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Abstract 
 
The current wealth of genomic variation data identified at the nucleotide level has 

provided us with the challenge of understanding by which mechanisms amino acid 

variation affects cellular processes. These effects may manifest as distinct phenotypic 

differences between individuals or result in the development of disease. Physical 

interactions between molecules are the linking steps underlying most, if not all, cellular 

processes. Understanding the effects that amino acid variation of a molecule’s 

sequence has on its molecular interactions is a key step towards connecting a full 

mechanistic characterization of nonsynonymous variation to cellular phenotype. Here 

we present an open access resource created by IMEx database curators over 14 

years, featuring 28,000 annotations fully describing the effect of individual point 

sequence changes on physical protein interactions. We describe how this resource 

was built, the formats in which the data content is provided and offer a descriptive 

analysis of the data set. The data set is publicly available through the IntAct website 

at www.ebi.ac.uk/intact/resources/datasets#mutationDs and is being enhanced with 

every 4-weekly release. 

 

Main 
 
Cells process information and respond to their environments through dynamic 

networks of molecular interactions, where the nodes are bio-molecules (e.g. proteins, 

genes, metabolites, miRNAs) and edges represent functional relationships, including 

physical protein-protein interactions, transcriptional regulation, genetic interactions 

and gene/protein modifications. Comprehensive and systematic characterization of 

these networks is essential to gain a full understanding of complex biological 
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processes, of how cells behave in response to specific cues, and of how individual 

components of the network contribute to the whole phenotype, in physiological, 

pathological or synthetic conditions.  

 

Interactions between molecules may be inherently stable and essentially irreversible, 

resulting in the formation of stable macromolecular complexes, or weak transient 

interactions characterized by a dissociation constant (KD) in the micromolar range and 

a lifetime of seconds. A change to a single amino acid in a protein chain can be enough 

to disrupt a protein binding site and may then alter the composition of a sub-network 

of transient binders or the formation of a protein complex. A variant leading to the 

inactivation of a protein kinase molecule may result in widespread disruption of post-

translation phosphorylation events and the rewiring of related signalling networks. 

Many diseases are caused by specific mutations, and prognosis or response to 

treatment is frequently mutation-specific. The study of how mutations affect molecular 

interactions is thus of extreme interest since it can help ascertain the role of specific 

protein residues on the universal function of molecular binding. Several studies1–4 

have explored the impact of disease-related variation in molecular interaction 

networks, using structural studies and computational predictions to attempt to both 

identify variation-affected interfaces and predict the effect of specific variants on 

interactions. These studies suggest that interaction interfaces contain a significantly 

higher rate of disease-related variants than the rest of the molecule and that variant 

location in these interfaces can determine disease specificity.  

 

Despite available high-throughput interaction screening platforms, the experimental 

validation of these variation effect predictions on a systems-scale remains a major 

challenge. However, these data can be found, reported in the literature but difficult to 

search and concatenate. Researchers have for many years been examining the effect 

of single, or multiple, induced point mutations on both binary and n-ary interactions in 

small-scale experiments. Targeted changes to the amino acid sequence of a protein 

have been engineered, largely by site-directed mutagenesis, with the aim of mimicking 

known variants5,6, removing known, or predicted, post-translational modifications7,8, 

disrupting regions required for protein stability or altering the properties of protein 

binding domains9,10, and their effects of the interaction of interest monitored. It has 

been the work of the IMEx Consortium11 to capture such information into a single data 
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set and thus make it available for researchers to re-use and reanalyse. IMEx 

Consortium annotators follow a detailed curation model, capturing not only full details 

of the experiment (including interaction detection method, participant identification 

method and the host organism) but also a description of the constructs used. This may 

include the co-ordinates of deletion mutants used to derive a minimum binding domain 

and also the effect of point mutations. Databases in the Consortium perform detailed, 

archival curation of published literature and also receive pre-publication data through 

direct submissions. This close collaboration with data producers often entails access 

to unpublished details in the data, such as experiments reporting mutations that have 

no effect on interactions, which enables the capture of added value for the scientific 

community.  

 

Here we describe the largest literature-derived data set, to our knowledge, capturing 

the effect of sequence changes over interaction outcome. We discuss how the data 

set was generated and how it is maintained by the EMBL-EBI IntAct team. We also 

provide an initial analysis of the data set, highlighting its overlap with genomic variation 

data, discussing possible biases and exploring its potential as a benchmarking tool for 

variant effect prediction tools.  

