axes, and found that
they also capture the transitions (Supplementary Figure 3). However, it turns out there is
specific information in the interhemispheric partition: front-back and top-bottom partitions
are more similar to each other than they are to the left-right partition, possibly reflecting the
unique ‘gating role’ of the corpus callosum. Thus some transitions occur across multiple
partitions, while other partitions are sensitive to transitions with specific spatial (or
topological) structure. This suggests a hierarchy of transitions: transitions for which the
choice of spatial (or topological) partition matters, and more dramatic transitions that are
evident in all partitions. Future work is required to catalog these possibilities.
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Figure 3: Metastable transitions. (a) Each pattern has a "signature” in the interhemispheric
cross-correlation, with transitions between different patterns revealing a brief period of
desynchronization. (b) Vertical lines depict instances of low values of the interhemispheric
cross-correlation function, corresponding to wave transitions. These results are for strong
coupling ¢ = 0.6 and short delay t = 1 ms, asin Fig. 1.

We use these brief periods of phase desynchronization, yielding low values of the
interhemispheric cross-correlation function, to identify transitions: This is achieved by
thresholding the cross-correlation function when it is close to zero for al time lags (vertical
black lines in Fig. 3b; see Methods). Extracting al times corresponding to low
synchronization thus yields an automatically-computed set of transition times, from which we
can calculate the distribution of dwell-times (Fig. 4a). We find that dwell times follow a
skewed unimodal distribution.
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Figure 4: Dwell time distributions. (a) Model for ¢c=0.6, d=1 ms. (b) Resting-state MEG data
from [60]. (c,d) Upper cumulative distributions (black circles) on double logarithmic axes for
dwell timesin (c) the model, and (d) MEG data. Lines are maximum likelihood fits to upper
tails for the power law (Pareto, red), exponentially-truncated power law (green), lognormal
(blue), exponential (cyan), and stretched exponential (Weibull, magenta) distributions. Tail
cutoffs at dwell times of 100 ms. Source data are provided as a Source Datafile.

Visual inspection of the wave dynamics shows that the same classes of waves (traveling,
rotating, etc.) frequently reappear, but the precise directions of propagation and spatial
configurations appear to vary. Do specific patterns recur [4, 33]? To test this, we calculated
the alignment of each node's velocity field with all of its past and future states. The average
of this alignment over nodes gives an estimate of the recurrence of a specific wave pattern
between different time points. We hence find that wave patterns do frequently reappear
(Figure 5a). Moreover, they appear to do so more strongly than for linear surrogate time
series (Figure 5b). To statistically test for such recurrences, we generated recurrence plots
from an ensemble of linear surrogate time series (that preserve the amplitude distribution and
linear spectra and cross-spectra but destroy nonlinear structure) and compared the ensuing
distribution of whole-brain recurrence values with the empirical time series (Figure 5c).
Doing so confirms the substantially larger (correlated and anti-correlated) recurrences of
spatiotemporal  wave patterns and, through statistical thresholding, permits formal
identification of when these occur (Figure 5d).
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Figure 5: Recurring flow patterns. (a) Recurrences between the mean alignment of velocity
fields v; and v; at times t; and t;, respectively, in the model wave dynamics for c=0.6, T = 1
ms. (b) Recurrences for one instance of an amplitude-adjusted Fourier surrogate time series
derived from the simulation used in panel a. (c) Histograms of recurrence values for the
model (blue) and one surrogate (red). (d) Recurrence points where the model recurrence
alignment was greater than (red) or less than (blue) all 100 surrogates. Red points correspond
to flows aligned in the same direction, while al blue points correspond to flows aligned in
opposite directions.

Comparison to resting-state data

Transitions between dynamic spatial patterns have been recently reported in empirical resting
state MEG data [1, 60]. Dwell-time distributions in these data were calculated as the times
between transitions from consecutive spatial patterns using in a hidden Markov model with
12 states [60]. As in our model, these dwell time distributions exhibit skewed unimodal
distributions (Fig. 4b). The individual states have median dwell time 48 ms, similar to the 56
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ms median dwell time found in the model (p=0.064, Wilcoxon rank-sum test). More
importantly, the distributions are of a very similar shape in their upper tails. To show this
more clearly, we plot the upper cumulative distributions (Fig. 4c-d). Both distributions
exhibit heavier tails than simple Gaussian or exponential distributions (cyan lines), but have
thinner tails than a power law. Both exhibit good agreement with exponentially-truncated
power laws (green), particularly in the data where the truncated power law outperforms the
alternative candidate fits (two-sided p=1 x 10~ and p=4 x 10~° for truncated power law
versus lognormal and stretched exponential, respectively, using Vuong's test). In the model,
while the exponentially-truncated power law again yielded the best fit, similar quality fits
were found for lognormal and stretched exponentia distributions (two-sided p=0.067 and
p=0.14 for truncated power law versus lognormal and stretched exponential, respectively,
using Vuong's test). Our model thus provides a plausible mechanism for the dwell times of
these metastable transitions.

Although the waves observed in our model are highly dynamic, they nonetheless bear atime-
averaged signature. We thus asked what our metastable waves would look like through the
standard lens of static resting-state functional connectivity (FC) as studied in fMRI. The
metastable states here are relatively long-lived (mean lifetime 89 ms) but still much shorter
than the typical temporal resolution of fMRI. Despite this tempora mismatch, there is
empirical evidence that short-lived states visible in electrophysiology do leave an imprint on
the correlations between regions at time scales visible to fMRI [1]. Calculating FC in this
way on our modeled time series, after convolution with a hemodynamic response function,
reveals that edgewise FC values in the model correlate with those in long-time resting-state
fMRI averaged over the same group of subjects both without (r=0.30, 95% CI [0.293, 0.303],
two-sided p<10™°) and with (r=0.41, 95% CI [0.409, 0.418], two-sided p<10™*®) global signal
regression. This agreement compares favorably with that established in other biophysical
models (~r=0.1-0.5) [49, 61, 62], which is particularly notable given that our finely-
parcellated network has an order of magnitude more regions and two orders of magnitude
more connections than those typically used to study whole-brain dynamics. In addition, we
compared the model FC to FC derived from MEG data. We calculated alpha band (8-13 Hz)
amplitude-envelope correlations from our model time series, following a recent study [51].
Again we found that the model FC correlated with the empirical FC (r=0.34, 95% CI [0.31,
0.38], two-sided p<10™). Thus through the faster lens of MEG amplitude correlations, our
metastable waves again recapitul ate the FC observed empirically.

Note that here we have not tuned parameters to optimize these relationships. Instead, this
shows that when viewed on the long time scale of average FC, complex wave dynamics have
similar explanatory power to other model mechanisms that have been used to link brain
network structure to FC. Note also that the shared structural connectivity between the model
and the fMRI datawould likely contribute to this correlation [49, 61, 63].

