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Abstract

The current wealth of genomic variation data identified at the nucleotide level has
provided us with the challenge of understanding by which mechanisms amino acid
variation affects cellular processes. These effects may manifest as distinct phenotypic
differences between individuals or result in the development of disease. Physical
interactions between molecules are the linking steps underlying most, if not all, cellular
processes. Understanding the effects that amino acid variation of a molecule’s
sequence has on its molecular interactions is a key step towards connecting a full
mechanistic characterization of nonsynonymous variation to cellular phenotype. Here
we present an open access resource created by IMEx database curators over 14
years, featuring 28,000 annotations fully describing the effect of individual point
sequence changes on physical protein interactions. We describe how this resource
was built, the formats in which the data content is provided and offer a descriptive
analysis of the data set. The data set is publicly available through the IntAct website

at www.ebi.ac.uk/intact/resources/datasets#mutationDs and is being enhanced with

every 4-weekly release.

Main

Cells process information and respond to their environments through dynamic
networks of molecular interactions, where the nodes are bio-molecules (e.g. proteins,
genes, metabolites, miRNAs) and edges represent functional relationships, including
physical protein-protein interactions, transcriptional regulation, genetic interactions
and gene/protein modifications. Comprehensive and systematic characterization of
these networks is essential to gain a full understanding of complex biological
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processes, of how cells behave in response to specific cues, and of how individual
components of the network contribute to the whole phenotype, in physiological,
pathological or synthetic conditions.

Interactions between molecules may be inherently stable and essentially irreversible,
resulting in the formation of stable macromolecular complexes, or weak transient
interactions characterized by a dissociation constant (KD) in the micromolar range and
a lifetime of seconds. A change to a single amino acid in a protein chain can be enough
to disrupt a protein binding site and may then alter the composition of a sub-network
of transient binders or the formation of a protein complex. A variant leading to the
inactivation of a protein kinase molecule may result in widespread disruption of post-
translation phosphorylation events and the rewiring of related signalling networks.
Many diseases are caused by specific mutations, and prognosis or response to
treatment is frequently mutation-specific. The study of how mutations affect molecular
interactions is thus of extreme interest since it can help ascertain the role of specific
protein residues on the universal function of molecular binding. Several studies'*
have explored the impact of disease-related variation in molecular interaction
networks, using structural studies and computational predictions to attempt to both
identify variation-affected interfaces and predict the effect of specific variants on
interactions. These studies suggest that interaction interfaces contain a significantly
higher rate of disease-related variants than the rest of the molecule and that variant
location in these interfaces can determine disease specificity.

Despite available high-throughput interaction screening platforms, the experimental
validation of these variation effect predictions on a systems-scale remains a major
challenge. However, these data can be found, reported in the literature but difficult to
search and concatenate. Researchers have for many years been examining the effect
of single, or multiple, induced point mutations on both binary and n-ary interactions in
small-scale experiments. Targeted changes to the amino acid sequence of a protein
have been engineered, largely by site-directed mutagenesis, with the aim of mimicking
known variants®8, removing known, or predicted, post-translational modifications”?,
disrupting regions required for protein stability or altering the properties of protein
binding domains®1'°, and their effects of the interaction of interest monitored. It has
been the work of the IMEx Consortium™" to capture such information into a single data
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set and thus make it available for researchers to re-use and reanalyse. IMEx
Consortium annotators follow a detailed curation model, capturing not only full details
of the experiment (including interaction detection method, participant identification
method and the host organism) but also a description of the constructs used. This may
include the co-ordinates of deletion mutants used to derive a minimum binding domain
and also the effect of point mutations. Databases in the Consortium perform detailed,
archival curation of published literature and also receive pre-publication data through
direct submissions. This close collaboration with data producers often entails access
to unpublished details in the data, such as experiments reporting mutations that have
no effect on interactions, which enables the capture of added value for the scientific

community.

Here we describe the largest literature-derived data set, to our knowledge, capturing
the effect of sequence changes over interaction outcome. We discuss how the data
set was generated and how it is maintained by the EMBL-EBI IntAct team. We also
provide an initial analysis of the data set, highlighting its overlap with genomic variation
data, discussing possible biases and exploring its potential as a benchmarking tool for
variant effect prediction tools.

The IMEx mutations data set: data curation and quality control

The IMEx Consortium databases have been collecting point mutation data for over 14
years, which has resulted in a sizeable data set of almost 28,000 fully annotated

events (www.ebi.ac.uk/intact/resources/datasets#mutationDs). The IMEX resources

curate interaction data into structured database fields, and from there into community
standard interchange formats, and each observation is described using controlled
vocabulary terms. Mutations are mapped to the underlying protein sequence in
UniProtKB and updated in line with changes to that sequence, to ensure that they stay

mapped to the correct amino acid residue with every proteome release.

In order to make the mutant data set more accessible to the biomedical scientist, the
Consortium has released the mutation data set in a tab-delimited format (Box 1), which

includes details of the position and the amino acid change of the mutation, the
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molecules in the interaction and the effect of the mutation on the interaction, as well

as additional fields containing contextual information.

Additionally, a data-update pipeline has been specifically developed to ensure the
accuracy of the annotation of mutation events as interaction participant features
(suppl. figure 1). The construction of this pipeline has been made possible by the
creation of specific fields capturing sequence changes in our recently developed
standard format PSI-MI XML3.0". It is run in coordination with the IntAct database
monthly protein update procedure, which ensures synchronization with UniProtkB'3
and automatically shifts feature positions if there are changes in referenced protein
sequences. The pipeline has been applied to the entire data in the IntAct database

(www.ebi.ac.uk/intact), in which all IMEx data, and also legacy data generated by the

IntAct, MINT, DIP and UniProt curation groups is housed (see Supplementary
Methods for details on re-annotation and data update procedures). The mutation data
update pipeline will continue to be run in quality control mode with every release of
IntAct to ensure the mutation data set is kept entirely up to date with UniProtKB.

Data set statistics

The full IMEx mutations data set contains 27,868 fully annotated events in which a
sequence change has been experimentally tested in an interaction experiment. All this
information has been manually curated, representing over 33,000 person-hours’ worth
of biocurators’ work, and it is continuously growing with on-going IMEx curation
activities. The 4,353 proteins annotated come from 297 different species, with over
60% of the events annotated in human proteins and roughly 90% annotated in seven

main model organisms (see table I).

