

1 **Computer Simulations of the Humoral Immune System Reveal How**
2 **Imprinting Can Affect Responses to Influenza HA Stalk with**
3 **Implications for the Design of Universal Vaccines**

4 Christopher S. Anderson¹, Mark Y. Sangster¹, Hongmei Yang², Sidhartha Chaudhury³,
5 David J. Topham^{1*}

6 ¹New York Influenza Center of Excellence at David Smith Center for Immunology and
7 Vaccine Biology, Department of Microbiology and Immunology, University of Rochester
8 School of Medicine and Dentistry, Rochester, NY. ²Department of Biostatistics and
9 Computational Biology, University of Rochester Medical Center, Rochester, NY.
10 ³BHSAI/U.S. Army MRMC, Frederick, MD.

11 *Corresponding author. E-mail: David_Topham@URMC.rochester.edu

12

13 **Abstract**

14 Background: Successful vaccination against the H1N1 Influenza A virus has required
15 the continuous development of new vaccines that are antigenically similar to currently
16 circulating strains. Vaccine strategies that can increase the cross-reactivity of the
17 antibody response, especially to conserved regions, are essential to creating long-
18 lasting immunity to H1N1 viruses. How pre-existing immunity affects vaccine-induced
19 antibody cross-reactivity is still not well understood.

20 Methods: An immunological shape space of antigenic sites of hemagglutinin (HA) was
21 constructed using viral sequence data. A Gillespie Algorithm-based model of the
22 humoral immune system was used to simulate B cell responses to A/California/07/2009
23 (CA09) HA antigen after prior immunization with an antigenically similar or dissimilar
24 strain. The effect of pre-existing memory B cells and antibody on the resulting antibody
25 responses was interrogated.

26 Results: We found increased levels of highly-cross-reactive antibodies after
27 immunization with antigenically dissimilar strains. This increase was dependent on pre-
28 existing memory B cells. Furthermore, pre-existing antibody also interfered with the
29 cross-reactive antibody response, but this effect occurred irrespective of the priming
30 antigen.

31 Conclusion: These findings suggest that vaccination by divergent strains will boost
32 highly-cross-reactive antibodies by selectively targeting memory B cells specific to
33 conserved antigenic sites and by reducing the negative interference caused by pre-
34 existing antibody.

35 **Introduction**

36 Vaccination strategies are needed that induced highly-cross-reactive antibodies
37 capable of binding a broad range of antigenically distinct influenza virus strains[1]. The
38 seasonal H1N1 influenza virus vaccine requires continuous updating to compensate for
39 antigenic drift in order to be effective[2]. Due to antigenic shift, the season H1N1
40 vaccine was not effective against the 2009 “Swine flu” pandemic[3]. In order to
41 overcome these challenges novel vaccination strategies are needed[4].

42 The 2009 pandemic virus vaccine was capable of significantly boosting cross-
43 reactivity, but only in younger age groups[5]. Serum antibody from these individuals
44 bound a broad range of seasonal viruses and highly divergent avian influenza
45 strains[5,6]. Additionally, there was an induction of antibodies towards the conserved
46 stalk region of HA[6,7]. Additionally studies have suggested a role of Memory B cells in
47 these highly cross-reactive antibody responses[8,9].

48 The age-specific differences seen after vaccination (or infection) with CA09 are
49 thought to result from differences in the strains individuals have been previously
50 exposed. Both pre-existing antibody and memory b cell specificity have been implicated
51 in interfering with the cross-reactivity of secondary immune responses[9-14]. How pre-
52 existing antibody and memory B cells contributed to the differences in cross-reactivity
53 seen in different age groups is not well understood.

54 To gain insights into the role of memory B cells and pre-existing antibodies on
55 cross-reactivity, we simulated secondary immune responses to CA09 HA antigen after
56 priming with antigenically similar or distinct HA antigens. We investigated the effect pre-
57 exposure to antigenically distinct antigens had on the cross-reactivity of a secondary
58 antibody response.

59

60 **Materials and Methods**

61 **HA Protein Sequences**

62 Influenza HA protein sequences used in the model were obtained from Genbank:
63 A/California/07/2009 (CA09) [NC_026433], A/Brisbane/59/2007 (BR07) [KP458398],
64 A/South Carolina/01/1918 (SC18) [AF117241], A/Beijing/262/1995 (BE95) [AAP34323],
65 A/Brazil/11/1978 (BR78) [A4GBX7], A/Chile/1/1983 (CH83) [A4GCH5], A/New
66 Caledonia/20/99 (NC99) [AY289929], A/Singapore/6/1986 (SI86) [ABO38395],
67 A/Solomon Islands/3/2006 (SI06) [ABU99109], A/USSR/90/1977 (US77) [P03453],
68 A/New Jersey/11/1976 (NJ76) [ACU80014].

69

70 **Model Description**

71 Simulations were performed using a Gillespie algorithm and a set of rate
72 equations. The rate equations represent biological processes of B cells that occur
73 during exposure to viral antigen. Together, these biological processes represent a
74 simplified humoral immune system that can respond to antigen, produce antibodies,
75 and remove antigen from the system. The model is identical to those described by
76 Chaudhury et al. [15] except for two modifications: (1) the number of antigenic sites
77 representing each antigen was increased from 2 to 6 (2) long-lived plasma cells were
78 added to the model [9] (Fig 1; Sup. Methods).

79

80 Fig 1. Schematic Representation of Humoral Immune System Model.

81 Schematic is adapted from Chaudhury et al. [15]

82

83 **Simulating Immune Responses to the 2009 Pandemic Vaccine**

84 Two scenarios were modeled with 50 simulations carried out for each scenario.

85 In scenario one, the model was “primed” (antigen added to the system) with the SC18

86 HA antigen, then the immune response was allowed to resolve for 365 days, during

87 which antibody level returned close to baseline and subsequently immunized with

88 CA09 HA antigen (Fig 2A). Scenario two was identical to scenario one except the model

89 was primed with the BR07 HA antigen. B cell and antibody counts, genotype, and

90 antigen specificities were tracked during the simulation allowing quantification of

91 antigenic-site-specific B cells and antibodies during the simulation.

92

93 **Perturbed Models**

94 Two perturbed models were created in order to assess the contribution of pre-

95 existing antibody and memory B cells on the increase in stalk-specific antibodies. For

96 the first model (“No Clearance”), the antibody clearance rate equation (which removes

97 antigen from the system) was removed such that only basal decay of the antigen

98 occurred. For the second model (“No Memory”), the memory B cell activation rate

99 equation (which initiates germinal centers from memory B cells) was removed from the

100 simulation such that only naïve B cells contributed to the germinal center reactions.

101 Simulations were performed identical to the original model.

102

103 **2009 H1N1 Vaccine Clinical Trial Human Serum**

104 Samples from a previous clinical trial were used to test specific predictions of the
105 simulations. The study was conducted under a protocol approved by the University of
106 Rochester Research Subjects Review Board. Informed written consent was obtained
107 from each participant. ClinicalTrials.gov identifier NCT01055184. Healthy adults and
108 children were enrolled as previously described and results of this clinical trial have been
109 published previously[6]. Subjects received a single intramuscular (i.m.) injection of
110 inactivated influenza A/California/07/2009 (H1N1) monovalent subunit vaccine
111 (Novartis). Each 0.5-ml dose contained 15 μ g of HA antigen. Administration of the
112 vaccine (study day 0) took place from January 2010 to March 2010. Serum was
113 collected before and 28 days after vaccination.

114

115 **Enzyme-linked Immunosorbent Assay**

116 In order to test predictions of the model, we measured human serum
117 antibody levels by Enzyme-linked immunosorbent assays (ELISA). Serum antibody
118 levels were measured against recombinant HA proteins derived from historical antigens.
119 ELISAs were performed using recombinant HA proteins coated on MaxiSorb 96-well
120 plates (ThermoSci; 439454) overnight at 4°C. Plates were blocked with 3% bovine
121 serum albumin (BSA) in phosphate buffered saline (PBS) for 1hr at room temperature.
122 Serum was diluted 1:1000 in PBS/0.5% BSA/0.05% Tween-20. Plates were washed
123 and incubated with alkaline phosphatase (AP)-conjugated secondary antibody for 2 hrs

124 at room temperature. Plates were washed and developed using AP substrate
125 (ThermoSci 34064). Recombinant HA proteins were obtained from Influenza Reagent
126 Resource (Cat#: FR-67, FR-692, FR-65, FR-180, FR-699) and BEI Resources (Cat#
127 NR-19240, NR-48873). Stalk specific antibody responses were measured using
128 chimeric HA proteins that contained an “exotic” HA head but retained the conserved
129 stalk region (cH9.1 and cH6.1). We report the relative change in antibody levels
130 (d28/d0).

131 **Statistics**

132 Two sample, two-tailed, t-test using the *t.test* function was performed using the
133 base packages in R. A p-value of 0.05 or less was considered statistically significant.
134 For group comparisons of the ELISA, a multivariate linear model (*lm* function in R) was
135 performed to determine statistically significant differences between groups.

136

137 **Results**

138 **Antigenic Distance Determination**

139 We first determined the antigenic distance (AD) between HA antigens from 11
140 influenza virus strains. AD was determined using the H1N1 HA sequence-based
141 antigenic distance approach previously described[16]. Given that each HA in the model
142 contains 6 antigenic sites, and each antigenic site in the model contains 20 characters,
143 the maximum epitopic distance (antigenic-site-specific antigenic distance; ED) is 20 and
144 the maximum AD for each antigen is 120. Overall, the real-life HA antigens of SC18 and

145 CA09 had the greatest estimate of antigenic similarity with an AD of 21 (Table 1). BR07
146 and CA09 HA antigens had the greatest dissimilarity with an AD of 53. For SC18 and
147 CA09 HA antigens, four of the five head epitopes had an ED of less than or equal to
148 seven (Sa = 2, Sb = 3, Ca1 = 5, Ca2 = 8, Cb = 3), with the Sa antigenic site having the
149 least distance. Alternatively, BR07 and CA09 HA antigens had only one cross-reactive
150 antigenic site (Sa = 8, Sb = 15, Ca1 = 7, Ca2 = 10, Cb = 13), with an ED of seven.
151 Thus, in the model SC18 HA antigen was antigenically more similar to CA09 while the
152 BR07 HA antigen was largely antigenically distinct from CA09.

