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Abstract

Carbonic anhydrases (CAs) have been linked to tumor progression, particularly
membrane-bound CA isoform IX (CA IX). The role of CA IX in the context of breast
cancer is to regulate the pH of the tumor microenvironment. In contrast to CA IX,
expression of CA XII, specifically in breast cancer, is associated with better outcome
despite performing the same catalytic function. In this study, we have structurally
modeled the orientation of bound ureido-substituted benzene sulfonamides (USBs)
within the active site of CA XII, in comparison to CA IX and cytosolic off-target CA Il, to
understand isoform specific inhibition. This has identified specific residues within the CA
active site, which differ between isoforms that are important for inhibitor binding and
isoform specificity. The ability of these sulfonamides to block CA IX activity in breast
cancer cells is less effective than their ability to block activity of the recombinant protein
(by one to two orders of magnitude depending on the inhibitor). The same is true for CA
XII activity but now they are two to three orders of magnitude less effective. Thus, there
is significantly greater specificity for CA IX activity over CA Xll. While the inhibitors block
cell growth, without inducing cell death, this again occurs at two orders of magnitude
above the K values for inhibition of CA IX and CA XII activity in their respective cell
types. Surprisingly, the USBs inhibited cell growth even in cells where CA X and CA XIlI
expression was ablated. Despite the potential for these sulfonamides as
chemotherapeutic agents, these data suggest that we reconsider the role of CA activity

on growth potentiation.
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Introduction

Breast cancer remains the second most diagnosed and one of the leading causes of
cancer-related deaths among women in the United States. Gene expression patterns of
dissected human breast tumors have provided distinct “molecular portraits” allowing
classification into subtypes based solely on differences in these patterns [1]. These
subtypes fall into three major groups: those that express estrogen (ER)/progesterone
receptors (PR) (the luminal subtype), those that express HER2 (ERBB2+), and those
that express neither (the basal-like, including the “triple negative” phenotype, TNBC).
About 74% of breast cancer patients have ER-positive tumors [2]. For these patients,
adjuvant therapy with tamoxifen (a selective estrogen receptor modulator) has
contributed to the 30% decrease in breast cancer mortality in the past two decades,
making it the most successful targeted cancer therapy to date [3]. Yet, about half of the
tamoxifen-treated women will develop endocrine-resistant disease [4]. HER2 positive
breast cancers are observed in about 15% of patients (some of which are also ER/PR
positive), who in recent years has been successfully treated using a monoclonal
antibody against the HERZ receptor. Triple negative breast cancer (TNBC) also
accounts for about 15% of breast cancer patients, but is responsible for a
disproportionate number of breast cancer deaths [5]. The higher mortality rate in women
with TNBC is attributed to lack of targeted therapies coupled with the inability to treat
metastatic disease [5-7]. That tumors develop resistance to radiation and/or
chemotherapies complicates treatment.

Changes in the tumor microenvironment (TM), induced partly by hypoxia,

underlie aggressive and resistant cancer phenotypes [8]. It is known that the hypoxic
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TM contributes to tumorigenic characteristics such as tumor cell proliferation,
angiogenesis, cell motility, and invasiveness that translate to an overall poor prognosis
in cancer patients [8, 9]. Hypoxia induces a global change in gene expression through
stabilization of hypoxia inducible factor one alpha (HIF1a) [10]. Stabilization of this
transcription factor leads to the upregulation of genes important for cell survival [10].
Hypoxia-induced upregulation of genes in glycolysis cause elevated glucose uptake,
which is a hallmark for actively dividing cells and correlates closely with transformation
[11-13]. Increased glycolysis results in high rates of extracellular acidification (pHe)
through the export of H* in an attempt to maintain a more basic/neutral intracellular pH
(pH)) [14-16]. This increase in H* production and export to the extracellular space
induces apoptosis in normal cells surrounding tumors [17]. In contrast, by mechanisms
not understood, cancer cells establish as new “set-point” which allows them to tolerate
low pHe [8, 17-19]. The stress of the TM also induces resistance to therapeutic drugs,
preventing uptake as pH gradients change across the membrane [12]. This, in turn,
induces the counter transport of drugs reducing concentrations inside cells and thus
effectiveness. This is true not only for TNBC patients treated with cytotoxic drugs but
also estrogen receptor (ER)- and HER2-positive patients treated with targeted therapies
[3].

Important modulators of the hypoxic TM include membrane-bound carbonic
anhydrases (CAs), which are zinc metalloenzymes that catalyze the reversible hydration
of CO; [16, 20-26]. In breast cancer, carbonic anhydrase IX (CA IX) expression is
upregulated in hypoxic tissue and is considered a prognostic marker for the TNBC
phenotype [27-30]. In normal cells, CA IX expression is limited primarily to gut

epithelium, but is upregulated in many hypoxic tumors including breast cancer [28, 31-
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43]. CA IX is not only a marker for hypoxia but may also serve as a therapeutic target
for the treatment of aggressive breast cancer. CA XIlI expression, on the other hand, is
not regulated by hypoxia and is an indicator of better patient outcome in several types of
cancers, including breast cancer [44]. Its expression is under the control of the ER and
associated with ER-positive breast carcinomas [44-47]. CA Xll is also expressed more
abundantly across tissue types, including normal breast tissue [41, 48].

The role of these carbonic anhydrases in cancer progression are under intense
investigation, particularly that of CA IX. CA IX was originally identified as a subunit of
the MaTu protein and a short time later characterized as a novel member of the
carbonic anhydrase family [49, 50]. While it is normally localize to gut epithelium, it is
strongly upregulated in tumors, generally in more aggressive phenotypes [51, 52]. CA
IX is a transmembrane protein, organized as a dimer, with the catalytic domain facing
the extracellular space. This enzyme catalyzes the reversible hydration of CO, forming
a bicarbonate ion and a proton, in the presence of water. The pericellular space, with
which CA [IX associates, is rich in metabolic acids such as lactate, protons, and COs,. It
has been postulated that CA IX cooperates with bicarbonate transporters by providing
bicarbonate for intracellular alkalinization at the same time that it acidifies the tumor
microenvironment [53]. Data supporting this hypothesis have been provided through
studies in cell lines and cancer cell-derived spheroids [34, 54, 55]. However, CA IX, like
other members of the family, is a reversible enzyme. We, and others, have
hypothesized that CA IX may stabilize extracellular pH at a value that favors cancer
cells growth and proliferation [27, 56]. New data from studies with CA IX expressing
xenografts support this notion that CA IX acts as an extracellular pH-stat [57]. This adds

to the therapeutic rationale for pharmacological interference with CA IX activity.
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Sulfonamides are the most studied class of CA inhibitors (CAls) with several
compounds in clinical use for the treatment of diseases including glaucoma, altitude
sickness, and epileptic seizures [25, 58-62]. Although these sulfonamides are potent
CAls, most lack isoform selectivity and do not specifically target the tumor-associated
isoforms CA IX and CA XllI [60]. This lack of specificity is attributable to the highly
conserved residues within the active site of CAs [63]. These similarities have challenged
the development of isoform-specific inhibitors, causing competition between isoforms,
which reduce efficacy. This is especially true in the case of CA Il. This isoform has the
widest tissue distribution and is abundantly expressed in red blood cells (representing
5% of all proteins) [64, 65]. As most drugs are delivered systemically and are
membrane permeabile, it is likely that CA Il will sequester CA inhibitors reducing
circulating concentrations limiting exposure within tumors. That said, none of the clinical
CAls have been used for the treatment of cancer. Ureido-substituted benzene
sulfonamides (USBs) are potent and selective inhibitors of recombinant CA IX and CA
XlI activity [66-68]. X-ray crystallographic studies recently provided insight into the
mechanism of USB-mediated selective inhibition of CA IX over CA Il [66]. Those studies
showed that the USBs interact more favorably with residues in the active site of CA IX
versus CA Il [66]. These inhibitors also showed both anti-proliferative and anti-
metastatic properties in preclinical models [29, 68]. One of the USBs (SLC-0111)
recently completed phase | clinical trials and is scheduled to begin phase Il trials for the
treatment of solid tumors that over express CA IX (clinical trials.gov, NCT02215850).