 
The IMEx mutations data set: data curation and quality control 
 
The IMEx Consortium databases have been collecting point mutation data for over 14 

years, which has resulted in a sizeable data set of almost 28,000 fully annotated 

events (www.ebi.ac.uk/intact/resources/datasets#mutationDs). The IMEx resources 

curate interaction data into structured database fields, and from there into community 

standard interchange formats, and each observation is described using controlled 

vocabulary terms. Mutations are mapped to the underlying protein sequence in 

UniProtKB and updated in line with changes to that sequence, to ensure that they stay 

mapped to the correct amino acid residue with every proteome release.  

 

In order to make the mutant data set more accessible to the biomedical scientist, the 

Consortium has released the mutation data set in a tab-delimited format (Box 1), which 

includes details of the position and the amino acid change of the mutation, the 
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molecules in the interaction and the effect of the mutation on the interaction, as well 

as additional fields containing contextual information.  

 

Additionally, a data-update pipeline has been specifically developed to ensure the 

accuracy of the annotation of mutation events as interaction participant features 

(suppl. figure 1). The construction of this pipeline has been made possible by the 

creation of specific fields capturing sequence changes in our recently developed 

standard format PSI-MI XML3.012. It is run in coordination with the IntAct database 

monthly protein update procedure, which ensures synchronization with UniProtKB13 

and automatically shifts feature positions if there are changes in referenced protein 

sequences. The pipeline has been applied to the entire data in the IntAct database 

(www.ebi.ac.uk/intact), in which all IMEx data, and also legacy data generated by the 

IntAct, MINT, DIP and UniProt curation groups is housed (see Supplementary 

Methods for details on re-annotation and data update procedures). The mutation data 

update pipeline will continue to be run in quality control mode with every release of 

IntAct to ensure the mutation data set is kept entirely up to date with UniProtKB. 

 

Data set statistics 
 

The full IMEx mutations data set contains 27,868 fully annotated events in which a 

sequence change has been experimentally tested in an interaction experiment. All this 

information has been manually curated, representing over 33,000 person-hours’ worth 

of biocurators’ work, and it is continuously growing with on-going IMEx curation 

activities. The 4,353 proteins annotated come from 297 different species, with over 

60% of the events annotated in human proteins and roughly 90% annotated in seven 

main model organisms (see table I).  

 

In total, 13,926 interaction evidences are annotated with differentially reported effects, 

using the PSI-MI controlled vocabulary. Most of the effects reported are of a 

‘deleterious’ nature, either disrupting (10,976 annotations, 39.3%) or decreasing the 

interaction (8,553 annotations, 30.7%), but there is a significant number of interactions 

that are either strengthened (2,256 annotations, 8.1%) or caused (188 annotations, 

0.7%) by the mutation when compared with the wild type sequence (figure 1a). The 

data set also includes those mutations that were experimentally tested but found to 
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have no effect over the interaction (3,057 annotations, 11%) and ‘undefined’ mutations 

that were present in constructs used in the experiment but where the comparison with 

the “wild type” reference is either absent or not possible (2,838 annotations, 10.2%). 

It is important to note that the ‘causing’ and ‘no effect’ mutation effect categories have 

been only recently adopted into the controlled vocabulary and captured by the 

biocurators, so they have a much lower number of annotations and are not directly 

comparable with the other categories.  

 
Protein-protein interaction (PPI) experiments reporting this type of data have been 

steadily increasing in the last 20 years, with over 4,100 publications containing data 

pertaining to mutated proteins sequences curated by the IMEX Consortium. However, 

the fraction of PPIs in which a mutated version of a protein has been reported remains 

relatively low (figure 1b). The majority of the interactions where a mutated protein was 

involved were detected using either affinity chromatography-related methods (such as 

co-immunoprecipitations or pull-downs) or by complementation assays based on 

transcriptional reporters, mainly variations of the yeast two hybrid method (see figure 

1c). Most of our data set comes from the curation of small-scale papers each reporting 

only a few mutations (figure 1d). 99% of the publications (4,173) contain less than 100 

mutation annotations and represent 80% of the annotations (22,218). Only 8 

publications contain over 100 annotations, with one of them describing over 4,000 

events, a study in which the authors systematically tested large numbers of variants 

and their effect on interactions5. Recording large-scale data sets such as this one has 

been enabled by the development of the flexible PSI-MI XML 3.0 format cited above.   