In total, 13,926 interaction evidences are annotated with differentially reported effects,
using the PSI-MI controlled vocabulary. Most of the effects reported are of a
‘deleterious’ nature, either disrupting (10,976 annotations, 39.3%) or decreasing the
interaction (8,553 annotations, 30.7%), but there is a significant number of interactions
that are either strengthened (2,256 annotations, 8.1%) or caused (188 annotations,
0.7%) by the mutation when compared with the wild type sequence (figure 1a). The
data set also includes those mutations that were experimentally tested but found to
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have no effect over the interaction (3,057 annotations, 11%) and ‘undefined’ mutations
that were present in constructs used in the experiment but where the comparison with
the “wild type” reference is either absent or not possible (2,838 annotations, 10.2%).
It is important to note that the ‘causing’ and ‘no effect’ mutation effect categories have
been only recently adopted into the controlled vocabulary and captured by the
biocurators, so they have a much lower number of annotations and are not directly
comparable with the other categories.

Protein-protein interaction (PPI) experiments reporting this type of data have been
steadily increasing in the last 20 years, with over 4,100 publications containing data
pertaining to mutated proteins sequences curated by the IMEX Consortium. However,
the fraction of PPIs in which a mutated version of a protein has been reported remains
relatively low (figure 1b). The majority of the interactions where a mutated protein was
involved were detected using either affinity chromatography-related methods (such as
co-immunoprecipitations or pull-downs) or by complementation assays based on
transcriptional reporters, mainly variations of the yeast two hybrid method (see figure
1c¢). Most of our data set comes from the curation of small-scale papers each reporting
only a few mutations (figure 1d). 99% of the publications (4,173) contain less than 100
mutation annotations and represent 80% of the annotations (22,218). Only 8
publications contain over 100 annotations, with one of them describing over 4,000
events, a study in which the authors systematically tested large numbers of variants
and their effect on interactions®. Recording large-scale data sets such as this one has
been enabled by the development of the flexible PSI-MI XML 3.0 format cited above.

Currently, the only resources that represent the impact of amino acid substitutions on
binding events are the SKEMPI database', UniProtkKB and IMEx Consortium member
databases through IntAct (see table Il for a detailed comparison). Of these resources,
IMEX is the biggest and the only one that can provide easily accessible, systematically
described, up-to-date annotations. UniProtKB mutagenesis annotations record
whether a change in sequence affects an interaction, but the experimental context is
not captured and the effects are described in a semi free-text field that is difficult to
parse. SKEMPI offers a detailed overview of sequence change effects on binding
derived from in vitro experiments, recording changes in affinity and other kinetic
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parameters. Only very specific interaction detection methods, using purified proteins,
are considered, which limits its scope.

The IMEx Consortium is currently formed by 11 groups, each one with their own area
of interest, that have agreed to use the same curation standards and data
representation download formats. All members of the consortium'®-22 use the curation
platform provided by the IntAct team at EMBL-EBI. Figure 1e shows the number of
events annotated by each data resource. Large databases such as IntAct, DIP and
MINT, with an exclusive focus on interaction data curation, have produced the majority
of the annotations, but a sizeable part of the data set has been entered by other,

domain-specific, members of the Consortium.

According to the IMEx schema and curation policy, interaction evidence, rather than
interacting pairs of molecules, is the focus of the data representation. This results in
the curation of multiple distinct pieces of evidence describing the same interacting
pairs and offers a way to weight how well characterized is a given interacting group of
molecules. It also enables us to capture separate experiments where different
sequence variants are tested for their effect on an interaction. Most of the proteins in
the data set have a low number of associated mutations, with most proteins having 5
or less sequence changes (suppl. figure 2a) and less than 15 annotations (suppl.
figure 2b). There is a greater depth of information available for human proteins, since
the relative amount of human data vs other species increases with the number of

annotations per protein.

The IMEX evidence-centric curation model also makes it possible to check whether
the same mutation has been tested on identical interacting molecules using different
interaction detection methodologies (or by different research groups) and whether the
outcome of the mutations has been consistent in all these experiments. In figure 1f we
show that the majority of the mutations have only been annotated once (tested in one
experiment only). In those cases where there have been multiple instances of
evidence testing, the results appear to be highly consistent, with only a small number
of cases identified for which conflicting results have been reported. For 7,212 cases
where the effect of a mutation on an interface was tested 2 or more times, only 131
(1.8%) show different effects, and only 61 cases (0.8%) reported antagonistic effects.
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One reason for these contradictory results may be differences in experimental
methodologies used to measure the effect, since IMEx databases recognize a large
variety of experimental approaches that provide molecular interaction evidence.

The vast majority of the data set refers to amino acid substitutions, with a marginal
amount of insertions and deletions reported (only 65 deletion and 83 insertion
annotations). Figure 2a shows that arginine, leucine and serine are the most frequently
replaced residues, while histidine and methionine residues are mutated less often (see
suppl. figure 3a for a more detailed view on specific replacements). Alanine is by far
the most frequently used residue for replacement (figure 2b), which is probably
reflective of the widespread use of alanine scanning? to identify residues critical for
binding to other molecules, either because they are found on the interacting interface
or at an allosteric binding site. When we checked the relative proportion of the different
mutation effects per replacing residue (figure 2c, suppl. figure 3b), alanine
replacements mostly associate with deleterious effect on interactions. The dominance
of deleterious effects most probably reflects the authors of the original study using
alanine scanning to locate binding-related residues.

Genomic variation and the IMEx mutations data set

In this era of deep-sequencing genomics, there is a wealth of data concerning
nonsynonymous genomic variants. As discussed before, the motivation behind the
design of these experiments varies, and only a fraction were specifically designed to
systematically test known variants vs reference (“wild type”) versions of the participant
proteins®24. Hence, we decided to explore how much of currently available information
for natural or disease related variation can be linked to the data set. Because of the
strong predominance of human data both in IMEx mutations and in variation data sets,
we decided to focus on human proteins only.

