

1
2 **Selective inhibition of CA IX over CA XII in breast cancer cells using benzene**
3 **sulfonamides: Disconnect between CA activity and growth inhibition**
4
5

6 Mam Y. Mboge¹, Zhijuan Chen¹, Alyssa Wolff¹, John V. Mathias¹, Chingkuang Tu¹,
7 Kevin D. Brown¹, Murat Bozdag², Fabrizio Carta², Claudiu T. Supuran², Robert
8 McKenna¹, and Susan C. Frost^{1*}
9

10 From the ¹Department of Biochemistry and Molecular Biology, University of Florida,
11 1200 Newell Drive, Gainesville, FL 32610, USA; ²University of Florence,
12 NEUROFARBA Department, Sezione di Farmaceutica e Nutraceutica, Via Ugo Schiff 6,
13 50019 Sesto Fiorentino (Florence), Italy.
14
15

16 **Running title:** Selective inhibition of CA IX over CA XII activity

17
18 ***Corresponding author**
19
20

21 sfrost@ufl.edu (SCF)
22
23
24
25
26

27

28

29

30

31

32

33

34

35 Abstract

36 Carbonic anhydrases (CAs) have been linked to tumor progression, particularly
37 membrane-bound CA isoform IX (CA IX). The role of CA IX in the context of breast
38 cancer is to regulate the pH of the tumor microenvironment. In contrast to CA IX,
39 expression of CA XII, specifically in breast cancer, is associated with better outcome
40 despite performing the same catalytic function. In this study, we have structurally
41 modeled the orientation of bound ureido-substituted benzene sulfonamides (USBs)
42 within the active site of CA XII, in comparison to CA IX and cytosolic off-target CA II, to
43 understand isoform specific inhibition. This has identified specific residues within the CA
44 active site, which differ between isoforms that are important for inhibitor binding and
45 isoform specificity. The ability of these sulfonamides to block CA IX activity in breast
46 cancer cells is less effective than their ability to block activity of the recombinant protein
47 (by one to two orders of magnitude depending on the inhibitor). The same is true for CA
48 XII activity but now they are two to three orders of magnitude less effective. Thus, there
49 is significantly greater specificity for CA IX activity over CA XII. While the inhibitors block
50 cell growth, without inducing cell death, this again occurs at two orders of magnitude
51 above the K_i values for inhibition of CA IX and CA XII activity in their respective cell
52 types. Surprisingly, the USBs inhibited cell growth even in cells where CA IX and CA XII
53 expression was ablated. Despite the potential for these sulfonamides as
54 chemotherapeutic agents, these data suggest that we reconsider the role of CA activity
55 on growth potentiation.

56
57
58
59

60 **Introduction**

61 Breast cancer remains the second most diagnosed and one of the leading causes of
62 cancer-related deaths among women in the United States. Gene expression patterns of
63 dissected human breast tumors have provided distinct “molecular portraits” allowing
64 classification into subtypes based solely on differences in these patterns [1]. These
65 subtypes fall into three major groups: those that express estrogen (ER)/progesterone
66 receptors (PR) (the luminal subtype), those that express HER2 (ERBB2+), and those
67 that express neither (the basal-like, including the “triple negative” phenotype, TNBC).
68 About 74% of breast cancer patients have ER-positive tumors [2]. For these patients,
69 adjuvant therapy with tamoxifen (a selective estrogen receptor modulator) has
70 contributed to the 30% decrease in breast cancer mortality in the past two decades,
71 making it the most successful targeted cancer therapy to date [3]. Yet, about half of the
72 tamoxifen-treated women will develop endocrine-resistant disease [4]. HER2 positive
73 breast cancers are observed in about 15% of patients (some of which are also ER/PR
74 positive), who in recent years has been successfully treated using a monoclonal
75 antibody against the HER2 receptor. Triple negative breast cancer (TNBC) also
76 accounts for about 15% of breast cancer patients, but is responsible for a
77 disproportionate number of breast cancer deaths [5]. The higher mortality rate in women
78 with TNBC is attributed to lack of targeted therapies coupled with the inability to treat
79 metastatic disease [5-7]. That tumors develop resistance to radiation and/or
80 chemotherapies complicates treatment.

81 Changes in the tumor microenvironment (TM), induced partly by hypoxia,
82 underlie aggressive and resistant cancer phenotypes [8]. It is known that the hypoxic

83 TM contributes to tumorigenic characteristics such as tumor cell proliferation,
84 angiogenesis, cell motility, and invasiveness that translate to an overall poor prognosis
85 in cancer patients [8, 9]. Hypoxia induces a global change in gene expression through
86 stabilization of hypoxia inducible factor one alpha (HIF1 α) [10]. Stabilization of this
87 transcription factor leads to the upregulation of genes important for cell survival [10].
88 Hypoxia-induced upregulation of genes in glycolysis cause elevated glucose uptake,
89 which is a hallmark for actively dividing cells and correlates closely with transformation
90 [11-13]. Increased glycolysis results in high rates of extracellular acidification (pH_e)
91 through the export of H⁺ in an attempt to maintain a more basic/neutral intracellular pH
92 (pH_i) [14-16]. This increase in H⁺ production and export to the extracellular space
93 induces apoptosis in normal cells surrounding tumors [17]. In contrast, by mechanisms
94 not understood, cancer cells establish a new “set-point” which allows them to tolerate
95 low pH_e [8, 17-19]. The stress of the TM also induces resistance to therapeutic drugs,
96 preventing uptake as pH gradients change across the membrane [12]. This, in turn,
97 induces the counter transport of drugs reducing concentrations inside cells and thus
98 effectiveness. This is true not only for TNBC patients treated with cytotoxic drugs but
99 also estrogen receptor (ER)- and HER2-positive patients treated with targeted therapies
100 [3].