153

154 Table 1 Antigenic Distances

	SC18	PR34	NJ76	US77	BR78	SI86	CH83	BE95	NC99	SI06	BR07	CA09
SC18	0											
PR34	43	0										
NJ76	16	43	0									
US77	50	46	50	0								
BR78	50	46	50	0	0							
SI86	45	48	53	18	18	0						
CH83	50	48	53	4	4	16	0					
BE95	53	48	53	22	22	21	23	0				

NC99	48	45	55	31	31	18	29	10	0			
SI06	47	50	54	35	35	23	33	18	10	0		
BR07	49	50	56	34	34	22	32	17	7	8	0	
CA09	21	48	24	55	55	50	55	58	53	51	53	0

155

156 **Antigenic-Site-Specific Antibody Responses**

157 Antigenic-site-specific antibodies and memory B cells reactive to the priming Ag
158 (SC18 or BR07) were measured throughout the simulation. We found that counts of
159 antibody and memory B cells specific for the priming antigen were similar across head
160 antigenic sites and between groups (Fig 2A, S1 Fig A-D) and these similarities
161 remained up until boosting (S1 Fig E-F). Stalk-specific antibody and memory B cell
162 counts were significantly less than head antigenic sites making up about 10% of the
163 total response and were similar for both groups (S1 Fig E and F). Therefore, antibody
164 and memory B cell counts and specificities to their priming antigen were similar for both
165 BR07-primed and SC18-primed groups.

166

167 Fig 2. Immune Responses After Prime and Boost.

168 (A) Antigenic-site-specific antibody titers to the priming antigen for the SC18 primed,
169 CA09 boosted group (left) and BR07 primed, CA09 boosted group (right). Curves
170 represent average titers for 50 simulations and colored area represents the standard
171 deviation. Arrows represent times simulation was primed and boosted. (B) Average

172 antibody titers and (C) memory B cells cross-reactive to CA09 pre-boost (Day 365).
173 Statistic represents result of two sample t-test. (D) Affinity (antigenic distances 1-7) of
174 memory B cells to CA09 HA antigen. Statistic represents result of two sample t-test. (E)
175 Percent of stalk antigenic site-specific antibody for each priming group.

176 Given that immune responses to the priming antigens were similar, we sought to
177 determine if the cross-reactivity to CA09 differed between groups prior to boosting. We
178 found a statistically significantly (p-values < 0.001) higher antibody and memory B cell
179 levels cross-reactive to CA09 in the SC18 primed group compared to the BR07 primed
180 group with a greater than 2-fold difference (Fig 2B-C). Although the amount of memory
181 B cells with immunoglobulin receptors with low Hamming distance (high affinity) to
182 CA09 HA antigen did not differ between groups, modest and high Hamming distance
183 (low affinity) memory B cells were significantly increased in the SC18 group (Fig 2D).
184 Taken together, priming-antigen-specific antibody and memory B cells were similar
185 between groups, but were their cross-reactivity to CA09 was different.

186 After boosting with CA09 total antibody levels reactive to CA09 in the SC18
187 group were slightly higher, although this difference did not reach significance (S2 Fig A).
188 For the SC18 primed group, antibodies to the Sa-antigenic-site of CA09 dominated with
189 Sb and Cb antigenic-site specific antibodies also boosted (Fig 2A). Stalk antigenic site
190 antibody were also boosted but to a lesser extent compared to head epitopes and
191 comprised about 15% of the total antibody response (Fig 2E).

192 Unlike the SC18-primed group, stalk-specific antibody responses dominated for
193 the BR07 primed group (Fig 2A) comprising 35% of the total antibody response (Fig
194 2E). A moderate increase in other antigenic-site-specific antibodies was also observed

195 (Fig 2A). Antigenic site-specific differences between groups generally corresponded to
196 differences in epitopic distances between the priming and CA09 antigens with those
197 with closer epitopic distances showing a greater boost. Antibodies to the stalk antigenic
198 site, which has the same epitopic distance in both groups, also demonstrated
199 differences between groups. Despite being subdominant during priming, the large
200 increase in stalk specific antibodies in the BR07-primed group demonstrates that the
201 shorter ED at this site more than compensated for the decreased immunogenicity.
202

203 **Pre-Exposure Affects Cross-Reactivity of Secondary Responses**

204 We found that after boosting with CA09 both groups had strong antibody
205 responses to the antigens to which they had been previously exposed, but differed
206 largely in responses to other strains (Fig 3A). This occurred despite the fact that
207 antigenic distances to the 11 strains were not significantly different between BR07 and
208 SC18 (two-sample t-test, p-value = 0.362). Generally, the SC18-primed group was
209 cross-reactive to strains antigenically similar to CA09, while the BR07-primed group
210 antibody response demonstrated greater cross-reactive to other strains. The BR07-
211 primed group had a statistically significant increase in the number of stalk antibodies
212 which were cross-reactive to all HA antigens (Fig 3B). Cross-reactive antibody levels in
213 the SC18 primed group correlated well with the antigenic distance from CA09, while the
214 BR07 primed group antibody cross-reactivity showed no linear correlation with antigenic
215 distance (pval = 0.0001, pval = 0.4983; respectively). Therefore, although antigenic
216 distance was a good predictor of cross-reactivity during the primary response of the
217 simulation, for secondary immune responses antigenic distance alone was not sufficient

218 to predict cross-reactive immune responses in individuals with different antigen
219 exposure histories.

220

221 Fig 3. Cross-reactivity After Boosting with CA09.

222 (A) Antibody levels to HA antigens from representative strains that circulated from 1918-
223 2009 for the SC18-primed group or BR07-primed group. Antibody levels were taken at
224 30 days post-boost (day 395) and log transformed. Values are averages of 50
225 simulations. (B) Of all antibodies present at 30 days post-boost with CA09, pie-chart
226 represents the number of those antibodies that are cross-reactive to other HA antigens
227 (1-11 HA antigens). Number in parenthesis represents percentage rounded to the
228 nearest whole number. Asterisk represents statistically significant difference (p-value <
229 0.05) between SC18 and BR07 groups as determined by two sample t-test.

230

231 **Contribution of Pre-Existing Memory B cells and Antibody on Cross-Reactivity**

232 For the SC18-primed group, removal of memory B cell activation significantly
233 increased antibody levels to the historical antigens (two sample t-test, p-value = $8.5 \times$
234 10^{-26}) compared to the original unperturbed (“Normal”) model (Fig 4A). Interestingly, this
235 increase occurred despite a decrease in stalk-specific antibody (Fig 4C). Removal of
236 antibody clearance for the SC18-primed group also significantly increased antibody
237 cross-reactivity (two sample t-test, p-value = 2.4×10^{-15}), but this was to a lesser extent.

238 For the BR07-primed group, removal of antibody clearance also significantly increased
239 the cross-reactive response (two sample t-test, p-value = 4×10^{-29}), but unlike the

240 SC18-primed group, removal of memory B cells from the germinal centers statistically
241 decreased (two sample t-test, p-value = 3×10^{-76}) the cross-reactive response (Fig 4B).
242 Stalk-specific antibody was also significantly increased in the “No Clearance” model, but
243 significantly decreased in the “No Memory” model. Taken together, pre-existing
244 antibody decreased cross-reactive antibody responses in both groups, while the effect
245 of memory B cells had the opposite effect on cross-reactivity across groups. The
246 increased cross-reactivity found in the BR07 primed group after boosting with CA09
247 resulted from activation of pre-existing memory B cells cross-reactive CA09 and not
248 primarily from naive B cell responses.

249

250 **Fig. 4 Antibody Levels After Perturbation of the Model**

251 (A) Antibody levels measured at day 30 post-boost with CA09 for the SC18-primed
252 group or (B) BR07-primed group for perturbed and normal models. Values were log
253 transformed. (C) Stalk-specific antibody levels 30 days post boost with CA09 for each
254 model. Average of 50 simulations, error bars represent standard deviation. Statistics
255 were determined by two-sample t-test.

256

257 **Cross-Reactivity of Age-Stratified Serum**

258 Finally, we sought to support our finding that cross-reactivity would be affected
259 by prior exposure. Using serum from a previously described clinical trial, we measured
260 antibody binding to a range of historical strains. Unsupervised clustering showed
261 stratification by age group although this grouping was not exact (Fig 5A). Cross-

262 reactivity antibody levels were generally increased in the 18-32-year-old age group, but
263 not to all HA antigens (Fig 5B). Importantly, the HA antigen, CH6.1, showed a
264 statistically significant increase in antibody levels for the 18-32-year-old age group
265 compared to the 60+ age group (multivariate regression model, p-value = 0.04358).
266 Alternatively, NC99 antibody binding was modestly increased in the 60+ age group,
267 although the difference did not pass our significance threshold (multivariate regression
268 model, p-value = 0.09916). Taken together, these finding support that cross-reactivity of
269 secondary immune responses are affected by exposure history.

270

271 Fig 5 Serum Antibody Levels for Age-Stratified Cohort

272 (A) Hierarchical clustering of antibody binding measured against recombinant HA
273 proteins using ELISA. (B) Heatmap of ELISA antibody binding data. Data represents the
274 relative change in binding. Data was log transformed and standardized, values
275 represent column z-scores.

276 **Discussion**

277 Protection against antigenically drifting or shifting H1N1 viruses by vaccination
278 requires continuous reformulation of the vaccine. Increasing the cross-reactivity induced
279 by vaccination is a hallmark of “universal” vaccine efforts[4]. Here we computationally
280 simulated immunization with SC18 HA antigen or BR07 HA antigen and subsequent
281 immunization with CA09 HA antigen. We also evaluated the effect of pre-existing
282 antibody and memory B cells on the levels and cross-reactivity of antibodies after
283 immunization with CA09 HA antigen.