The goal of this study was to distinguish the mechanistic effects of USB-mediated
inhibition of CA IX and CA XII in the context of breast cancer cells. To accomplish this,

three USBs (including SLC-0111) were studied, using in-silico modeling to understand
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binding mechanisms and their efficacy was tested in cell lines representing TNBC and
ER-positive breast cancers. With this approach, differences in residues within the active
sites of CA IX and CA Xll indicated that these drive isoform-specific interactions
affecting affinity of the USBs. The USB compounds were also shown to inhibit CA
activity with surprising specificity for CA IX in TNBC cells, relative to CA Xll in ER-
positive cells given similar K;values for purified protein. This same specificity appears to
drive USB-mediated growth inhibition. Yet the K| values for inhibiting catalytic activity in
CA IX and CA Xll in cells is two and three orders, respectively, less efficacious than
would be expected based on activity studies using purified protein and binding kinetics
based on structures. In addition, growth inhibition requires even higher concentrations
of inhibitors than that needed for inhibition of activity in cells. Further, cells that lack
expression of CA IX or CA XlII are still sensitive to USB-mediated inhibition of cell
growth. Despite the excellent inhibition of the USBs against purified CA IX and CA XII,
and the specificity for CA IX over CA Xll in cells, we must consider the possibility that
CA activity may not be the target for sulfonamide action with respect to cell growth

inhibition.
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Materials and methods

Ureido-substituted benzene sulfonamide (USB) inhibitors were prepared in dimethyl
sulfoxide (DMSOQ) at stock concentrations of 100 mM and further diluted to appropriate
concentrations in cell culture medium before use. Control experiments contain DMSO
only. CA Il antibody was obtained from Novus Biological (Littleton, CO), CA IX (M75)
antibody was a gift from Egbert Oosterwijk, CA XIl and GAPDH antibodies were
purchased from R&D systems (Minneapolis, MN) and Cell Signaling Technology

(Beverly, MA), respectively.

In Silico Modeling

X-ray crystallography structures of USB compounds in complex with purified CA I
and a CA IX-mimic (analogous site directed mutagenesis of residues in the active site of
CA 1l to resemble CA [X) were previously obtained and published elsewhere [66], but
shown for comparison to the modeled CA XllI complex in the present study (Figure 1).
Each of the USB compounds were superimposed into CA Xl structures (PDB ID: 1JC2)
based on the crystal structures of the compounds using Coot [69, 70] and adjusted
based on steric hindrance constraints. These structures were also energy minimized
using the Chimera Minimize structure feature (data not shown) to ensure that these

modeled compounds were at their energy minima.

Cell Culture

MCF 10A, UFH-001, and T47D cells were maintained as previously described [58].

For hypoxia treatment, cells were exposed to 1% O, 5% CO2 and balanced N, for 16 h
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using a Billups Rothenberg Metabolic Chamber. UFH-001 cells are a newly
characterized line that exhibits the triple negative (TNBC) phenotype [71, 72]. These
cells do not express ER, the progesterone receptor (PR), or HER2. However, they do
express EGFR, also typical of the TNBC phenotype. In addition, these cells express CA
IX but not CA XII. The T47D cells are a luminal ER-positive line that expresses CA XIlI
but not CA IX. The MCF 10A line is used as a control and expresses CA IX only under

hypoxic conditions. All cell lines were authenticated prior to conducting experiments.

CA IX deletion by CRISPR/Cas9

Ablation of CA I1X in UFH-001 cells has been described previously [72].
pLentiCRISPR v2 was a gift from Dr. Feng Zhang (Addgene, Cambridge, MA) and was
used to knockout CA IX in UFH-001 cells. Briefly, guide RNA sequences within the first
coding exon were identified downstream of the CA IX translational start site using an
online design tool (crispr.cos.uni-heidelberg.de) and three non-overlapping gRNAs were
chosen within this region of the CA9 gene. Complementary double-stranded
oligonucleotides were cloned into BsmBI digested pLentiCRISPR v2, recombinant
clones identified by restriction analysis and confirmed by automated Sanger
sequencing. Lentivirus was formed from these CA IX sgRNA plasmids and empty
lentiCRISPR v2 plasmid as previously outlined [72]. UFH-001 cells were transduced
and selected with puromycin (2 pyg/mL) for 3 weeks. Stably transduced cells were

harvested, and CA IX depletion was confirmed by western blotting.
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Knockdown of CA Xll by shRNA lentiviral particles

Knockdown of CA XIlI expression in T47D cells has also been previously
described [72]. Briefly, cells were transfected with short hairpin RNA (shRNA) lentiviral
particles obtained from Thermo Fisher Scientific (Waltham, MA) against CA XII. Cells
were seeded at 5x10* cells/well in 24-well plates and grown for 24 h. Then, cells were
infected with lentivirus in serum-free medium for 6 h. The cells were further incubated
with normal growth medium for 24 h. GFP expression was monitored to confirm the
efficiency of transduction. Stable cells were established by puromycin (2 ug/mL)
selection (Sigma Aldrich, St. Louis, MO). CA XII knockdown was confirmed by western

blotting.

Western Blot Analysis

Western blot analysis was performed, as previously described [28]. Briefly, cells
were collected after drug treatments for 48 h and washed 3x with ice-cold phosphate
buffered saline (PBS) and lysed in RIPA buffer (containing 1% orthovanadate, 25 mM
NaF) supplemented with protease inhibitor for 15 min on ice. Lysates were collected
and clarified by centrifugation at 55,000 rpm for 60 min at 4°C. Clarified supernatants
were collected and stored at -20°C. Protein concentration was determined using the
Markwell modification of the Lowry procedure. Equal amounts of cell lysate (30 ug) were
subjected to SDS-polyacrylamide electrophoresis, prepared as described by Laemmli et
al. [73]. Samples were electrotransferred from SDS-PAGE gels to nitrocellulose
membranes in transfer buffer at 200 mA for 2 h at 4°C. After incubation with selective

primary and secondary antibodies, proteins were visualized using ECL reagent

10
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according to the manufacturer’s directions (GE Healthcare, Wauwatosa, WI). Images

were scanned and cropped using Adobe Photoshop version 11.