We used the EMBL-EBI Proteins API?® to access variation data both manually
annotated by and mapped to UniProtKB from large-scale sequencing studies such as
the 1000 Genomes?®, ExAC?” and COSMIC? projects. We queried 8,820 sequence
changes in 1,990 human proteins, corresponding to 16,765 IMEx mutation annotations
(see table Il and figure 3). 29% (4,804) of the mutation annotations (figure 3a) and
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12% (1,073) of the sequence changes (figure 3b) were fully mapped to natural
variants. We also checked cases in which there is a variant described in the same
position as a mutation reported in the IMEx data set, but the amino acid change is
different in the two datasets (positional matches), and also those where mutations
span more than one residue and only some of the residue changes or positions are
matched in UniProtKB (partial matches). 16% (2,671) of the mutation annotations
(figure 3a) and 16% (1,415) of the sequence changes (figure 3b) are positional or
partial matches. The biological significance of positional and partial mappings does
not go beyond stating that the region or position in question is important for interaction
and is variable. However, we believe this information might be useful for researchers

interested in exploring specific regions in more detail.

We also checked how many of the mapped variant annotations have been linked to
disease according to UniProtKB. Disease associations were complemented with data
from the DisGeNET database?®. There were disease-associated variants for 42%
(840) of the proteins queried, with a median value of 4 disease variants mapped per
protein. As seen in Table Ill, 20% (3,432) of IMEx mutation annotations have been
tagged as related to disease, with over 900 known disease variants represented in the
data set. UniProtKB derives disease annotations for variants from both manual
curation®® and imports of cross-referenced data from ClinVar®! via Ensembl®?, while
DisGeNET also includes variants from the GWAS Catalog®?, and from text-mining the
scientific literature. Figure 3c provides an overview of the diseases with most
mutations annotated as mapped by full match to disease-associated variants in
UniProtKB.

We then checked if the proportion of disease-related annotations in IMEx varies
depending on the reported effect on interaction. As seen in figures 3d-e, disease-
related mutations tend to have mostly ‘deleterious’ effects on interaction outcome, but
we could also map a considerable number of annotations where there was an increase
or even gain of function in terms of binding (411 annotations representing 116
variants). When we look at mutation recurrence in different types of cancer as
extracted from cBioPortal**, mutations strengthening interaction seem to have both
statistically higher recurrence values and a higher proportion of mutations with
extremely high recurrence in cancer data sets (figures 3f and 39).


https://doi.org/10.1101/346833
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/346833; this version posted June 21, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Variant effect annotation: computational predictions and literature curation

There is currently a variety of computational tools used to annotate variation data
sets®. These tools can report the effect of variation on protein function, folding or
binding, usually based almost exclusively on sequence or structural data, or can also
report genome-derived parameters such as allele frequencies or conservation scores.
We wanted to study how variation annotations provided by these tools align with

experimental effect over interaction as reported in the literature.

For this purpose, we used mutfunc (www.mutfunc.com)®, a database reporting the

effect of almost any possible mutation on protein stability, interaction interfaces, post-
translational modifications, protein translation, conserved regions, and regulatory
regions. It hosts pre-computed variation effect data derived from established
resources such as SIFT?¥, Interactome3D or FoldX®.

We first examined the predicted destabilization effect of mutations on structural
models of protein-protein interfaces, dividing them by the literature-reported effect. As
can be seen in figure 4a, mutations with a ‘decreasing’ and especially a ‘disrupting’
effect over interactions had a significantly higher predicted destabilization effect than
those with no effect, a difference that was not seen in mutations that would strengthen
or even cause an interaction. These “deleterious” groups also contained a significantly
higher proportion of mutations predicted to be very destabilizing for interfaces (figure
4b).

We next studied genome-derived parameters that are useful to study variation, such
as residue conservation or natural allele frequencies. The experimentally-observed
impact on binding stability that we report in our data set may also be reflected on these
parameters. This assumption was partially confirmed using two independent
measurements. First, we used the ‘sorting intolerant from tolerant’ (SIFT) method®” ,
observing that the proportion of variants with low tolerance scores was significantly
higher in all groups where an effect was reported vs the ‘no effect’ reference (figure
4c). We also checked allele frequencies as derived from EXAC data. Again, mutations
with a reported effect seemed to have significantly lower allele frequencies (figure 4d)
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and a higher proportion of alleles with extremely low frequencies (figure 5e) than those
reported to have no effect over interaction.

The interaction-perturbing effects reported in the IMEx data set can be caused by
modifying overall protein structure or by alteration of binding interfaces. We can
determine if the mutations reported fall within sequence regions associated with
binding using both computational predictions and literature-reported experimental
data. We obtained predicted interfaces, based on available structural data, from
Interactome3D. Literature-curated interfaces were inferred from IMEx records that
contained participant features of the ‘binding-associated region’ (MIl: 0117) branch.
These represent experiments where the authors have tested fragment constructs in
an attempt to find sequence regions that are critical for binding, although they may not
necessarily represent the actual binding surface. As seen in figures 4f-g, most of the
mutations fall within predicted or curated interfaces. The proportion of mutations
having an effect over the interaction seems to be higher in binding interfaces, both
predicted and inferred from IMEX curation. Disease-associated variants seem to show
the same pattern (suppl. figure 4a-b). Thus, the majority of the variants reported to
have effects on protein interactions (68%) can be linked to perturbations inside binding
regions, with a smaller proportion of variants (32%) potentially representing systemic

or allosteric effects influencing interactions.

Literature bias in the IMEx mutations data set

IMEx databases have a wide scope when selecting publications for curation and it is
reasonable to assume that the proteins in this data set are representative of the
interaction data that has been explored in the literature. Socially-driven, literature bias
is a well-known phenomenon previously reported for literature-curated data sets?*4!

so we decided to explore to what extent it affects the data set.

First, we checked whether the number of annotations and variants found in the dataset
and the number of publications in which the affected protein is reported are correlated.
As seen in figures 5a and 5b, the data set contains examples of both heavily-
researched proteins with a low number of annotations and variants and vice versa. If

we fit linear models between the number of annotations / variants and number of
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publications in which a protein is reported we find a slight positive correlation,
especially in the case of disease-related variants. This observation is compatible with
socially-induced bias, with known disease-related proteins and variants being more

often reported in the literature.