284 Elucidating the combined effect of differences in HA antigenic site conservation,
285 pre-existing immunity, epitope dominance, and B cell and antibody specificities is a
286 daunting task for the experimentalist. However, computational models allow explicit
287 manipulation and observability of biological processes that are not possible with typical
288 animal and human models. Perelson et al. hypothesized that B cell receptor repertoires
289 (paratopes) exist in an immunological shape space and antigen binding differences
290 between them are represented as distance in shape space[17]. Smith et al.
291 subsequently derived the parameters of such an immunological shape space for
292 influenza viruses[18]. Moreover, Smith et al. developed a computational model of the
293 humoral immune system and demonstrated that such a model can be used to
294 understand secondary immune responses to influenza antigen[9]. Recently, Chaudhury
295 et al. developed a stochastic simulation model using the parameters developed by
296 Smith et al. and expanded the model to include multiple antigenic sites of different
297 conservation[15]. Here we adapted the Chaudhury et al. model to better simulate
298 immune responses to the H1N1 influenza HA antigen.

299 In the current study, we aimed to understand how prior exposure to influenza
300 virus antigens affects the antibody specificity during secondary exposures. This work
301 was an extension of the work originally performed by Smith et al.[19] and the theory of
302 Shape Space originally developed by Perelson et al.[17]. Consistent with Smith et al.
303 findings, we found that the antigenic relationship between the first and secondary
304 exposure antigens largely affect the specificity of the antibody response. Moreover,
305 during secondary immune responses in the model, antigen was removed from the
306 system more quickly in the group previously exposed to an antigenically similar strain

307 during the primary exposure, consistent with the notion of antibody mediated negative
308 interference[9]. Moreover, the increase in stalk-specific antibodies in the BR07 group
309 during boosting is consistent with weakening of negative interference from head-specific
310 antibodies. Additionally, the increased antibody response to the CA09 strain in the
311 SC18 exposed group after boosting supports the notion of positive interference, in
312 which antibody responses from pre-existing memory B cells are increased. Taken
313 together, our findings are consistent with the Antigenic Distance Hypothesis described
314 by Smith et al.[9] .

315 The expansion of the Shape Space-based model to include multiple antigenic
316 sites by Chaudhury et al. was a major advancement in use of the model to understand
317 B cell specificity across complex antigens[20]. By incorporating multiple antigenic sites,
318 the model creates competition for antigen between B cells complementary to different
319 antigenic sites on the same antigen. Although Chaudhury et al. modeled a multivalent
320 vaccine, our findings are consistent with their finding that antibody responses to a
321 normally sub-dominant stalk antigenic site will dominate when the antigenic distance
322 between head antigens are large, even when immunogens are given successively.
323 Additionally, the large increase in stalk-specific antibodies in the BR07 group is
324 consistent with reports on universal vaccine development that apply a similar strategy to
325 boost stalk specific antibodies[4,21].

326 One of the most significant findings of the 2009 pandemic was the ability of 2009
327 pandemic vaccine to induce antibodies able to bind antigenically distinct viruses[22,23].
328 The results of our simulations corroborate these findings by demonstrating that BR07-
329 primed individuals had increased antibody reactivity to 1918-like HA antigens (CA09,

330 SC18, NJ76) as well as seasonal H1N1 viruses after exposure to CA09, while SC18-
331 primed individuals produced antibodies primarily reactive to 1918-like HA antigens.
332 These findings are consistent with the reports suggesting that original virus exposures,
333 not age, affected the vaccine response to the 2009 vaccine[5,24]. Furthermore,
334 although only slightly different, SC18 antibody titers were higher than CA09 titers after
335 boosting with CA09 in the SC18 group but CA09 titers were higher than BR07 in the
336 BR07 primed group. The SC18-primed group demonstrated antibody responses
337 consistent with original antigenic sin (OAS), where individuals display antibody levels
338 highest against viruses that circulated when they were young (and first exposed to
339 influenza) despite subsequent exposure to drifted influenza viruses[25]. The BR07-
340 primed group did not show the same OAS phenotype as CA09 antibodies were highest
341 after boosting, but antibody levels to BR07 were highest in the BR07 exposed group.

342 Pre-boost antibody levels of the SC18 primed group were almost 3-fold greater
343 for CA09 than those primed for BR07, similar to what has been reported[26].
344 Additionally, the fold-change increases in the antibody response to the stalk is
345 consistent with published reports[6]. We found that the antigenic site (Sa), which had
346 the least antigenic difference among SC18 and CA09 HA head antigenic sites,
347 dominated the antibody response after boosting with CA09 in the SC18-primed group.
348 The Sa antigenic site dominance in the SC18 group is consistent with experimental data
349 showing that antibody responses from the 60+ year old individuals had antibody
350 responses focused on the Sa site of CA09[27]. Furthermore fold change titers (pre-
351 boost/post-boost) were decreased in the SC18 primed group suggesting it is important

352 to take into account priming history of the elderly when trying to assess
353 immunosenescence or predict responses in different age groups[9,11,28,29].

354 Here we showed that cross-reactivity can be boosted with sequential
355 immunization by antigenically distinct antigens. Differences in cross-reactivity after
356 sequential vaccination have been previous demonstrated in the context of pandemic
357 virus vaccines where more highly cross-reactive antibodies were observed in subjects
358 primed with an A/Hong Kong/97 H5 vaccine and later boosted with an A/Vietnam/04
359 vaccine, who then subsequently mounted antibody responses recognizing both vaccine
360 strains, as well as a third H5 strain (A/Indonesia/05) not included in either vaccination
361 [30].

362 It is worth noting that we found a decrease in stalk specific antibodies when the
363 number of head antigenic sites was increased. This finding may help answer how the
364 ratio of head to stalk epitopes of HA affects the subdominance of the stalk antigenic
365 site. If in reality the head contains more antigenic sites than the stalk, the model predicts
366 that stalk-antigenic site response will be decreased. Our analysis suggests that stalk
367 specific antibody truly decreases with the addition of head antigenic sites, and it was not
368 that stalk-specific antibodies remain constant and only the relative amount compared to
369 the head is changed. It also suggests that the immunologic subdominance of the stalk
370 does not necessarily mean it is inherently less immunogenic, having implications for
371 targeting this domain in universal vaccination efforts.

372 Lastly, the work described here demonstrates the limitations with the current
373 vaccine selection process that relies only on antigenic and phylogenetic distances
374 between strains. Here, the shorter antigenic distance between SC18 and CA09

375 compared to BR07 and CA09 led to two different outcomes. For instance, the SC18
376 primed group had low titers to US77 after boost with CA09, while the BR07 primed
377 group had greater titers. Therefore, although the antigenic distance between CA09 and
378 US77 is fixed, previously exposed individuals produce antibody responses inconsistent
379 with these antigenic distance estimates. This suggests that serum samples are not
380 'impartial observers' of antigenic similarity and they are highly biased by their own
381 immune histories. This is an inherent challenge with the current influenza vaccine
382 approach and highlights the need to consider prior exposure histories when trying to
383 predict antibody specificities after vaccination.

384 In conclusion, our findings are consistent with other studies that point to negative
385 and positive interference as a mechanism affecting this enhancement of cross-reactivity
386 after sequential immunization[9-11,31]. Therefore, immunization regimens that can
387 relieve negative interference while increasing positive interference (especially to
388 conserved regions on an antigen) may act to broaden cross-reactive immunity to the
389 Influenza virus[15,32].

390

391 Acknowledgments

392 We thank the Center for Integrated Research Computing and the Health
393 Sciences Center for Computational Innovation for computational assistance and
394 resources. Thank you Carrie A. Anderson and Elaine Smolock for help with the
395 manuscript. Thank you Alan Perelson, Martin Zand, Juilee, Thakar, John Treanor, Jim
396 Miller, and Paige Lawrence for supervision of this work. Thank you Derek Smith for

397 helpful comments early on in this project. Thank you Anthony DiPiazza, Matt Brewer,
398 and Patrick McCall for discussions on the project. Chimera proteins were a kind gift
399 from Dr. Florian Krammer. Funding for this work was supported by the New York
400 Influenza Center of Excellence NIH/NIAID/DMID, HHSN272201400005C and the
401 University of Rochester Pulmonary training grant T32-HL066988.

402 REFERENCES

- 403 1. Chiu C, Wrammert J, Li G-M, McCausland M, Wilson PC, Ahmed R. Cross-
404 reactive humoral responses to influenza and their implications for a universal
405 vaccine. *Ann N Y Acad Sci.* 2013;1283: 13–21. doi:10.1111/nyas.12012
- 406 2. Russell CA, Jones TC, Barr IG, Cox NJ, Garten RJ, Gregory V, et al. Influenza
407 vaccine strain selection and recent studies on the global migration of seasonal
408 influenza viruses. *Vaccine.* 2008;26 Suppl 4: D31–4.
- 409 3. Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, et al. Antigenic
410 and Genetic Characteristics of Swine-Origin 2009 A(H1N1) Influenza Viruses
411 Circulating in Humans. *Science.* American Association for the Advancement of
412 Science; 2009;325: 197–201. doi:10.1126/science.1176225
- 413 4. Krammer F, García-Sastre A, Palese P. Is It Possible to Develop a “Universal”
414 Influenza Virus Vaccine? Toward a Universal Influenza Virus Vaccine: Potential
415 Target Antigens and Critical Aspects for Vaccine Development. *Cold Spring
416 Harbor Perspectives in Biology.* 2017. doi:10.1101/cshperspect.a028845
- 417 5. Andrews SF, Huang Y, Kaur K, Popova LI, Ho IY, Pauli NT, et al. Immune history
418 profoundly affects broadly protective B cell responses to influenza. *Science
419 Translational Medicine.* American Association for the Advancement of Science;
420 2015;7: –316ra192. doi:10.1126/scitranslmed.aad0522
- 421 6. Sangster MY, Baer J, Santiago FW, Fitzgerald T, Ilyushina NA, Sundararajan A,
422 et al. B Cell Response and Hemagglutinin Stalk-Reactive Antibody Production in
423 Different Age Cohorts following 2009 H1N1 Influenza Virus Vaccination. *Clinical
424 and Vaccine Immunology.* 2013;20: 867–876. doi:10.1128/CVI.00735-12
- 425 7. Nachbagauer R, Choi A, Izkson R, Cox MM, Palese P, Krammer F. Age
426 Dependence and Isotype Specificity of Influenza Virus Hemagglutinin Stalk-
427 Reactive Antibodies in Humans. *MBio.* American Society for Microbiology; 2016;7:
428 e01996–15. doi:10.1128/mBio.01996-15

429 8. Tesini BL, Kanagaiah P, Wang J, Hahn M, Halliley JL, Chaves FA, et al. Broad
430 hemagglutinin-specific memory B cell expansion by seasonal influenza virus
431 infection reflects early-life imprinting and adaptation to the infecting virus. *J Virol*.
432 2019. doi:10.1128/JVI.00169-19

433 9. Smith DJ, Forrest S, Ackley DH, Perelson AS. Variable efficacy of repeated
434 annual influenza vaccination. *Proceedings of the National Academy of Sciences*.
435 1999;96: 14001–14006.