101 Important modulators of the hypoxic TM include membrane-bound carbonic
102 anhydrases (CAs), which are zinc metalloenzymes that catalyze the reversible hydration
103 of CO₂ [16, 20-26]. In breast cancer, carbonic anhydrase IX (CA IX) expression is
104 upregulated in hypoxic tissue and is considered a prognostic marker for the TNBC
105 phenotype [27-30]. In normal cells, CA IX expression is limited primarily to gut
106 epithelium, but is upregulated in many hypoxic tumors including breast cancer [28, 31-]

107 43]. CA IX is not only a marker for hypoxia but may also serve as a therapeutic target
108 for the treatment of aggressive breast cancer. CA XII expression, on the other hand, is
109 not regulated by hypoxia and is an indicator of better patient outcome in several types of
110 cancers, including breast cancer [44]. Its expression is under the control of the ER and
111 associated with ER-positive breast carcinomas [44-47]. CA XII is also expressed more
112 abundantly across tissue types, including normal breast tissue [41, 48].

113 The role of these carbonic anhydrases in cancer progression are under intense
114 investigation, particularly that of CA IX. CA IX was originally identified as a subunit of
115 the MaTu protein and a short time later characterized as a novel member of the
116 carbonic anhydrase family [49, 50]. While it is normally localized to gut epithelium, it is
117 strongly upregulated in tumors, generally in more aggressive phenotypes [51, 52]. CA
118 IX is a transmembrane protein, organized as a dimer, with the catalytic domain facing
119 the extracellular space. This enzyme catalyzes the reversible hydration of CO₂ forming
120 a bicarbonate ion and a proton, in the presence of water. The pericellular space, with
121 which CA IX associates, is rich in metabolic acids such as lactate, protons, and CO₂. It
122 has been postulated that CA IX cooperates with bicarbonate transporters by providing
123 bicarbonate for intracellular alkalinization at the same time that it acidifies the tumor
124 microenvironment [53]. Data supporting this hypothesis have been provided through
125 studies in cell lines and cancer cell-derived spheroids [34, 54, 55]. However, CA IX, like
126 other members of the family, is a reversible enzyme. We, and others, have
127 hypothesized that CA IX may stabilize extracellular pH at a value that favors cancer
128 cells growth and proliferation [27, 56]. New data from studies with CA IX expressing
129 xenografts support this notion that CA IX acts as an extracellular pH-stat [57]. This adds
130 to the therapeutic rationale for pharmacological interference with CA IX activity.

131 Sulfonamides are the most studied class of CA inhibitors (CAIs) with several
132 compounds in clinical use for the treatment of diseases including glaucoma, altitude
133 sickness, and epileptic seizures [25, 58-62]. Although these sulfonamides are potent
134 CAIs, most lack isoform selectivity and do not specifically target the tumor-associated
135 isoforms CA IX and CA XII [60]. This lack of specificity is attributable to the highly
136 conserved residues within the active site of CAs [63]. These similarities have challenged
137 the development of isoform-specific inhibitors, causing competition between isoforms,
138 which reduce efficacy. This is especially true in the case of CA II. This isoform has the
139 widest tissue distribution and is abundantly expressed in red blood cells (representing
140 5% of all proteins) [64, 65]. As most drugs are delivered systemically and are
141 membrane permeable, it is likely that CA II will sequester CA inhibitors reducing
142 circulating concentrations limiting exposure within tumors. That said, none of the clinical
143 CAIs have been used for the treatment of cancer. Ureido-substituted benzene
144 sulfonamides (USBs) are potent and selective inhibitors of recombinant CA IX and CA
145 XII activity [66-68]. X-ray crystallographic studies recently provided insight into the
146 mechanism of USB-mediated selective inhibition of CA IX over CA II [66]. Those studies
147 showed that the USBs interact more favorably with residues in the active site of CA IX
148 versus CA II [66]. These inhibitors also showed both anti-proliferative and anti-
149 metastatic properties in preclinical models [29, 68]. One of the USBs (SLC-0111)
150 recently completed phase I clinical trials and is scheduled to begin phase II trials for the
151 treatment of solid tumors that over express CA IX (clinical trials.gov, NCT02215850).

152 The goal of this study was to distinguish the mechanistic effects of USB-mediated
153 inhibition of CA IX and CA XII in the context of breast cancer cells. To accomplish this,
154 three USBs (including SLC-0111) were studied, using *in-silico* modeling to understand

155 binding mechanisms and their efficacy was tested in cell lines representing TNBC and
156 ER-positive breast cancers. With this approach, differences in residues within the active
157 sites of CA IX and CA XII indicated that these drive isoform-specific interactions
158 affecting affinity of the USBs. The USB compounds were also shown to inhibit CA
159 activity with surprising specificity for CA IX in TNBC cells, relative to CA XII in ER-
160 positive cells given similar K_i values for purified protein. This same specificity appears to
161 drive USB-mediated growth inhibition. Yet the K_i values for inhibiting catalytic activity in
162 CA IX and CA XII in cells is two and three orders, respectively, less efficacious than
163 would be expected based on activity studies using purified protein and binding kinetics
164 based on structures. In addition, growth inhibition requires even higher concentrations
165 of inhibitors than that needed for inhibition of activity in cells. Further, cells that lack
166 expression of CA IX or CA XII are still sensitive to USB-mediated inhibition of cell
167 growth. Despite the excellent inhibition of the USBs against purified CA IX and CA XII,
168 and the specificity for CA IX over CA XII in cells, we must consider the possibility that
169 CA activity may not be the target for sulfonamide action with respect to cell growth
170 inhibition.