Spatiotemporal scaffold

We next sought to quantify the wave dynamics in a manner that would allow a better
understanding of the dynamic processes underlying the wave transitions. To achieve this, we
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exploited the fact that the velocities form atime-varying vector field (Fig. 6a, Supplementary
Movie 5), which evolves more slowly than the waves themselves (compare Fig. 6a middle to
Fig. 6aleft). That is, for any specific wave pattern, the vector field is aimost invariant while
the waves themselves evolve. Transitions between distinct wave patterns coincide with
reconfigurations of this vector field. We hence treated the velocity vector field at each time as
a snapshot of the flow of activity implied by the waves. To infer the instantaneous flow, we
employed a streamline algorithm to trace the paths along the flow vectors, similar to the
methods underpinning tractography using tensor-based diffusion imaging data. We calcul ated
the streamlines starting at the 513 nodes in both the forward and backward directions (by
inverting the flow vectors). This reveals sinks where the flow congregates and sour ces where
the flow emerges.

x(mm}

x (mm}

1000 1200 1400 1800
t(ms)

Figure 6: Phase flow tracked across space and time. (a) Snapshots of waves (left, colored by
voltage as in Fig. 1), the corresponding phase flow vectors (middle, colored by orientation in
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the 2-D plane shown), and phase flow streamlines (right, blue and red denote forward and
backward streamlines, respectively). (b) Exemplar streamlines near metastable transitions,
colored as in panel (a), viewed from the top, back, and right (rows 1-3, respectively). Shown
are two sets of three snapshots, each surrounding a transition as indicated (gray) in the panel
below. Highlighted points (filled circles) denote clusters that form sources (red) and sinks
(blue). Black arrows denote the progression of time; colored arrows denote the features
referred to in the text. (c) Lateral positions (displacement from the midline, x) of sinks (top)
and sources (bottom) plotted across time, colored by vertical (dorsoventral) position z
Vertical black lines denote transition times calculated using interhemispheric cross-
correlation.

Doing this reveals that streamlines typically exhibit a complex spatial arrangement, with
multiple dense areas — these are the sources and sinks (Fig. 6a, right). When patterns exhibit
stable travelling wave or breather solutions, the sinks and sources are typically isolated single
points reflecting the dominant flow of the waves. Even though we have not imposed any
temporal smoothness in the velocity or streamline estimation (e.g. using filters or
regularization as done in optical flow methods [15]), the streamlines are well-behaved across
time, reflecting the stability and order of the underlying activity patterns. In the example
shown here, there are sources along the midline and sinks positioned lateraly in both
hemispheres. Occasionally the flow converges onto or diverges from a closed loop (e.g. the
source loop on the midline), corresponding to rotating wave patterns. The streamlines also
form "bundles”, where nearby trajectories bunch together on approach to a sink (or from a
source), revealing major pathways of activity flow.

Similar to the stable and unstable fixed points in a dynamical system, the sinks and sources
succinctly summarize the dynamics of a given wave pattern. They essentially form a scaffold
around which the dynamics are organized. We identify these points by finding where
streamline points form dense clusters, after transients (see Methods). The sources and sinks
are relatively stable on time scales of ~100 ms, with these stable periods punctuated by
relatively rapid reconfigurations in space (Supplementary Movie 6). We find that metastable
trangitions typically coincide with the abrupt dissolution or collision of one or more sources
and/or sinks. Two exemplar metastable transitions are shown here. The first (Fig. 6b, left)
shows two frontal left-hemisphere sources and a sink that merge and reconfigure to yield one
left frontal source (green arrows), while in the right hemisphere one frontal source and one
frontal sink move closer together (purple arrows) and a temporal sink emerges (yellow
arrow). The second example (Fig. 6b, right) exhibits complex frontal clusters of sources and
sinks that split and move posteriorly (dark red arrows), plus the emergence of an occipital
sink (light blue arrow). Tracking all sources and sinks over time suggests that these
reconfigurations typically coincide with desynchronizations in the interhemispheric cross-
correlation function (black lines in Fig. 6¢ denote the same times as in Fig. 3b). To quantify
this, we estimated the moment-to-moment temporal variability of sources (and sinks) by
calculating the standard deviation of the number of visits of sources (and sinks) to each node,
and averaged this across nodes. We used short sliding windows (non-overlapping of length
20 ms), to specifically detect rapid reconfigurations. Windows containing a cross-correlation-
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derived transition exhibit 14-20% higher temporal variability than those without a transition
(medians for sources: 0.018 vs 0.015, p<10™*; medians for sinks: 0.024 vs 0.021, p<10™;
two-sided Wilcoxon rank-sum tests). We also observe that sinks tend to be more localized
and less variable in time than the sources, which are often diffuse. The differences in
temporal variability are highly significant (medians for sources vs sinks, 0.022 vs 0.016,
p<10™, two-sided Wilcoxon rank-sum test). The more erratic nature of the source locations
is evident when comparing the upper (sinks) and lower (sources) panels of Fig. 6¢. Moreover,
there is a tendency for sources and sinks to remain within a single hemisphere (i.e., the
trajectories traced by colored dots in Fig. 6¢ tend not to cross x=0). This may reflect the
relatively weaker interhemispheric connectivity acting as a barrier to sources and sinks
traversing the hemispheres, or because the relatively small “aperture” causes them to collide.
It could also be that slowing toward the midline means they dissolve before they get a chance
to cross.

In sum, the positions of sources and sinks reflect the nature of the wave pattern at that instant
in time. Metastable transitions between wave patterns correspond to their dissolution,
emergence, or collisions, analogous to bifurcations in low-dimensional dynamic systems.

Wave sources and sinks are distributed heterogeneously across the network

We next determined how the organizing centers of the waves are spatially distributed across
the cortex. Similar to the mean speeds in Fig. 2d, the sources and sinks are heterogeneously
distributed (Fig. 7a, b). While this is to be expected to an extent because singularities of the
flow tend to occur where flow is zero (cf. the center of a spiral wave in 2-D), we also find
regions that are highly-visited sinks but have relatively fast average flow. Sinks primarily
cluster in frontal and lateral parietal areas (Fig. 7a), while sources are more diffuse, occurring
more frequently in midline and temporal areas (Fig. 7b). This preference for midline sources
may partly underlie the distribution of nodal speeds, which are typically low in the same
regions (Fig. 2d) because wave fronts propagate slowly in the vicinity of a source and gather
speed further away.

Do these preferential sites of sources and sinks overlap with canonical functiona
subnetworks (that possess strong internal functional connectivity) [58]? Both sinks (Fig. 7c)
and sources (Fig. 7d) overlap non-uniformly with these functional networks (sinks:
F(12,500)=3.5, p=5.7x10"; sources. F(12,500)=3.7, p=1.9x10° ANOVA; Supplementary
Table 1). For example, while there is substantial overlap, the ventral attention subnetwork is
visited by sinks on average more often than each of cingulo-operculum and subcortical, while
sources visit the somatomotor hand network more often than others including the default
mode.

We also studied how these waves were shaped by the network properties of the structural
connectome, finding a positive but relatively weak correlation between node strength and
visits to sources (r=0.098, 95% CI [0.012, 0.18], p=0.026) but not sinks (r=-0.025, 95% CI
[-0.11, 0.061], p=0.57). That is, stronger hubs are more likely to be sources than nodes that
are more topologically peripheral. To further elucidate the role of hubs we compared the top
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75 nodes by strength (the strongest hubs) with the bottom 75 nodes by strength (the non-
hubs) and the middle "feeder" 363 nodes. While there is substantial overlap, this anaysis
confirmed that the feeder nodes act as sinks significantly more often than hubs and non-hubs
(for details, see Supplementary Table 2; Fig. 7€), while the hubs act as sources significantly
more often than the non-hubs (Fig. 7f).
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Figure 7: Source and sink properties. (a) Spatial distribution of sinks. (b) Spatial distribution
of sources. () Overlap of sinks with functional networks. Blue denotes networks with fewer
visits than red, and gray denotes no significant difference from any other group. Networks are
labeled as: SH=Somatomotor Hand, SM=Somatomotor Mouth, CO=Cingulo-Opercular,
AUD=Auditory, DM=Default Mode, MEM=Memory, VIS=Visual, FP=Fronto-Parietal,
SAL=Sdlience, SUB=Subcortical, VA=Ventra Attention, DA=Dorsal Attention,
UNC=Unclassified. (d) Overlap of sources with functional networks. Colors as per panel (c).
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(e) Overlap of sinks with hubs (top 75 nodes by strength), feeders, and non-hubs (bottom 75
nodes by strength). Colors as per panel (c). (f) Overlap of sources with hubs, feeders, and
non-hubs. Colors as per panel (c). White circles in violin plots denote group medians, violins
are kernel density estimates. Statistics for panels (c)-(d) are given in Supplementary Table 1
and for panels (e)-(f) in Supplementary Table 2. Source data are provided as a Source Data
file.

