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Abstract

Estimating fitness differences between allelic variants is a central goal of experimental evolution. Current
methods for inferring selection from allele frequency time series typically assume that evolutionary dynamics
at the locus of interest can be described by a fixed selection coefficient. However, fitness is an aggregate
of several components including mating success, fecundity, and viability, and distinguishing between these
components could be critical in many scenarios. Here we develop a flexible maximum likelihood framework
that can disentangle different components of fitness and estimate them individually in males and females
from genotype frequency data. As a proof-of-principle, we apply our method to experimentally-evolved cage
populations of Drosophila melanogaster, in which we tracked the relative frequencies of a loss-of-function
and wild-type allele of yellow. This X-linked gene produces a recessive yellow phenotype when disrupted
and is involved in male courtship ability. We find that the fitness costs of the yellow phenotype take
the form of substantially reduced mating preference of wild-type females for yellow males, together with a
modest reduction in the viability of yellow males and females. Our framework should be generally applicable
to situations where it is important to quantify fitness components of specific genetic variants, including
quantitative characterization of the population dynamics of CRISPR gene drives.

Introduction

The concept of fitness lies at the core of Darwin’s theory of evolution by natural selection. If two allelic
variants differ in fitness, the fitter allele should increase in population frequency over time at the expense of
the less fit allele. The study of temporal changes in allele frequencies can therefore allow us to infer relative
fitness differences. Various approaches have been developed to this end that can disentangle such selection
from the stochastic frequency fluctuations generated by random genetic drift.* 1°5-18:23-25,27,29,35-37,40-42

The general principle of these methods is to devise a probabilistic model for expected allele frequency
dynamics, often based on a Wright-Fisher process. Comparison of model predictions with empirical allele
frequency measurements then allows inference of model parameters (which may include effective population
size) using statistical approaches such as maximum likelihood (ML) or Bayesian inference. Applications of
these methods have provided key insights into the strength of selection operating on particular alleles.?%:30

A common assumption in these methods is that selection between two allelic variants can be described
by a single selection coefficient. While often reasonable, it will be critical in many scenarios to distinguish
among the individual components that constitute fitness.?>33:3? For example, preferential mate choice cannot
typically be mapped onto a logistic growth model specified by a fixed selection coefficient, since it could
result in frequency-dependent dynamics.? Individual fitness effects could also often differ between males
and females, which would lead to systematic biases in genotype frequencies between sexes when selection is
sufficiently strong.

Rigorous inference of selection can include four major selection components: zygotic selection (viability
from zygote to adult), sexual selection, fecundity selection, and gametic selection that usually involves genetic
elements with biased inheritance.” 33 Evaluation of these four selection components in a natural population
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requires detailed population monitoring, as observations need to be recorded at four different life-cycle
stages.? 333438 Typically, the analysis of selection components in the laboratory involves performing a
series of isolated experiments designed to individually quantify each component.® For example, progeny
counts from controlled crosses and backcrosses can reveal differences in zygote-to-adult viability as measured
by deviation from Mendelian proportions.?? Egg counts from controlled crosses can reveal genotype-specific
differences in fecundity. Mating arenas with either observed matings or subsequent scoring of progeny can
allow for estimation of sexual selection.!? The challenge with all of these methods is that it is extremely
difficult to know if all attributes of a gene that may result in differential propagation have been considered,
although it is possible to test the correspondence between individual fitness components estimates and allele
frequency dynamics in cage populations.'® 11

In this study we develop a ML inference framework that can disentangle sexual, fecundity, and viability
selection from genotype frequency time series data. Our analytical approach employs a continuous extension
of the multinomial distribution, allowing us to infer effective population size simultaneously with selection
parameters. As a proof-of-principle, we apply our inference framework to empirical data obtained from cage
evolution experiments of Drosophila melanogaster, in which we tracked relative genotype frequencies of a
wild-type and mutant version of yellow, an X-linked gene required for black pigment formation.'* The mutant
allele disrupts yellow, resulting in a recessive yellow body phenotype. The yellow gene is also required for
the wing extension behavior that is part of male courtship in D. melanogaster.®** Consequently, disruption
of yellow affects mating competitiveness in male flies.!3 2!

We find that in cage experiments, our ML inference method can robustly distinguish between several
selection models involving preferential mate choice, fecundity, and viability, and further distinguish between
male and female fitness costs. Such measurements should become particularly important in scenarios where
fitness costs are large and allele frequencies are expected to change rapidly, as will likely be the case for
recently proposed CRISPR gene drive approaches.®

Methods

Plasmid construct design and generation of transgenic fly line

We designed a construct targeting the X-linked yellow gene in D. melanogaster. Disruption of this gene
causes a recessive yellow phenotype, specified by a lack of dark pigment in the adult cuticle. Our construct
additionally encodes a dsRed protein driven by a 3xP3 promoter, which produces an easily identifiable
fluorescent phenotype. dsRed is not visible in wild-type eyes in the Canton-S background, but we observed
dsRed expression in the abdomen of younger insects and in the ocelli.