Then we set out to find if the proteins represented in the mutations data set are
involved in distinctive pathways versus all proteins for which IMEx has interaction
information. To avoid database-specific biases we performed annotation enrichment

analysis using PathDIP (http://ophid.utoronto.ca/pathdip), an analysis tool that

integrates information from 20 source databases*?. Human proteins were divided in
different sets depending on the effect reported for their mutations and their pathway
annotation enrichment was calculated using all the human proteins in IMEx as
background. Pathways obtained from these sets have substantial overlap (figure 5c,
885 pathways). These results suggest that the proteins whose mutation effect on
interactions have been collected in this dataset may be biased, possibly due to specific
interest of the researchers exploring variation influence on molecular interactions.
Specifically, in the group of mutations that show an effect on interactions, pathways
related to the immune system, signalling, disease and cell cycle control ranked on the
top (suppl. figure 5, see suppl. table 2 for full details), with little difference between
effect categories. There seems to be a predominance of cancer-related pathways, with
representatives in both the ‘disease’ and the ‘signaling’ categories, which agrees with
the observation reported in figure 5b that the literature is biased towards disease-

related variants.

Discussion

Here we present a unique resource containing experimental, publicly available
information about the impact of sequence changes on specific protein-protein
interaction outcomes. This is a direct result of the IMEx Consortium full-detail curation
policies and represents an example of how expert curation, resulting in structured and
standardized representations, is required in order to make the most of published
experimental results. In comparison to similar, pre-existing data sets recording
variation influence over interactions, this resource represents a leap forward in depth,

size and scope (table Il). A previous, relatively small study*® reported a curated list of
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about 100 mutations influencing interactions. This was used as benchmark in a study
investigating the link between disease-related variation and interaction interfaces’,
showing an application of this type of data, despite obvious limitations due to its size.
The curation infrastructure and practices of the IMEx consortia will enable the capture
of data from a growing number of deep-mutagenesis interaction studies, where
hundreds if not thousands of single amino acid changes over the whole length of a

protein sequence are explored for their influence on interactions**.

We have also acknowledged the social biases inherent to any literature-based
resource in our data set, although it is difficult to ascertain its extent. Alanine scanning
features prominently as a commonly used technique (figure 2b) and may represent
amino acid changes that will never be seen in nature due to evolutionary constraints
or simply because they would require extensive sequence alteration at the DNA level,
but remains an invaluable source of information, identifying key binding-related
positions. For the human sub-section of the data set, disease-related variants and
proteins are possibly over-represented (figures 3b and 3c, supplementary figure 5)
and have been preferentially been selected for biocuration over non-disease related
proteins (supplementary figure 2a). Interestingly, we report over 100 disease-related
variants described in the literature to either cause or increase existing interactions
(figures 3d and 3e), some of which are found to be highly recurrent in cancer according
to cBioPortal*. This contrasts with the findings reported by Sahni et al.5, where only
two cases of gain-of-function mutations were found in a systematic screening for
disease-related mutations and their effect on interactions using yeast two-hybrid
technology. Although interaction decreasing/disrupting effects were much more
frequently reported, this highlights how gain-of-interaction mechanisms could play a
significant role in disease pathogenesis, especially in cancer.

Analysis of variation is a fundamental tool in basic and clinical research, with direct
application in the clinic through translational genomics. Variation effects are explored
mainly through statistical analysis of large population datasets, GWAS studies, or by
quantitative analysis of its influence on expression via identification of eQTLs.
However, in order to unravel the mechanisms behind detected effects, it is key to
explore how molecular interactions are affected*®. Currently, most of the mechanistic

insight into variation effects is generated by computational annotation and predictions,
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using tools that are based on relatively small reference sets, generally based on
structural data. As an example, the widely used FoldX algorithm is generated from
protein complex structures and has been tested against a library of 1,008 mutants®°.
Our current data set already provides interaction effects for over 10 times more
individual variants and is not limited to structural data. The wide scope of experimental
setups represented (figure 1c) allows the capture of effects on proteins and protein
regions that might be intrinsically non-structured*’. We show that the data set gives a
currently unparalleled and representative overview about which residues are key for
protein interactions, with the results being in good accordance with commonly used
variant annotators (figure 4). IMEx curation practices originally did not enforce
capturing sequence changes that had no effect over interaction outcome, but as a
result of consultations with tool developers and data users this policy has been
amended and the data set now features a growing number of mutations with no effect
that can be used as a training negative set for the development of computational

annotation tools.

The IMEx mutations data set represents both a reference source for direct, literature-
based variant characterization and a unique benchmark that can be used to further
refine computational variant effect annotators. We will continue to expand the data set
and improve its accessibility for users, as a part of IMEx global mission of ensuring
data representation and re-use.
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Methods

Source data

All analysis was performed using the September 2017 version of the IMEx mutations
data set, which can be directly downloaded from
ftp://ftp.ebi.ac.uk/pub/databases/intact/2017-09-02/various/mutations.tsv.

Software and packages used

The quality control pipeline for mutation annotations was developed and integrated
within the production code used in the IntAct database. The code is written in Java
and makes use of the Hibernate and Spring frameworks for interaction with the core
SQL database and application implementation. Specific implementation details are
available upon request. Statistical analysis, plots, mutation re-annotation checks and
mappings were performed using the R programming language*® through the RStudio
programming suite*®. The following R packages were used in the study: data.table,
dplyr, ggplot2, ggpubr, gridExtra, gsubfn, httr, jsonlite, plyr, RCurl, reshape2, scales,
seqinr, splitstackshape, XML, Biostrings, biomaRt.

Curation practices
Data has been produced through manual literature curation following the IMEXx
Consortium curation guidelines', which can be explored in detail on the Consortium’s

website: http://www.imexconsortium.org/curation. Briefly, every publication reviewed

was curated for the entirety of the interaction data it contained, representing each
experimental piece of evidence as a separate record. Full details of constructs used
were registered and every entry was reviewed by at least two independent curators

for quality control.

Mutations re-annotation effort

After the development of PSI-XML3.0 and the ‘resulting sequence’ field in the IMEx
schemas to capture amino acid change in participant features of the type ‘mutation
(MI:0118)’ and children, it was necessary to populate the field with legacy data from
the participant feature short label. This free-text, manually-entered field was prone to
contain typographical errors and was difficult to keep updated. Curators used a set of
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simple rules to depict amino acid substitution, deletions and insertions. As a first step
towards populating the ‘resulting-sequence’ field, we wrote ad hoc parsing scripts to
evaluate and extract the information stored in the short labels. Several rounds of
corrections took place until the data set got to its current state. Of the 27,868 records
of the data set, 20,161 had to be corrected, with around 2,000 of them manually
corrected. There are still about 2,500 records for which no fix was possible without
fully amending the original entry. These have been left out of the dataset until being
revisited by an IMEx curator in due course. An automated quality control pipeline has
been put in place to handle newly-created entries and future changes in UniProtKB
(details in Supplementary materials). Finally, we have also adapted the participant
feature short labels to the Human Genome Variation Society (HGVS)
recommendations for variant annotation®, which can be accessed at

http://varnomen.hgvs.org/recommendations/protein/.