171
172
173
174
175
176
177
178
179
180
181
182

183 **Materials and methods**

184

185 Ureido-substituted benzene sulfonamide (USB) inhibitors were prepared in dimethyl

186 sulfoxide (DMSO) at stock concentrations of 100 mM and further diluted to appropriate

187 concentrations in cell culture medium before use. Control experiments contain DMSO

188 only. CA II antibody was obtained from Novus Biological (Littleton, CO), CA IX (M75)

189 antibody was a gift from Egbert Oosterwijk, CA XII and GAPDH antibodies were

190 purchased from R&D systems (Minneapolis, MN) and Cell Signaling Technology

191 (Beverly, MA), respectively.

192

193 ***In Silico* Modeling**

194 X-ray crystallography structures of USB compounds in complex with purified CA II

195 and a CA IX-mimic (analogous site directed mutagenesis of residues in the active site of

196 CA II to resemble CA IX) were previously obtained and published elsewhere [66], but

197 shown for comparison to the modeled CA XII complex in the present study (Figure 1).

198 Each of the USB compounds were superimposed into CA XII structures (PDB ID: 1JCZ)

199 based on the crystal structures of the compounds using Coot [69, 70] and adjusted

200 based on steric hindrance constraints. These structures were also energy minimized

201 using the Chimera Minimize structure feature (data not shown) to ensure that these

202 modeled compounds were at their energy minima.

203

204 **Cell Culture**

205 MCF 10A, UFH-001, and T47D cells were maintained as previously described [58].

206 For hypoxia treatment, cells were exposed to 1% O₂, 5% CO₂ and balanced N₂ for 16 h

207 using a Billups Rothenberg Metabolic Chamber. UFH-001 cells are a newly
208 characterized line that exhibits the triple negative (TNBC) phenotype [71, 72]. These
209 cells do not express ER, the progesterone receptor (PR), or HER2. However, they do
210 express EGFR, also typical of the TNBC phenotype. In addition, these cells express CA
211 IX but not CA XII. The T47D cells are a luminal ER-positive line that expresses CA XII
212 but not CA IX. The MCF 10A line is used as a control and expresses CA IX only under
213 hypoxic conditions. All cell lines were authenticated prior to conducting experiments.
214

215 **CA IX deletion by CRISPR/Cas9**

216 Ablation of CA IX in UFH-001 cells has been described previously [72].
217 pLentiCRISPR v2 was a gift from Dr. Feng Zhang (Addgene, Cambridge, MA) and was
218 used to knockout CA IX in UFH-001 cells. Briefly, guide RNA sequences within the first
219 coding exon were identified downstream of the CA IX translational start site using an
220 online design tool (crispr.cos.uni-heidelberg.de) and three non-overlapping gRNAs were
221 chosen within this region of the CA9 gene. Complementary double-stranded
222 oligonucleotides were cloned into BsmBI digested pLentiCRISPR v2, recombinant
223 clones identified by restriction analysis and confirmed by automated Sanger
224 sequencing. Lentivirus was formed from these CA IX sgRNA plasmids and empty
225 lentiCRISPR v2 plasmid as previously outlined [72]. UFH-001 cells were transduced
226 and selected with puromycin (2 µg/mL) for 3 weeks. Stably transduced cells were
227 harvested, and CA IX depletion was confirmed by western blotting.

228

229

230 Knockdown of CA XII by shRNA lentiviral particles

231 Knockdown of CA XII expression in T47D cells has also been previously
232 described [72]. Briefly, cells were transfected with short hairpin RNA (shRNA) lentiviral
233 particles obtained from Thermo Fisher Scientific (Waltham, MA) against CA XII. Cells
234 were seeded at 5×10^4 cells/well in 24-well plates and grown for 24 h. Then, cells were
235 infected with lentivirus in serum-free medium for 6 h. The cells were further incubated
236 with normal growth medium for 24 h. GFP expression was monitored to confirm the
237 efficiency of transduction. Stable cells were established by puromycin (2 μ g/mL)
238 selection (Sigma Aldrich, St. Louis, MO). CA XII knockdown was confirmed by western
239 blotting.