The donor plasmid BHDyR was constructed by Gibson assembly of the restriction digest of IHDyV1® with
Stul and Xhol and PCR amplification of the pDsRed-attp plasmid?® with the oligos dsRedY F: GGGTT-
TTGGACACTGGGAATTCTTGCATGGCTAGACGAAGTTATCGTACGGGATCTAAT and dsRedY _R:
TTAGTGGTGGTATTGCCGATGCCCACGGACGCGCCGGTTAAGATACATTGATGAGTTTGG (IDT).
Gibson assembly of plasmids was performed with Assembly Master Mix (New England Biolabs), and plasmids
were transformed into JM109 competent cells (Zymo Research).

The transgenic line in the study was transformed at GenetiVision by injecting the BHDyR donor plasmid
into Canton-S D. melanogaster embryos. Cas9 was provided by co-injection with plasmid pHsp70-Cas9'?
(a gift from Melissa Harrison, Kate O’Connor-Giles, and Jill Wildonger, Addgene plasmid 45945), and a
gRNA plasmid (BHDyg1)® was also included in the injection. Concentrations of donor, Cas9, and gRNA
plasmids were 98, 94, and 58 ng/uL, respectively, in 10 mM Tris-HCl, 23 M EDTA, pH 8.1 solution. The
injected plasmids were purified with ZymoPure Midiprep kit (Zymo Research). To obtain a homozygous fly
line, the injected embryos were reared and crossed with wild-type Canton-S flies. The progeny with dsRed
fluorescent protein in the eyes and abdomen, which indicated successful insertion of the construct, were
selected and crossed with each other. The stock was considered homozygous when all male progeny had
dsRed fluorescence for two consecutive generations.
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Fly rearing and phenotyping

Flies were reared at 25° C with a 14/10 hr day/night cycle. Bloomington Standard medium was provided
as food every two weeks. During initial phenotyping, flies were anesthetized with CO5 and examined with a
stereo dissecting microscope, and the fluorescent red phenotype was observed using the NIGHTSEA system.

For cage studies, enclosures of internal dimensions 30x30x30 cm (Bugdorm, BD43030D) were used to
house flies. At the start of an experiment, transgenic and Canton-S flies of approximately the same age were
separately allowed to lay eggs in food bottles for two days. These food bottles (nine for cage 1, eight for
cage 2, five for Cages 3-5) were then placed in cages at the desired starting ratio between transgenics and
Canton-S flies. Eleven days later, bottles were replaced in the cage with fresh food (at a 1:1 ratio for cage 1
and 2:1 for other cages), leaving adult flies. Two days later, bottles were removed again from the cages and
flies retained, and fresh food bottles were added (nine for cage 1, eight for cage 2, five for cages 3-5). One
day later, flies were frozen for later phenotyping, and food bottles were retained for eleven days to allow the
next generation to hatch. This cycle was repeated until the completion of the experiments.

Results

Cage evolution experiments

We created a transgenic D. melanogaster line based on the Canton-S strain, in which we inserted a construct
expressing a dsRed fluorescent protein into the yellow gene. This insertion effectively disrupts the gene,
producing the characteristic yellow phenotype, which is recessive. At the same time, expression of the dsRed
protein produces an easily identifiable, co-dominant phenotype characterized by red fluorescence in the eyes,
abdomen, and ocelli, though only the latter two could be observed in Canton-S flies due to eye pigmentation.

We will refer to the allele with the inserted construct as y, while we will denote the wild-type allele
as +. Because yellow is located on the X chromosome, males of genotype y are expected to show both
the yellow (body) and red (eye) phenotypes, whereas + males are expected to show neither phenotype. In
females, yy homozygotes are expected to show both the yellow and red phenotypes, y+ heterozygotes are
expected to show only the red phenotype, and ++4 homozygotes are expected to show neither phenotype.
Our system thereby allows us to unambiguously ascertain genotypes at the yellow locus from phenotypic
assays of individual flies.

We evolved five laboratory cage populations, each initialized from a mixture of wild-type Canton-S flies
and our transgenic yellow flies. Genotype frequencies at the yellow locus were then tracked over the course
of several generations. Our first two cages were evolved over six (cage 1) and five (cage 2) generations,
starting with initial y allele frequencies of ~70%. Three additional cages were each evolved for just a single
generation with starting frequencies of the y allele of ~20% for cage 3, ~50% for cage 4, and ~80% for
cage 5. Each cage comprised between several hundred and several thousand flies. The observed genotype
frequency trajectories and changes in male and female population size over time are shown in Figure 1.

The frequency of the y allele decreased systematically in all five cages, confirming that yellow disruption
is likely associated with a substantial fitness cost. In cage 1, for example, the y allele decreased from ~70%
to less than 10% over the course of just six generations, and a broadly consistent rate of decline was observed
among the other cages as well.