 

Currently, the only resources that represent the impact of amino acid substitutions on 

binding events are the SKEMPI database14, UniProtKB and IMEx Consortium member 

databases through IntAct (see table II for a detailed comparison). Of these resources, 

IMEx is the biggest and the only one that can provide easily accessible, systematically 

described, up-to-date annotations. UniProtKB mutagenesis annotations record 

whether a change in sequence affects an interaction, but the experimental context is 

not captured and the effects are described in a semi free-text field that is difficult to 

parse. SKEMPI offers a detailed overview of sequence change effects on binding 

derived from in vitro experiments, recording changes in affinity and other kinetic 
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parameters. Only very specific interaction detection methods, using purified proteins, 

are considered, which limits its scope.  

 

The IMEx Consortium is currently formed by 11 groups, each one with their own area 

of interest, that have agreed to use the same curation standards and data 

representation download formats. All members of the consortium15–22 use the curation 

platform provided by the IntAct team at EMBL-EBI. Figure 1e shows the number of 

events annotated by each data resource. Large databases such as IntAct, DIP and 

MINT, with an exclusive focus on interaction data curation, have produced the majority 

of the annotations, but a sizeable part of the data set has been entered by other, 

domain-specific, members of the Consortium.   

 

According to the IMEx schema and curation policy, interaction evidence, rather than 

interacting pairs of molecules, is the focus of the data representation. This results in 

the curation of multiple distinct pieces of evidence describing the same interacting 

pairs and offers a way to weight how well characterized is a given interacting group of 

molecules. It also enables us to capture separate experiments where different 

sequence variants are tested for their effect on an interaction. Most of the proteins in 

the data set have a low number of associated mutations, with most proteins having 5 

or less sequence changes (suppl. figure 2a) and less than 15 annotations (suppl. 

figure 2b). There is a greater depth of information available for human proteins, since 

the relative amount of human data vs other species increases with the number of 

annotations per protein.   

 

The IMEx evidence-centric curation model also makes it possible to check whether 

the same mutation has been tested on identical interacting molecules using different 

interaction detection methodologies (or by different research groups) and whether the 

outcome of the mutations has been consistent in all these experiments. In figure 1f we 

show that the majority of the mutations have only been annotated once (tested in one 

experiment only). In those cases where there have been multiple instances of 

evidence testing, the results appear to be highly consistent, with only a small number 

of cases identified for which conflicting results have been reported. For 7,212 cases 

where the effect of a mutation on an interface was tested 2 or more times, only 131 

(1.8%) show different effects, and only 61 cases (0.8%) reported antagonistic effects. 
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One reason for these contradictory results may be differences in experimental 

methodologies used to measure the effect, since IMEx databases recognize a large 

variety of experimental approaches that provide molecular interaction evidence.  

 

The vast majority of the data set refers to amino acid substitutions, with a marginal 

amount of insertions and deletions reported (only 65 deletion and 83 insertion 

annotations). Figure 2a shows that arginine, leucine and serine are the most frequently 

replaced residues, while histidine and methionine residues are mutated less often (see 

suppl. figure 3a for a more detailed view on specific replacements). Alanine is by far 

the most frequently used residue for replacement (figure 2b), which is probably 

reflective of the widespread use of alanine scanning23 to identify residues  critical for 

binding to other molecules, either because they are found on the interacting interface 

or at an allosteric binding site. When we checked the relative proportion of the different 

mutation effects per replacing residue (figure 2c, suppl. figure 3b), alanine 

replacements mostly associate with deleterious effect on interactions. The dominance 

of deleterious effects most probably reflects the authors of the original study using 

alanine scanning to locate binding-related residues.  

 

Genomic variation and the IMEx mutations data set 
 

In this era of deep-sequencing genomics, there is a wealth of data concerning 

nonsynonymous genomic variants. As discussed before, the motivation behind the 

design of these experiments varies, and only a fraction were specifically designed to 

systematically test known variants vs reference (“wild type”) versions of the participant 

proteins5,24. Hence, we decided to explore how much of currently available information 

for natural or disease related variation can be linked to the data set. Because of the 

strong predominance of human data both in IMEx mutations and in variation data sets, 

we decided to focus on human proteins only.  