Mapping IMEx mutations to UniProtKB and the genome

UniProtKB accessions for human proteins were extracted from the IMEx mutations
data set, retaining isoform identifiers, and used to query the EMBL-EBI Protein API 25,
The API’s ‘variation’ method was used to extract large-scale variation annotation from
UniProtKB, regardless of its origin. Annotations extracted through this method were
then mapped to the IMEx mutations data set using UniProtKB accession, sequence
position and resulting amino acid for ‘full mappings and only UniProtKB accession
and position for ‘positional’ mappings. Cases where the IMEx-reported mutation spans
more than one amino acid position were split into individual substitutions and only
labelled as ‘full’ matches if every individual position matches an annotation in
UniProtKB. Otherwise, they were considered ‘partial’ mappings. Disease annotations
were extracted from the API’s output, along with rsIDs. These rsIDs were then used
in DisGeNET to search for additional disease annotations that were brought in as well.

Predicting impact on protein interaction interfaces

Experimental and homology modelled structures for protein interactions were obtained
from the Interactome3D database®. Relative solvent accessibility (RSA) for all residue
atoms was computed using NACCESS®' for proteins individually and in the interaction
complex. Interface residues were defined as those with any change in RSA. The
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impact of variant on interface stability was computed using FoldX v.4.0. All binary
interface structures were repaired using the RepairPDB command, with default
parameters. The Pssm command is then used to predict AG with numberOfRuns=5.
This performs the mutation multiple times with variable rotamer configurations, to
ensure the algorithm has achieved convergence. The average AG of all runs is
computed and the AAG is computed as the difference between the wildtype and
mutant and provides a predictive estimate of how destabilising the mutant is to the

interaction interface.

Predicting the functional impact of variants using conservation

All  protein alignments were built against UniRef50%, using the
segs_chosen_via_median_info.csh script in SIFT 5.1.1%0, The siftr R package
(https://github.com/omarwagih/siftr) was used to generate SIFT scores with

parameters ic_thresh=3.25 and residue_thresh=2.

Allele frequencies

A total of 3,198,692 coding variants in H. sapiens for over 65,000 individuals was
collected from the EXAC Consortium?” in the ANNOVAR®3 output format along with
corresponding adjusted allele frequencies. Ensembl transcript positions were mapped
to UniProt by performing Needleman-Wunsch global alignment of translated Ensembl
transcript sequences against the UniProt sequence using the pairwiseAlignment
function in the Biostrings R package. The mapping between Ensembl transcript IDs
(v81) and UniProt accessions was obtained from the biomaRt R package. In the case
that multiple alleles mapped to the sample single amino acid substitution, the one with

the highest adjusted allele frequency was retained.

Recurrence
Recurrence data for 1,183,665 variants was obtained from the cBioPortal MAF file

(06/11/2015) containing data from 100 cancer genomics studies.

Mapping variants to interaction interfaces
Predicted interface and accessibility coordinates were obtained from Interactome3D.
Curated interfaces were extracted from IntAct by selecting participant features under
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the PSI-MI term ‘binding-associated region’ (MI:0117). Only human proteins for which
accessibilities were calculated directly from structural data in Interactome3D were
selected for this analysis, modelled structures were excluded.

Estimating literature bias
We used the NCBI ‘genelD2pubmed’ table, accessible at
ftp://ftp.ncbi.nih.gov/gene/DATA/geneZ2pubmed.gz, to estimate how many papers

were associated to individual proteins in the IMEx mutations data set. Only human
proteins were considered. Entrez GenelDs were mapped to UniProtKB accessions
using UniProt's website REST APl mapping service as described at

https://www.uniprot.org/help/api idmapping.

Pathway enrichment analysis using PathDIP

Pathway enrichment was performed using mutated PPls (i.e., mutated protein +
partner) of a given mutation type (causing, disrupting, etc.) and pathDIP 2.5 pathways
(considering only core pathway, http://ophid.utoronto.ca/pathDIP/4?). We considered

whole IntAct human PPls as a background for enrichment analysis (downloaded
March 24, 2018). For pathways overlap Venny 21.0

(http://bioinfogp.cnb.csic.es/tools/venny/) was used and Wordle

(http://www.wordle.net/) was used to prepare word clouds from enriched pathway

titles.


https://doi.org/10.1101/346833
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/346833; this version posted June 21, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Author information

Affiliations

1. European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory,
Wellcome Genome Campus, Hinxton, CB10 1SD, UK

2. Novartis Institutes for BioMedical Research (NIBR), Basel, Canton of Basel-Stadt, Switzerland

3. Deep Genomics, MaRS Centre, 661 University Ave, Suite 480, Toronto, Ontario, M5G 1M1,
Canada

4. Research Programme on Biomedical Informatics (GRIB), Department of Experimental and
Health Sciences (DCEXS), Hospital del Mar Medical Research Institute (IMIM), Universitat
Pompeu Fabra (UPF), Barcelona 08003, Spain

5. Krembil Research Institute, Data Science Discovery Centre for Chronic Diseases, Krembil
Discovery Tower, 5KD-407, 60 Leonard Avenue, Toronto, Ontario, M5T 0S8, Canada

T See acknowledgements for full list of contributing IMEx Consortium curators

Contributions

S.0. and P.P. designed this study and wrote the manuscript. The IMEx Consortium
curators generated the mutation annotations. M.D., S.0O., M. Koch, N.dT., A.S. and
P.P. re-curated the data set and implemented semi-automated quality control
procedures. L.P., D.O., O.W.,, C.P., M. Kotlyar, J.P. and P.P. analysed the data. S.O.,

H.H., P.B,, L.LLF., I.J. and P.P. interpreted the results and revised the manuscript.