Census population sizes fluctuated noticeably in our cages. However, we do not believe that these
fluctuations are the result of selection at the yellow locus, but rather reflect unrelated factors, such as larval
competition and variance in food preparation. We also usually observed a bias in sex ratio of phenotyped
flies since females had higher mortality from laying eggs in the crowded food bottles, while males approached
the food bottles less often.

Evolutionary model

The observation of rapidly declining y-allele frequency in all five population cages raises the possibility that
we may have statistical power to estimate individual fitness components associated with yellow disruption.
To explore this possibility, we will first establish an evolutionary model for allele frequency dynamics in our
experiments that incorporates three specific components of fitness: viability, fecundity, and mating success.
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Figure 1: Population sizes and genotype frequencies in our five cage experiments. Note that we define
genotype frequencies relatively among males, and relatively among females.

Consider an X-linked locus with two segregating alleles: wild-type (4) and yellow (y). The y allele
produces the yellow phenotype, which we assume has lower fitness than the wild-type phenotype. These
fitness costs could be due to reduced viability, fecundity, and/or mating success in individuals with yellow
phenotype compared to wild-type individuals. In the following, we will describe how each of these three
different fitness components is incorporated into our model. In all cases, we assume that the y allele is
strictly recessive, so that wild-type and y+ heterozygous females have the same fitness. We will denote the
counts of individuals observed in the present generation ¢, partitioned by genotype, as Ny, Ny, Nyy, Nyi, N,
(the first two are males, the last three are females).

Viability specifies the probability that a zygote survives to reproductive age, which we assume will depend
only on the phenotype and sex of the individual. Specifically, we define v,, to be the relative viability of
yellow males compared to wild-type males, and vy to be the relative viability of yellow females compared to
wild-type females:
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Using relative viabilities among males and females, rather than absolute viabilities, can help prevent sys-
tematic biases due to the unequal sex ratios in our cages.

Fecundity specifies the reproductive success of a mating pair, as measured by the expected number of
offspring. In contrast to viability, which is a function of an individual zygote, fecundity is therefore a function
of a mother-father pair. In our model, we assume that fecundities are defined by the following mating table,
specifying the relative fecundities of matings involving parents with yellow phenotype, compared to matings
of wild-type mothers with wild-type fathers:
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eration in our model.

For our sexual selection model, we assume a scenario of female mate choice, in which females will choose
mates with a potential preference based on phenotype. We define the actual probabilities that a female of a
particular phenotype chooses a male of a particular phenotype to be:

P(I) = N. /(N + aNy)
P(7Q) = aNy/(N. + aN,y)
P(I|2) = Ny/(Ny + BNy)
P(2) = BNy / (N, + BNy).

Here the parameters « and 3 specify the relative reduction in mating success of yellow males compared to
wild-type males in mating with wild-type or yellow females, respectively.

Biologically there is no reason to assume that yellow phenotype males or females would actually have
higher viability, fecundity, or mating success than their wild-type counterparts. Thus, we will assume that
all of our selection parameters are constrained within 0 < vp,, v, W, wy, wy, o, 8 < 1, which will also help
prevent overfitting in our ML inference approach. Finally, we assume discrete generations and random
segregation of alleles within gametes due to a lack of any known mechanism for biased inheritance of y.
Figure (2) illustrates the life cycle in this evolutionary model over the course of one generation, depicting
where the different types of selection operate.

With these definitions at hand, we can calculate the expected values of genotype frequencies in generation
t+1 as a function of their frequencies in generation ¢ and the parameters of the evolutionary model. At our X-
linked locus, male zygotes always inherit their X chromosomes from their mothers, while females inherit one
copy from each parent. When assuming absence of any selection (v, = vy =w;, =wy =wp, =a = =1),
the expected genotype frequencies in the next generation will then be given by:

Py = c1(Nyy + Ny /2)

py =c1(Nyp + Ny+/2)
Pyy = 2Ny (Nyy + Ny, /2) (4)
Py+ = C2[Ny(Noy 4+ Ny /2) + N (Nyy + Ny, /2)]
Py = 2N (Nyy + Ny, /2).

3)
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Here p, and p, denote the expected relative frequencies of y and + genotypes among males, and py,, py., and
p... denote the expected relative frequencies of yy, y+, and ++ genotypes among females. The normalization
coeflicients ¢; and ¢y are defined by the conditions that gamete frequencies in males and females each have
to sum to one: p, +p; = Dyy + Dy+ + P4+ = 1. Note that we do not use absolute genotype frequencies in the
population, but only relative frequencies in males and females, again to prevent any systematic biases due
to unequal in sex ratios in our cages.

Viability selection is straightforward to incorporate into this framework: we can simply interpret the
genotype frequencies derived in (4) as the expected frequencies of zygotes, which then just need to be
multiplied by the corresponding viability coefficients (and re-normalized). To incorporate fecundity and
mate choice, however, we also have to incorporate the specific probabilities that each mating that produces
the respective zygote genotype actually occurs, and then weigh them by their fecundities. Altogether, this
yields our full model:

Py = exom (WP 12) + wpP(G 1) Nyy + [omP(5]9) + P(F10)] Ny, /2)
pi = 1w P(T[Q)(Nyy + Nyy /2) + P(F[Q) (Nt + Ny /2)]

Py = 2076 P( 1) Ny + wm P(7[9)Ny /2 (5)

Pys = 2w P(T1)Nyy + wnP(1Q) (N, + Nye /2) + P(SIQ)N,.1 /2]

Py = 2P(F[Q)(Nyy + Ny /2).