240

241 Western Blot Analysis

242 Western blot analysis was performed, as previously described [28]. Briefly, cells
243 were collected after drug treatments for 48 h and washed 3x with ice-cold phosphate
244 buffered saline (PBS) and lysed in RIPA buffer (containing 1% orthovanadate, 25 mM
245 NaF) supplemented with protease inhibitor for 15 min on ice. Lysates were collected
246 and clarified by centrifugation at 55,000 rpm for 60 min at 4°C. Clarified supernatants
247 were collected and stored at -20°C. Protein concentration was determined using the
248 Markwell modification of the Lowry procedure. Equal amounts of cell lysate (30 μ g) were
249 subjected to SDS-polyacrylamide electrophoresis, prepared as described by Laemmli et
250 al. [73]. Samples were electrotransferred from SDS-PAGE gels to nitrocellulose
251 membranes in transfer buffer at 200 mA for 2 h at 4°C. After incubation with selective
252 primary and secondary antibodies, proteins were visualized using ECL reagent

253 according to the manufacturer's directions (GE Healthcare, Wauwatosa, WI). Images
254 were scanned and cropped using Adobe Photoshop version 11.

255

256 **Membrane Inlet for Mass Spectrometry**

257 CA catalysis was measured by the exchange of ^{18}O from species of $^{13}\text{CO}_2$ into water
258 determined by membrane inlet mass spectrometry (MIMS) [74, 75]. The application of
259 this method in demonstrating exofacial CA activity in breast cancer cells has been
260 described previously [27] and more recently in Chen et al. [72]. To decrease
261 inaccuracies arising from ^{12}C -containing CO_2 in cell preparations, ^{13}C - and ^{18}O -enriched
262 $\text{CO}_2/\text{HCO}_3^-$ were used and the rate of depletion of ^{18}O in ^{13}C -containing CO_2 measured.
263 Specifically, the atom fraction of ^{18}O in extracellular CO_2 was determined using peak
264 heights from the mass spectrometer representing CO_2 $[\frac{1}{2} (47) + (49)] / [(45) + (47) +$
265 $(49)]$ where the numbers in parentheses represent the peak heights of the
266 corresponding masses of specific species of isotopic CO_2 . The MIMS assay actually
267 measures CA activity in the dehydration direction, because only isotopic variations in
268 CO_2 are measured by the mass spec (although activity in both directions is required for
269 the decrease in the isotopic distribution of ^{18}O in CO_2). A membrane barrier (to the mass
270 spec) prevents bicarbonate concentration from being measured by the mass spec.
271 When added to the reaction vessels, the cells are exposed to an equilibrated solution of
272 $^{13}\text{C}^{18}\text{O}_2:\text{HC}^{18}\text{O}_3^-$ at a ratio of about 5%: 95%, respectively (25 mM, total). The total
273 amount of CO_2 does not change over the course of the experiment, just the isotopic
274 enrichment. Mass spectra were obtained on an Extrel EXM-200 mass spectrometer
275 using electron ionization (70 eV) at an emission current of a 1 mA. First order rate

276 constants (k) were determined for CA activity. These were calculated from the change
277 in atom fraction enrichment (^{18}O in CO_2) using: $A = A_0 e^{-kt}$, where (A) is the fraction of
278 enrichment at a specific end point, and (A_0) is the starting enrichment at a specific point.

279 Cells were collected from culture plates using cell release buffer (Gibco, Waltham,
280 MA), washed with bicarbonate-free DMEM buffered containing 25 mM Hepes (pH 7.4),
281 and counted. Cells (5.0×10^5 cells/mL, unless otherwise stated) were added to a
282 reaction vessel containing 2 mL of Hepes-buffered, bicarbonate-free DMEM at 16°C in
283 which ^{18}O -enriched $^{13}\text{CO}_2$ / H^{13}CO_3 at 25 mM total $^{13}\text{CO}_2$ species was dissolved.

284 Catalysis by CA, in the presence or absence of CA inhibitors, was measured after
285 addition of cells (exposed to normoxic or hypoxic conditions) by the exchange of ^{18}O
286 species from species of $^{13}\text{CO}_2$ into water determined by measuring CO_2 mass by MIMS
287 as described above. This exchange is a specific measure of CA activity during the time
288 frame of the assay. A general example of this assay is provided in Supporting
289 Information (S1 Fig) showing the effect of two classical sulfonamide based inhibitors on
290 CA activity in UFH-001 and T47D cells, which is further discussed in the results.

291 K_i values were calculated using the following equation:

292
$$(V - unc) = (V_0 - unc) / (1 + I / K_i),$$

293 where (V) is the rate at a specific inhibitor concentration, (unc) is the uncatalyzed rate,
294 (V_0) is rate in the absence of inhibitor, and (I) is inhibitor concentration. For tight binding
295 inhibitors, $IC_{50} = [\text{enzyme}]/2 + K_i (\text{app})$. However, when the $K_i \gg$ greater than the
296 enzyme concentration, $IC_{50} \simeq K_i$. In our experiments, enzyme concentration in cells is
297 in the low nM range, based on titrations with purified CA II. The K_i values that we
298 calculate are much higher than [enzyme] for either UFH-001 or T47 D cells, despite the
299 difference in enzyme concentration between the two cell lines.

300 **Cell Growth Assay**

301 Cell growth in the presence or absence of compounds was analyzed using 3-[4,5-
302 dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT assays). Briefly, cells were
303 seeded in 96-well plates and treated with different concentrations of compounds after
304 24 h. The cells were then incubated under normoxic or hypoxic conditions under the
305 different treatment conditions for 48 h and/or 96 h. The medium was replaced every two
306 days. MTT reagent (10% v/v of 5 mg/mL) was added to the cells after each time point
307 and the cells were incubated for an additional 4 h. The medium was removed without
308 disturbing the cells and DMSO was added to each well. The DMSO dissolved cells were
309 incubated while shaking for 15 min in the dark. Absorbance was measured at 570 nm
310 using an Epoch microplate reader (Biotek, Winooski, VT). IC₅₀ values (inhibitor
311 concentration where the response is reduced by half) were calculated using Prism 7.0c
312 for Macs. Non-linear regression analysis was performed on % dose response with log
313 plots interpolating the value at 50% from the least squares fit of the growth curves.