Robustness to changes in parameters, connectivity, and models

We explored the robustness of the wave patterns to changes in the model and network details.
First, we explored how the model dynamics vary over a range of coupling strengths and
delays. Our aim here was to ensure that waves are not rare (confined to a unique combination
of parameters), and to link the present findings to previously-studied dynamical regimes. The
diversity of patterns across parameter space is complex (Supplementary Movie 7). The broad
differences are captured by functional connectivity matrices (Fig. 8a). We find four main
classes of dynamics: waves, discrete clusters, near fully-synchronized states, near fully-
desynchronized states, as well as hybrids of these. Broadly speaking, waves exhibit much
stronger intrahemispheric FC than interhemispheric FC — or equivalently, stronger short-
range than long-range correlations — yielding a clear block diagonal structure (e.g. the c = 0.6,
T = 1 ms case studied in detail above). Wave patterns (Supplementary Movie 8) can be
relatively smooth (as above), or less coherent (e.g. for ¢ = 0.5, T = 1 ms) such that the longest
spatial scales exhibit wave patterns but within these waves, the phases are only partialy
synchronized between spatial neighbors. Waves are also primarily observed for stronger
coupling combined with longer delays, occurring across relatively large regions of parameter
space (e.g. for ¢ = 0.4-0.6, T = 6-10 ms). In contrast, discrete (non-propagating) clusters are
observed for weaker coupling (e.g. forc = 0.1, T = 0, 3, 5 ms). These discrete clusters exhibit
a marked bimodal distribution of FC values, where nodes within a cluster exhibit FC ~ 1
(dark red) while between clusters FC =~ 0 (green). In the discrete cluster regime, nodes split
into phase-locked clusters, with each cluster being activated sequentially (Supplementary
Movie 8), as explored in more detail previously [48-50, 56]. A hybrid of waves and clusters,
which we term lurching waves, exists for strong coupling and delays of 6-9 ms
(Supplementary Movie 8). Within this regime, travelling waves occur within clusters but do
not propagate continuously between clusters.

Our interhemispheric cross-correlation measure captures many of these dynamics (Fig. 8b).
For example, it is senditive to metastable transitions in partially-synchronized waves, as
evidenced by periods of strong interhemispheric cross-correlation punctuated by brief
desynchronizations (Fig. 8c). This measure is also sensitive to metastable dynamics even in
cases where the functional connectivity is globally weak (Fig. 8d). Conversely, there exist
desynchronized states with strong FC but no temporal dynamics in the interhemispheric
cross-correlation (e.g. ¢ = 0.6, T = 2 ms). Lurching waves exhibit two time scales, with
relatively-slowly evolving correlation structure interleaved with a faster cluster-switching
time (Fig. 8e).
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Figure 8. Dynamics as a function of coupling strength ¢ and delay 7. (a) Functional
connectivity matrices calculated directly from the neuronal time series (corresponding results
after convolution of the neuronal time series with a hemodynamic response function are
provided in Supplementary Figure 4). Each tile shows one FC matrix with axes indexing the
nodes 1-513. (b) Interhemispheric cross-correlation functions, showing al s segment (timeis
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on the horizontal axis in each tile) for lags between -30 ms and 30 ms (lag is on the vertica
axis in each tile). Exemplars in the text are highlighted here with colored outlines and shown
in corresponding panels: (c) weakly-coherent waves; (d) interhemispheric cross-correlation
dynamics despite negligible average FC; and (e) lurching waves.

Prior studies modeling neuronal dynamics on empirical connectomes have used the match
between predicted and empirical functional connectivity to tune underlying parameters
accordingly [62, 64-66]. We hence tested how spatial waves compared to these other
candidate spatiotempora patterns in their match to empirical resting-state functional
connectivity (Fig. 9). Intriguingly we find that the smooth waves observed for the parameter
combination of ¢c=0.6 and 7 = 1 ms yield the second highest correlation across the entire
parameter space tested (with or without global signal regression, GSR), only marginally
lower than the best global fit (for c=0.2 and r = 0 ms), which exhibited large-scale waves
coexisting with discrete clusters. Additional tuning of the model parameters could improve
this fit. Moreover, triangulating model fit with other dynamic metrics — wave properties,
dwell times, source/sink distributions — would improve the identifiability of the model
parameters from empirical data.

T {ms) T (ms)

Figure 9: Correlation between modeled and empirical functional connectivity as a function
of coupling and delay. (a) Pearson correlation between empirical and modeled FC values for
each pair of regions, without GSR. Numbers 1-3 indicate the top three highest correlations.
(b) Same as (a) but with GSR.

We also verified that the existence of wave patterns reproduces across connectomic data
(Supplementary Movie 9). Waves similar to those in our fully-connected weighted
connectome exist also in sparser networks (thresholded down to 10% density), and occur
whether using traditional weight-based thresholding [67] or consistency-based thresholding
[68] (mean nodal mean speeds 27 m s and 29 m s, respectively). Waves exist also on a
10%-density binary network thresholded by weight (with all weights set to 1; mean nodal
mean speed 33 m s%). This is consistent with the lattice-like formation of binary networks,
such that shorter connections are much more probable than longer connections. This is a
natural substrate to support the increased local synchrony required for wave patterns. We aso
observed waves arising on two entirely independent connectomes: an elderly connectome
derived using probabilistic tractography [69], and the 998-node Hagmann et a. connectome
derived using deterministic tractography from diffusion spectrum imaging [54]. Notably,
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waves arise on the connectomes from individual subjects, with similar speeds (subject mean
+ SD =33 + 2 ms?) and similar dwell times (subject mean + SD = 92 + 8 ms) across the
cohort (Supplementary Figure 5a,b). These distributions are fairly narrow, but there is some
variability due to the individual-subject connectomes. Future work will be needed to
determine how the details of the patterns vary across subjects as well as the impact on wave
properties of connectomic disturbances in brain disorders.

We aso verified robustness to initial conditions. Using an ensemble of 100 random initial
conditions and the group average connectome with ¢=0.6, 7 = 1 ms, we observed waves with
little variability across the ensemble in the nodal mean speeds (ensemble mean + SD = 35.3 +
0.3 m s?) and dwell times (ensemble mean + SD = 89 + 2 ms) (Supplementary Figure 5c,d).
Thus the choice of initial conditions only makes a small contribution to the summary
statistics of these waves.