Membrane Inlet for Mass Spectrometry

CA catalysis was measured by the exchange of "0 from species of *CO; into water
determined by membrane inlet mass spectrometry (MIMS) [74, 75]. The application of
this method in demonstrating exofacial CA activity in breast cancer cells has been
described previously [27] and more recently in Chen et al. [72]. To decrease
inaccuracies arising from '?C-containing CO in cell preparations, "*C- and '®O-enriched
CO,/HCO; were used and the rate of depletion of 0 in "*C-containing CO, measured.
Specifically, the atom fraction of 0 in extracellular CO, was determined using peak
heights from the mass spectrometer representing CO» [z (47) + (49)] /[(45) + (47) +
(49)] where the numbers in parentheses represent the peak heights of the
corresponding masses of specific species of isotopic CO,. The MIMS assay actually
measures CA activity in the dehydration direction, because only isotopic variations in
CO, are measured by the mass spec (although activity in both directions is required for
the decrease in the isotopic distribution of "0 in CO,). A membrane barrier (to the mass
spec) prevents bicarbonate concentration from being measured by the mass spec.
When added to the reaction vessels, the cells are exposed to an equilibrated solution of
3C'80,:HC'™05™ at a ratio of about 5%: 95%, respectively (25 mM, total). The total
amount of CO; does not change over the course of the experiment, just the isotopic
enrichment. Mass spectra were obtained on an Extrel EXM-200 mass spectrometer

using electron ionization (70 eV) at an emission current of a 1 mA. First order rate

11
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constants (k) were determined for CA activity. These were calculated from the change
in atom fraction enrichment (20 in CO,) using: A = Ao €™, where (A) is the fraction of
enrichment at a specific end point, and (A) is the starting enrichment at a specific point.

Cells were collected from culture plates using cell release buffer (Gibco, Waltham,
MA), washed with bicarbonate-free DMEM buffered containing 25 mM Hepes (pH 7.4),
and counted. Cells (5.0 x 10° cells/mL, unless otherwise stated) were added to a
reaction vessel containing 2 mL of Hepes-buffered, bicarbonate-free DMEM at 16°C in
which '®0-enriched *CO? /H'*CO; at 25 mM total *CO, species was dissolved.
Catalysis by CA, in the presence or absence of CA inhibitors, was measured after
addition of cells (exposed to normoxic or hypoxic conditions) by the exchange of 20
species from species of *CO, into water determined by measuring CO, mass by MIMS
as described above. This exchange is a specific measure of CA activity during the time
frame of the assay. A general example of this assay is provided in Supporting
Information (S1 Fig) showing the effect of two classical sulfonamide based inhibitors on
CA activity in UFH-001 and T47D cells, which is further discussed in the results.

Ki values were calculated using the following equation:

(V-unc)=(Vo-unc)/(1+1/Ki),

where (V) is the rate at a specific inhibitor concentration, (unc) is the uncatalyzed rate,
(Vo) is rate in the absence of inhibitor, and (I) is inhibitor concentration. For tight binding
inhibitors, ICsp = [enzyme]/2 + Ki (app). However, when the K; >> greater than the
enzyme concentration, 1Cso =~ K. In our experiments, enzyme concentration in cells is
in the low nM range, based on titrations with purified CA II. The K; values that we
calculate are much higher than [enzyme] for either UFH-001 or T47 D cells, despite the

difference in enzyme concentration between the two cell lines.

12
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Cell Growth Assay

Cell growth in the presence or absence of compounds was analyzed using 3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT assays). Briefly, cells were
seeded in 96-well plates and treated with different concentrations of compounds after
24 h. The cells were then incubated under normoxic or hypoxic conditions under the
different treatment conditions for 48 h and/or 96 h. The medium was replaced every two
days. MTT reagent (10% v/v of 5 mg/mL) was added to the cells after each time point
and the cells were incubated for an additional 4 h. The medium was removed without
disturbing the cells and DMSO was added to each well. The DMSO dissolved cells were
incubated while shaking for 15 min in the dark. Absorbance was measured at 570 nm
using an Epoch microplate reader (Biotek, Winooski, VT). ICs values (inhibitor
concentration where the response is reduced by half) were calculated using Prism 7.0c
for Macs. Non-linear regression analysis was performed on % dose response with log

plots interpolating the value at 50% from the least squares fit of the growth curves.

Lactate Dehydrogenase Release Assay

Cytotoxicity was estimated using the release of lactate dehydrogenase (LDH) activity
(Sigma-Aldrich, St. Louis, MO). Cells were plated in 96-well plates. USB compounds
were added the next day. After 48 h, medium was collected from each well to measure
the amount of released LDH activity. The amount of LDH released from each sample
was measured at room temperature at 450 nm using a BioTek Epoch microplate reader.

LDH activity is reported as nmol/min/mL of medium.

13
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Caspase-3 Activity Assay

Caspase-3 activity assay was performed using an Apo-alert colorimetric caspase
assay kit (BioVision, Milpitas, CA). Cells were plated onto 10 cm dishes and treated with
compounds 24 h later. 48 h after various treatments, cells were collected, and lysates
prepared. Protein concentration was determined, and equal volumes of lysates were
used for caspase-3 activity assay, measured at 405 nm in a microtiter plate. The reader
detected chromophore p-nitroaniline (pNA) after its cleavage by caspase-3 from the
labeled caspase-3 specific substrate, DEVD-pNA. These data are presented as pmol of
pPNA per pg of cell lysate per hour of incubation. Staurosporine (Sigma-Aldrich, St.

Louis, MO) was used as a positive control.

Analysis of Cell Cycle Progression

Cells were seeded in 24-well plates. After 24 h, USB compounds were added to the
respective wells and incubated for 48 h. Cells were released with trypsin, harvested,
fixed with 500 yL of 50% ethanol in tubes and collected by centrifugation at 13,000 rpm
for 5 min. Cell pellets were re-suspended in 500 uL. Propidium lodine (10 pg/mL)
containing 300 pg/mL RNase (Invitrogen, Waltham, MA). Then, cells were incubated at
room temperature in the dark for 15 min. Cell cycle distribution data in Figure 8C-8E
(gated for live, diploid cells only) was analyzed using the FCS Express Version 5 from
De Novo Software (Glendale, CA) from data obtained using FACS caliber (Becton
Dickson, CA). The representative images in the text (Fig 8A and 8B) were generated by

ModFit LT.
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Cell Migration and Invasion Assays

Serum starved cells were plated at a density of 50,000 cells in 300 yL per insert in
24-well cell migration and invasion plates (Cell BioLabs, San Diego, CA). The cells were
allowed to migrate (24 h) or invade (48 h) from the insert containing serum free medium,
with or without USB compounds, towards the well that had medium containing 10%
FBS. Fixing and staining cells terminated the assay. Images were then collected and
analyzed. All cell lines were maintained at 37 C in humidified air with 5% CO, for the

duration of the experiment.

Spheroid Formation Assay

UFH-001, UFH-001 CA IX KO, T47D, and T47D CA Xl KO cells (10,000 cells in a
total volume of 100 pL) were plated into 96-well, low attachment microplates (Corning,
NY). Cells were incubated up to 96 h in 5% CO, at 37°C. Spheroids were imaged at
specific intervals using the EVOS microscope system (Thermo Fisher Scientific,

Waltham, MA).

Statistical Analysis

Data are presented as means + SEM. Differences between the treatment groups
were analyzed using Student’s t-test in GraphPad Prism, version 7.0a: p-values < 0.05

was considered statistically significant.
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370 Results
371

372 Isoform selective binding and interaction of USB compounds

373 to CA IX and CA XIi

374 Cytosolic CA Il exists as a monomer (Fig 1A), while both membrane-bound CA IX
375 and CA Xll have been shown to form dimers. The catalytic domains of these dimers are
376 shown in Fig 1C and 1E. The structural formulae of the USB inhibitors used in this study
377 and their respective K; values for recombinant CA Il, IX and Xl were determined

378 elsewhere and provided in Table 1 [66-68]. These previously published data show that
379 two of the three USB compounds (U-CH3 and U-F, also called SLC-0111) selectively
380 bind to and inhibit the activity of the tumor-associated isoforms CA IX and XII relative to
381 the off-target CA Il [66-68]. Isoform selectivity towards recombinant CA IX and CA XI|
382  was evident in the differences in K; values for these isoforms relative to CA Il, obtained
383 using Applied Photophysics stopped-flow kinetics of purified recombinant proteins.