314

315 **Lactate Dehydrogenase Release Assay**

316 Cytotoxicity was estimated using the release of lactate dehydrogenase (LDH) activity
317 (Sigma-Aldrich, St. Louis, MO). Cells were plated in 96-well plates. USB compounds
318 were added the next day. After 48 h, medium was collected from each well to measure
319 the amount of released LDH activity. The amount of LDH released from each sample
320 was measured at room temperature at 450 nm using a BioTek Epoch microplate reader.
321 LDH activity is reported as nmol/min/mL of medium.

322

323 **Caspase-3 Activity Assay**

324 Caspase-3 activity assay was performed using an Apo-alert colorimetric caspase
325 assay kit (BioVision, Milpitas, CA). Cells were plated onto 10 cm dishes and treated with
326 compounds 24 h later. 48 h after various treatments, cells were collected, and lysates
327 prepared. Protein concentration was determined, and equal volumes of lysates were
328 used for caspase-3 activity assay, measured at 405 nm in a microtiter plate. The reader
329 detected chromophore p-nitroaniline (pNA) after its cleavage by caspase-3 from the
330 labeled caspase-3 specific substrate, DEVD-pNA. These data are presented as pmol of
331 pNA per μ g of cell lysate per hour of incubation. Staurosporine (Sigma-Aldrich, St.
332 Louis, MO) was used as a positive control.

333

334 **Analysis of Cell Cycle Progression**

335 Cells were seeded in 24-well plates. After 24 h, USB compounds were added to the
336 respective wells and incubated for 48 h. Cells were released with trypsin, harvested,
337 fixed with 500 μ L of 50% ethanol in tubes and collected by centrifugation at 13,000 rpm
338 for 5 min. Cell pellets were re-suspended in 500 μ L. Propidium Iodine (10 μ g/mL)
339 containing 300 μ g/mL RNase (Invitrogen, Waltham, MA). Then, cells were incubated at
340 room temperature in the dark for 15 min. Cell cycle distribution data in Figure 8C-8E
341 (gated for live, diploid cells only) was analyzed using the FCS Express Version 5 from
342 De Novo Software (Glendale, CA) from data obtained using FACS caliber (Becton
343 Dickson, CA). The representative images in the text (Fig 8A and 8B) were generated by
344 ModFit LT.

345

346 **Cell Migration and Invasion Assays**

347 Serum starved cells were plated at a density of 50,000 cells in 300 μ L per insert in
348 24-well cell migration and invasion plates (Cell BioLabs, San Diego, CA). The cells were
349 allowed to migrate (24 h) or invade (48 h) from the insert containing serum free medium,
350 with or without USB compounds, towards the well that had medium containing 10%
351 FBS. Fixing and staining cells terminated the assay. Images were then collected and
352 analyzed. All cell lines were maintained at 37°C in humidified air with 5% CO₂ for the
353 duration of the experiment.

354

355 **Spheroid Formation Assay**

356 UFH-001, UFH-001 CA IX KO, T47D, and T47D CA XII KO cells (10,000 cells in a
357 total volume of 100 μ L) were plated into 96-well, low attachment microplates (Corning,
358 NY). Cells were incubated up to 96 h in 5% CO₂ at 37°C. Spheroids were imaged at
359 specific intervals using the EVOS microscope system (Thermo Fisher Scientific,
360 Waltham, MA).

361

362 **Statistical Analysis**

363 Data are presented as means \pm SEM. Differences between the treatment groups
364 were analyzed using Student's t-test in GraphPad Prism, version 7.0a: *p*-values < 0.05
365 was considered statistically significant.

366

367

368

369

370 **Results**

371

372 **Isoform selective binding and interaction of USB compounds**

373 **to CA IX and CA XII**

374 Cytosolic CA II exists as a monomer (Fig 1A), while both membrane-bound CA IX
375 and CA XII have been shown to form dimers. The catalytic domains of these dimers are
376 shown in Fig 1C and 1E. The structural formulae of the USB inhibitors used in this study
377 and their respective K_i values for recombinant CA II, IX and XII were determined
378 elsewhere and provided in Table 1 [66-68]. These previously published data show that
379 two of the three USB compounds (U-CH₃ and U-F, also called SLC-0111) selectively
380 bind to and inhibit the activity of the tumor-associated isoforms CA IX and XII relative to
381 the off-target CA II [66-68]. Isoform selectivity towards recombinant CA IX and CA XII
382 was evident in the differences in K_i values for these isoforms relative to CA II, obtained
383 using Applied Photophysics stopped-flow kinetics of purified recombinant proteins.
384 Isoform selectivity is important *in vivo*, where inhibition of CA II (one of the predominant
385 isoforms in red blood cells) might cause unintended consequences and sequester
386 inhibitor reducing the concentration within the tumor.