 

We used the EMBL-EBI Proteins API25 to access variation data both manually 

annotated by and mapped to UniProtKB from large-scale sequencing studies such as 

the 1000 Genomes26, ExAC27 and COSMIC28 projects.  We queried 8,820 sequence 

changes in 1,990 human proteins, corresponding to 16,765 IMEx mutation annotations 

(see table III and figure 3). 29% (4,804) of the mutation annotations (figure 3a) and 
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12% (1,073) of the sequence changes (figure 3b) were fully mapped to natural 

variants. We also checked cases in which there is a variant described in the same 

position as a mutation reported in the IMEx data set, but the amino acid change is 

different in the two datasets (positional matches), and also those where mutations 

span more than one residue and only some of the residue changes or positions are 

matched in UniProtKB (partial matches). 16% (2,671) of the mutation annotations 

(figure 3a) and 16% (1,415) of the sequence changes (figure 3b) are positional or 

partial matches. The biological significance of positional and partial mappings does 

not go beyond stating that the region or position in question is important for interaction 

and is variable. However, we believe this information might be useful for researchers 

interested in exploring specific regions in more detail. 

 

We also checked how many of the mapped variant annotations have been linked to 

disease according to UniProtKB. Disease associations were complemented with data 

from the DisGeNET database29. There were disease-associated variants for 42% 

(840) of the proteins queried, with a median value of 4 disease variants mapped per 

protein. As seen in Table III, 20% (3,432) of IMEx mutation annotations have been 

tagged as related to disease, with over 900 known disease variants represented in the 

data set. UniProtKB derives disease annotations for variants from both manual 

curation30 and imports of cross-referenced data from ClinVar31 via Ensembl32, while 

DisGeNET also includes variants from the GWAS Catalog33, and from text-mining the 

scientific literature. Figure 3c provides an overview of the diseases with most 

mutations annotated as mapped by full match to disease-associated variants in 

UniProtKB.  

 
We then checked if the proportion of disease-related annotations in IMEx varies 

depending on the reported effect on interaction. As seen in figures 3d-e, disease-

related mutations tend to have mostly ‘deleterious’ effects on interaction outcome, but 

we could also map a considerable number of annotations where there was an increase 

or even gain of function in terms of binding (411 annotations representing 116 

variants). When we look at mutation recurrence in different types of cancer as 

extracted from cBioPortal34, mutations strengthening interaction seem to have both 

statistically higher recurrence values and a higher proportion of mutations with 

extremely high recurrence in cancer data sets (figures 3f and 3g).   

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 21, 2018. ; https://doi.org/10.1101/346833doi: bioRxiv preprint 

https://doi.org/10.1101/346833
http://creativecommons.org/licenses/by/4.0/


Variant effect annotation: computational predictions and literature curation 
 
There is currently a variety of computational tools used to annotate variation data 

sets35. These tools can report the effect of variation on protein function, folding or 

binding, usually based almost exclusively on sequence or structural data, or can also 

report genome-derived parameters such as allele frequencies or conservation scores. 

We wanted to study how variation annotations provided by these tools align with 

experimental effect over interaction as reported in the literature. 

 

For this purpose, we used mutfunc (www.mutfunc.com)36, a database reporting the 

effect of almost any possible mutation on protein stability, interaction interfaces, post-

translational modifications, protein translation, conserved regions, and regulatory 

regions. It hosts pre-computed variation effect data derived from established 

resources such as SIFT37, Interactome3D38 or FoldX39. 

 

We first examined the predicted destabilization effect of mutations on structural 

models of protein-protein interfaces, dividing them by the literature-reported effect. As 

can be seen in figure 4a, mutations with a ‘decreasing’ and especially a ‘disrupting’ 

effect over interactions had a significantly higher predicted destabilization effect than 

those with no effect, a difference that was not seen in mutations that would strengthen 

or even cause an interaction. These “deleterious” groups also contained a significantly 

higher proportion of mutations predicted to be very destabilizing for interfaces (figure 

4b).  

 

We next studied genome-derived parameters that are useful to study variation, such 

as residue conservation or natural allele frequencies. The experimentally-observed 

impact on binding stability that we report in our data set may also be reflected on these 

parameters. This assumption was partially confirmed using two independent 

measurements. First, we used the ‘sorting intolerant from tolerant’ (SIFT) method37 , 

observing that the proportion of variants with low tolerance scores was significantly 

higher in all groups where an effect was reported vs the ‘no effect’ reference (figure 

4c). We also checked allele frequencies as derived from ExAC data. Again, mutations 

with a reported effect seemed to have significantly lower allele frequencies (figure 4d) 
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and a higher proportion of alleles with extremely low frequencies (figure 5e) than those 

reported to have no effect over interaction.   