384 Isoform selectivity is important in vivo, where inhibition of CA Il (one of the predominant
385 isoforms in red blood cells) might cause unintended consequences and sequester

386 inhibitor reducing the concentration within the tumor.

387 To investigate the underlying mechanism of binding, we previously determined the
388 crystallographic structures of all three compounds bound to CA Il (Fig 1B) and the CA
389 IX-mimic (Fig 1D) [66]. As expected, each compound was shown to directly interact
390 with the zinc ion, via the sulfonamide moiety [66]. The extended tail moieties of the USB
391 compounds also interacted with residues, between 10-15 A away from the zinc, favoring
392 the hydrophobic region of the active site (Fig 1B and 1D). This region is located close to

393 the entrance of the active site and has been termed the “selective pocket” [76, 77]. This
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is because it has a clustering of several amino acid residues that are different among
CA isoforms (Table 2). For example, residue 131, located within the selective pocket, is
different among the isoforms. In CA ll, this residue is a phenylalanine (CA Il residue
numbering will be used throughout this manuscript). Its bulky side chain causes steric
hindrance and therefore induces conformation changes in the tail groups of the bound
compounds (Fig 1B, Table 1). In CA IX, residue 131 is a valine, which allows for more
favorable binding and therefore greater isoform selectivity towards CA IX compared to
CA Il (Fig 1D, Table 1). We believe that the differences in active site residues, located
within the selective pocket, are responsible for the observed differences in K; values for
bound compounds (Table 1). By comparison, the classical CA inhibitor, acetazolamide,
can only interact with the active site zinc ion and with residues within 10 A of the zinc,
because of its shorter tail moiety [78]. Residues in this region of the active site are
among the most conserved between isoforms [63].

To compare the CA Il and CA IX structural data with that of CA XIlI, we have now
performed in silico modeling of the three USB compounds (U-CHs, U-F and U-NO3) into
the active site of CA XII (Fig 1F). Residue 131 in CA Xll is an alanine (Table 2), which
like valine (in CA IX) has a small hydrophobic side chain that results in favorable binding
and selectivity towards this isoform (Table 1). In addition, CA XIlI has a serine (a polar
uncharged side chain) at position 132, which is also located close to the entrance of the
active site. As such, this residue also causes steric hindrance that induces
conformational changes in all three sulfonamides, enhancing binding and inhibition
(Table 1). Additionally, serine 132 and also serine 135 (both charged residues and also
unique to CA XIlI) create a narrow hydrophobic region within the CA XlI active site (Fig

1F). This causes an energetically favorable change, especially, in the conformation of
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compound U-F (relative to CA Il and CA IX) within the active site of CA XII. These
residues also prevent steric clashes with residue 131 and facilitate compound
interactions in the narrow hydrophobic region within the selective pocket. These
interactions and the resulting conformational change in U-F will be specific to CA XII,
because neither CA Il nor CA IX has serine residues at positions 132 or 135 (Fig 1 and
Table 2).

Fig 1. USBs bound in the active site of CAs. Panel A. Ribbon diagram of monomeric
CA isoform Il (gray). Panel C. Ribbon diagram of the catalytic domains of dimeric CA
isoform IX (cyan). Panel E. Ribbon diagram of the catalytic domains of dimeric CA
isoform XlI (wheat). Surface representation of compounds U-CHjs (pink), U-F (green)
and U-NO; (yellow) in complex with monomers of CA Il (Panel B), the CA IX-mimic
(Panel D), and modeled into the active site of CA XII (Panel F). Catalytic zinc (magenta
sphere), hydrophilic (blue) and hydrophobic (orange) residues are as shown. Red
double-headed arrows indicate isoform specificity relative to residue 131 (labeled in
white). These arrows also show flexibility in tail conformations seen in CA Il and CA IX
but not in CA XII. Previously published K| values of each compound bound to purified

CA ll, CA IX and CA XII are noted next to the inhibitor name [67, 68]. Figures were
designed using PyMol.

Effect of USB inhibitors on CA IX and CA Xl activity in breast

cancer cells

One of the goals of this study was to determine if these high affinity inhibitors (for CA
IX and CA XII) were equally effective in the context of the cellular environment. To
determine the effect of USB compounds on CA activity in breast cancer cells, cell lines
that only express CA IX or CA XIlI at the cell surface were selected. Based on previous
work, two lines were selected based on their strong expression of CA IX or CA XII. The
T47D line is a well-studied ER-positive, luminal line. UFH-001 cells represent a new
line, with a triple negative phenotype, arising from MCF 10A cells. MCF 10A cells were

derived from a patient with fibrocystic disease, which spontaneously immortalized in cell
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culture [79, 80]. These are considered by many as the control line for breast cancer
cells, although these cells map with other lines that have the basal/triple negative
phenotype [81]. The UFH-001 cells are an especially aggressive that, unlike MCF 10A
cells, form tumors in nude mice. Characterization of the UFH-001 cells is described in
two recent publications [71, 72]. When compared to control MCF 10A cells, UFH-001
cells show greater expression of CA IX protein (Fig 2A) and mRNA (S2A Fig) under
normoxic conditions. However, under hypoxic conditions both MCF 10A and UFH-001
cells upregulate CA IX expression (Fig 2A). It can also be noted that there is a
difference in the migration patterns of CA IX between the two cell lines. In UFH-001
cells, CA IX migrates as a doublet with molecular weights of 54 and 58 kDa, both of
which are glycosylated [82]. However, in MCF 10A cells, CA IX migrates as a singlet
with a molecular weight slightly lower than 58 kDa. The observed differences in
molecular weight may result from differences or deletions in primary sequence. CA XIl|
expression is limited to the T47D cells (Fig 2B and S2B Fig) and is independent of
hypoxia (Fig 2B). Expression of cytosolic CA Il protein is only observed in UFH-001
cells and is also not sensitive to hypoxia (Fig 2A). The upregulation of CA IX in hypoxic
UFH-001 cells underlies the increase in cell surface CA activity in hypoxic versus
normoxic cells (Fig 2C) [27]. That there is no change in CA activity in T47D cells in
response to hypoxia relative to normoxia also correlates with the lack of change in CA
XII expression (Fig 2D).

Fig 2. CA expression and activity in breast cell lines. Panel A. Protein expression in
a normal immortalized basal type breast cell line (MCF 10A) and a triple negative breast
cancer (TNBC) cell line (UFH-001), using western blot analysis (under normoxic (N) or
hypoxic conditions (H) for 16 h, respectively). Panel B. Immunoblots for CAs Il, IX and
XII protein expression in MCF 10A and the luminal ER positive breast cancer cell line

(T47D). Panels C and D. UFH-001 and T47D cells were grown for 3 days at which point
they were exposed to normoxia or 16 h of hypoxia and the cells assayed for CA IX and
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XII activity, respectively, using the MIMS assay. First order rate constants for CA activity
in UFH-001 cells (Panel A) and T47D cells (Panel B), as described in the methods, are
shown. These data represent three independent experiments and are reported as the
mean + SEM.