To what extent does the structure of the human connectome contribute to the metastable
wave dynamics? To address this question, we simulated the dynamics on a completely
random network with the same number of nodes and same weight distribution as the original
human connectome (the R,, surrogate of Ref. [70]). To quantify the ensuing dynamics, we
introduce local and global synchrony order parameters Roca, Ryoba: The local but complex
structure of waves causes a relatively high Roca but modest Ryoba. For the combination of
c=0.6 and 7 = 1 ms the random network fully synchronizes, with Roca=Rgoa=1 (Fig. 10a;
see Methods for definitions of Rioca and Ryiona). Weaker coupling desynchronizes the nodes,
but does not yield spatially-coherent dynamics (Roca and Ryoba both low). That is, the purely
random network does not generate waves, because the randomization scrambles the spatial
relationships in the dynamics, rendering the spatiotemporal dynamics incoherent. Note that
random networks can support metastable dynamics, as evidenced by the interhemispheric
cross-correlations around ¢=0.3 having temporal structure. Thus metastable transitions do not
reguire a spatial embedding although waves do.
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Figure 10: Local and globa synchrony for surrogate networks. (a) Local and global
synchrony in fully-randomized networks as a function of coupling strength c. Lines show
synchronization order parameters Roca (solid) and Ryowa (dashed). Insets show the
interhemispheric cross correlations at representative values of ¢, denoted by the arrows. (b)
Loss of waves with progressive structural network randomization, parameterized by the
proportion of randomized edges. Insets show the (log-)weight-versus-fiber length
relationships (blue point clouds) and the interhemispheric cross correlations for the
proportion of randomized edges denoted by the arrows. Lines are an average over an
ensemble of 10 random surrogates at each point. () Waves in synthetic networks with pure
exponential weight-distance relationship, parameterized by the slope of the linear
logio(weight)-vs-fiber length relationship. Insets show the (log-)weight-versus-fiber length
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relationships for the synthetic exponential networks (blue) and the original network (gray),
and the interhemispheric cross correlations for the slope values denoted by the arrows.
Source data are provided as a Source Datafile.

We next sought to determine what happens between the case of the empirical connectome
and the fully-randomized connectome, by incrementally randomizing connections [70]. This
randomi zation progressively destroys the spatial embedding of the connectome and in doing
so introduces strong long-range connections [53, 70]. For relatively shallow randomization
(<15% of edges randomized), the dynamics continue to exhibit strong local synchrony
(Roca~0.9) and moderate global synchrony (Ryoba~0.5), sSimilar to the real connectome (Fig.
10b). Thus the existence of waves is robust to modest randomization of the network edges.
These wave patterns are also metastable, but their lifetimes slowly increase (Fig. 10b, insets).
From 20 to 25% of edges randomized, there is a rapid transition to a near-synchronized state
(Roca~1, Ryoba~0.9), which fully synchronizes beyond ~50% randomization. Thus, the long-
range connections introduced by network randomization tend to make the dynamics more
stable and synchronized, eventually abolishing waves as the depth of randomization increases
from the rea brain to the random surrogate network. Hence, waves require a sufficiently
strong spatial effect to emerge, and they are resilient to modest random network
perturbations.

To further understand the principles of wave generation, we next generated synthetic
networks with a purely-exponential weight-distance relationship (Fig. 10c). We find that this
pure exponential network generates metastable waves, with slightly higher synchrony than
the real brain (Roca=0.95, Ryoa=0.61), and similar lifetimes (Fig. 10c, left inset). Indeed
waves are also found for geometric surrogates that preserve the weight-distance relationship
but are otherwise random [53], exhibiting waves with Rioca=0.92 and Ry0,a=0.60. To see how
the waves depend on this exponential relationship, we tested a range of slopes (i.e.,
characteristic lengths) between the empirical best fit and the all-to-all network with no spatial
embedding. Note that again this has the effect of progressively increasing the strength of
long-range connections. Similar to the partial randomization case, we find that increasing the
characteristic length of the network connectivity increases the likelihood of long dwell times
and eventually causes the network to synchronize. These results suggest that the key feature
of the human connectome for generating waves is its spatial embedding, such that having
short-range connections stronger than long-range ones facilitates the spatially-localized
synchrony required for waves. However the specific properties of the waves on empirical
networks — their spatial distributions of sources and sinks etc. — depend upon the specific
configuration of the empirical connectome and cortical geometry.

Additionally, we verified that wave patterns persist in the presence of weak noise
(Supplementary Movie 10). These wave patterns have lower local synchrony than the noise-
free case but also exhibit metastability (Supplementary Figure 6). Interestingly, weak noise
also increases the global synchrony and dwell times, similar to the effects of stochastic
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resonance in other systems [71]. Further increases in noise decrease local synchrony and
extinguish the waves (at fixed coupling).

Finally, we verified that emergent waves are not restricted to our particular choice of neura
mass model. We tested two additional models. a network extension of the Wilson-Cowan
model [51, 72, 73] and the Kuramoto model [74, 75]; see Methods for details. In both models
we found large-scale waves (Supplementary Movie 11). In the Wilson-Cowan case, we
observed complex dynamics with smooth waves in competition with partially-coherent
activity that slowly intrudes onto the waves, leaving wave-like but less-coherent dynamics in
its wake. This coexistence of coherent and incoherent states is an example of a chimera state
[43]. In the Kuramoto case we observed waves when the model is in a regime of partia
synchronization. Both of these models have complex dependencies on parameter values,
similar to the neural mass model studied here.

Discussion

In this computational study, we have shown that the human connectome supports large-scale
wave dynamics in the resting state. Moreover, these waves exhibit metastability, with
spontaneous transitions from one pattern to the next. While metastability and waves in neural
systems have been studied in isolation, here we show for the first time that these dynamical
regimes are compatible, can arise from the human connectome, and can be explained with a
unified mechanism. We have developed analysis tools to quantify these dynamics. one
sensitive to coarse-grained phase dynamics, one sensitive to the spatiotemporal details of the
underlying dynamical flows, and one to detect recurring spatiotemporal patterns across
transitions. These new methods (available in the public domain) enable tests of our model
predictions, and open new avenues in the analysis of large-scale brain activity.

The distribution of sources and sinks in the wave flows organizes the spatiotemporal structure
of the dynamics. This suggests a different conceptualization of how information can flow
around the connectome. In network studies, the prevailing paradigm is that brain regions
communicate via the structural connectivity, through a composite of the direct and indirect
pathways between the two regions of interest. The net effect of the many paths remains
inadequately described in this picture. Our results provide an interpretation in terms of spatial
pathways along which activity preferentially flows — and hence potentially also pathways of
information flow, e.g. via communication through coherence [76]. This is a higher-level
description than simply following the fiber pathways, instead describing the net effect of
communication between brain regions as mediated through the organization of the large-scale
wave patterns. Moreover, we observe that metastable transitions in our simulations arise
through the collision, annihilation and/or creation of new sources and sinks. These dynamics
underlie the co-occurrence of waves (the nature and distribution of these nodes) and
metastability (their collision), hence providing a unifying mechanism for their co-occurrence.