436 10. Ndifon W, Wingreen NS, Levin SA. Differential neutralization efficiency of
437 hemagglutinin epitopes, antibody interference, and the design of influenza
438 vaccines. *Proceedings of the National Academy of Sciences. National Acad
439 Sciences*; 2009;106: 8701–8706. doi:10.1073/pnas.0903427106

440 11. Fonville JM, Wilks SH, James SL, Fox A, Ventresca M, Aban M, et al. Antibody
441 landscapes after influenza virus infection or vaccination. *Science*. 2014;346: 996–
442 1000. doi:10.1126/science.1256427

443 12. Hoskins TW, Davies JR, Smith AJ, Miller CL, Allchin A. Assessment of inactivated
444 influenza-A vaccine after three outbreaks of influenza A at Christ's Hospital.
445 *Lancet*. 1979;1: 33–35. doi:10.1016/S0140-6736(79)90468-9

446 13. Keitel WA, Cate TR, Couch RB, Huggins LL, Hess KR. Efficacy of repeated
447 annual immunization with inactivated influenza virus vaccines over a five year
448 period. *Vaccine*. 1997;15: 1114–1122.

449 14. Zhang Y, Meyer-Hermann M, George LA, Figge MT, Khan M, Goodall M, et al.
450 Germinal center B cells govern their own fate via antibody feedback. *J Exp Med*.
451 2013;210: 457–464. doi:10.1084/jem.20120150

452 15. Chaudhury S, Reifman J, Wallqvist A. Simulation of B cell affinity maturation
453 explains enhanced antibody cross-reactivity induced by the polyvalent malaria
454 vaccine AMA1. *J Immunol. American Association of Immunologists*; 2014;193:
455 2073–2086. doi:10.4049/jimmunol.1401054

456 16. Anderson CS, McCall PR, Stern HA, Yang H, Topham DJ. Antigenic cartography
457 of H1N1 influenza viruses using sequence-based antigenic distance calculation.
458 *BMC Bioinformatics. BioMed Central*; 2018;19: 51. doi:10.1186/s12859-018-2042-
4

460 17. Perelson AS, Oster GF. Theoretical studies of clonal selection: Minimal antibody
461 repertoire size and reliability of self-non-self discrimination. *Journal of Theoretical
462 Biology*. 1979;81: 645–670. doi:10.1016/0022-5193(79)90275-3

463 18. Smith DJ, Forrest S, Hightower RR, Perelson AS. Deriving shape space
464 parameters from immunological data. *Journal of Theoretical Biology*. 1997;189:
465 141–150. doi:10.1006/jtbi.1997.0495

466 19. Smith DJ. Derek J. Smith Thesis Dissertation. 1997. pp. 1–124.

467 20. Chaudhury S, Reifman J, Wallqvist A. Simulation of B Cell Affinity Maturation
468 Explains Enhanced Antibody Cross-Reactivity Induced by the Polyvalent Malaria
469 Vaccine AMA1. *The Journal of Immunology*. 2014;193: 2073–2086.
470 doi:10.4049/jimmunol.1401054

471 21. Pica N, Palese P. Toward a Universal Influenza Virus Vaccine: Prospects and
472 Challenges. *Annu Rev Med*. 2013;64: 189–202. doi:10.1146/annurev-med-
473 120611-145115

474 22. Li G-M, Chiu C, Wrammert J, McCausland M, Andrews SF, Zheng N-Y, et al.
475 Pandemic H1N1 influenza vaccine induces a recall response in humans that
476 favors broadly cross-reactive memory B cells. *Proc Natl Acad Sci USA*. National
477 Acad Sciences; 2012;109: 9047–9052. doi:10.1073/pnas.1118979109

478 23. Wrammert J, Koutsonanos D, Li GM, Edupuganti S, Sui J, Morrissey M, et al.
479 Broadly cross-reactive antibodies dominate the human B cell response against
480 2009 pandemic H1N1 influenza virus infection. *Journal of Experimental Medicine*.
481 2011;208: 181–193. doi:10.1084/jem.20101352

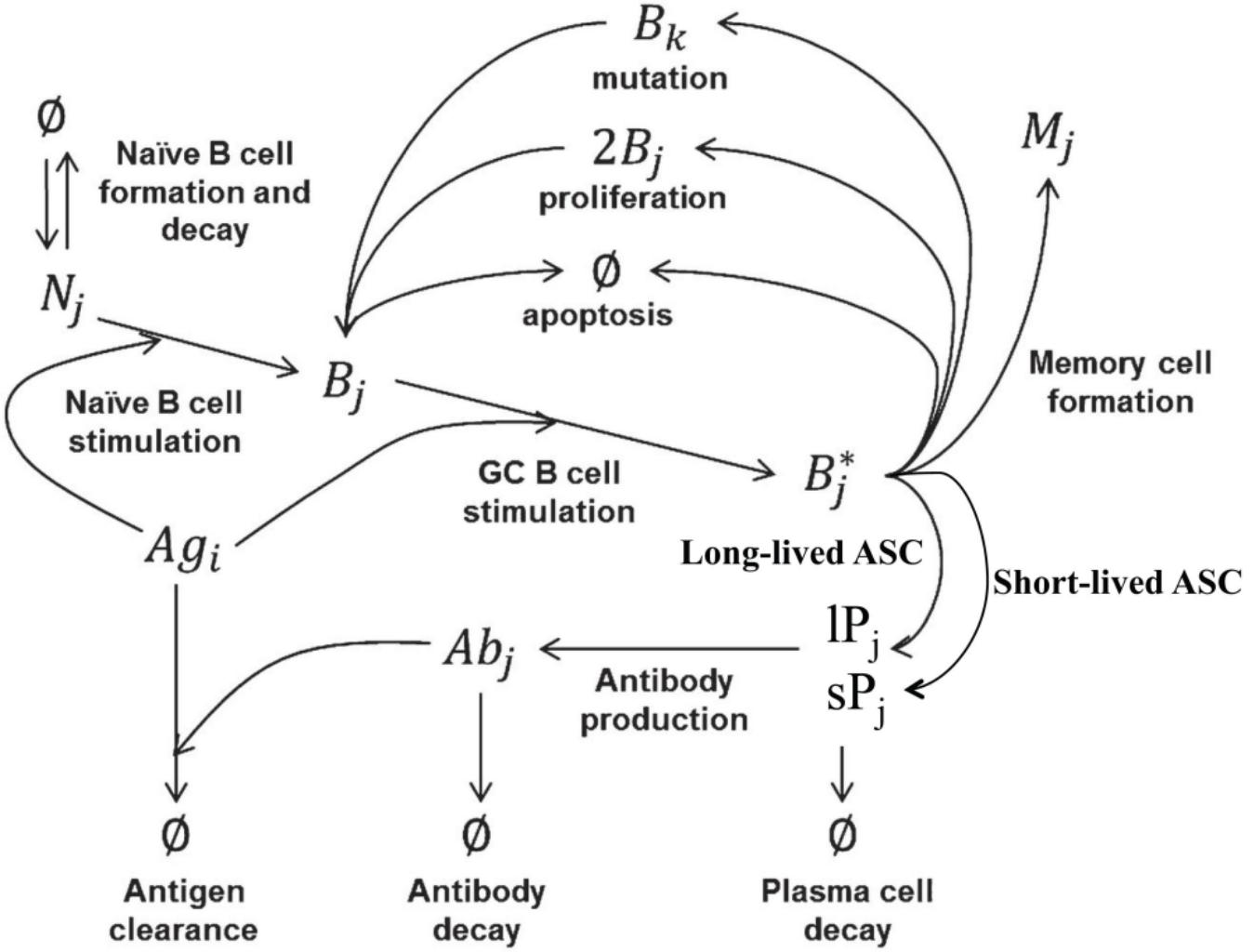
482 24. Li Y, Myers JL, Bostick DL, Sullivan CB, Madara J, Linderman SL, et al. Immune
483 history shapes specificity of pandemic H1N1 influenza antibody responses. *J Exp
484 Med*. 2013;210: 1493–1500. doi:10.1084/jem.20130212

485 25. Francis T. On the doctrine of original antigenic sin. 1960. doi:10.2307/985534