387 To investigate the underlying mechanism of binding, we previously determined the
388 crystallographic structures of all three compounds bound to CA II (Fig 1B) and the CA
389 IX-mimic (Fig 1D) [66]. As expected, each compound was shown to directly interact
390 with the zinc ion, via the sulfonamide moiety [66]. The extended tail moieties of the USB
391 compounds also interacted with residues, between 10-15 Å away from the zinc, favoring
392 the hydrophobic region of the active site (Fig 1B and 1D). This region is located close to
393 the entrance of the active site and has been termed the “selective pocket” [76, 77]. This

394 is because it has a clustering of several amino acid residues that are different among
395 CA isoforms (Table 2). For example, residue 131, located within the selective pocket, is
396 different among the isoforms. In CA II, this residue is a phenylalanine (CA II residue
397 numbering will be used throughout this manuscript). Its bulky side chain causes steric
398 hindrance and therefore induces conformation changes in the tail groups of the bound
399 compounds (Fig 1B, Table 1). In CA IX, residue 131 is a valine, which allows for more
400 favorable binding and therefore greater isoform selectivity towards CA IX compared to
401 CA II (Fig 1D, Table 1). We believe that the differences in active site residues, located
402 within the selective pocket, are responsible for the observed differences in K_i values for
403 bound compounds (Table 1). By comparison, the classical CA inhibitor, acetazolamide,
404 can only interact with the active site zinc ion and with residues within 10 Å of the zinc,
405 because of its shorter tail moiety [78]. Residues in this region of the active site are
406 among the most conserved between isoforms [63].

407 To compare the CA II and CA IX structural data with that of CA XII, we have now
408 performed *in silico* modeling of the three USB compounds (U-CH₃, U-F and U-NO₂) into
409 the active site of CA XII (Fig 1F). Residue 131 in CA XII is an alanine (Table 2), which
410 like valine (in CA IX) has a small hydrophobic side chain that results in favorable binding
411 and selectivity towards this isoform (Table 1). In addition, CA XII has a serine (a polar
412 uncharged side chain) at position 132, which is also located close to the entrance of the
413 active site. As such, this residue also causes steric hindrance that induces
414 conformational changes in all three sulfonamides, enhancing binding and inhibition
415 (Table 1). Additionally, serine 132 and also serine 135 (both charged residues and also
416 unique to CA XII) create a narrow hydrophobic region within the CA XII active site (Fig
417 1F). This causes an energetically favorable change, especially, in the conformation of

418 compound U-F (relative to CA II and CA IX) within the active site of CA XII. These
419 residues also prevent steric clashes with residue 131 and facilitate compound
420 interactions in the narrow hydrophobic region within the selective pocket. These
421 interactions and the resulting conformational change in U-F will be specific to CA XII,
422 because neither CA II nor CA IX has serine residues at positions 132 or 135 (Fig 1 and
423 Table 2).

424 **Fig 1. USBs bound in the active site of CAs.** Panel A. Ribbon diagram of monomeric
425 CA isoform II (gray). Panel C. Ribbon diagram of the catalytic domains of dimeric CA
426 isoform IX (cyan). Panel E. Ribbon diagram of the catalytic domains of dimeric CA
427 isoform XII (wheat). Surface representation of compounds U-CH₃ (pink), U-F (green)
428 and U-NO₂ (yellow) in complex with monomers of CA II (Panel B), the CA IX-mimic
429 (Panel D), and modeled into the active site of CA XII (Panel F). Catalytic zinc (magenta
430 sphere), hydrophilic (blue) and hydrophobic (orange) residues are as shown. Red
431 double-headed arrows indicate isoform specificity relative to residue 131 (labeled in
432 white). These arrows also show flexibility in tail conformations seen in CA II and CA IX
433 but not in CA XII. Previously published K_i values of each compound bound to purified
434 CA II, CA IX and CA XII are noted next to the inhibitor name [67, 68]. Figures were
435 designed using PyMol.
436

437 **Effect of USB inhibitors on CA IX and CA XII activity in breast
438 cancer cells**

439 One of the goals of this study was to determine if these high affinity inhibitors (for CA
440 IX and CA XII) were equally effective in the context of the cellular environment. To
441 determine the effect of USB compounds on CA activity in breast cancer cells, cell lines
442 that only express CA IX or CA XII at the cell surface were selected. Based on previous
443 work, two lines were selected based on their strong expression of CA IX or CA XII. The
444 T47D line is a well-studied ER-positive, luminal line. UFH-001 cells represent a new
445 line, with a triple negative phenotype, arising from MCF 10A cells. MCF 10A cells were
446 derived from a patient with fibrocystic disease, which spontaneously immortalized in cell

447 culture [79, 80]. These are considered by many as the control line for breast cancer
448 cells, although these cells map with other lines that have the basal/triple negative
449 phenotype [81]. The UFH-001 cells are an especially aggressive that, unlike MCF 10A
450 cells, form tumors in nude mice. Characterization of the UFH-001 cells is described in
451 two recent publications [71, 72]. When compared to control MCF 10A cells, UFH-001
452 cells show greater expression of CA IX protein (Fig 2A) and mRNA (S2A Fig) under
453 normoxic conditions. However, under hypoxic conditions both MCF 10A and UFH-001
454 cells upregulate CA IX expression (Fig 2A). It can also be noted that there is a
455 difference in the migration patterns of CA IX between the two cell lines. In UFH-001
456 cells, CA IX migrates as a doublet with molecular weights of 54 and 58 kDa, both of
457 which are glycosylated [82]. However, in MCF 10A cells, CA IX migrates as a singlet
458 with a molecular weight slightly lower than 58 kDa. The observed differences in
459 molecular weight may result from differences or deletions in primary sequence. CA XII
460 expression is limited to the T47D cells (Fig 2B and S2B Fig) and is independent of
461 hypoxia (Fig 2B). Expression of cytosolic CA II protein is only observed in UFH-001
462 cells and is also not sensitive to hypoxia (Fig 2A). The upregulation of CA IX in hypoxic
463 UFH-001 cells underlies the increase in cell surface CA activity in hypoxic versus
464 normoxic cells (Fig 2C) [27]. That there is no change in CA activity in T47D cells in
465 response to hypoxia relative to normoxia also correlates with the lack of change in CA
466 XII expression (Fig 2D).