The decomposition of waves into their sources and sinks naturally yields directionality in the
dynamics, providing information inaccessible to standard functional connectivity. For
example, sources can be thought of as "controlling" the resulting wave pattern, and
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intriguingly we find that these tend to associate with hub regions more so than non-hubs. This
may aso speak to the purported role of costly rich-club connections between hubs in
coordinating dynamics [77]. Wave sources and sinks also overlapped heterogeneously with
functional network properties. Although there is substantial overlap, this suggests that waves
may have functional specificity in the resting state. For instance, one subnetwork in which
sinks tend to congregate is the default mode, consistent with its purported unique role in task-
free/resting-state acquisitions. Task constraints may lead to a reorganization of wave patterns
with a consequential increase in the location and functional specificity of sources and sinks.
These observations are consistent with the presence of waves of rodent cortex, as evident in
VSD recordings, exhibiting heterogeneous spatia distributions including patterns of sources
and sinks [33] and bilateral symmetries [34]. These patterns reorganize upon brief whisker
stimulation, and include recurring sensory motifs embedded in spontaneous activity [33].
Moreover, wave patterns overlap with patterns of long-range structural connectivity,
suggesting a role for the connectome in shaping the dynamics. Note also that waves contain
information in their wavelength and carrier frequency that can be “read out” by dendritic
trees with the matching orientation and spatial wavelength [ 78] — the dynamic and metastable
patterns could hence yield distinct cognitive and behavioral consequences. Moreover, the
spontaneous transitions in metastability are similar to the itinerancy that emerges in coupled
oscillator systems [79], and to the heteroclinic cycles that have been proposed as a
mechanism for sequential cognitive processes and decision making [80]. Such theories of
functional switching could be tested by moving beyond dwell times to study transition
probabilities between specific patterns, as has been done for two-dimensional waves [15] and
transient MEG patterns [1]. Future application of our modelling and analysis methods to task-
related data will enable elucidation of these potential functional roles.

In the past decade, much of our understanding of large-scale resting-state brain dynamics has
been obtained through the lens of fMRI. With the exception of slow hemodynamic waves in
visual cortex [81, 82], it is not expected that fast neuronal wave dynamics can be easily
resolved through the low temporal resolution of fMRI. This speaks to a need for imaging
technologies that are sensitive to fast neuronal activity to observe such dynamics, such as
MEG, ECoG and VSD. Indeed, excellent spatiotemporal resolution is the norm in the animal
preparations where waves have been studied in the most detail. For human neuroimaging,
progress will require source reconstruction techniques that can appropriately accommodate
the complex amplitude-phase relationships and lagged covariances that reflect metastable
waves.

Most of the present analysis was performed in the absence of added system noise. Intrinsic
sustained fluctuations in this system emerge from the chaotic dynamics of each coupled node.
However, we also showed that the observed metastable wave dynamics are robust to the
addition of modest system noise. Incorporating noise and other input stimuli more
systematically also opens the possibility of exploring multistability — that is extrinsically
perturbed jumps between states. The present model is capable of exhibiting multistability:
e.g. for c = 0.5 and t = 15 ms, wave or discrete cluster dynamics may emerge, depending on
the choice of initial condition. Analysis of transitions between multistable states would also
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require the systematic study of stimuli or stochastic influences [2, 59, 83], which will be the
subject of future work.

A key parameter in our model is the coupling strength, which scales the overall influence of
activity from connected regions. There are several important points here. Frst, the
connectome exhibits a rapid, roughly exponential drop-off in connection weight with distance
[53]. In fact, this exponential drop-off is similar to the connectivity kernels used in neura
field models, where pattern formation is well-known [45]. Although there has been some
debate in the field as to the relative merits of continuum neural field models versus networks
of discrete coupled neural masses, we contend that these two approaches are more
complementary than has previously been appreciated, beyond the trivial point that continuum
models are routinely discretized for numerical simulations. Second, given the exponential
spatial kernel, most of the coupling influence is relatively local (< 50 mm). Local patches of
this scale are often lumped together in typical coarse parcellations of 50-100 nodes. This
smplification reduces the spatia resolution and may hinder wave formation, which is a
spatiotempora collective phenomenon of many regions. Third, the most strongly-coherent
waves were observed for strong coupling (in comparison to the coupling used in earlier
studies). It is possible that highly coherent waves observed here are more common in states
such as seizures, anesthesia, and sleep [4] than in healthy awake adults. The locally less-
coherent and lurching waves we observed may be a more likely candidate for the higher-
complexity associated with conscious states. The lurching waves encompass both the
functional segregation offered by sequentially-activated discrete clusters and the transient
localized (e.g. to within V1) wave patterns observed empirically [11].

Another important component of the coupling between regions is the propagation delay. The
best fits to functional connectivity and dwell times were observed for stronger coupling
combined with either short delays (t = 1 ms) or longer delays occurring across relatively
large regions of parameter space (e.g. for ¢ = 0.4-0.6, T = 6-10 ms). These parameters fall
within biologically realistic limits (with the stronger coupling and short delays emphasizing
the role of nearby nodes). We made the simple approximation of uniform delays between all
regions, where the delay is to be interpreted as a mean effective delay. This is a common
approach, and while there is some evidence for regional variation in myelination supporting
near-uniform delays between thalamus and cortex [84], it remains an approximation. The
next ssimplest approximation would be to assume a fixed conduction velocity instead,
implying a distribution of delays that increase with distance, as has been used in some studies
[46, 51]. Theredlity is that both delays and velocities vary between regions [85]. Future work
could address the roles of distributed delays on wave dynamics and metastable switching
times. Since distributed delays have been linked to increased stability of dynamics [86, 87],
we conjecture that wave dynamics may be more stable to perturbation with broader delay
distributions.

We also showed that waves are not specific to the neural mass model we employed but also
arise on the human connectome when using the Wilson-Cowan model [62] and the Kuramoto
model [64, 65]. These models fundamentally differ in the nature and time scales of their
internal dynamics, the degree of mathematical and physiological abstraction, and the
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coupling mechanisms. Prior studies of the Kuramoto model have shown that time delays and
spatially-constrained connectivity can engender the sort of multi-frequency effects presently
observed [64, 65, 75]. In addition, athough not formally analyzed a recent study of brain
eigenmodes using the Wilson-Cowan model also supports the emergence of traveling waves
[39]. The presence of waves across all three models speaks to principles that are independent
of particular choices of models or their parameters, although future quantitative analyses are
required to understand how these particularities influence the time scales and other properties
of the ensuing waves.

The metastable lifetimes depend on the synchronizability of the network (Fig. 10), the neura
mass membrane time scales, and inter-node delays. Transitions result from the tension
between different regions attempting to synchronize their phases with their locally-connected
neighbors, with each transition (and hence lifetime) precipitating from this tension giving
way to a new dynamically-evolving phase-synchrony pattern. The situation is analogous to
chimera states and metastability in other nonlinear dynamical systems coupled in a spatially
dependent manner [43, 75]. We observe that the nature (probability distribution) of the
metastable transitions of our model bear close resemblance to those derived from the analysis
of metastable switching in resting-state MEG data [1, 60], although there is a modest
quantitative mismatch in the precise form. Reducing this mismatch could act as a cost
function if fitting the wave dynamics more formally to empirical data. Both sets of dwell
times are broadly similar to a lognormal distribution, although formal testing shows other
long-tailed distributions (e.g. exponentially-truncated power law) can provide a similar
quality fit to the upper tails. Alternatively, the hidden Markov model method employed in the
MEG study could be applied to our simulations, after application of an appropriate forward
model. There is also scope to improve our phase-flow streamline methods.

In sum, waves of cortical activity appear in empirical recordings, across broad recording
modalities, species, and behavioral states. Here, we show that the human connectome
supports the spontaneous emergence of complex metastable brain waves. These are robust to
changes in model parameters, the choice of model, and the thresholding of the underlying
connectome. They reproduce across connectome data sets and yield qualitative matches with
empirical resting-state data. The widespread empirical observation of travelling wave
phenomena reproduced suggests a range of functional and potentially pathological roles in
cognition and states of awareness [18]. The present modeling study makes specific
predictions that can be further tested in these data and, moreover, yields novel quantitative
analysis techniques that allow for a fundamental shift from static to nonstationary analytic
frames.