Corresponding authors

Correspondence to Pablo Porras (pporras@ebi.ac.uk).



https://doi.org/10.1101/346833
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/346833; this version posted June 21, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Acknowledgements

The IMEx Consortium curators that produced the annotations used for the IMEx
mutations data set are listed here, along with their IMEx database affiliation: Sara
Abbani (DIP), Mais G Ammari (HPIDB), Alan Bridge (UniProt), Nancy H Campbell
(BHF-UCL), Carol Chen (InnateDB), Marta lannuccelli (MINT), Sruthi Jagannathan
(MBInfo), Jyoti Khadake (IntAct), Luana Licata (MINT), Ruth C Lovering (BHF-UCL),
Usha Mahadevan (Molecular Connections), Anna N Melidoni (BHF-UCL, IntAct),
Simona Panni (IntAct), Arathi Raghunath (Molecular Connections), Sylvie Ricard-Blun
(MatrixDB), Milagros Rodriguez-Lopez (BHF-UCL, IntAct), Bernd Roechert (UniProt),
Lukasz Salwinski (DIP), David Thorneycroft (IntAct) and Kim van Roey (IntAct).
Principal Investigators that supported their work are Gianni Cesareni (MINT), David
Lynn (InnateDB) and Fiona M McCarthy (HPIDB).

The IntAct database and EMBL-EBI-based authors received funding from EMBL core
funding and Open Targets (grant agreement OTAR-044). The DIP database is funded
by NIH grant R0O1GM123126. MINT received support from ERC grant "DEPTH project
of the European Research Council (grant agreement 322749)". UniProt curation
activities at EMBL-EBI and the Swiss Institute of Bioinformatics are funded by NIH
grants U41HG007822 and U24HG007822. The British Heart Foundation-University
College of London (BHF-UCL) curation team is funded with the British Heart
Foundation grant RG/13/5/30112. DisGeNET is supported with EU-FP7 funds from
ISCIII-FEDER (CP10/00524, CPI1116/00026), IMI-JU (grant agreement no. 116030,
TransQST) and EFPIA companies in kind contribution, and the EU H2020 Programme
2014-2020 (grant agreements no. 634143, MedBioinformatics and no. 676559, Elixir-
Excelerate). The Research Programme on Biomedical Informatics (GRIB) is a
member of the Spanish National Bioinformatics Institute (INB), PRB2-ISCIIl and is
supported by grant PT13/0001/0023, of the PE |+D+i 2013-2016, funded by ISCIIl and
FEDER. The DCEXS is a “Unidad de Excelencia Maria de Maeztu”, funded by the
MINECO (ref: MDM-2014-0370).

The authors would like to especially thank Marco Galardini, Luz Garcia-Alonso, Denes
Turei and Martin Krallinger for valuable discussions when designing the data set
output format.


https://doi.org/10.1101/346833
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/346833; this version posted June 21, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Bibliography

1.

Wang, X. et al. Three-dimensional reconstruction of protein networks provides
insight into human genetic disease. Nat. Biotechnol. 30, 159-164 (2012).

Mosca, R. et al. dSysMap: exploring the edgetic role of disease mutations. Nat.
Methods 12, 167-168 (2015).

Porta-Pardo, E., Garcia-Alonso, L., Hrabe, T., Dopazo, J. & Godzik, A. A Pan-
Cancer Catalogue of Cancer Driver Protein Interaction Interfaces., A Pan-Cancer
Catalogue of Cancer Driver Protein Interaction Interfaces. PLoS Comput. Biol.

PLoS Comput. Biol. 11,11, e1004518-e1004518 (2015).

. Buljan, M., Blattmann, P., Aebersold, R. & Boutros, M. Systematic

characterization of pan-cancer mutation clusters. Mol. Syst. Biol. 14, e7974—
e7974 (2018).

Sahni, N. et al. Widespread Macromolecular Interaction Perturbations in Human
Genetic Disorders. Cell 161, 647-660 (2015).

Chen, S. et al. An interactome perturbation framework prioritizes damaging
missense mutations for developmental disorders. Nat. Genet. 1 (2018).
doi:10.1038/s41588-018-0130-z

Burén, S. et al. Regulation of OGT by URI in Response to Glucose Confers c-
MY C-Dependent Survival Mechanisms. Cancer Cell 30, 290-307 (2016).

Liu, X. et al. Bidirectional regulation of neutrophil migration by mitogen-activated
protein kinases. Nat. Immunol. 13, 457464 (2012).

Maio, N., Kim, K. S., Singh, A. & Rouault, T. A. A Single Adaptable
Cochaperone-Scaffold Complex Delivers Nascent Iron-Sulfur Clusters to
Mammalian Respiratory Chain Complexes I-Ill. Cell Metab. 25, 945-953.e6

(2017).


https://doi.org/10.1101/346833
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/346833; this version posted June 21, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

10. Rebsamen, M. et al. SLC38A9 is a component of the lysosomal amino acid
sensing machinery that controls mTORC1. Nature 519, 477-481 (2015).

11. Orchard, S. et al. Protein interaction data curation: the International Molecular
Exchange (IMEx) consortium. Nat. Methods 9, 345-350 (2012).

12. Sivade Dumousseau, M. et al. Encompassing new use cases - level 3.0 of the
HUPO-PSI format for molecular interactions. BMC Bioinformatics 19, 134 (2018).

13. UniProt Consortium, U. C. U. UniProt: the universal protein knowledgebase.
Nucleic Acids Res. 45, D158-D169 (2017).

14. Moal, I. H. & Fernandez-Recio, J. SKEMPI: a Structural Kinetic and Energetic
database of Mutant Protein Interactions and its use in empirical models.
Bioinformatics 28, 2600-2607 (2012).

15. Orchard, S. et al. The MIntAct project--IntAct as a common curation platform for
11 molecular interaction databases. Nucleic Acids Res. 42, D358-363 (2014).

16. Licata, L. et al. MINT, the molecular interaction database: 2012 update. Nucleic
Acids Res. 40, D857-D861 (2012).

17. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res.
43, D204-212 (2015).

18. Kotlyar, M., Pastrello, C., Sheahan, N. & Jurisica, . Integrated interactions
database: tissue-specific view of the human and model organism interactomes.
Nucleic Acids Res. 44, D536-41 (2016).

19. Ammari, M. G., Gresham, C. R., McCarthy, F. M. & Nanduri, B. HPIDB 2.0: a
curated database for host-pathogen interactions. Database J. Biol. Databases
Curation 2016, (2016).

20.Lynn, D. J. et al. Curating the innate immunity interactome. BMC Syst. Biol. 4,

117 (2010).


https://doi.org/10.1101/346833
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/346833; this version posted June 21, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

21.