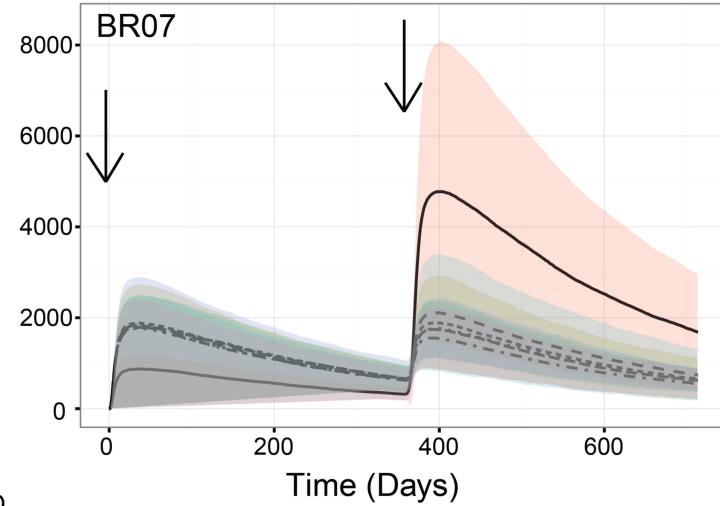
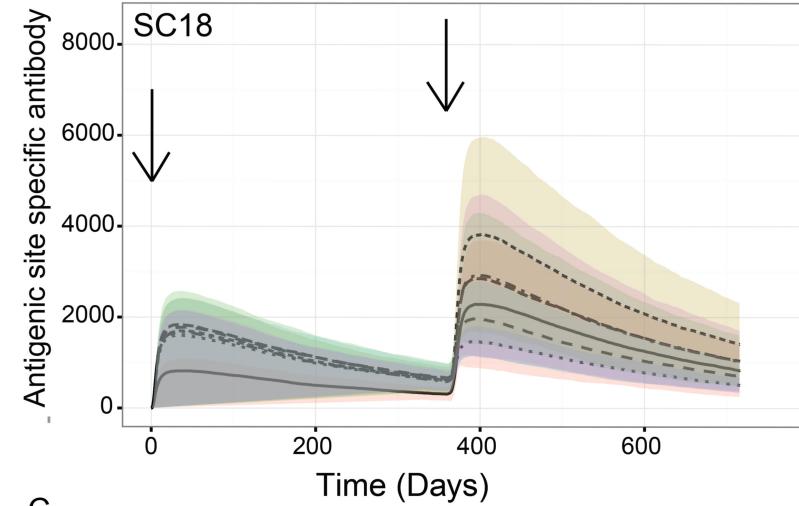
486 26. Hancock K, Veguilla V, Lu X, Zhong W, Butler EN, Sun H, et al. Cross-reactive
487 antibody responses to the 2009 pandemic H1N1 influenza virus. *N Engl J Med*.
488 2009;361: 1945–1952. doi:10.1056/NEJMoa0906453

489 27. Krause JC, Tumpey TM, Huffman CJ, McGraw PA, Pearce MB, Tsibane T, et al.
490 Naturally occurring human monoclonal antibodies neutralize both 1918 and 2009
491 pandemic influenza A (H1N1) viruses. *J Virol*. 2010;84: 3127–3130.
492 doi:10.1128/JVI.02184-09

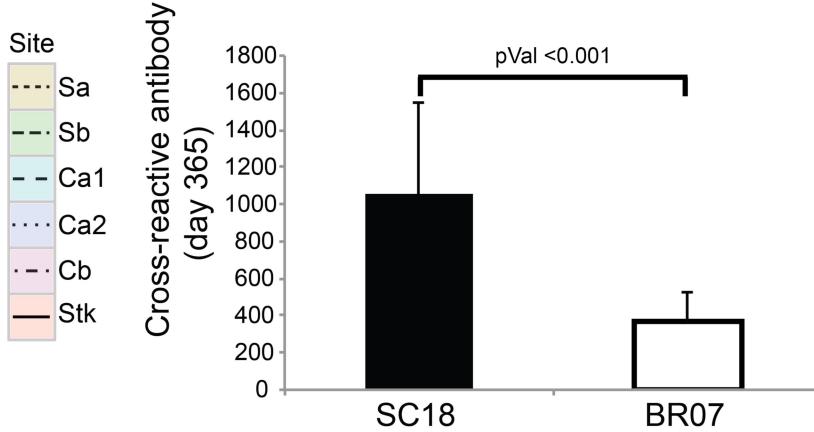
493 28. Thomas Francis J. On the Doctrine of Original Antigenic Sin. *Proceedings of the
494 American Philosophical Society*. 2012;: 1–8.

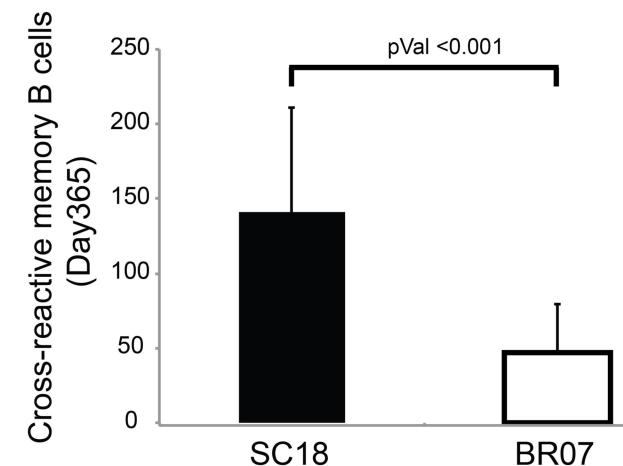

495 29. Höpping AM, McElhaney J, Fonville JM, Powers DC, Beyer WEP, Smith DJ. The
496 confounded effects of age and exposure history in response to influenza
497 vaccination. *Vaccine*. 2016;34: 540–546. doi:10.1016/j.vaccine.2015.11.058

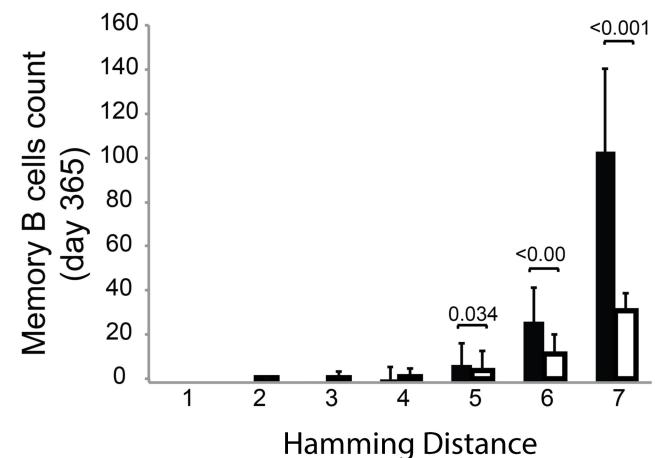
498 30. Goji NA, Nolan C, Hill H, Wolff M, Noah DL, Williams TB, et al. Immune
499 responses of healthy subjects to a single dose of intramuscular inactivated
500 influenza A/Vietnam/1203/2004 (H5N1) vaccine after priming with an antigenic
501 variant. *Journal of Infectious Diseases*. 2008;198: 635–641. doi:10.1086/590916

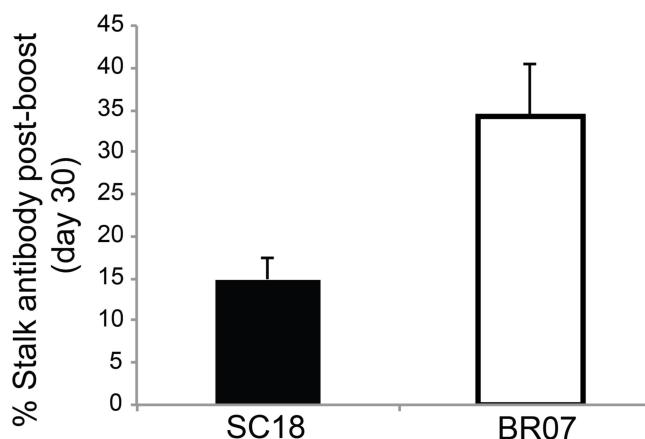


502 31. Ndifon W. A simple mechanistic explanation for original antigenic sin and its
503 alleviation by adjuvants. *J R Soc Interface*. 2015;12. doi:10.1098/rsif.2015.0627