M ethods
Connectomic data

We derived estimates of whole brain structural connectivity from diffusion images of 75
healthy subjects (aged 17-30 years, 47 females). Diffusion MRI data were acquired on a
Philips 3T Achieva Quasar Dual MRI scanner (Philips Medical Systems, Best, Netherlands).
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We estimated the fiber orientation distribution (FOD) within each voxel constrained spherical
deconvolution [88], implemented in MRtrix [89]. Tractograms were generated using a
probabilistic streamline algorithm [89], which produces a set of connection trajectories by
randomly sampling from the orientation uncertainty inherent in each FOD aong the
streamline paths. Our connectivity matrices were reconstructed from densely seeded
tractography (10° seeds) and parcellated into a relatively fine representation of 513 uniformly
sized cortical and sub-cortical regions [90]. The resulting weighted, undirected matrices were
nearly fully connected in each subject. The weights are the number of streamlines linking
each pair of regions, divided by the streamline lengths (see Ref. [53] for full details). Results
refer to a group-average connectome unless otherwise indicated.

Resting-state fMRI was recorded from the same subject cohort; 69 subjects had a full set of
both diffusion and resting-state images. Functional images were collected using a T2*
weighted echo-planar imaging sequence (188 images, TE = 30 ms, TR = 2000 ms, flip angle
= 90°, FOV 250 mm, 136 x 136 mm matrix size in Fourier space) and consisted of twenty-
nine contiguous 4.5 mm axia slices (no gap) covering the entire brain. Participants were
requested to clear their mind without falling asleep. Preprocessing of data used included
realignment, unwarping, anatomical co-registration, and spatial normalization. The functional
data were corrected for white matter and cerebrospinal fluid signal. Further details of image
acquisition and preprocessing are provided in Ref. [91]).

These structural and functional data were analyzed following approva from the QIMR
Berghofer Human Research Ethics Committee (HRECp1476). Written informed consent was
obtained from al participants following local institutional ethics approval.

Neural mass model

The neural mass model we used has been presented in detail elsewhere [52, 83]; here we give
a brief overview. This simple conductance-based neural mass model has three state variables
at each node j: mean membrane potential of local pyramidal cells V;, mean membrane

potential of inhibitory interneurons Z;, and the average number of open potassum ion
channels W;. Its dynamics are governed by:

% = _{gCa + TNMDAaee[(l - C)QV(Vj) + CQ]r'letwork]}mCa (Vj)(V] - VCa)
~{gvamwa (V) + @ee[(1 = Qv (V) + @} [}V = Viva) (1)
= gxW;(V; = V) = 9.(V; — Vi)
+a;.2;Qz(Z;) +anelo,
) — blando + aa0r (V)] @
dt nilo ei i Qv Vi)
aw; 3

d_t] = ¢[mg(V;) — Wj].
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Here, delayed inputs from other regions in the network enter through the term cQ}l‘*t"""rk =

¢ Xk G Qu (Vi (t — 1)) / Xk Cjie, Where 7 is the delay time, ¢ is the global coupling strength,
and Cj is the connectivity weight from region k to region j. Note that in Eq. (1), inhibitory
input is afunction of inhibitory activity and inhibitory membrane potential. Equations (1)-(3)
are nondimensionalized to have unit capacitance such that nondimensional time is
numerically equivalent to milliseconds [52]. Here I, is nonspecific input to excitatory and
inhibitory populations. The model distinguishes between AMPA and NMDA channels, where
Tnmpa denotes the ratio of NMDA receptors to AMPA receptors, and a,,, terms parameterize
the strength synaptic coupling from population x (= e,i,n, where e and i are the excitatory
and inhibitory populations, respectively, and n is a non-specific input) to population y (=
e,i). Parameters b and ¢ are rate parameters (inverse time constants) that determine the time
scales of Z and W, respectively. The g,,, terms in Eg. (1) are conductances of the
corresponding ion channels, and the m;,, (V) functions describe the voltage-dependent
fractions of open channels. They take the sigmoidal form

Mign (V) = 0.5 [1 + tanh (V Ti"") ] (4)
ton
where T;,, and §;,, are the mean and standard deviation, respectively, of the threshold
membrane potential for a given ion channel. The self-feedback of the pyramidal cellsis split
into a conventional voltage-dependent term for sodium channels a..Q, (V) (V — Vy,), and a
state-dependent term for NMDA-gated calcium channels, ryypaee Qv VIMeq V)V — Vig).

The voltage-dependent functions Q,, and Q, are the mean firing rates of the excitatory and
inhibitory populations, respectively, also given by sigmoidal forms

Qy(V) = 05Q,. [1 + tanh (V ;VVT) ] ©)

Q4(2) = 0.5s3y,, |1+ tanh (Z . ZT) | (6)

VA

where Qy,.. and Q. ae the maximum firing rates of the excitatory and inhibitory
populations, respectively, and V;; and Z; are the corresponding thresholds for action potential
generation, and §,, and §, are the standard deviations in these thresholds.

The inhibitory population Z is passively slaved to the pyramidal population: its membrane
potential (and resulting firing rate) is driven by the firing rate of the output of the pyramidal
cells, responding on a slow time scale parameterized by the factor b. The inhibitory
population thus acts as a passive low-pass filter of the pyramidal cells.

Noise simulations were performed by replacing the input current term a,,./, in Eqg. (1) with
anelly + on(t)], where an(t) is zero-mean Gaussian white noise with standard deviation ¢
[83]. The model was solved for 7 = 0 using the Heun scheme with atime step of 0.01 ms.

Parameter values are given in Supplementary Table 3.
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Functional connectivity

To estimate functional connectivity from the model simulations we calculated the pairwise
linear Pearson correlation coefficient between each pair of time series. We calculated
functional connectivity both on the mean pyramidal cell body potential (Fig. 8a), and after
estimating the BOLD signal (Supplementary Figure 4). We approximated the BOLD signa
for each region using linear convolution with a hemodynamic response function (as
implemented in SPM12's spm_hrf). This entailed downsampling to a 0.1 s time step using
an antialiasing Chebyshev Type | |IR filter of order 8 (as implemented in MATLAB'S
decimate function). We compared this convolution method to full solution of the nonlinear
Balloon-Windkessel model [92] and found the results similar, so employed the faster
convolution method.

To compare the model FC with FC derived from MEG data, we used the publicly available
amplitude-envelope correlations in Ref. [51]. We used the same approach as Ref. [51] to
derive the amplitude-envelope correlations from the model: Briefly, we mapped our 513-
node parcellation onto the 68 node parcellation used in the MEG anaysis by taking a
weighted average within each coarse parcel (weighted by overlap). We then bandpass filtered
to 8-13 Hz, orthogonalized the signals, calculated the Hilbert amplitude envelopes,
downsampled to 1 Hz, and calculated Pearson correlations between all pairs of amplitude
time series. We then compared our model FC to the group-average FC (across 55 subjects) in
the MEG dataset.

Hidden Markov Model

The transition times for the HMM were as derived in [60]. In general, the number of states
determines the level of detail in the analysis, such that increasing the number of states causes
states to split, yielding a hierarchical view of the data. Twelve was chosen without any claim
that this is the biological truth, but with checks for reliability of the state assignments across
half-splits in the data. Alternative approaches include use of free energy for model selection
purposes in amanner that balances model likelihood with model complexity.