22.

23.

24.

25.

26.

27

28.

29.

30.

31.

32.

available under aCC-BY 4.0 International license.

Salwinski, L. et al. The Database of Interacting Proteins: 2004 update. Nucleic
Acids Res. 32, D449-D451 (2004).

Launay, G., Salza, R., Multedo, D., Thierry-Mieg, N. & Ricard-Blum, S. MatrixDB,
the extracellular matrix interaction database: updated content, a new navigator
and expanded functionalities. Nucleic Acids Res. 43, D321-327 (2015).
Morrison, K. L. & Weiss, G. A. Combinatorial alanine-scanning. Curr. Opin.
Chem. Biol. 5, 302-307 (2001).

Rolland, T. et al. A Proteome-Scale Map of the Human Interactome Network. Cell
159, 1212-1226 (2014).

Nightingale, A. et al. The Proteins API: accessing key integrated protein and
genome information. Nucleic Acids Res. doi:10.1093/nar/gkx237

1000 Genomes Project Consortium et al. A global reference for human genetic

variation. Nature 526, 68—74 (2015).

.Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans.

Nature 536, 285-291 (2016).

Forbes, S. A. et al. COSMIC: exploring the world’s knowledge of somatic
mutations in human cancer. Nucleic Acids Res. 43, D805-811 (2015).

Pifiero, J. et al. DisGeNET: a comprehensive platform integrating information on
human disease-associated genes and variants. Nucleic Acids Res. 45, D833—
D839 (2017).

Famiglietti, M. L. et al. Genetic variations and diseases in UniProtKB/Swiss-Prot:
the ins and outs of expert manual curation. Hum. Mutat. 35, 927-935 (2014).
Landrum, M. J. et al. ClinVar: public archive of relationships among sequence
variation and human phenotype. Nucleic Acids Res. 42, D980-985 (2014).

Cunningham, F. et al. Ensembl 2015. Nucleic Acids Res. 43, D662-669 (2015).


https://doi.org/10.1101/346833
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/346833; this version posted June 21, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

33.

34.

35.

36.

37.

38.

39.

40.

41.

available under aCC-BY 4.0 International license.

MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide
association studies (GWAS Catalog). Nucleic Acids Res. 45, D896-D901 (2017).
Gao, J. et al. Integrative analysis of complex cancer genomics and clinical
profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

Verma, R., Schwaneberg, U. & Roccatano, D. Computer-Aided Protein Directed
Evolution: a Review of Web Servers, Databases and other Computational Tools
for Protein Engineering. Comput. Struct. Biotechnol. J. 2, €201209008—
201209008 (2012).

Wagih, O. et al. Comprehensive variant effect predictions of single nucleotide
variants in model organisms. bioRxiv 313031 (2018). doi:10.1101/313031
Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-
synonymous variants on protein function using the SIFT algorithm. Nat. Protoc.
4, 1073-1081 (2009).

Mosca, R., Céol, A. & Aloy, P. Interactome3D: adding structural details to protein
networks. Nat. Methods 10, 47-53 (2013).

Van Durme, J. et al. A graphical interface for the FoldX forcefield. Bioinforma.
Oxf. Engl. 27, 1711-1712 (2011).

Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M. & Ng, P. C. SIFT missense
predictions for genomes. Nat. Protoc. 11, 1-9 (2016).

Schaefer, M. H., Serrano, L. & Andrade-Navarro, M. A. Correcting for the study
bias associated with protein-protein interaction measurements reveals
differences between protein degree distributions from different cancer types.,
Correcting for the study bias associated with protein—protein interaction
measurements reveals differences between protein degree distributions from

different cancer types. Front. Genet. Front. Genet. 6, 6, 260—-260 (2015).


https://doi.org/10.1101/346833
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/346833; this version posted June 21, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

42. Rahmati, S., Abovsky, M., Pastrello, C. & Jurisica, |. pathDIP: an annotated
resource for known and predicted human gene-pathway associations and
pathway enrichment analysis. Nucleic Acids Res. 45, D419-D426 (2017).

43. Schuster-Bockler, B. & Bateman, A. Protein interactions in human genetic
diseases., Protein interactions in human genetic diseases. Genome Biol.
Genome Biol. 9, 9, R9, R9—-R9 (2008).

44. Woodsmith, J. et al. Protein interaction perturbation profiling at amino-acid
resolution. Nat. Methods 14, 1213-1221 (2017).

45. Cerami, E. et al. The cBio Cancer Genomics Portal: An Open Platform for
Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2, 401-404
(2012).

46. Sahni, N. et al. Edgotype: a fundamental link between genotype and phenotype.
Curr. Opin. Genet. Dev. 23, 649-657 (2013).

47.Babu, M. M. The contribution of intrinsically disordered regions to protein
function, cellular complexity, and human disease. Biochem. Soc. Trans. 44,
1185-1200 (2016).

48. Ihaka, R. & Gentleman, R. R: A Language for Data Analysis and Graphics. J.
Comput. Graph. Stat. 5, 299-314 (1996).

49. RStudio Team. RStudio: Integrated Development for R. (2015).

50. Dunnen, J. T. den et al. HGVS Recommendations for the Description of
Sequence Variants: 2016 Update. Hum. Mutat. 37, 564-569 (2016).

51. Hubbard, S. & Thornton, J. NACCESS. (Department of Biochemistry and

Molecular Biology, University College London, 1993).


https://doi.org/10.1101/346833
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/346833; this version posted June 21, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

52. Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B. & Wu, C. H. UniRef clusters:
a comprehensive and scalable alternative for improving sequence similarity
searches. Bioinformatics 31, 926-932 (2015).

53. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic
variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164—

e164 (2010).


https://doi.org/10.1101/346833
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/346833; this version posted June 21, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure legends

Figure 1. IMEx mutations data set overview

a: Number of annotations by effect type; b: Increase of reported protein interactions
involving wild type and mutated proteins over time; c: Distribution of the number of
mutation annotations by interaction detection method; d: Distribution of the number
of mutation annotations captured per publication. The number of annotations per
publication is shown on a log scale; e: Number of mutation annotations per database
of origin; f: Internal consistency of repeatedly reported mutations. ‘conflict’ cases are
those in which the effects reported are antagonistic (e.g. ‘disrupting’ vs ‘increasing’).
‘mild conflict’ cases are those in which the mutation is sometimes reported as having
some effect vs others in which there is no detectable effect.