The inhibitory capacity of USB compounds U-CHs, U-F, and U-NO, on CA IX and
CA XllI activity in UFH-001 and T47D cells, respectfully, were studied under normoxic
and hypoxic conditions, but only the representative normoxic plots are shown (Fig 3).
Because UFH-001 cells express both CA Il and CA IX, the progress curves that follow
CA activity are biphasic on a semi log plot (Fig 3A-3C). The first phase (phase |, 20-40
sec after addition of cells) reflects CA Il activity. The second phase (phase Il, 100-400
sec) reflects CA IX activity. Phase | represents the rapid diffusion of *C'%0, into cells
where CA Il catalytic cycles deplete "0 from H'*C"®0; followed by efflux of *CO,
species from the cell. The concentration of CO, and the isotopic forms of CO, are
measured by the mass spec. There is little change in the slope of this phase between
normoxic and hypoxic cells, although the length of time in this phase is shortened (Fig
3A-3C). Phase Il represents the hydration-dehydration activity of CO,/HCO3™ outside of
the cell representing CA IX activity. The first order rate constant of phase |l is greater for
hypoxic cells compared with normoxic cells (Fig 2C). This indicates a higher rate of CO,
hydration/dehydration on the extracellular face of hypoxic UFH-001 cells, which we
associate with enhanced expression of exofacial CA IX (Fig 2A and 2C).

The results in Fig 3 also show that USB compounds have limited effects on phase |
in the UFH-001 progress curves under either normoxic (Fig 3A-3C) or hypoxic
conditions (data not shown). This means that during the time course of these
experiments, the inhibitors did not permeate the membrane to inhibit CA Il except at

high concentrations of U-F (SLC-0111) which was observed as an increase in the
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atomic fraction of 0 in '3*CO; (starting at ~150 seconds, Fig 3B). All three CA inhibitors
had significant effects on phase Il of the progress curve indicative of a decrease in CA
IX activity (Fig 3A-3C). In other words, the slopes of the phase Il progress curve (used
to calculate first order rate constants in Fig 2) decline in the presence of the inhibitors.
Based on K; values in normoxic and hypoxic UFH-001 cells, the most potent inhibitor
was U-F (SLC-0111) and the least inhibitory was U-NO3 (Fig 3G). Hypoxia did not
significantly affect the efficacy of any of the USB compounds. These plots are
representative of multiple experiments but show a limited number of inhibitor
concentrations. The type of experiments that are used to actually calculate K; values
are shown in S3 Fig where an extensive range of concentrations (for U-NO- in these
cases) was utilized. In addition, we have included the effect of two classical sulfonamide
inhibitors on CA activity in UFH-001 and T47D cells, that differ in their cell permeability
(S1 Fig). Acetazolamide (ACZ) is impermeant during the time course of the experiment
and is expected to block only exofacial CA activity, like CA IX and CA XII.
Ethoxzolamide (EZA) is permeant, and quickly inhibits both exofacial and intracellular
CAs. Activity in UFH-001 cells (S1A Fig), is, once again, observed as a biphasic
progress curve. The presence of ACZ blocks only exofacial CA activity which confirms
that the second phase of the progress curve (from about 200 to 600 sec) represents CA
IX activity. The activity in the presence of EZA represents the spontaneous (non-
catalytic) interconversion of CO, and HCO3', which is essentially an extension of the
activity before addition of cells. First order rate constants are shown for each of the
progress curves (S1A Fig). Finally, we present data on CA activity in cells in which CA
IX is ablated (Fig 4A). Here, we show that CA activity is reduced in CA IX KO cells

relative to the EV (hypoxic) controls. However, inhibition by the impermeant
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sulfonamide, N-3500, is better at blocking CA activity than is CA IX ablation. It is
possible that there are other exofacial CA’s present on the surface of UFH-001 cells.
We have only tested for the expression of CA XIV, which is not detected under
conditions in which we observe CA IX. While microarray data (S2A Fig) show CA XIV
MRNA expression in UFH-001 cells, earlier northern blot analysis revealed no CA XIV
mMRNA [23]. Furthermore, no difference in CA XIV mRNA expression was observed
between MCF 10A and UFH-001 cells, under normoxic conditions (S2A Fig). As far as
we are aware, no one has shown positive expression of either CA XIV or CA IV (the
other membrane bound CA) at the protein level in breast cancer cells.

T47D cells, which express membrane-bound CA XII (Fig 2B), exhibit single-phase
progress curves (Fig 3D-3F), because they lack CA Il. This activity specifically reflects
exofacial CA XII activity. This activity was not sensitive to hypoxia (Fig 2D), which is
consistent with lack of CA Xll induction by hypoxia (Fig 2B). Like CA IX, USB
compounds inhibit CA XII activity (Fig 3D-3F). Again, the slope of the progress curve
decreases in the presence of inhibitor. However, there is a striking difference in efficacy
that is reflected in a significant increase in the K values obtained in T47D cells versus
UFH-001 cells (Fig 3G). Again, an extensive range of concentrations are used to
calculate K; and shown for one of the inhibitors (U-NO,) in S3 Fig. Unlike UFH-001 cells,
there were only slight differences in inhibitory effects of the different USB’s in T47D
cells, which again was not affected by normoxic or hypoxic conditions (Fig 3G). S1B
Figure shows the progress curves in the presence of ACZ and EZA. Catalysis in the
absence of inhibitors is linear. Inhibition by ACZ generates a progress curve that
resembles that of USB compounds. The activity in the presence of EZA once again

represents the spontaneous (non-catalytic) interconversion of CO; and HCO; . These
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experiments were performed at 16°C, as were all of the MIMS experiments in this
manuscript, so can be directly compared. CA Xll knockdown significantly reduced CA
activity in T47D cells relative to EV controls (Fig 4B). Inhibition of CA activity with N-
3500 is only slightly more effective than the knockdown of CA XIlI expression.

Fig 3. Effects of USBs on CA IX and CA XIlI activity in breast cancer cell lines.
Panels A-C. UFH-001 cells were grown for 4 days under normoxic conditions. CA IX
activity (0.5 x 10° cells/mL, unless otherwise indicated) was assayed using MIMS in the
presence or absence of U-CH3 (Panel A), U-F (Panel B) or U-NO; (Panel C). Panels D-
F. T47D cells prepared similarly to UFH-001 cells, but cultured for 6 days, were also
assayed for CA Xl activity (0.5 x 10° cells/mL) in the absence or presence of the same
USB based inhibitors: U-CH3 (Panel D), U-F (Panel E) or U-NO; (Panel F). Atom
fractions of "0 in CO, were collected continuously. For ease of illustration, data points
at 25-s intervals are shown. Phase | in UFH-001 cells indicate CA Il activity and Phase
Il indicate CA IX activity. In T47D cells, the progress curves are linear and
representative of CA XII activity. Arrows indicate time point at which cells were added.
Panel G. K| values of each compound in UFH-001 and T47D cells, under normoxic or
hypoxic (16 h) conditions, are shown. Data are representative of the average of
triplicate experiments + SEM.

Fig 4. Effect of CA IX and CA XIl knockdown on CA activity. CA IX knockout in
UFH-001 cells was accomplished using Crispr/Cas9 technology. CA Xll knockdown in
T47D cells was performed using shRNAI lentiviral strategies. Cells were grown similarly
to those described in Fig 3. Panel A. CA activity was measured in 1 x 10° UFH-001 cells
(EV controls, CA IX KO, or cells treated with the pegylated sulfonamide, N-3500).