467 **Fig 2. CA expression and activity in breast cell lines.** Panel A. Protein expression in
468 a normal immortalized basal type breast cell line (MCF 10A) and a triple negative breast
469 cancer (TNBC) cell line (UFH-001), using western blot analysis (under normoxic (N) or
470 hypoxic conditions (H) for 16 h, respectively). Panel B. Immunoblots for CAs II, IX and
471 XII protein expression in MCF 10A and the luminal ER positive breast cancer cell line
472 (T47D). Panels C and D. UFH-001 and T47D cells were grown for 3 days at which point
473 they were exposed to normoxia or 16 h of hypoxia and the cells assayed for CA IX and

474 XII activity, respectively, using the MIMS assay. First order rate constants for CA activity
475 in UFH-001 cells (Panel A) and T47D cells (Panel B), as described in the methods, are
476 shown. These data represent three independent experiments and are reported as the
477 mean \pm SEM.
478

479 The inhibitory capacity of USB compounds U-CH₃, U-F, and U-NO₂ on CA IX and
480 CA XII activity in UFH-001 and T47D cells, respectfully, were studied under normoxic
481 and hypoxic conditions, but only the representative normoxic plots are shown (Fig 3).
482 Because UFH-001 cells express both CA II and CA IX, the progress curves that follow
483 CA activity are biphasic on a semi log plot (Fig 3A-3C). The first phase (phase I, 20-40
484 sec after addition of cells) reflects CA II activity. The second phase (phase II, 100-400
485 sec) reflects CA IX activity. Phase I represents the rapid diffusion of ¹³C¹⁸O₂ into cells
486 where CA II catalytic cycles deplete ¹⁸O from H¹³C¹⁸O₃ followed by efflux of ¹³CO₂
487 species from the cell. The concentration of CO₂ and the isotopic forms of CO₂ are
488 measured by the mass spec. There is little change in the slope of this phase between
489 normoxic and hypoxic cells, although the length of time in this phase is shortened (Fig
490 3A-3C). Phase II represents the hydration-dehydration activity of CO₂/HCO₃⁻ outside of
491 the cell representing CA IX activity. The first order rate constant of phase II is greater for
492 hypoxic cells compared with normoxic cells (Fig 2C). This indicates a higher rate of CO₂
493 hydration/dehydration on the extracellular face of hypoxic UFH-001 cells, which we
494 associate with enhanced expression of exofacial CA IX (Fig 2A and 2C).

495 The results in Fig 3 also show that USB compounds have limited effects on phase I
496 in the UFH-001 progress curves under either normoxic (Fig 3A-3C) or hypoxic
497 conditions (data not shown). This means that during the time course of these
498 experiments, the inhibitors did not permeate the membrane to inhibit CA II except at
499 high concentrations of U-F (SLC-0111) which was observed as an increase in the

500 atomic fraction of ^{18}O in $^{13}\text{CO}_2$ (starting at ~150 seconds, Fig 3B). All three CA inhibitors
501 had significant effects on phase II of the progress curve indicative of a decrease in CA
502 IX activity (Fig 3A-3C). In other words, the slopes of the phase II progress curve (used
503 to calculate first order rate constants in Fig 2) decline in the presence of the inhibitors.
504 Based on K_i values in normoxic and hypoxic UFH-001 cells, the most potent inhibitor
505 was U-F (SLC-0111) and the least inhibitory was U-NO₂ (Fig 3G). Hypoxia did not
506 significantly affect the efficacy of any of the USB compounds. These plots are
507 representative of multiple experiments but show a limited number of inhibitor
508 concentrations. The type of experiments that are used to actually calculate K_i values
509 are shown in S3 Fig where an extensive range of concentrations (for U-NO₂ in these
510 cases) was utilized. In addition, we have included the effect of two classical sulfonamide
511 inhibitors on CA activity in UFH-001 and T47D cells, that differ in their cell permeability
512 (S1 Fig). Acetazolamide (ACZ) is impermeant during the time course of the experiment
513 and is expected to block only exofacial CA activity, like CA IX and CA XII.
514 Ethoxzolamide (EZA) is permeant, and quickly inhibits both exofacial and intracellular
515 CAs. Activity in UFH-001 cells (S1A Fig), is, once again, observed as a biphasic
516 progress curve. The presence of ACZ blocks only exofacial CA activity which confirms
517 that the second phase of the progress curve (from about 200 to 600 sec) represents CA
518 IX activity. The activity in the presence of EZA represents the spontaneous (non-
519 catalytic) interconversion of CO_2 and HCO_3^- , which is essentially an extension of the
520 activity before addition of cells. First order rate constants are shown for each of the
521 progress curves (S1A Fig). Finally, we present data on CA activity in cells in which CA
522 IX is ablated (Fig 4A). Here, we show that CA activity is reduced in CA IX KO cells
523 relative to the EV (hypoxic) controls. However, inhibition by the impermeant