 

The interaction-perturbing effects reported in the IMEx data set can be caused by 

modifying overall protein structure or by alteration of binding interfaces. We can 

determine if the mutations reported fall within sequence regions associated with 

binding using both computational predictions and literature-reported experimental 

data. We obtained predicted interfaces, based on available structural data, from 

Interactome3D38. Literature-curated interfaces were inferred from IMEx records that 

contained participant features of the ‘binding-associated region’ (MI: 0117) branch. 

These represent experiments where the authors have tested fragment constructs in 

an attempt to find sequence regions that are critical for binding, although they may not 

necessarily represent the actual binding surface. As seen in figures 4f-g, most of the 

mutations fall within predicted or curated interfaces. The proportion of mutations 

having an effect over the interaction seems to be higher in binding interfaces, both 

predicted and inferred from IMEx curation. Disease-associated variants seem to show 

the same pattern (suppl. figure 4a-b). Thus, the majority of the variants reported to 

have effects on protein interactions (68%) can be linked to perturbations inside binding 

regions, with a smaller proportion of variants (32%) potentially representing systemic 

or allosteric effects influencing interactions.  

 

Literature bias in the IMEx mutations data set 
 
IMEx databases have a wide scope when selecting publications for curation and it is 

reasonable to assume that the proteins in this data set are representative of the 

interaction data that has been explored in the literature. Socially-driven, literature bias 

is a well-known phenomenon previously reported for literature-curated data sets24,41 

so we decided to explore to what extent it affects the data set.  

 

First, we checked whether the number of annotations and variants found in the dataset 

and the number of publications in which the affected protein is reported are correlated. 

As seen in figures 5a and 5b, the data set contains examples of both heavily-

researched proteins with a low number of annotations and variants and vice versa. If 

we fit linear models between the number of annotations / variants and number of 
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publications in which a protein is reported we find a slight positive correlation, 

especially in the case of disease-related variants. This observation is compatible with 

socially-induced bias, with known disease-related proteins and variants being more 

often reported in the literature.    

 

Then we set out to find if the proteins represented in the mutations data set are 

involved in distinctive pathways versus all proteins for which IMEx has interaction 

information. To avoid database-specific biases we performed annotation enrichment 

analysis using PathDIP (http://ophid.utoronto.ca/pathdip), an analysis tool that 

integrates information from 20 source databases42. Human proteins were divided in 

different sets depending on the effect reported for their mutations and their pathway 

annotation enrichment was calculated using all the human proteins in IMEx as 

background.  Pathways obtained from these sets have substantial overlap (figure 5c, 

885 pathways). These results suggest that the proteins whose mutation effect on 

interactions have been collected in this dataset may be biased, possibly due to specific 

interest of the researchers exploring variation influence on molecular interactions. 

Specifically, in the group of mutations that show an effect on interactions, pathways 

related to the immune system, signalling, disease and cell cycle control ranked on the 

top (suppl. figure 5, see suppl. table 2 for full details), with little difference between 

effect categories. There seems to be a predominance of cancer-related pathways, with 

representatives in both the ‘disease’ and the ‘signaling’ categories, which agrees with 

the observation reported in figure 5b that the literature is biased towards disease-

related variants.  

 

Discussion 
 
Here we present a unique resource containing experimental, publicly available 

information about the impact of sequence changes on specific protein-protein 

interaction outcomes. This is a direct result of the IMEx Consortium full-detail curation 

policies and represents an example of how expert curation, resulting in structured and 

standardized representations, is required in order to make the most of published 

experimental results. In comparison to similar, pre-existing data sets recording 

variation influence over interactions, this resource represents a leap forward in depth, 

size and scope (table II). A previous, relatively small study43 reported a curated list of 
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about 100 mutations influencing interactions. This was used as benchmark in a study 

investigating the link between disease-related variation and interaction interfaces1, 

showing an application of this type of data, despite obvious limitations due to its size. 

The curation infrastructure and practices of the IMEx consortia will enable the capture 

of data from a growing number of deep-mutagenesis interaction studies, where 

hundreds if not thousands of single amino acid changes over the whole length of a 

protein sequence are explored for their influence on interactions44.  