Panel B. CA activity was measured in 5 x 10° T47D cells (EV controls, CA XII KO, or
cells treated with N-3500. Data represent duplicate experiments.

Impact of USB-based inhibitors on breast cancer cell growth,

cytotoxicity, and apoptosis

MTT, lactate dehydrogenase (LDH), and caspase activity assays were used to test
the efficacy of CA IX and CA Xll inhibition on breast cancer cell growth, viability and
apoptosis, respectively. These results show that all three compounds decreased cell
growth (MTT assay) in the different cell lines under normoxic conditions (Fig 5, Table 3).
No significant trend in compound effectiveness was established between the cells

treated for 48 h compared to 96 h (Fig 5 and Table 3). The most effective compound at
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inhibiting growth was U-NO, in UFH-001 cells (ICs0 ~25 uM). This compound also
inhibited the growth of MCF 10A cells in addition to that of the T47D cells, but requiring
nearly three times the concentration compared to UFH-001 cells (Table 3). The MCF
10A cells were the most resistant to compounds U-CH3z and U-F, with ICs values
observed in the range of 500 uM. The concentration required to block growth of T47D
cells was also in this range at 48 h but improved somewhat at 96 h of exposure (Table
3). We repeated the experiments under hypoxic conditions (Fig 6) with similar results.
In addition, we tested the effects of the USB’s on cells in which CA IX or CA Xll was
knocked out in UFH-001 (UFH-001 KO) or T47D (T47D KO) cells, respectively, which
have been previously characterized [72]. Surprisingly, the result was the same, i.e., the
USB’s still blocked cell growth at high concentrations even in the absence of CA IX or
CA XII expression.
Fig 5. Effects of USBs on breast cancer cell growth. Breast cancer cell lines grown
under normal culture conditions for 24 h were exposed to compounds for 48 h [U-CHj;
(Panel A), U-F (Panel B), U-NO- (Panel D)] or 96 h [U-CH3; (Panel D), U-F (Panel E), or
U-NO; (Panel F)]. MTT assay was performed at 48 h and 96 h, respectively. Data
shown are an average of at least three independent experiments and are represented
as the mean = SEM.
Fig 6. Effects of USBs on cell growth in the presence or absence of hypoxia or in
CA knockout cells. One day after plating, breast cancer cell lines were exposed to
normoxic or hypoxic conditions for 48 h in the presence of U-CHjs, U-F, or U-NO; at the
given concentrations in UFH-001 empty vector control (EV) cells (Panel A), UFH-001
CA IX KO (UFH-001 KO) cells (Panel B), T47D EV cells (Panel C) and T47D CA XII KO
(T47D KO) cells (Panel D). MTT assay was performed and shown as % cell growth.
Data shown represent at least three independent experiments and are shown as the
mean £+ SEM.

Both UFH-001 and T47D cells are able to form spheroids (S4 Fig). UFH-001 cells

form spheroids as early as 24 h after plating (even when the plating density is low). The

spheroids appear dense and round. The T47D cells also form spheroids, which are
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somewhat larger than UFH-001 spheroids. Neither the loss of CA IX nor CA XII affects
spheroid formation over the 96 h observation period. We were unable to measure
activity in these spheroids because of the limited number of cells.

To specifically test for cytotoxicity, LDH release over 48 h in the presence or
absence of the USB compounds was measured. The inhibitors caused only limited
cytotoxicity when exposed to cells (Fig 7), relative to a positive control (S5 Fig). UFH-
001 cells were the most sensitive, but only at high concentrations of compound U-NO»
(Fig 7). The MCF 10A cells were also somewhat sensitive to U-NO but again at high
concentrations (Fig 7A). T47D cells showed no loss of membrane permeability in
response to inhibitor treatment (Fig 7C).

Fig 7. Effects of USBs on breast cancer cell viability. The cytotoxic effects of USBs
were evaluated using the LDH release assay. MCF 10A (Panel A), UFH-001 (Panel B)
and T47D (Panel C) cells were grown in 96-well plates and exposed to U-CH3, U-F or
U-NO; for 48 h, under normoxic conditions. LDH release was assayed after treatment,
results were evaluated, and data analyzed using Prism. Data shown are representative
of three independent experiments and as the mean £ SEM, *p < 0.05.

These observations led us to question whether the growth arrest and (limited)
cytotoxicity observed with the inhibitors was due to the activation of apoptosis. To test
this, caspase activity assays were employed. These data revealed that apoptosis was
not activated, as caspase activity did not change in either UFH-001 or T47D cells in the
presence of USB compounds (S6A and S6B Fig, respectively).

Because of the USB-induced growth arrest, albeit at high concentrations, the effects
on cell cycle transition were evaluated after exposure to inhibitors for 48 h, under
normoxic conditions (Fig 8). Of the diploid population, ~ 40% of the UFH-001 cells were

in the G1 phase of the cell cycle (Dp G1) and a much lower percentage were in G2
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phase (Dp G2). The number of T47D cells in G1 (~ 60%) was significantly higher than
the number of cells in the G2 phase of the cell cycle (~ 20%). A significantly higher
percentage of cells were observed in the G1 phase in T47D compared to UFH-001
cells, while cells in G2 phase were much higher in UFH-001 than T47D cells (Fig 8C). In
the presence of USB compounds, there was no change in the number of UFH-001 cells
in S phase when compared to the control cells (Fig 8D). However, a significant
decrease in the number of T47D cells in S phase was noted with exposure to U-CHj3
and U-F, but not U-NO- (Fig 8E). Higher concentrations of U-CH3 and U-F where used
for experiments with T47D cells, because both the K; values obtained from the MIMS
experiments (Fig 3G) and the I1Cso values obtained from the cell growth assays (Table 3)
were much higher for these compounds relative to compound U-NO3, and by
comparison to the more sensitive UFH-001 cells.

Fig 8. Effects of USBs on cell cycle transition in breast cancer cells. Cell cycle
analysis was performed in UFH-001 (Panel A) and T47D (Panel B) cells treated with
varying concentrations of USB compounds for 48 h, under normoxic conditions. Post
treatment, cells were stained with Propidium lodine containing RNase A, data was
obtained using the FACS caliber instrument and results analyzed with FCS Express and
ModFit LT softwares. The percentage of breast cancer cells in G-phase (Panel C), all
phases of the cell cycle in UFH-001 (Panel D) and T47D cells (Panel E), were quantified
using Prism. Data are represented as mean of at least three independent experiments +
SEM and NC = negative control.

Effect of USB inhibitors on CA expression in breast cancer

cells

We next examined if inhibition of CA IX and CA XII activity induced an upregulation
of the targets or expression of other CA isoforms as a compensatory mechanism. To
achieve this, UFH-001 and T47D cells were treated with increasing concentrations of

USB compounds for 48 h, under normoxic conditions. Immunoblotting with cell lysates
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was performed using antibodies against CA I, CA IX and CA XIl. No upregulation of
other CA isoforms was observed in response to USB treatment (S7 Fig). However,
there were changes in the endogenously expressed CAs. For instance with U-CHj3
treatment, both UFH-001 and T47D cells showed increases in the expression of CA IX
and CA XIlI, respectively, compared to controls (S7A and S7B Fig, respectively).
Treatment with compound U-F, at lower concentrations (1 uM and 10 uM) increased CA
IX and CA XII expression, in UFH-001 and T47D cells, respectively when compared to
the control. However, at higher concentrations (100 uM) a decrease in CA IX and CA XlI
expression was observed (S7A Fig) and in some cases even to a lesser extent than the
control cells (S7B Fig). Similar to U-F, compound U-NO also increased, somewhat, the
expression of CA IX and CA XII at lower drug concentrations but ultimately reduced
expression, more so with CA IX than CA XIlI, at concentrations of 100 uM of the

compound, when compared to the untreated controls (S7A and S7B Fig).