The coefficients ¢; and co are again defined by normalization. Note that although this model is specific for
an X-linked gene, it is in fact easy to extend to other inheritance patterns, such as an autosomal locus. The
general principle is always the same: to calculate the expected frequency of a given genotype, we have to
sum over all matings that can produce this genotype, weight each by its respective mating probability and
expected fecundity of the mating pair, then multiply all genotypes by their respective viabilities, and finally
normalize all genotype frequencies. Other selection scenarios, such as different dominance effects, could be
easily implemented as well by changing the genotypes to which fitness parameters are applied.

ML inference framework

The evolutionary model developed above allows us to calculate the expected changes in genotype frequencies
across generations for a given set of model parameters. In turn, we may be able to use these relations for
inferring the model parameters, given observed genotype frequency changes. To perform this inference in
a ML framework, we require a probabilistic model that can specify the actual probabilities of observing a
given set of genotype frequencies in the next generation, which will fluctuate around their expected values
because of random genetic drift.

We will formally describe these fluctuations using a diploid Wright-Fisher model, where each individual
in generation ¢+ 1 has its genotype sampled randomly from a multinomial probability distribution, specified
by the expected genotype frequencies from Eq. (5) and an effective population size (INV,) controlling the level
of random genetic drift in the population. Note that we expect the effective population size of our cages
to be considerably smaller than their census sizes due to a variety of factors, such as a higher variance in
offspring numbers among the flies in our cages (especially males) compared to a Wright-Fisher population.

There is an important complication when it comes to calculating probabilities in this model: In a Wright-
Fisher population of effective size N., the probability of observing a given vector (Ny,--- , N4) of counts of
all d possible genotypes is specified by a multinomial distribution, which is properly defined only when
ijl N; = N.. However, this condition will typically be violated in our cages, as we expect sample sizes
(constituted by all individuals present in a cage in our experiments) to be much larger than N,.

To address this problem, we will employ a continuous approximation for the multinomial distribution,
where genotype counts are replaced by genotype frequencies and the discrete multinomial probabilities are
replaced by a multi-dimensional probability density. We define this density by using the gamma function
I(z+1) = 2! as a natural continuous extension for the factorials in the multinomial distribution. Specifically,
consider a diploid Wright-Fisher model with effective population size N, and d possible genotypes, where
p = (p1, - ,pa) specifies their expected frequencies in generation ¢+ 1. The probability density of observing
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a given set of genotype frequencies x;11 = (N1/N,--- , Ng/N) in generation t + 1 is then defined by:

CL‘iNe
b;

p(xer1lp, Ne) = ol (N + 1) ||

i=1

The constant « is to ensure normalization when p is integrated over the d-dimensional standard simplex
defined by the constraint ) . a; = 1. In this framework, the probability of observing genotype frequencies
that fall inside a given area 2 of the d-dimensional frequency space is then obtained by integrating the
probability density over this area: Pr(x € Q) = [, p(x)dx.

Unfortunately we are not aware of any closed-form analytic expressions for the normalization coefficient
«, except for the special case d = 2, but we can derive a workable approximation by discrete partitioning.
Specifically, we will count the number of possible frequency vectors assuming that frequencies x; can still
only take on discrete values x; € {0,1/N,2/N,,--- ,1} on the simplex )", z; = 1. This number is given by

the binomial coefficient
_(Netd—1 %
o= do1 .

Note that under this choice of «, the function p(x) is technically no longer a proper probability density,
as integration over the continuous frequency simplex does not always yield a value of exactly one. This
is because our approximation of « is still based on a discrete partitioning of the frequency space, which
should converge to the continuous limit only as N, goes to infinity. However, these deviations become
noticeable primarily for very small values of N,, where the applicability of the Wright-Fisher model becomes
questionable in general. Our simulations below also confirm that this discrete approximation works well in
practice.

To allow for the possibility of biased sex ratios in our model, while avoiding specific assumptions about
what caused these biases in our cages, we will further factorize the overall probability density of observed
genotype counts into the individual probabilities of observing the male and female genotype counts indepen-
dently:

p(Xtt1) = P(wy7$+‘py»p+>Ne,m) X p(xyw$y+»$++‘pyyapy+ap++a Ne,f)- (8)

Here x, and z, specify the observed genotype frequencies in generation ¢ + 1 in males, and xyy, Ty, T,
specify the observed genotype frequencies in females. For males, we have d = 2, and the normalization factor
in p is therefore a = (N, + 1). For females, we have d = 3, and therefore oo = (N 5 + 2)(Ne s + 1)/2.