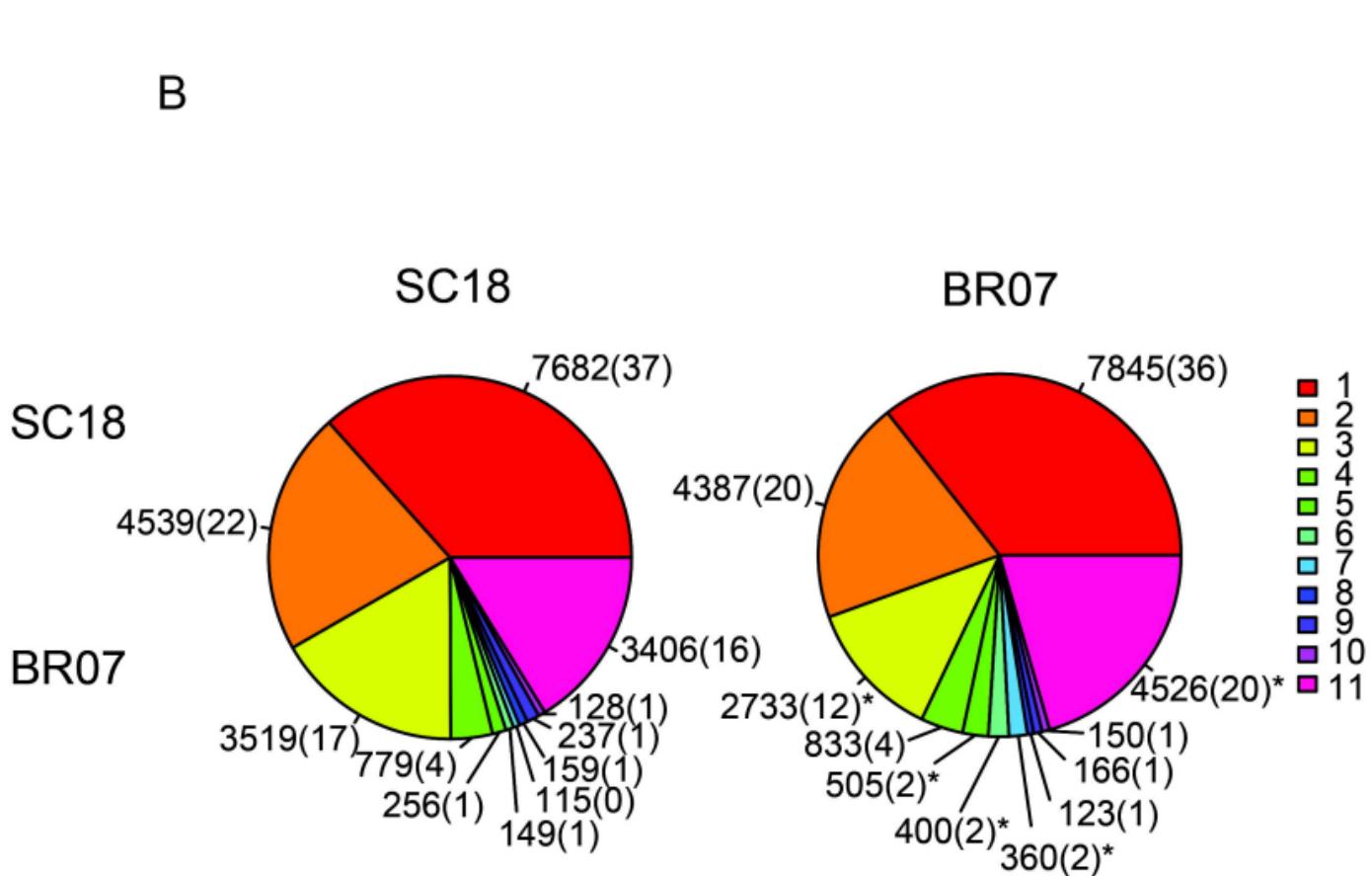
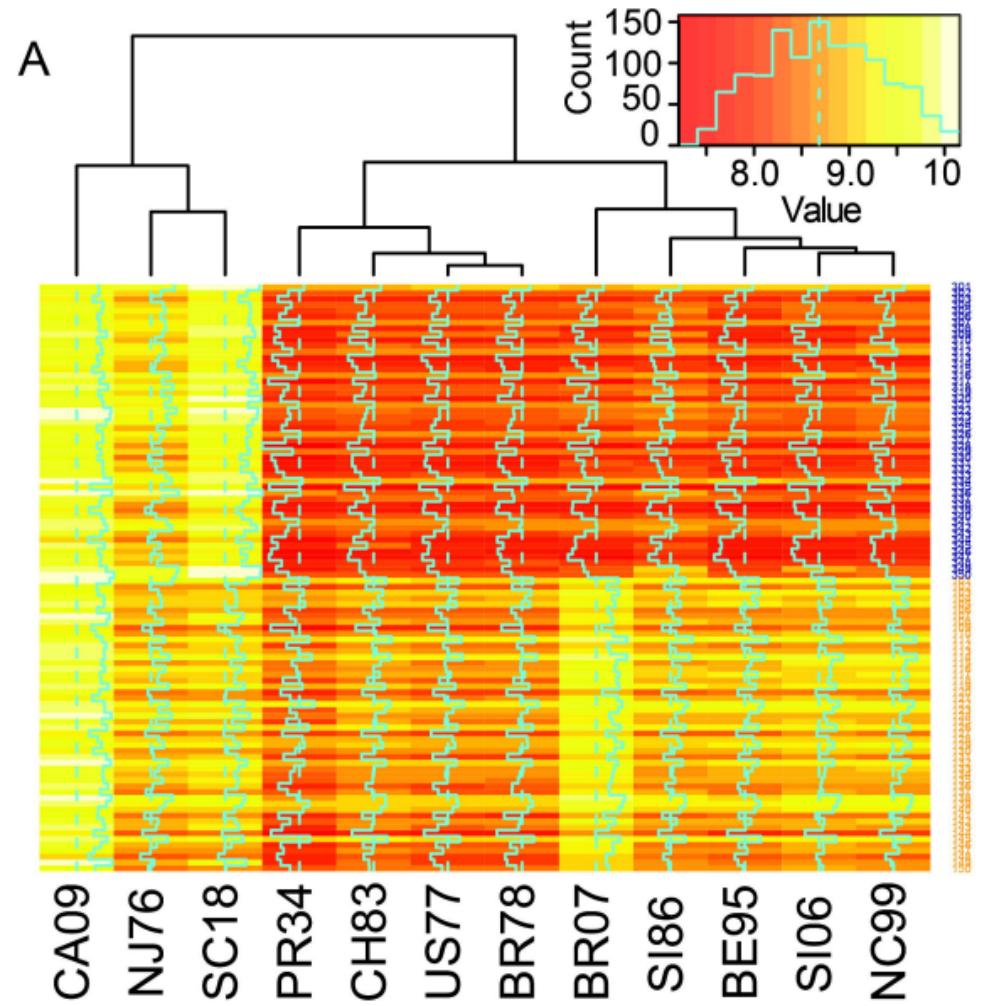
504 32. Wu JT, Wein LM, Perelson AS. Optimization of Influenza Vaccine Selection.
505 Operations Research. INFORMS; 2005;53: 456–476.
506 doi:10.2307/25146881?ref=search-
507 gateway:1675630d61600269146c9e3a07b04691

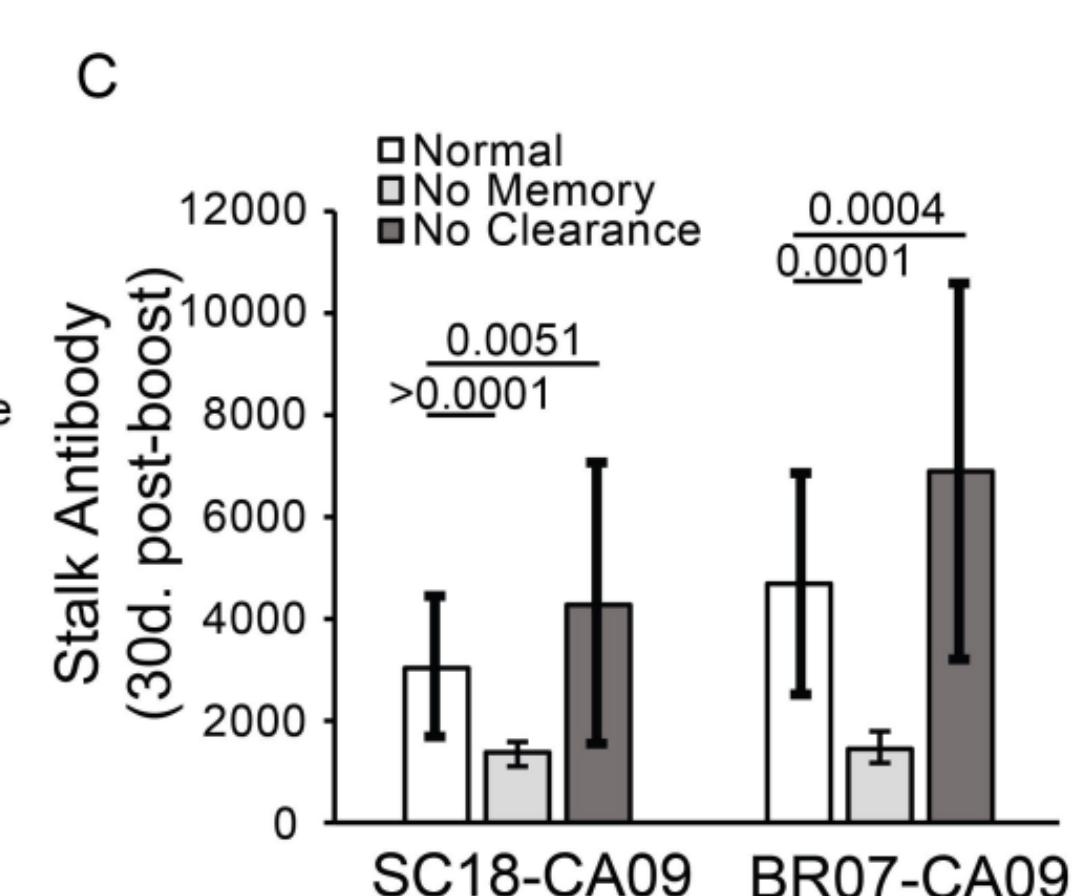
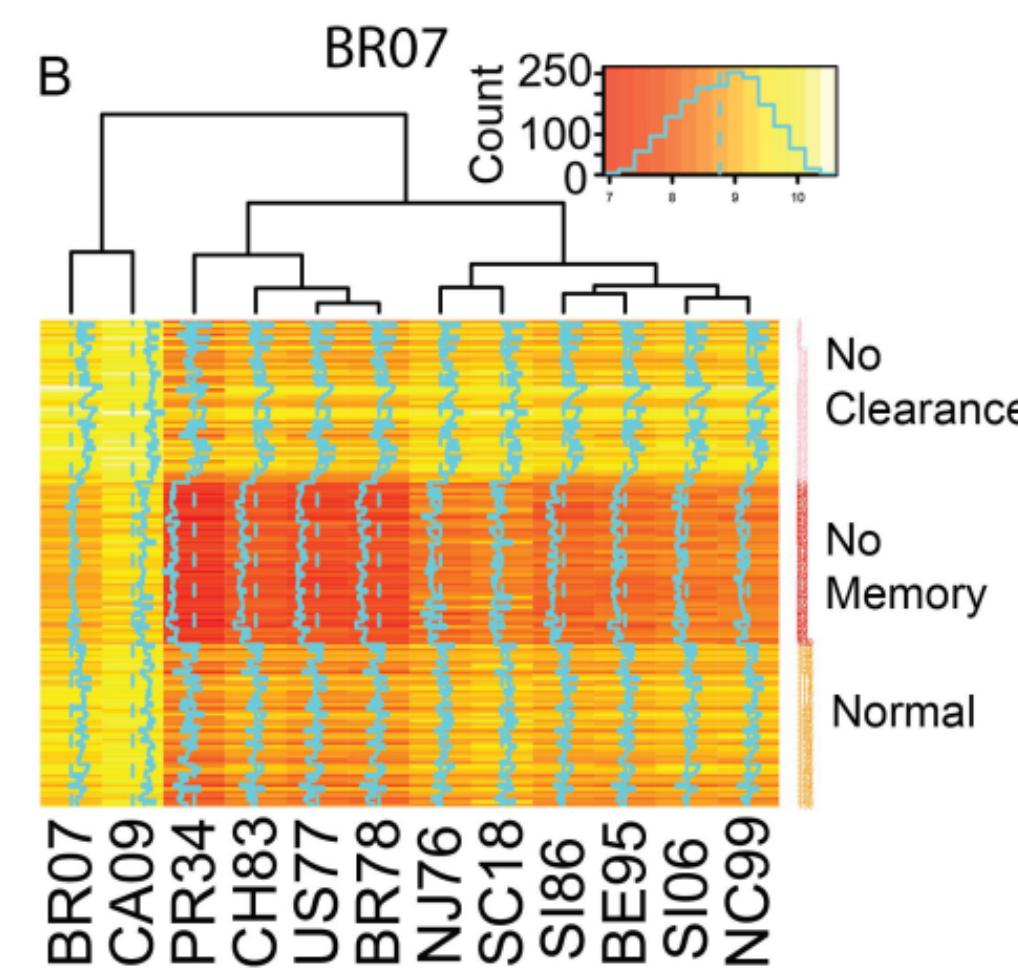
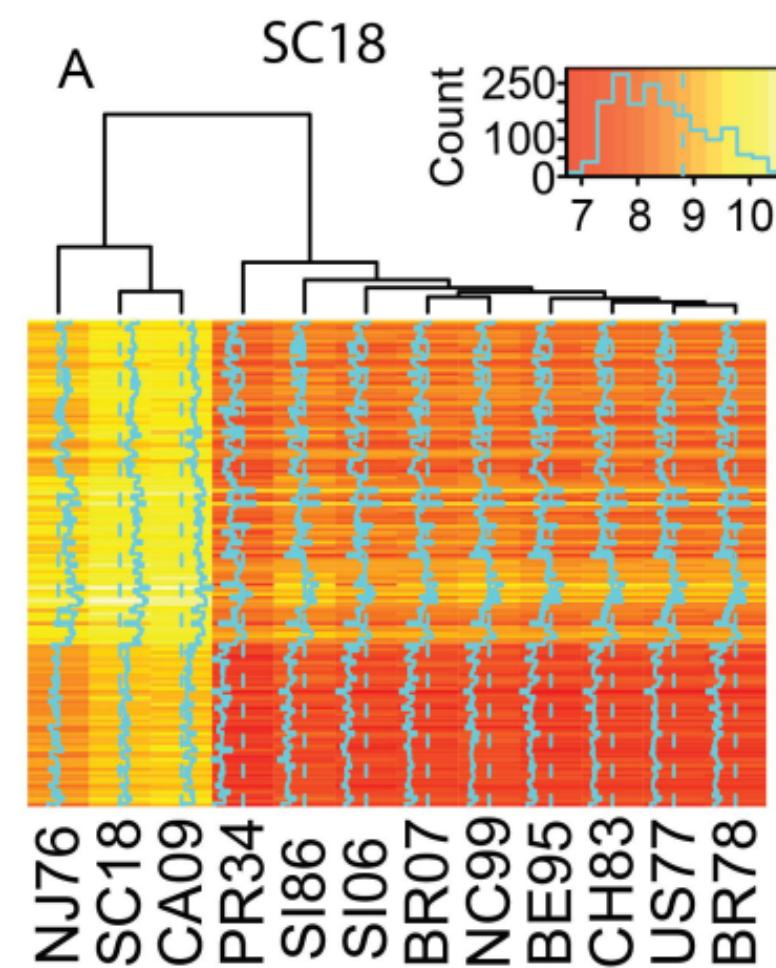