 

We have also acknowledged the social biases inherent to any literature-based 

resource in our data set, although it is difficult to ascertain its extent. Alanine scanning 

features prominently as a commonly used technique (figure 2b) and may represent 

amino acid changes that will never be seen in nature due to evolutionary constraints 

or simply because they would require extensive sequence alteration at the DNA level, 

but remains an invaluable source of information, identifying key binding-related 

positions. For the human sub-section of the data set, disease-related variants and 

proteins are possibly over-represented (figures 3b and 3c, supplementary figure 5) 

and have been preferentially been selected for biocuration over non-disease related 

proteins (supplementary figure 2a). Interestingly, we report over 100 disease-related 

variants described in the literature to either cause or increase existing interactions 

(figures 3d and 3e), some of which are found to be highly recurrent in cancer according 

to cBioPortal45. This contrasts with the findings reported by Sahni et al.5, where only 

two cases of gain-of-function mutations were found in a systematic screening for 

disease-related mutations and their effect on interactions using yeast two-hybrid 

technology. Although interaction decreasing/disrupting effects were much more 

frequently reported, this highlights how gain-of-interaction mechanisms could play a 

significant role in disease pathogenesis, especially in cancer.  

 

Analysis of variation is a fundamental tool in basic and clinical research, with direct 

application in the clinic through translational genomics. Variation effects are explored 

mainly through statistical analysis of large population datasets, GWAS studies, or by 

quantitative analysis of its influence on expression via identification of eQTLs. 

However, in order to unravel the mechanisms behind detected effects, it is key to 

explore how molecular interactions are affected46. Currently, most of the mechanistic 

insight into variation effects is generated by computational annotation and predictions, 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 21, 2018. ; https://doi.org/10.1101/346833doi: bioRxiv preprint 

https://doi.org/10.1101/346833
http://creativecommons.org/licenses/by/4.0/


using tools that are based on relatively small reference sets, generally based on 

structural data. As an example, the widely used FoldX algorithm is generated from 

protein complex structures and has been tested against a library of 1,008 mutants39. 

Our current data set already provides interaction effects for over 10 times more 

individual variants and is not limited to structural data. The wide scope of experimental 

setups represented (figure 1c) allows the capture of effects on proteins and protein 

regions that might be intrinsically non-structured47. We show that the data set gives a 

currently unparalleled and representative overview about which residues are key for 

protein interactions, with the results being in good accordance with commonly used 

variant annotators (figure 4). IMEx curation practices originally did not enforce 

capturing sequence changes that had no effect over interaction outcome, but as a 

result of consultations with tool developers and data users this policy has been 

amended and the data set now features a growing number of mutations with no effect 

that can be used as a training negative set for the development of computational 

annotation tools.  

 

The IMEx mutations data set represents both a reference source for direct, literature-

based variant characterization and a unique benchmark that can be used to further 

refine computational variant effect annotators. We will continue to expand the data set 

and improve its accessibility for users, as a part of IMEx global mission of ensuring 

data representation and re-use.   
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Methods 
Source data 
All analysis was performed using the September 2017 version of the IMEx mutations 

data set, which can be directly downloaded from 

ftp://ftp.ebi.ac.uk/pub/databases/intact/2017-09-02/various/mutations.tsv.  

 

Software and packages used 
The quality control pipeline for mutation annotations was developed and integrated 

within the production code used in the IntAct database. The code is written in Java 

and makes use of the Hibernate and Spring frameworks for interaction with the core 

SQL database and application implementation. Specific implementation details are 

available upon request. Statistical analysis, plots, mutation re-annotation checks and 

mappings were performed using the R programming language48 through the RStudio 

programming suite49. The following R packages were used in the study: data.table, 

dplyr, ggplot2, ggpubr, gridExtra, gsubfn, httr, jsonlite, plyr, RCurl, reshape2, scales, 

seqinr, splitstackshape, XML, Biostrings, biomaRt.  

 

Curation practices 
Data has been produced through manual literature curation following the IMEx 

Consortium curation guidelines11, which can be explored in detail on the Consortium’s 

website: http://www.imexconsortium.org/curation. Briefly, every publication reviewed 

was curated for the entirety of the interaction data it contained, representing each 

experimental piece of evidence as a separate record. Full details of constructs used 

were registered and every entry was reviewed by at least two independent curators 

for quality control.  