I nterhemispheric synchrony

We use a measure of interhemispheric synchrony derived as follows. Using the Hilbert phase
¢;(t) at each node j we calculate the coherence for a set of nodes Sin terms of an order
parameter R¢(t), given by

LIN igsce ™
R(t) = 17 > i)

5114
JES

We can then calculate the two intrahemispheric coherences R, (t) for nodes L in the left
hemisphere and Ry(t) for nodes R in the right hemisphere. We define the interhemispheric
synchrony as the sliding-window time-lagged cross-correlation C(t, 1) between R, (t) and
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Ry (t). This quantity depends on time (via the windowing) and the cross-correlation lag |. We
use windows of length 100 ms and 90% overlap; like all sliding-window methods there is a
tradeoff between resolution and uncertainty in the estimates within each window. Here we
opt for increased smoothing at the expense of temporal resolution.

Time series of the time-lagged cross correlation were thresholded to identify transitions
between different spatiotemporal patterns. Transitions correspond to low cross-correlation for
all time lags. We calculated 1/Var[C(t,1)], the inverse variance across lags | at each t. We
then thresholded this quantity by calculating its mean and finding all suprathreshold time
intervals. Transition times correspond to the peak in 1/Var[C(t,1)] within each
suprathreshold interval. The dwell time distributions are robust to modest changes in the
value of thisthreshold.

Local and global synchrony

We wused the order parameter of Eq. (7) to calculae global synchrony
Rglobal = (Rpetwork(t)):, and loca synchrony Rjgcqy = «RLm(t))m)t: where (-), and (),
denote averages over time and nodes, respectively. Here, R, .cwork (t) 1S the coherence for the
whole network, while R;_(t) is the coherence for the set of nodes L,,, within a radius of
20mm of node m (including itself). For our parcellation and this radius, the local
neighborhoods contain 11 nodes on average (range 3-17). Rj,ca IS Sensitive to local
coherence and is hence high for waves. Rgjopar IS high for globally synchronized states and
takes low to moderate values when waves are present.

Wave velocities

We calculated the velocity vector field at each time point using a method similar to that of
Rubino et al. [12]. First we extracted the instantaneous phase at each node using the Hilbert
transform. The velocity v can be calculated from the spatial and temporal derivatives of the

phase ¢(x, y,z,t), a8V = — (|";—f| /||v¢||2) V¢. To calculate the spatial derivatives, we used

the constrained natural element method [93], a meshless method for solving calculus
problems on non-convex domains. This allowed us to calculate nodal quantities (specifically
the components of the gradient vector) without needing to interpolate to and from a 3-D grid,
which can introduce edge effects for nodes on the brain's convex hull. To handle phase
unwrapping, we caculated the gradient of e@®»%t and used the identity
9% _ _jo-iv 2 gi¢

ox 0x )

Flow streamlines

To calculate streamlines following the velocity vector field, we used a simple Euler stepping
routine starting from the individual nodes. Flow at each point was estimated using
constrained natural neighbor interpolation [93]. We used a maximum step length of 8 mm,
and stopping criteria of the streamline leaving the brain or reaching a maximum of 200 steps.
Dense clusters of streamline points were identified by first discarding streamlines shorter
than 20 steps (these tended to exit the brain rather than converge onto a source/sink), then
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discarding transients by restricting attention to the last 5 points of each streamline, and
passing these to a density-based clustering algorithm DBSCAN [94]. Parameters of the
clustering algorithm were a cluster radius of 6 mm and a minimum cluster size of 10 points.

Replication datasets and models

We verified our results using independently-acquired connectomic data from both the elderly
connectome [69], and the higher spatial resolution 998-node Hagmann et al. dataset [54]. We
also exhibited waves in two different models, the Wilson-Cowan model extended in network
form [72] and the Kuramoto model [74, 75].

In the Wilson-Cowan network model, each region j is described by two state variables u; and
v;, representing firing rates for excitatory and inhibitory populations, respectively. Their
dynamics are governed by

du;
] _ twork
P + f(aeeuj — Qe V) — Zo + cup et ), )
dv; 9
j
Tog = v+ faeiuj — ayv; — z;), ©)

where f(x) = 1/[1 + exp(—x)] isasigmoidal firing rate function, and delayed inputs from
other nodes in the network enter via u}‘et‘”"rk = Yk Cixug (t — 1) / Xk Cj, Where Cyg is the

connectivity weight from region k to region j. The simulations here used a,, = a;. = a,; =
10,a;; = -2, z, = 1.5, z;=6,and 7, = 1[72].

In the Kuramoto model, each region is described by a single state variable 6; describing a
local oscillatory phase, and a natural frequency w;. Their dynamics are governed by

do;

d_t] = (1)] + CZijk Sin(Bk - 91), (10)
where ¢ = 0.0028 is a constant set in previous work to match empirical functiona
connectivity results [74]. In this example there are no delays between regions. Natural
frequencies w; were determined as a function of the anatomical node strength s; = 331 Cjy,

to incorporate a hierarchy of time scales across the cortex. As in previous work [74], each
region's intrinsic frequency is given by

. — 2
a)jza—(a—b)(S] Sa) , (11)
Sp — Sa
where a = 0.1 Hz and b = 0.01 Hz are the maximum and minimum oscillatory frequencies,
and s, = min(s) and s, = max(s) are the corresponding maximum and minimum strengths.
Note that the time scales of this proof-of-principle use of the Kuramoto model are tuned to
match those of the slow BOLD response — as with other recent studies [62, 95] — and hence
differ from prior objectives to directly match the faster frequencies of MEG data [65]. As
such, the parameterizations (coupling strength) are not directly comparable, though we note
that these dynamics are in a regime where the Kuramoto order parameter has mean 0.78 and
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standard deviation 0.14 across the time series. Note that we do not include phase delays
(equivalent to time delays) in these illustrative simulations. Prior work suggests that time
delays may include additional dynamic instabilities [75] and intermittent frequency slowing
[64].

Data availability

All data are available from the corresponding authors upon request. The source data
underlying Figures 2b-d, 4, 7, and 10 and Supplementary Figures 1, 5, and 6a,c are provided
as aSource Datafile.

Code availability

MATLAB code is available at www.sng.org.au/Downloads.
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SUPPLEMENTARY INFORMATION

Supplementary Figures
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Supplementary Figure 1: Correlation between nodal mean speed and node degree. Degrees
are calculated for the network thresholded to 30% density. Line is a least-squares fit. Source
data are provided as a Source Datafile.