The factorization employed in definition (8) provides a very flexible framework for defining effective
population size, which could be assumed to differ between males and females or could vary based on the
census population size. We will discuss this issue in more detail below. For now, we want to assume the
simplest model of a constant effective population size with equal sex ratio:

Ne,m: e,f:Ne/2- (9)

With these definitions in place, we can formulate the likelihood density function for the parameter vector
0 = {Ne, U, V5, Wm,ws,ws, @, B}, given the vectors of observed genotype counts in generations ¢ and ¢ + 1
of a population cage. Multiplying these individual likelihoods across all generations ¢ = 0,1--- ,n in an
experiment (i.e., assuming independence across generations) then yields the log-likelihood density function:

InL(0) = > Inp(x¢]6). (10)

We can easily extend this approach across multiple cages by simply summing the log-likelihoods of the
individual cages. The resulting log-likelihood density function can then be used for inference of maximum
likelihood estimates (MLEs) of the parameter values and their confidence intervals.

Several aspects of the above approach are worth further mention: First, N, has now become just another
parameter of the model and can thus be inferred the same way as we do with the other parameters. This way,
N, can also take on continuous values in our model. Second, our ML inference approach is very general and
could be easily applied to other evolutionary models as well, so long as the model provides expected values
for genotype frequencies, given their frequencies in the previous generation and model parameters. Finally,
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we want to acknowledge that we have not explicitly incorporated sampling variance into our framework, since
we assume that the observed genotype counts reflect the actual numbers of individuals that were present in
a cage. While some sampling noise could of course have occurred in any given generation of an experiment,
we expect that the resulting variance in genotype frequencies should be negligible compared to the variance
due to drift. This is also supported by the fact that we typically infer effective population sizes that are an
order of magnitude smaller than the census sizes of our cages.

Power evaluation

Even when combined over all five cages, the genotype trajectories in our experiments comprise a total of
only 14 transitions between consecutive generations. In light of such limited data, can we still expect our ML
framework to have sufficient power to infer the different parameters of our model? To explore this question
and also provide a general proof-of-principle of our inference framework, we first tested it on simulated data.
Figure 3A shows the outcomes of three Wright-Fisher simulation runs, in which we modeled genotype
frequency trajectories over 10 generations in a cage under three different selection scenarios, differing in
whether fitness costs of an X-linked allele were due to reduced mating success, reduced viability, or reduced
fecundity. These initial simulations were run without drift (in the limit of “infinite” N.) to assess whether
we can detect systematic differences between the three scenarios. We tuned the selection strength in each
model to roughly conform with the observed decay-rate of y allele frequencies in our experimental cages.
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Figure 3: (A) Simulated genotype frequency trajectories under different selection scenarios in a deterministic
model without drift: (i) sexual selection only (o = 0.2,8 = 0.8; vy, = vy = Wy, = Wy = wp = 1); (ii)
viability selection only (v, = 0.3,vf = 0.6; wy,, = wy = wp = a = f = 1); (ili) fecundity selection only
(wWm =04, wr =0.8,wp, =0.2; v, =vy == =1). (B) Accuracy of our ML inference framework for the
three selection scenarios. Tables show the average parameter MLEs and standard deviations estimated over
1000 simulation runs of the specific scenario. These simulations were run with drift, assuming populations of
2000 individuals with N, = 200. For each scenario, inference was performed by only inferring the parameters
of the given model, while keeping the other parameters fixed at one. In all three scenarios, the parameter
MLEs converge to their true values when averaging over individual runs.

The simulations reveal that there are indeed systematic differences in the expected genotype frequency
trajectories between the three scenarios, even though the overall reduction in y-allele frequencies after 10
generations were similar. While differences are most pronounced in the early generations of a run, where


https://doi.org/10.1101/345660
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/345660; this version posted June 14, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

- Table 1: Disentangling sexual, viability, and fe-
Simulated model: . . .
- — - cundity selection. The columns specify the three
(i) sexual (i) viability | (iii) fecundity . . .
sel. only sel. only sel. only simulation models from Fig. 3. The rows spec-
=02 vy =03 | wy, =04 ify three different inference models, assuming ei-
=038 v, =06 | w =08 ther a model of sexual selection only (free param-
wp = 0.2 eters «, (), viability selection only (free parame-
i =591 | ni=341 | i =567 ters v, vy), or fecundity selection only (free pa-
P SZTX:::IIV @ =020 @ =0.78 @& =035 rameters wy,,wys,wp). The cells show the result-
o . 5 5 5 . . . .
g B =079 B =037 B =020 ing parameter MLEs and maximum log-likelihood
< A A A values when the particular inference model is ap-
= iabilit InL = 46.2 InL =68.7 | InL =459 lied h icul . lati del d
5 vula ili Iy 9, =097 | 9, =030 | 9, =087 plied to t e.partlcg ar sunu. ation model, average
g sel.only 9, =065 | o, =060 | 9 =039 over 1000 simulation runs in each case.
=]
2 | fecundit InL =580 | InL=427 | InL =61.6
o | feeundty | & =024 | &, =096 | &, =0.40
2 | sel.only Py ~ ~
@y =058 | @ =002 | @ =079
@p =042 | @, =035 | @, =020

frequency changes are the largest, they also extend throughout the run, as can be seen in the different
frequency ratios of y males and yy females. These results suggest that, at least in principle, different fitness
components could be disentangled by our approach.