 

Mutations re-annotation effort 
After the development of PSI-XML3.0 and the ‘resulting sequence’ field in the IMEx 

schemas to capture amino acid change in participant features of the type ‘mutation 

(MI:0118)’ and children, it was necessary to populate the field with legacy data from 

the participant feature short label. This free-text, manually-entered field was prone to 

contain typographical errors and was difficult to keep updated. Curators used a set of 
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simple rules to depict amino acid substitution, deletions and insertions. As a first step 

towards populating the ‘resulting-sequence’ field, we wrote ad hoc parsing scripts to 

evaluate and extract the information stored in the short labels. Several rounds of 

corrections took place until the data set got to its current state. Of the 27,868 records 

of the data set, 20,161 had to be corrected, with around 2,000 of them manually 

corrected. There are still about 2,500 records for which no fix was possible without 

fully amending the original entry. These have been left out of the dataset until being 

revisited by an IMEx curator in due course. An automated quality control pipeline has 

been put in place to handle newly-created entries and future changes in UniProtKB 

(details in Supplementary materials). Finally, we have also adapted the participant 

feature short labels to the Human Genome Variation Society (HGVS) 

recommendations for variant annotation50, which can be accessed at 

http://varnomen.hgvs.org/recommendations/protein/.   

 

Mapping IMEx mutations to UniProtKB and the genome 
UniProtKB accessions for human proteins were extracted from the IMEx mutations 

data set, retaining isoform identifiers, and used to query the EMBL-EBI Protein API 25. 

The API’s ‘variation’ method was used to extract large-scale variation annotation from 

UniProtKB, regardless of its origin.  Annotations extracted through this method were 

then mapped to the IMEx mutations data set using UniProtKB accession, sequence 

position and resulting amino acid for ‘full’ mappings and only UniProtKB accession 

and position for ‘positional’ mappings. Cases where the IMEx-reported mutation spans 

more than one amino acid position were split into individual substitutions and only 

labelled as ‘full’ matches if every individual position matches an annotation in 

UniProtKB. Otherwise, they were considered ‘partial’ mappings. Disease annotations 

were extracted from the API’s output, along with rsIDs. These rsIDs were then used 

in DisGeNET to search for additional disease annotations that were brought in as well.  

 

Predicting impact on protein interaction interfaces 
Experimental and homology modelled structures for protein interactions were obtained 

from the Interactome3D database38. Relative solvent accessibility (RSA) for all residue 

atoms was computed using NACCESS51 for proteins individually and in the interaction 

complex. Interface residues were defined as those with any change in RSA. The 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 21, 2018. ; https://doi.org/10.1101/346833doi: bioRxiv preprint 

https://doi.org/10.1101/346833
http://creativecommons.org/licenses/by/4.0/


impact of variant on interface stability was computed using FoldX v.4.0. All binary 

interface structures were repaired using the RepairPDB command, with default 

parameters. The Pssm command is then used to predict ∆G with numberOfRuns=5. 

This performs the mutation multiple times with variable rotamer configurations, to 

ensure the algorithm has achieved convergence. The average ∆G of all runs is 

computed and the ∆∆G is computed as the difference between the wildtype and 

mutant and provides a predictive estimate of how destabilising the mutant is to the 

interaction interface.  

 

Predicting the functional impact of variants using conservation     
All protein alignments were built against UniRef5052, using the 

seqs_chosen_via_median_info.csh script in SIFT 5.1.140. The siftr R package 

(https://github.com/omarwagih/siftr) was used to generate SIFT scores with 

parameters ic_thresh=3.25 and residue_thresh=2.  

 

Allele frequencies 
A total of 3,198,692 coding variants in H. sapiens for over 65,000 individuals was 

collected from the ExAC Consortium27 in the ANNOVAR53 output format along with 

corresponding adjusted allele frequencies. Ensembl transcript positions were mapped 

to UniProt by performing Needleman-Wunsch global alignment of translated Ensembl 

transcript sequences against the UniProt sequence using the pairwiseAlignment 

function in the Biostrings R package. The mapping between Ensembl transcript IDs 

(v81) and UniProt accessions was obtained from the biomaRt R package. In the case 

that multiple alleles mapped to the sample single amino acid substitution, the one with 

the highest adjusted allele frequency was retained. 

 

Recurrence 
Recurrence data for 1,183,665 variants was obtained from the cBioPortal MAF file 

(06/11/2015) containing data from 100 cancer genomics studies. 

 

Mapping variants to interaction interfaces 
Predicted interface and accessibility coordinates were obtained from Interactome3D. 

Curated interfaces were extracted from IntAct by selecting participant features under 
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the PSI-MI term ‘binding-associated region’ (MI:0117). Only human proteins for which 

accessibilities were calculated directly from structural data in Interactome3D were 

selected for this analysis, modelled structures were excluded.  