Effect of USB inhibitors on cell mobility

While cells grown on polystyrene plates provide useful models, studies of cells
grown on more compliant surfaces allow them to recapitulate, in part, their behavior in
vivo. We have taken advantage of Boyden Chambers to monitor migration and invasion
of UFH-001 and T47D cells in the presence or absence of USB compounds. The results
show that only the UFH-001 cells have the ability to migrate and invade which was
tested at 24 and 48 h, respectively (Fig 9A and 9C). All three USB compounds blocked
UFH-001 cell migration at high concentrations: U-CH3; and U-NO, were the most

effective. Significant inhibition of UFH-001 cell invasion was observed with only U-F
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691 treatment and at the highest concentration, well above their K; values for inhibition of
692  activity. Not unexpectedly, we did not observe T47D cell migration and invasion in either
693 the absence or presence of the USBs (Fig 9B and 9D) and thus we are unable to make
694  a definitive statement regarding any potential effect of the sulfonamide inhibitors on

695 cells that do not possess these features.

696 Fig 9. Effects of USBs on breast cancer cell migration and invasion. Serum starved
697 UFH-001 and T47D cells were allowed to either migrate for 24 h or invade for 48 h

698 towards a chemoattractant in the presence or absence of USB compounds. Bright-field
699 images of migrating and invading cells are shown in Panel A (UFH-001 cells) and Panel
700 B (T47D cells). Data are quantified for UFH-001 and T47D cells Panel C (migration) and
701 Panel D (invasion). NC= negative control. Data shown are an average of duplicate

702  experiments + SEM. *p < 0.05, and ***p < 0.001.
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Discussion

In the current study, we investigated the binding of a class of USB-based
compounds that were specifically designed to inhibit the cancer-associated isoforms,
CA IX and CA XIlI, over the off-target CA II. We have shown, as others have previously,
that residue 131 is important for isoform selectivity of these compounds towards CA IX
and CA XII [66-68, 77, 83]. In addition, our model shows that serine residues 132 and
135 located within the active site of CA Xll are required for USB selectivity (compared to
the other CAs), towards this isoform. This then raises the question: Can we relate these
structural data to the K values published for recombinant CAs [68]? Data in Table 1
show that compounds U-CH3 and U-F exhibit K; values for CA Il that are one to two
orders of magnitude greater than for CA IX or CA XII. Our structural data illustrate that
these differences are caused by residue 131, which is a phenylalanine in CA I, forcing
a lower energy conformation of U-CH3 and U-F in the active site of CA Il [66]. This
differs from the more favorable conformation adopted by inhibitors in CA IX [66] and
predicted in CA XII (Fig 1). U-NO2 conformation is similar among the three CA isoforms,
hence the similar K; values. Therefore, we must conclude that residue 131 does not
cause steric hindrance in the active site of CA Il for U-NO, but clearly does create steric
hindrance for the other two inhibitors. This may be related to physiochemical properties
or flexibility of the tail moiety.

In the physiological setting of intact cells, inhibition of CA IX activity in UFH-001 cells
by USBs was significantly more efficient than inhibition of CA Xll in T47D cells (Fig 3).
This was unexpected based on the relatively similar K; values obtained using
recombinant proteins (Table 1) [68]. This difference in efficacy was about an order of

magnitude between the cell line that expresses CA IX versus the cell line that expresses
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CA XII. Because of the difference in CA IX and CA Xll as prognosticators for patient
outcome, this result suggests the potential for selective therapeutic targeting for CA IX,
in the clinical setting, despite the similar efficacy of the drugs with the purified proteins.
However, there was also a difference in K; values between purified protein and those in
intact cells. For CA 1X, this difference varied across inhibitors ranging from 3-fold (U-F)
to 500-fold higher (U-NO>) (i.e., inhibition of CA IX in cells versus recombinant protein).
For CA XIl, this difference was nearly three orders of magnitude for all USBs. It is
possible that part of this difference lies in the use of different techniques for analyzing
activity. Recombinant protein activity was measured using stop flow kinetics [55] while
enzymatic activity in cells was measured using MIMS, a technique originally developed
to define the catalytic mechanisms of purified CAs [75, 82], including that for CA X [84].
That differences in the K| values are based on technique seems unlikely because the
rate constants calculated for recombinant CA IX are similar across these techniques
[84-86]. Further, rate constants determined in isolated membranes containing either CA
IX or CA XlI [27, 72] show strikingly similar values, suggesting that the membrane
environment does not influence catalytic activity. Yet, we must also consider that the
cellular environment (intact cells) adds layers of complexity relative to even isolated
membranes. The cells are in suspension during the MIMS assay, having been released
from plates using a non-enzymatic procedure. Thus, many of the cells are still in
“colonies” which means that the extracellular matrix is still intact. This layer, comprised
of glycoproteins, proteoglycans, and fibrous proteins like collagen, may provide a barrier
for incoming molecules (like USBs). Yet, the permeant sulfonamide, ethoxzolamide,
inhibits activity even inside the cell and with no time delay. In addition, the USBs are

impermeant over the course of the assay, and thus inhibitor concentration is preserved
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outside of the cells.

The effect of the USB inhibitors on cell growth followed a trend similar to that
observed for activity, but is more problematic. For both the UFH-001 and T47D cells,
the inhibitors were less effective by about two orders of magnitude, based on ICs
values. We initially conducted these experiments under normoxic conditions, even
though aggressive forms of cancer exist in hypoxic environments. Our rationale for
using normoxia was based on the lack of difference in the K; values of the USB
compounds for CA IX and CA XlI between normoxic and hypoxic cell culture conditions.
However, Elena et al. showed that U-F (SLC-0111) activated apoptotic and necrotic
programs only in acidified medium [87], a condition associated with hypoxia. But again,
these effects were seen at only high concentrations of inhibitor, orders of magnitude
above the K| values that we have measured for inhibition of CA activity. Regardless, we
repeated the growth studies with cells exposed to hypoxia, but the data were identical.
Several studies have shown that these USB compounds are effective at blocking tumor
growth [68, 88, 89], so this is clearly a useful strategy for treating breast cancer patients.
So, we must ask why there is a disconnect between the loss of CA activity, particularly
that of CA IX, and the inhibition of cell growth/cytotoxicity. The activity assay is
conducted for about 6 min, while the growth, migration/invasion, and cytotoxicity
experiments are conducted for up to 96 h. Under these later conditions it is possible that
the inhibitors undergo chemical inactivation by oxidation, reduction, or cleavage
reducing their ability to block the CAs. It is difficult to measure these parameters in the
context of cell culture. It is also possible that the drugs are transported into cells over
the long term, reducing the local concentration around exofacial catalytic sites of CA IX