Figure 3B demonstrates that even in a model with substantial drift (N. = 200), our ML approach can
still infer the individual model parameters from a single 10-generation experiment if selection is sufficiently
strong. The average MLEs for the selection parameters converge closely to the true values, with standard
deviations among individual simulation runs typically on the order of 10 — 15% of the parameter values.
However, the IV, estimates are consistently higher then the simulated values. This is likely due to the fact
that in any single experiment, drift alone should already result in an upward or downward shift in yellow
allele frequency, which our method would likely infer as “additional” selection, thereby underestimating the
true amount of drift. Consider, for example, a completely neutral scenario. In this case, our method would
still likely infer some positive or negative selection in any given run, leading to systematically lower inferred
levels of drift, even though the direction of selection would be random and average out over many runs.

So far, we have only tested our inference method under the assumption that we know which type of
selection has acted. In this case, we validated that the method can reliably infer the respective selection
parameters, but can it also distinguish the different types of selection from each other? To test this, we
applied our method to each of the three selection scenarios, using either the correct inference model or
models in which a different type of selection was assumed. This can be easily implemented in our framework
by fixing specific selection parameters. For example, to devise a sexual-selection-only inference model, the
parameters o and 8 would be allowed to vary, while all other selection parameters would be set to one. The
resulting parameter MLEs and maximum log-likelihoods values for each simulation model / inference model
combination are shown in Table 1. As expected, the highest log-likelihoods were always achieved when the
simulation model matched the inference model, and the decreases in likelihood when the inference model
was misspecified were significant in all cases (p < 0.05) according to likelihood ratio tests. This indicates
that at least for situations when model parameters have distinctly different values, we should have sufficient
power to determine the type of selection operating on a particular system.

Parameter estimation in cage experiments and model comparison

We applied our ML inference method to the combined data from our five cage populations by adding the in-
dividual log-likelihoods of each of the 14 generational transitions observed in our experiments. Table 2 shows
the resulting parameter MLEs and maximum log-likelihood values for several different inference models.
We first tested our full inference model with all three types of selection possible (eight free parameters
total, including N.). The resulting parameter MLEs for this model suggest that all three types of selection
were indeed acting in the cages, as indicated by the fact that at least one parameter for each type of selection
was inferred to be different from one. However, we suspected that there could still be substantial overfitting
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model description N, 0, or W Wf Wy a 8 InL p AlCc
full model 167 0.84 0.76 0.98 0.93 1.00 0.07 1.00 69.1 8 -93
no sexual sel. 104 0.99 1.00 0.11 0.39 0.29 1* 1* 59.1 6 -94
no viability sel. 156 1% 1* 0.82 0.87 0.73 0.09 1.00 67.7 6 -111
no fecundity sel. 166 0.83 0.78 1* 1* 1* 0.06 1.00 69.1 5 -121
sexual sel. only 134 1% 1* 1* 1* 1* 0.03 071 645 3 -121
viability sel. only 16 0.83 0.62 1* 1* 1* 1* 1* 16.0 3 -24
fecundity sel. only 104 1%* 1* 0.11  0.39 0.29 1* 1* 59.1 4 -106
simplistic model 31 1* 1* 050 =w,, = wfn 1* 1* 346 2 -64
minimal model 1 165 081 =w,, I* 1* 1* 0.06 1* 68.9 3 -129
minimal model 2 156 1* 1* 086 =w, =w? 009 1* 677 3 -127

Table 2: Parameter MLEs and model comparison. Each row shows the parameter MLEs and associated
maximum log-likelihood value when estimated from the combined data across all cages (1-5). An entry of 1*
indicates that the parameter was fixed at a value of one in the particular inference model. "=" indicates that
the value of a parameter is fixed in relation to another. p denotes the number of free parameters of the model,
and AICc specifies its corrected Akaike information criterion value, AICc = 2p—21n L+ (2p%+2p)/(n—p—1),
where n = 14 is the sample size. Smaller AICc values indicate better support for the model.

in this model, given the rather large number of parameters for the amount of data available. Furthermore,
various parameters could be intertwined with each other and difficult to disentangle in practice. For example,
it should generally be possible to approximate many scenarios of preferential mate choice to some extent
by appropriately tuning a model with only fecundity selection, especially since the latter has more free
parameters in our framework.

To assess which fitness components are indeed most essential to incorporate for accurately describing the
genotype dynamics observed in our cages, we tested several inference models, systematically reducing model
complexity. The quality of these models was then compared by calculating the corrected Akaike information
criterion (AICc) values,™?? which provide an estimator for the goodness-of-fit of a given model while also
penalizing an increase in the number of model parameters. While the correction term is strictly accurate
only for linear models, it serves as an adequate approximation for more complex scenarios in most cases.??