 

Estimating literature bias 
We used the NCBI ‘geneID2pubmed’ table, accessible at 

ftp://ftp.ncbi.nih.gov/gene/DATA/gene2pubmed.gz, to estimate how many papers 

were associated to individual proteins in the IMEx mutations data set. Only human 

proteins were considered. Entrez GeneIDs were mapped to UniProtKB accessions 

using UniProt’s website REST API mapping service as described at 

https://www.uniprot.org/help/api_idmapping. 

 

Pathway enrichment analysis using PathDIP 

Pathway enrichment was performed using mutated PPIs (i.e., mutated protein + 

partner) of a given mutation type (causing, disrupting, etc.) and pathDIP 2.5 pathways 

(considering only core pathway, http://ophid.utoronto.ca/pathDIP/42). We considered 

whole IntAct human PPIs as a background for enrichment analysis (downloaded 

March 24, 2018). For pathways overlap Venny 2.1.0 

(http://bioinfogp.cnb.csic.es/tools/venny/) was used and Wordle 

(http://www.wordle.net/) was used to prepare word clouds from enriched pathway 

titles. 
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Figure legends 
 

Figure 1. IMEx mutations data set overview  

a: Number of annotations by effect type; b: Increase of reported protein interactions 

involving wild type and mutated proteins over time; c: Distribution of the number of 

mutation annotations by interaction detection method; d: Distribution of the number 

of mutation annotations captured per publication. The number of annotations per 

publication is shown on a log scale; e: Number of mutation annotations per database 

of origin; f: Internal consistency of repeatedly reported mutations. ‘conflict’ cases are 

those in which the effects reported are antagonistic (e.g. ‘disrupting’ vs ‘increasing’). 

‘mild conflict’ cases are those in which the mutation is sometimes reported as having 

some effect vs others in which there is no detectable effect. 

 

Figure 2. Amino acid replacement frequencies in the full data set  

a: Replacement frequencies by original residue; b: Replacement frequencies by 

resulting residue; c: Normalized frequencies of resulting sequences by mutation 

effect over the interaction. Substitutions with non-standard amino acids and deletions 

are not shown for simplicity.   

 

Figure 3. Genomic variation and disease annotations in the IMEx mutations 

data set 

a: Mapping IMEx mutation annotations to UniProtKB human variants; b: Mapping 

UniProtKB human variants to IMEx reported sequence changes; c: Top 15 most 

represented diseases in fully mapped variants according to UniProtKB disease 

associations; d: IMEx mutation annotations by effect type and their relation to 

disease; e: IMEx mutation sequence changes by effect type and their relation to 

disease; f: cBioPortal recurrence scores for mutations grouped by effect type. P-

values calculated with one-sided Wilcoxon test are indicated; g: Proportion of highly-

recurrent cancer variants according to cBioPortal by effect type. p-values calculated 

with Fisher exact test are indicated.  

 

Figure 4. Computational annotations and the IMEx mutations data set 

a: Interaction interface disruption as predicted with FoldX, by mutation effect type; b: 

Proportion of highly disruptive variants by mutation effect type; c: Proportion of low 
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tolerance residue positions according to the SIFT, by mutation effect type; d: ExAC-

extracted allele frequencies for mutations represented in the IMEx data set, by 

mutation effect type; e: Low frequency variants, by mutation effect type; f: Number of 

mutation annotations located in binding interfaces (curated and predicted), by effect; 

g: Normalized frequencies of mutation annotations reporting effects over interactions 

or not and their localization in binding interfaces. p-values from figures a and d 

calculated with Wilcoxon test. p-values indicated in figures b, c and e were 

calculated with Fisher exact test.   

 

Figure 5. Literature biases in IMEx mutations data set 

a and b: Scatter plot of number of publications (in a logarithmic scale) in which a 

protein is reported vs a: the number of annotations and b: the number of variants 

reported in the IMEx mutations data set; c: Overlap of significantly enriched 

pathways (q<0.01) across different sets of proteins and word enrichment analysis 

(using Wordle on enriched pathway names) for the overlapping set (any mutational 

effect), the set of proteins annotated with no effect and the remaining proteins in 

IMEx (non-mutated). In “no effect” word enrichment analysis, the words “pathway” 

and “action” have been removed to make remaining words more visible (original 

wordle available as supplementary figure 6a), while in “common mutated” wordle the 

words “pathway” and “signalling” have been removed (original wordle available as 

supplementary figure 6b). The analysis in this figure was performed taking into 

account human proteins only.  

 

Box 1: Overview of the IMEx mutations data set downloadable flat file.  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Box 1 
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