Figure 2. Amino acid replacement frequencies in the full data set

a: Replacement frequencies by original residue; b: Replacement frequencies by
resulting residue; c: Normalized frequencies of resulting sequences by mutation
effect over the interaction. Substitutions with non-standard amino acids and deletions

are not shown for simplicity.

Figure 3. Genomic variation and disease annotations in the IMEx mutations
data set

a: Mapping IMEx mutation annotations to UniProtKB human variants; b: Mapping
UniProtKB human variants to IMEx reported sequence changes; c: Top 15 most
represented diseases in fully mapped variants according to UniProtKB disease
associations; d: IMEx mutation annotations by effect type and their relation to
disease; e: IMEx mutation sequence changes by effect type and their relation to
disease; f: cBioPortal recurrence scores for mutations grouped by effect type. P-
values calculated with one-sided Wilcoxon test are indicated; g: Proportion of highly-
recurrent cancer variants according to cBioPortal by effect type. p-values calculated

with Fisher exact test are indicated.

Figure 4. Computational annotations and the IMEx mutations data set
a: Interaction interface disruption as predicted with FoldX, by mutation effect type; b:
Proportion of highly disruptive variants by mutation effect type; c: Proportion of low
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tolerance residue positions according to the SIFT, by mutation effect type; d: EXAC-
extracted allele frequencies for mutations represented in the IMEx data set, by
mutation effect type; e: Low frequency variants, by mutation effect type; f: Number of
mutation annotations located in binding interfaces (curated and predicted), by effect;
g: Normalized frequencies of mutation annotations reporting effects over interactions
or not and their localization in binding interfaces. p-values from figures a and d
calculated with Wilcoxon test. p-values indicated in figures b, c and e were

calculated with Fisher exact test.

Figure 5. Literature biases in IMEx mutations data set

a and b: Scatter plot of number of publications (in a logarithmic scale) in which a
protein is reported vs a: the number of annotations and b: the number of variants
reported in the IMEx mutations data set; c: Overlap of significantly enriched
pathways (q<0.01) across different sets of proteins and word enrichment analysis
(using Wordle on enriched pathway names) for the overlapping set (any mutational
effect), the set of proteins annotated with no effect and the remaining proteins in
IMEx (non-mutated). In “no effect” word enrichment analysis, the words “pathway”
and “action” have been removed to make remaining words more visible (original
wordle available as supplementary figure 6a), while in “common mutated” wordle the
words “pathway” and “signalling” have been removed (original wordle available as
supplementary figure 6b). The analysis in this figure was performed taking into

account human proteins only.

Box 1: Overview of the IMEx mutations data set downloadable flat file.
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Box 1

Mutation (feature)
annotation details

Annotation type,
recording the effect

HGVS- over interaction
compliant according to PSI-MI Annotations for complex
short label controlled vocabulary ~ effects that cannot be
Unique accession captlli_red via PSI-MI CV Interaction reference details. The
for each mutation Sequence coordinates, ar;d |net|_c|: %alrameters Affected interaction AC can be used to look for
annotation reference and changes when available protein details additional details on the IntAct website
\ A ! 'S A
r L] LI
Feature Feature  Original Resulting Affected protein  Affected Affected protein full Affected protein Figure Interaction
Feature AC short label  range(s) q quence Feature type Feature AC protein symbol name organism Interaction partici P\ D legend AC
MI:0612 (comment): Disrupts Vacuolar protein sorting- uniprotkb:Q9P253(protein(MI:0326), 9606 -
association with VPS33A associated protein 16 9606 - Homo Homo
EBI-10828532 p.Arg725Glu 725-725 R E mutation(MI:0118) and decreases association  uniprotkb:Q9H269 VPS16 homolog, hVPS16 sapiens sapiens);uniprotkb:Q9H269(protein(MI:0326), 25783203 2D EBI-10828524
uniprotkb:P61316(protein(MI:0326), 83333 -
Outer-membrane Escherichia coli (strain K12));
mutation lipoprotein carrier protein 83333 - Escherichia uniprotkb:P69776(protein(MI1:0326), 83333 -
EBI-985220 p.lle114Gly 114-114 | G increasing(MI:0382) uniprotkb:P61316 lolA (P20) coli (strain K12) Escherichia coli (strain K12)) 16354671 6 EBI-985197
Independent uniprotkb:Q13794 (protein(MI:0326), 9606 -
sequence p.[Asn31His; mutation uniprotkb:P10415- 9606 - Homo Homo sapiens);uniprotkb:P10415- 1b, 1d, s1b,
q ! EBI-4370347 Ala60Val] 31-31 D H increasing(MI:0382) - (kd): 11e-9M 1 BCL2 Apoptosis regulator Bcl-2 sapiens 1(protein(MI:0326), 9606 - Homo sapiens) 21454712 S1cand 1e EBI-4370302
coordinates are uniprotkb:Q13794(protein(MI:0326), 9606 -
r I't d in dlff r nt p.[Asn31His; mutation uniprotkb:P10415- 9606 - Homo Homo sapiens);uniprotkb:P10415- 1b, 1d, s1b,
.epO € i ere EBI-4370347 Ala60Val] 60-60 A \Y increasing(MI:0382) - (kd): 11e-9M 1 BCL2 Apoptosis regulator Bcl-2 sapiens 1(protein(MI:0326), 9606 - Homo sapiens) 21454712 S1cand 1e EBI-4370302
lines, sharing the Homo
mutation decreasing Ras-related protein Rab- 9606 - Homo sapiens);uniprotkb:Q5S007 (protein(MI:0326),
same Feature AC EBI-10688294 p.Thr2Ala 2-2 T A rate(MI:1130) uniprotkb:P61020 RAB5B 5B sapiens 9606 - Homo sapiens) 25605758 1B EBI-10688276
p.Cys_Ser21 Tyrosine-protein uniprotkb:P18031(protein(MI:0326), 9606 -
- mutation phosphatase non- 9606 - Homo Homo
EBI-9635600 216Ala_Ala 215-216 CS AA disrupting(MI:0573) uniprotkb:P18031 PTPN1 receptor type 1, EC sapiens sapiens);uniprotkb:P10599(protein(MI:0326), 24976139 f5 EBI-9635586
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