We first evaluated inference models in which one type of selection was completely eliminated (by setting all
parameters describing that component to a value of one). In this case, the largest reduction in maximum log-
likelihood was observed when sexual selection was excluded. Inference models without viability or fecundity
selection also had decreased maximum log-likelihoods compared to the full model, but reductions were less
dramatic. All of these models yielded better AICc values than the full model because of their reduced number
of parameters.

We next tested models with only one type of selection acting. Consistent with the above result, we found
that a model with only sexual selection achieved a higher maximum log-likelihood compared to models with
only viability or only fecundity selection, and the AICc value of this model was again better than the full
model. The model with only viability selection was the least-supported model we tested overall.

A simplistic model with only a single fecundity parameter w,, = wy, assumed to be equal in males and
females and multiplicative (wy = wmwy), also produced a very poor fit to the observed data, emphasizing
the need for more complex models for understanding the fitness costs of the yellow phenotype.

Finally, we sought to identify a minimal model of low complexity, based on a limited number of biological
assumptions, which can still describe the observed dynamics reasonably well. Motivated by the observation
that the S parameter was often estimated to be one, we assumed for this minimal model that sexual selection
acts only by lowering the mating success of yellow phenotype males when wild-type females choose their mate.
In addition, we assumed that yellow phenotype individuals have either reduced viability (minimal model 1),
or reduced fecundity (minimal model 2), with equal costs between the sexes and multiplicative costs in the
case of fecundity. Both of these minimal models have only three free parameters (including N.), yet yielded
better AICc values than all other models. In fact, our minimal model 1 yielded the best AICc value of all
models tested, suggesting that the data can be explained well with this simple model in which wild-type
females show severe mating-bias against males of yellow phenotype (& = 0.06) and both sexes with the yellow
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phenotype experience a modest reduction in viability (0,, = vy = 0.81). Note, however, that the inclusion of
preferential mate choice is crucial in this model, given that the model with only viability selection produced
the worst fit among all models tested.

A Full model B Minimal model 1 C Minimal model 2
o
@ 7| —~ 05 Il Il Il | Il Il Il |
N, = 167 = -
g 7 N, = 165 N, =156
2 5 0.4 b -
S 0.3+ - F
z 91 2
= @ 99.9%
<4——» 95% CI c 0.2 B r
=1 a 5%
o | : : : g 99.9.A)
i T T T ] 0.0 T T T T T T T T
0 100 200 300 400 05 06 07 08 09 10 05 06 07 08 09 1.0
N, viability v fecundity w

Figure 4: Log-likelihood surfaces and confidence intervals. (A) The log-likelihood curve of our full model
varying N., while keeping other parameters fixed at at their maximum likelihood estimate. The vertical
dashed lines indicate the maximum likelihood estimate N, = 167 and the corresponding 95% confidence
interval (CI), estimated from a likelihood ratio test with one degree of freedom. (B) The log-likelihood
surface for minimal model 1 with the mating success parameter «, viability parameter v, = vy, and fixed
N.. (C) The log-likelihood surface for minimal model 2 with the mating success parameter «, fecundity
parameter w,, = W, Wy = Wywy, and fixed N.. Darker colors correspond to higher likelihoods. The three
contour lines specify confidence intervals according to a likelihood ratio test with two degrees of freedom.

One key advantage of a ML-based approaches is that confidence intervals of parameter estimates can
be easily calculated by likelihood ratio tests. Figure 4A demonstrates this for the effective population size
parameter N, in our full model, which we inferred to be N, = 167 with a 95% confidence interval of
approximately 100 — 250, or about 5-12% of the census population size. This estimate is consistent with
previous cage evolution experiments in D. melanogaster, where N, values were observed ranging from 4%-
25% of population census sizes.?®3! Importantly, in our framework, the inference parameter N, will also
depend on the overall goodness-of-fit of the inference model. A misspecified model would be expected to
result in lower N, estimates, because the ML approach would have to assume higher amounts of drift to
explain the larger deviations between the predicted and observed frequency trajectories.

Figures 4B,C show the likelihood surface plots and confidence intervals for the selection parameters in
each of our two minimal models, demonstrating that our ML approach has good power in inferring these
parameters. The diagonal elongation of the contour areas in minimal model 2 suggest that the two parameters
are in fact partially dependent on one another in this model.

Discussion

In this study, we developed a ML approach for estimating selection parameters from time series data of
genotype frequencies. The key advancement of our approach over existing methods is the ability to explicitly
distinguish among the different components that constitute fitness, including mating success, fecundity, and
viability. While our framework can be applied to a wide range of scenarios, we demonstrated it in this
study for the specific example of a recessive X-linked allele potentially undergoing sex and phenotype-based
sexual, fecundity, and viability selection. Our analysis indicates that these forms of selection indeed can
result in distinct genotype frequency trajectories, which can be reliably distinguished from each other using
our inference method.