or CA XIll. However, the studies in which we tested USB compounds, in cells where CA
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IX and CA XII were ablated, showed the same inhibitory effect of sulfonamides on cell
growth. This suggests that, at very high concentrations of the USB’s, they are acting
independently of their inhibition of exofacial CA activity. Indeed, others have recently
observed this as well [90, 91]. In these latter studies, investigators identified a potential
new sulfonamide target, RMB39 (RNA binding motif protein 39) that is also called
CAPERa. They demonstrated that indisulam (an aryl sulfonamide drug in phase II
clinical trials for the treatment of advanced stage solid tumors) promotes the recruitment
of RBM39 to the CUL4-DCAF15 E3 ubiquitin ligase leading to RBM39 ubiquitination and
proteasomal degradation [90, 91]. Mutations in RBM39 that prevent its recruitment
increase its stability, conferring resistance to indisulam’s inhibition of cell growth and
cytotoxicity [90]. Another series of studies used a naphthalene sulfonamide to bind to
the pY705 in STATS (signal transducer and activator of transcription 3). This binding
inhibits STAT3 phosphorylation and dimerization, which is required for its interaction
with DNA [92, 93]. In vivo, this sulfonamide blocks tumor growth in a breast cancer
xenograft. With these “off target” effects of sulfonamides, we must consider that
exofacial CA activity, alone, does not regulate cell growth.

In conclusion, we have shown that specific residues within the catalytic sites of CA
IX and CA XII determine the binding affinities of the USB inhibitors. These interactions,
particularly at residue 131, provide the rationale for selective inhibition of recombinant
CA IX'and CA XII over the off-target CA Il. Based on K values, determined in the
context of cells, we conclude that USB inhibition of activity shows strong specificity for
CA IX relative to CA XII. This was surprising based on the similar K; values between
recombinant CA IX and CA XIl. Because there are now data to further prove that CA IX

acts to stabilize pH in the tumor setting, blocking its activity may alter the
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microenvironment, specifically in those tumors that express CA IX over CA XII. While
we observe the same trend in cell growth inhibition, (i.e., UFH-001 cells are more
sensitive to USB inhibition than T47D cells), the inhibitor ICso values increase by
another two orders of magnitude. This leads us to question the role of CA activity in cell
growth. Indeed, the presence of CA IX or CA Xll is not required for USB-mediated cell
growth inhibition. Obviously, the inhibitors do block cell growth in culture and tumor
growth in xenograft and metastatic models, so their value as chemotherapeutic agents
may still be considerable. That said, the mechanism of action of sulfonamides need

further investigation.
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Table 1. Inhibition constant (K;) values for recombinant human CA II, IX, and Xll with ureido-

substituted benzene sulfonamide (USB) compounds U-CHs;, U-F, and U-NO, obtained from
Applied Photophysics stopped-flow kinetics experiments.
K;(nM) = 5% error
USB Compound
CA1l CAIX CA XII
U-CHs ) i 1765 7 6
\O\\LN CH;
U_F H,NOSS . ¥ 960 45 4
9SS
U-NO; | 15 1 6

NO,
H,NO,S
: ~ 0
\'Jk N
i i

Kivalues were previously published by Pacchiano et al. [67, 68].

Table 2. Resides within the active site of human CA Il, CA IX and CA Xll that differ
among all three isoforms and make up the selective pocket (CA Il numbering).

Residues in Selective CAIl CA IX CA XII
Region
67 Asn Gln Lys
91 Ile Leu Thr
131 Phe Val Ala
132 Gly Ala Ser
135 Val Leu Ser

Information adapted from Pinard et al. [63]
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1242  Table 3. ICs values for compounds U-CHj3;, U-F, and U-NO; in MCF 10A, UFH-001 and
1243  T47D cells obtained from MTT assay experiments.
1244

Cell Lines MCF 10A Cells UFH-001 Cells T47D Cells

Treatment 48 h 96 h 48 h 96 h 48 h 96 h

U-CH3 (uM) 491 £10 508 £ 10 80+£2 74+ 1 330+ 10 101 £ 10

U-F (M) 550+ 10 550+ 10 62+ 1 51+ 1 537+ 10 252 +£20

U-NO, (uM) |  64=1 69 + 1 26+ 1 20+ 1 61«1 78+ 1

1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
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Supporting information

S1 Fig. Effect of classical sulfonamide inhibitors on CA activity in UFH-001 and
T47D cells. CA activity was measured in UFH-001 cells (Panel A) and T46D cells
(Panel B) using the MIMS assay in the absence or presence of acetazolamide (ACZ) or
ethoxzolamide (EZA). Data are representative of two independent experiments. First
order rate constants were calculated according to the formula described in the Methods.
Is noted that the scale on the y-axis is different between these two representative plots.
This difference represents the different isotopic enrichments of CO», but the

concentration of COz is identical between the two experiments.

S2 Fig. CA mRNA expression in breast cells lines. Panel A: mRNA expression
(from microarray data) in a normal immortalized basal type breast cell line (MCF10A)
compared to a triple negative breast cancer cell lline (UFH-001) and Panel B: MCF10A
versus T47D cells were analyzed using data mining techniques. Accession numbers,
GSE107209 (for comparison between MCF10A and UFH-001 cell lines) and NCI-60

data sets for T47D cells, were used for this comparison.

S3 Fig. Effect of U-NO, on CA activity. CA activity was measured in normoxic and
hypoxic cells UFH-001 cells (Panel A) or normoxic and hypoxic T47D cells (Panel B) in
the presence of U-NO, to determine K; values across an extensive range of inhibitor

concentrations.
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S4 Fig. Effect of CA knockdown on spheroid growth. Western blots of lysates from
UFH-001 cells (EV controls and KO cells) exposed to normoxic or hypoxic conditions
(Panel A) were compared to lysates from T47D cells (EV controls and KO cells)
exposed to normoxic and hypoxic conditions (Panel B). Panel C shows spheroid
development of UFH-OO1 cells (EV controls and KO cells) while Panel D shows
spheroid development of T47D cells (EV controls and KO cells) over 96 h in culture.

GAPDH and actin were used as loading controls.

S5 Fig. Total LDH activity released by breast cell lines. Cells were grown in 96 well
plates for 24 h at which point they were treated with a drug which is cytotoxic ([3-
caryophyllene) as a positive control or left untreated (NC) under normoxic conditions.
LDH assays were performed after 48 h of treatment, results were evaluated at 450 nm
(absorbance), and data was analyzed using Prism. Total LDH activity (hnmol/min) ws
assessed in Panel A) MCF10A cells; Panel B UFH-001 cells; and Panel C t47D cells.

Data represent the mean + SEM of 3 independent experiments.

S6 Fig. Effect of USBs on activation of apoptosis. Activation of apoptotic pathways
was evaluated using the caspase activity assay in Panel A) UFH-001 and Panel B)
T47D cells after 48 h of treatment with either absence (negative control, NC) or
presence of USB-based compounds, under normoxic conditions. These data were
compared to the presence of staurosporine (positive control, PC). Data shown for the
USB-treated cells are the averages of at least three independent experiments. For the

PC-treated cells, these data represent the average of two independent experiments.
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S7 Fig. Effects of USB compounds on CA expression in breast cancer cells.
Immunoblotting is shown for CA IX, CA XII, and CA Il from cells grown for 2-3 days and
then treated with compounds U-CH3, U-F, or U-NO2 for 48 h, under normoxic
conditions. GAPDH was used as a loading control. Data are representative of 3

independent experiments. Panel A, UFH-001 cells. Panel B, T47D cells.
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