1

Supplementary Figure 2: Spatial map of functional networks. Nodes are labeled by color
according to their functional network membership: SH=Somatomotor Hand,
SM=Somatomotor Mouth, CO=Cingulo-Opercular, AUD=Auditory, DM=Default Mode,
MEM=Memory, VIS=Visua, FP=Fronto-Parietal, SAL=Salience, SUB=Subcortical,
VA=Ventral Attention, DA=Dorsal Attention, UNC=Unclassified.
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Supplementary Figure 3: Coherence cross-correlations for different partitions of the brain.
(a) Left-right interhemispheric cross-correlation. (b) Anteroposterior cross-correlation. (c)
Dorsoventral cross-correlation. Sliding-window cross-correlations are calculated on the same
time series in all three panels. Node colors (right column) denote the partitions formed by
median split in each direction.
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Supplementary Figure 4: FC matrices calculated on model BOLD time series. () BOLD
FC without global signal regression. (b) BOLD FC with global signal regression.
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Supplementary Figure 5: Wave summary statistics across subjects (top row) and initial
conditions (bottom row). Simulations performed for c=0.6, T = 1 ms. (a) Histogram across
75 subjects of mean speeds across al regions and times. (b) Histogram across subjects of
mean dwell times. (c) Histogram across an ensemble of 100 random initial conditions (for the
group mean connectome) of mean speeds across all regions and times. (d) Histogram across
initial conditions of mean dwell times. Source data are provided as a Source Datafile.
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Supplementary Figure 6: Metastable transitions exist in the presence of noise. (a) Local and
globa synchrony as a function of additive noise amplitude ¢. Lines show synchronization
order parameters Ry (solid) and Ryowa (dashed). (b) Interhemispheric cross-correlation
functions for the six values of ¢ indicated by arrows. (¢) Mean dwell time as a function of .
Note the slight decrease in local synchrony, increase in global synchrony and longer dwell
times for weak noise, ¢ < 0.002. Simulations performed for 7 = 0, ¢ = 0.6. Source data are
provided as a Source Datafile.
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Videos
Supplementary Movie 1

Traveling wave. An example of a traveling wave pattern, for coupling ¢ = 0.6 and delay
T =1ms, asinFigure la

Supplementary Movie 2

Rotating wave. An example of a rotating wave pattern, for couplingc = 0.6 and delay 7 = 1
ms, asin Figure 1b.

Supplementary Movie 3

Sources and sinks. An example of a wave pattern with sources and sinks, for coupling
¢ =0.6anddelay t = 1 ms, asin Figure 1c.

Supplementary Movie4

Example of spontaneous metastable transitions. Top row shows three views of the brain (I-r:
top, right, back). Bottom row shows the interhemispheric cross-correlation (see Fig. 3), with
the time of the frame frames above annotated by the sliding vertical line.

Supplementary Movie5

Waves, flow vectors, and streamlines. Left: Pyramidal membrane potentia, same dynamics
as in Supplementary Movie 4. Middle: Unit vectors for the direction of instantaneous flow.
Color denotes angle in the plane. Right: Streamlines propagated forward (blue) and backward
(red) from the seed positions. Highlighted clusters of points are sinks (asterisks) and sources
(circles), colored by position along the dorsoventral axis (red=high, blue=low).

Supplementary Movie 6

Streamlines and reconfigurations of sources and sinks. Streamlines propagated forward (blue)
and backward (red) from the seed positions. Highlighted clusters of points are sinks
(asterisks) and sources (circles), colored by position along the dorsoventral axis (red=high,
blue=low). Three views: top (left), right side (middle), and back (right).

Supplementary Movie 7

Mosaic of brain dynamics across (c, t)-space. Rows from bottom to top denote c=0.1,...,0.6 ,
columns from left to right denote 7=0, ..., 10 ms. Each panel has color scale spanning the
individual top and bottom percentile of pyramidal membrane potential.

Supplementary Movie 8

Examples of different dynamical regimes. Left to right: partially-coherent waves, weakly-
coherent waves; lurching waves; periodic clusters; and aperiodic clusters.

Supplementary Movie 9
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Examples of waves on different connectomes. Left to right: same connectome as main paper
but at 10% density after thresholding by consistency; same connectome as main paper but at
10% density after thresholding by weight; same connectome as main paper but binarized at
10% density after thresholding by weight; a connectome from a healthy elderly population;
the 998-node Hagmann et al. connectome.

Supplementary Movie 10

Examples of waves in the presence of weak additive noise inputs. Parameters ¢=0.6, 7=0.
Left to right: No noise (6=0), additive noise with ¢=0.001, 0.002, 0.003, 0.004, 0.005.

Supplementary Movie 11

Examples of waves in different models. In all cases the connectivity is the same as in the
main paper. Left to right: the Kuramoto model; the Wilson-Cowan model, showing a chimera
state from early in the simulation run; the Wilson-Cowan model, from later in the same
simulation run as the preceding frames, showing partially-coherent waves.
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Supplementary Tables
Supplementary Table 1

Statistics for comparisons in Fig. 7c,d, bolded entries correspond to the colored comparisons
in the figure. Numbers are two-tailed p-values for all pair-wise t-tests between the numbers of
visits to each functional network, corrected for multiple comparisons (Bonferroni). Upper
triangle is for comparisons between sink visits and functional networks, lower triangle
(shaded) is for comparisons between source visits and functional networks.

SH SM CO AUD DM MEM VIS FP  SAL  SUB VA DA UNC
SH 1 046 1 1 1 1 1 1 043 1 1 1
SM 1 0.97 1 1 1 1 1 1 081 1 1 1
CO 1 1 0.053 0.039 10033 057 1 1 0.0048 1 0.0033
AUD 0.25 1 1 1 1 1 1 1 0.051 1 1 1
DM 0.0053 1 1 1 1 1 1 1 0.048 1 1 1
MEM 1 1 1 1 1 1 1 1 1 1 1 1
VIS | 0.0034 1 1 1 1 0.8 1 1 0.038 1 1 1
FP 1 1 1 1 1 1 1 1 054 1 1 1
SAL 0.81 1 1 1 1 1 1 1 1 047 1 1
SUB | 0.0068 1 1 1 1 039 1 1 1 0.0049 1 0.0045
VA 0.11 1 1 1 1 1 1 1 1 1 1 1
DA 0.82 1 1 1 1 1 1 1 1 1 1 1
UNC |7.8x10 1 036 1 1 0.1 1 0.088 1 1 1 1

Supplementary Table 2

Statistics for comparisons in Fig. 7e,f, bolded entries correspond to the colored comparisons
in the figure. Numbers are two-tailed p-values for all pair-wise t-tests between the numbers of
visits to each category, corrected for multiple comparisons (Bonferroni). Upper triangle is for
comparisons between sink visits and hub status, lower triangle (shaded) is for comparisons
between source visits and hub status.

‘ Hubs Feeders  Non-hubs

Hubs 0.00016 1
Feeders 0.25 0.00024
Non-hubs 0.0093 0.1
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Supplementary Table 3

Parameters for the neural mass model (in nondimensional units)

Parameter Description

Vaue

Yca
INa
Ik

Maximal conductance of calcium ion channel

Maximal conductance of sodium ion channel

Maximal conductance of potassium ion channel
Conductance of passive leaky membrane

Equilibrium potential of calcium ion channel

Equilibrium potential of sodium ion channel

Equilibrium potential of potassium ion channel

Equilibrium potential of passive leaky membrane

Threshold for calcium ion channels

Threshold for sodium ion channels

Threshold for potassium ion channels

Threshold standard deviation for calcium ion channels
Threshold standard deviation for sodium ion channels
Threshold standard deviation for potassium ion channels
Firing threshold potential for excitatory population

Firing threshold potential for inhibitory population

Firing threshold standard deviation for excitatory population
Firing threshold standard deviation for inhibitory population
Maximum firing rate for excitatory population

Maximum firing rate for inhibitory population

Rate constant for inhibitory dynamics

Rate constant for potassium dynamics

Ratio of NMDA to AMPA receptors

Synaptic strength from excitatory to excitatory
Synaptic strength from inhibitory to excitatory
Synaptic strength from nonspecific to excitatory
Synaptic strength from excitatory to inhibitory
Synaptic strength from nonspecific to inhibitory
M ean nonspecific input strength

6.7

0.5

0.53
-0.7
-0.5
-0.01
0.3

0.15
0.15
0.3

0.65
0.65

0.1
0.7
0.25
0.36

0.4
0.3
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