As a proof-of-principle, we applied our approach to study the fitness costs associated with a disrupted
yellow allele in D. melanogaster, using data from cage evolution experiments. Consistent with previous
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studies,'®?2! we found that yellow phenotype males indeed experience a large fitness cost compared to their

wild-type counterparts. However, our ML approach allowed us to further show that this primarily results
from wild-type females strongly preferring to mate with wild-type males over yellow males. Additionally,
yellow phenotype males and females may both experience a moderate reduction in viability according to our
minimal model 1 that yielded the highest statistical support (Table 2).

Figure 5 shows that dissecting individual fitness components is crucial for an accurate description of the
genotype frequency dynamics at the yellow locus. A simplistic model that seeks to approximate this with a
single selection parameter would predict significantly different dynamics from those observed in the cages,
whereas our minimal model captures the true dynamics with substantially higher accuracy.

o _ e _ Q _
—e— cages 1+2 average

8 g i S 2 7 > g = —— minimal model 1
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© 2 © | R ©
- @ > _|
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Figure 5: Comparison of the observed genotype trajectories in our population cages (averaged over cages 1
and 2) with the predicted trajectories of the simplistic one-parameter fecundity-selection-only model (w,, =
wy = 0.50, wp = wywy) and our minimal model 1 (v, = vy = 0.81, a = 0.06), using the parameter MLEs
inferred in Table 2. Simulations were started from the same initial genotype frequencies as the cages and
were run without drift.

Despite its generality, there are a number of important limitations to our method. In contrast to many
existing methods, which are able to analyze sparse allele frequency data obtained from distant time-points,
our method requires frequency estimates over discrete, consecutive generations. This requirement allowed us
to establish a fully analytical model based on the Wright-Fisher process, which does not rely on simulations or
numerical approximations of the transition probabilities across multiple generations, as are typically invoked
by other methods. However, it does likely limit the applicability of our approach to experimental studies
where discrete generations can be enforced and data can be obtained for each generation.

There are also potential issues regarding overfitting in our model. For example, in our implementation
of a mate choice model, we restricted mate choice selection to males, while females could also potentially
undergo such selection. Additionally, with the large number of possible parameters, certain combinations
of values can create very similar outcomes. It is likely that such parameters can only be distinguished in
complex scenarios involving major sex-based differences between these parameters. This is apparent, for
instance, when examining sexual vs. fecundity parameters in Table 2. Similarly, even though our minimal
models were alike in that both had mate choice selection against yellow males, the first model had a viability
cost for yellow phenotype individuals while the second had a fecundity cost. These results may also be
influenced by small sample sizes, so it remains unclear whether or how the yellow phenotype induces a
modest reduction in viability, fecundity, or perhaps both.

For calculating the probabilities of specific allele frequency changes between consecutive generations in
our model, it was necessary to incorporate an effective population size. We defined this parameter to be equal
for males and females and constant across generations, yet other valid possibilities exist. For example, the
effective population size could be defined as a fixed percentage of the total population for each generational
transition, using either the current generation size, the previous generation size, or some combination of
both. Furthermore, male and female likelihoods could be combined, whereas we chose to factorize them
in our experimental situation because of a skewed sex ratio likely due to experimental factors. Another
possibility would be to treat male and female effective population sizes separately, which would also allow
for a lower effective proportion of males compared to females. In some scenarios, these considerations may
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yield a model that is more representative of the level of stochasticity in each generational transition, though
we found that most methods yielded similar results in our limited data set.

Disrupted yellow alleles are classic genetic markers in Drosophila genetics and have long been known to
affect the mating success of male flies due to less effective courtship displays. Specifically, wing extension
display is known to be defective in yellow males, resulting in their securing only approximately 10% of
matings with a wild-type female when in 1:1 competitions with wild-type males," which is consistent with
our results. Interestingly, in long-term yellow phenotype stocks, yellow females were thought to have evolved
to be more receptive to their male counterparts,® but it was later determined that females with the yellow
phenotype were themselves more receptive to yellow males, irrespective of their genetic background.'? Our
study corroborates this result. While it is possible that yellow females do show a modest preference for
wild-type males over yellow males, our study lacked the statistical power to determine this.

Many evolutionary scenarios will still be well served by classical models invoking only a single, fixed
selection coefficient. However, certain scenarios will likely require more detailed fitness models such as the
one we presented here. Perhaps the primary application for such models involve the spread of selfish genetic
elements. The potential use of engineered gene drives,®*? for example, demands accurate and detailed models
for assessing their performance in natural populations, which will likely have to be based on cage trials. For
instance, while an existing D. melanogaster gene drive® that targeted the yellow gene would not be able
to spread, a multiplexed-gRNA drive” at this locus could be expected to spread in a frequency-dependent
fashion in either of our minimal models involving sexual selection, a feature not commonly associated with
such homing-type gene drives. Thus, determination of individual fitness components is not only essential for
understanding the spread of gene drives, but could potentially inform their design as well.
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