508

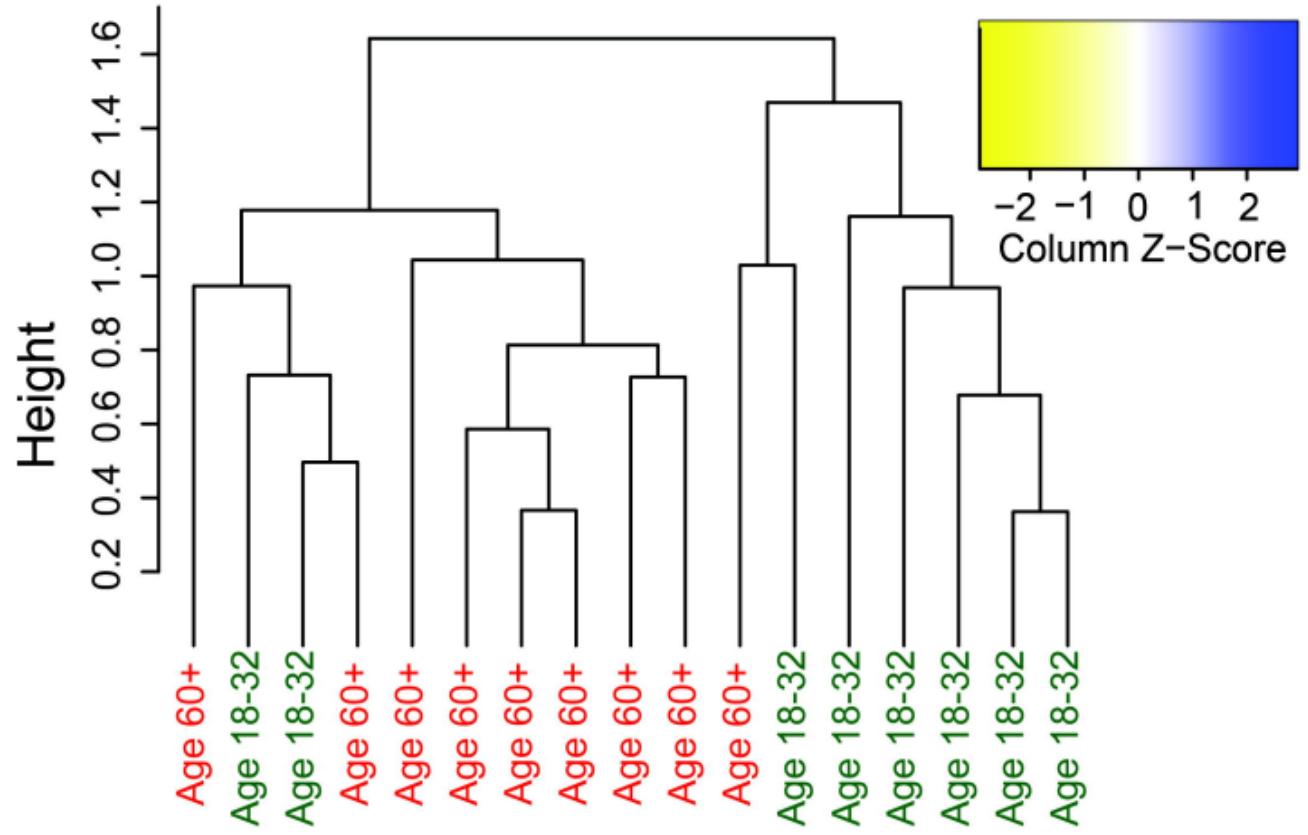

A

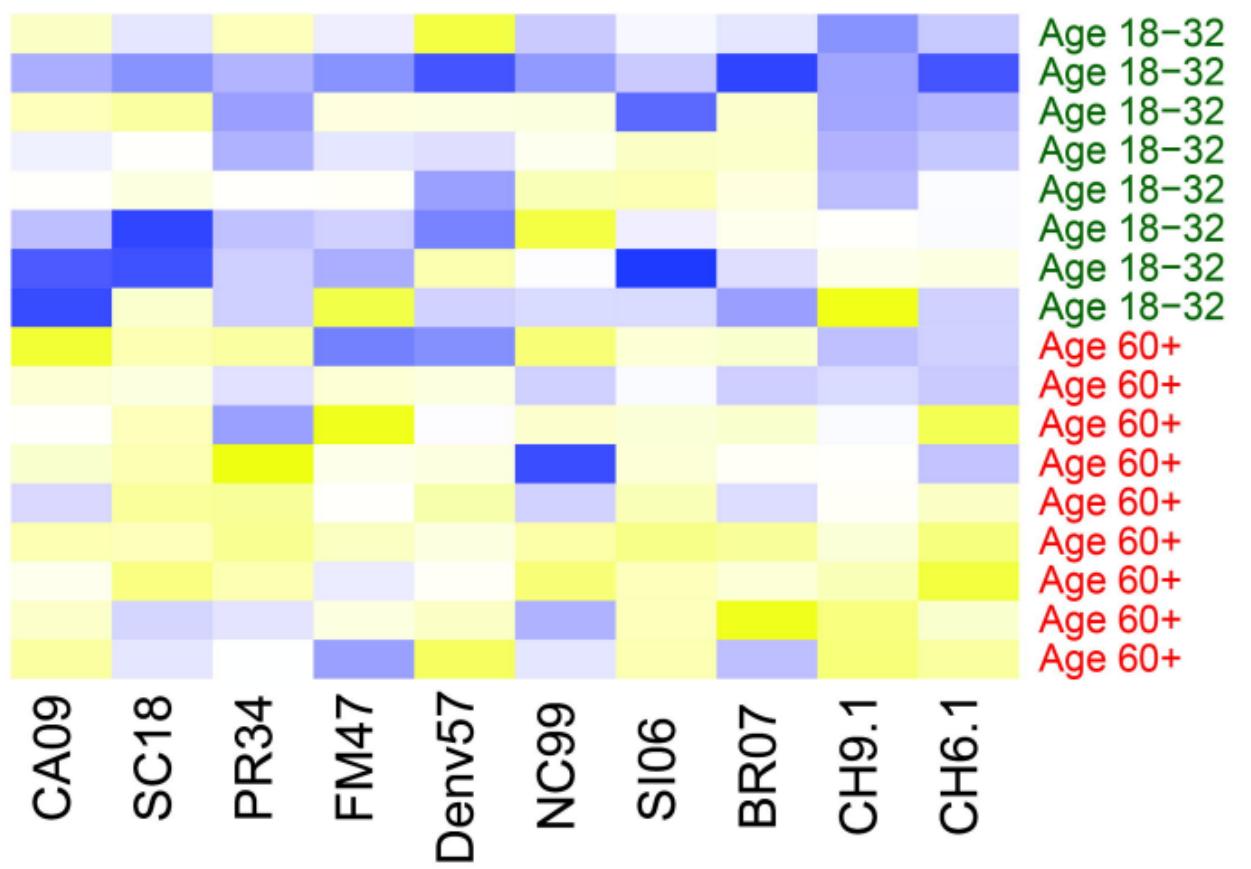

B

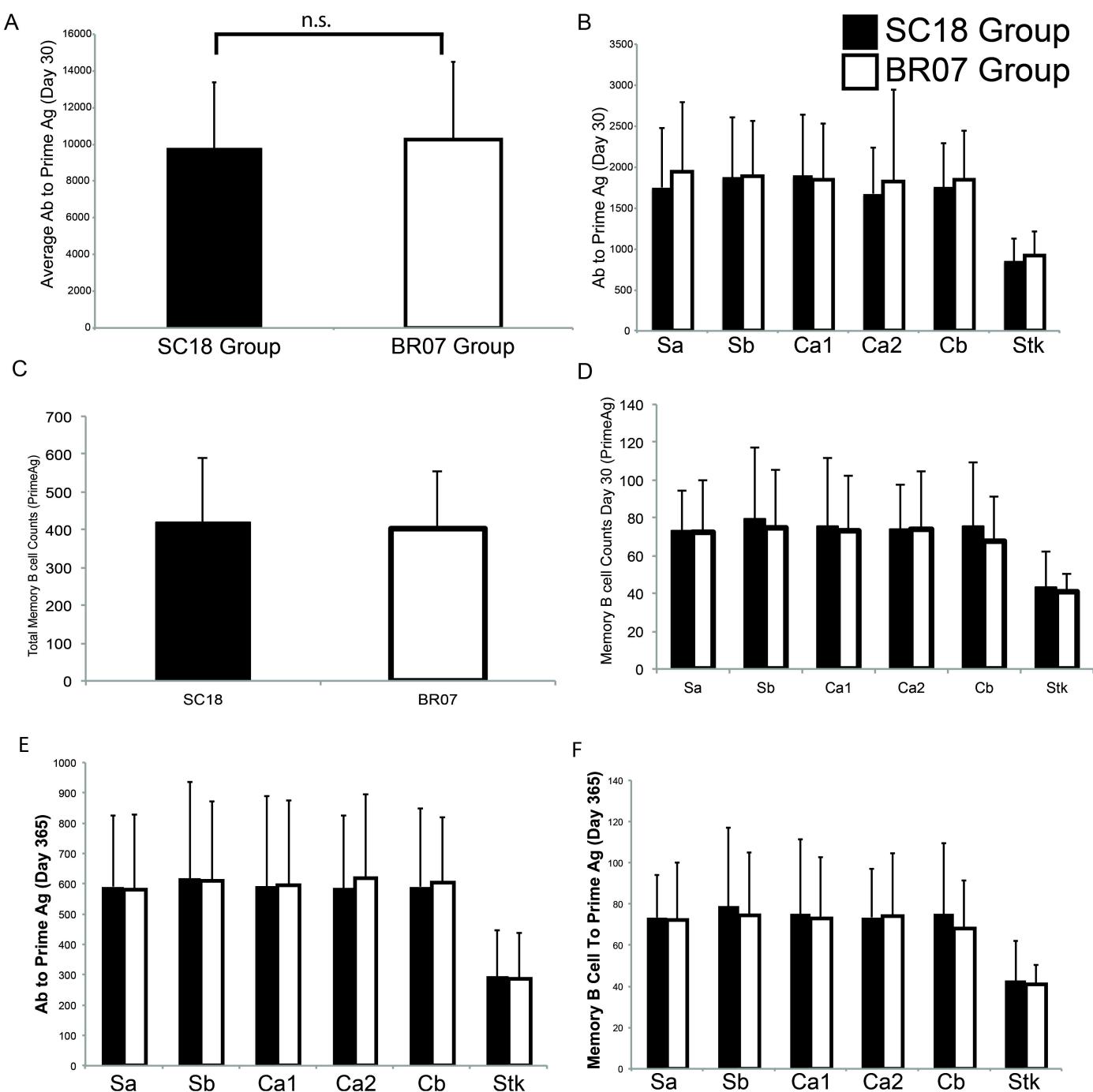

C

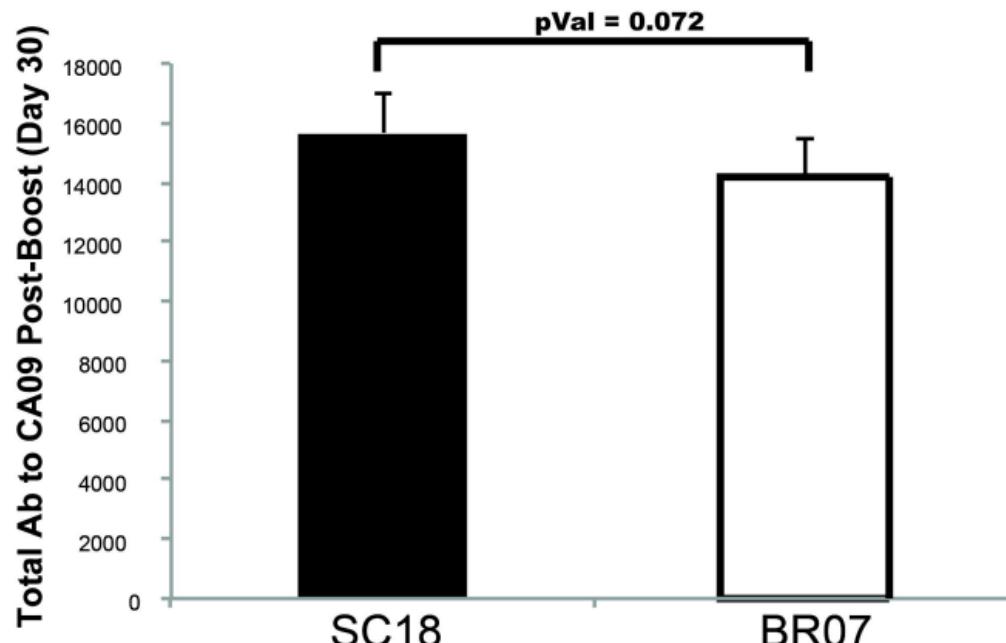
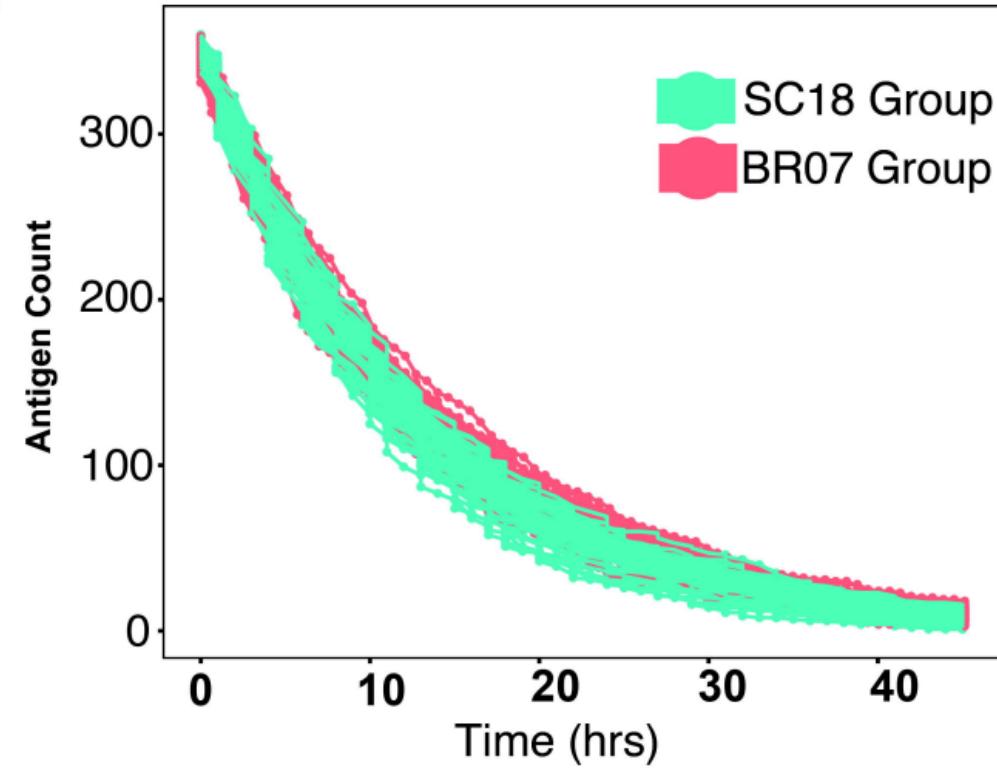



D


E





A



B

Supplemental Figure 1: Immune Responses To Priming Antigen

(A) Representative simulation of B cell, antibody, and antigen kinetics after priming for SC18 primed group (B) or BR07 primed group. (C) Average antibody titers to priming antigen measured at day 30 post immunization for each group. Two groups of 50 simulations were immunized with either (SC18 or BR07). (D) Epitope-specific antibody titers to priming antigen for each epitope in the model, day 30. (E) Average counts of memory B cells specific to the priming antigen for each group measured at day 30. (F) Epitope-specific memory B cell counts specific to priming antigen measured at day 30. (G) Epitope-specific antibody titers to priming antigen and (H) memory B cells measured pre-boost (Day 365).

A**B**

Supplimental Figure 2

(A) Total antibody to CA09 measured day 30 after boosting with CA09. (B) Antigen clearance kinetics post-boosting with CA09 antigen for all subjects in each priming group.