524 sulfonamide, N-3500, is better at blocking CA activity than is CA IX ablation. It is
525 possible that there are other exofacial CA's present on the surface of UFH-001 cells.
526 We have only tested for the expression of CA XIV, which is not detected under
527 conditions in which we observe CA IX. While microarray data (S2A Fig) show CA XIV
528 mRNA expression in UFH-001 cells, earlier northern blot analysis revealed no CA XIV
529 mRNA [23]. Furthermore, no difference in CA XIV mRNA expression was observed
530 between MCF 10A and UFH-001 cells, under normoxic conditions (S2A Fig). As far as
531 we are aware, no one has shown positive expression of either CA XIV or CA IV (the
532 other membrane bound CA) at the protein level in breast cancer cells.

533 T47D cells, which express membrane-bound CA XII (Fig 2B), exhibit single-phase
534 progress curves (Fig 3D-3F), because they lack CA II. This activity specifically reflects
535 exofacial CA XII activity. This activity was not sensitive to hypoxia (Fig 2D), which is
536 consistent with lack of CA XII induction by hypoxia (Fig 2B). Like CA IX, USB
537 compounds inhibit CA XII activity (Fig 3D-3F). Again, the slope of the progress curve
538 decreases in the presence of inhibitor. However, there is a striking difference in efficacy
539 that is reflected in a significant increase in the K_i values obtained in T47D cells versus
540 UFH-001 cells (Fig 3G). Again, an extensive range of concentrations are used to
541 calculate K_i and shown for one of the inhibitors (U-NO₂) in S3 Fig. Unlike UFH-001 cells,
542 there were only slight differences in inhibitory effects of the different USB's in T47D
543 cells, which again was not affected by normoxic or hypoxic conditions (Fig 3G). S1B
544 Figure shows the progress curves in the presence of ACZ and EZA. Catalysis in the
545 absence of inhibitors is linear. Inhibition by ACZ generates a progress curve that
546 resembles that of USB compounds. The activity in the presence of EZA once again
547 represents the spontaneous (non-catalytic) interconversion of CO₂ and HCO₃⁻. These

548 experiments were performed at 16°C, as were all of the MIMS experiments in this
549 manuscript, so can be directly compared. CA XII knockdown significantly reduced CA
550 activity in T47D cells relative to EV controls (Fig 4B). Inhibition of CA activity with N-
551 3500 is only slightly more effective than the knockdown of CA XII expression.

552 **Fig 3. Effects of USBs on CA IX and CA XII activity in breast cancer cell lines.**
553 Panels A-C. UFH-001 cells were grown for 4 days under normoxic conditions. CA IX
554 activity (0.5×10^6 cells/mL, unless otherwise indicated) was assayed using MIMS in the
555 presence or absence of U-CH₃ (Panel A), U-F (Panel B) or U-NO₂ (Panel C). Panels D-
556 F. T47D cells prepared similarly to UFH-001 cells, but cultured for 6 days, were also
557 assayed for CA XII activity (0.5×10^6 cells/mL) in the absence or presence of the same
558 USB based inhibitors: U-CH₃ (Panel D), U-F (Panel E) or U-NO₂ (Panel F). Atom
559 fractions of ¹⁸O in CO₂ were collected continuously. For ease of illustration, data points
560 at 25-s intervals are shown. Phase I in UFH-001 cells indicate CA II activity and Phase
561 II indicate CA IX activity. In T47D cells, the progress curves are linear and
562 representative of CA XII activity. Arrows indicate time point at which cells were added.
563 Panel G. K_i values of each compound in UFH-001 and T47D cells, under normoxic or
564 hypoxic (16 h) conditions, are shown. Data are representative of the average of
565 triplicate experiments \pm SEM.
566

567 **Fig 4. Effect of CA IX and CA XII knockdown on CA activity.** CA IX knockout in
568 UFH-001 cells was accomplished using Crispr/Cas9 technology. CA XII knockdown in
569 T47D cells was performed using shRNAi lentiviral strategies. Cells were grown similarly
570 to those described in Fig 3. Panel A. CA activity was measured in 1×10^6 UFH-001 cells
571 (EV controls, CA IX KO, or cells treated with the pegylated sulfonamide, N-3500).
572 Panel B. CA activity was measured in 5×10^5 T47D cells (EV controls, CA XII KO, or
573 cells treated with N-3500. Data represent duplicate experiments.
574

575 **Impact of USB-based inhibitors on breast cancer cell growth, 576 cytotoxicity, and apoptosis**

577 MTT, lactate dehydrogenase (LDH), and caspase activity assays were used to test
578 the efficacy of CA IX and CA XII inhibition on breast cancer cell growth, viability and
579 apoptosis, respectively. These results show that all three compounds decreased cell
580 growth (MTT assay) in the different cell lines under normoxic conditions (Fig 5, Table 3).
581 No significant trend in compound effectiveness was established between the cells
582 treated for 48 h compared to 96 h (Fig 5 and Table 3). The most effective compound at

583 inhibiting growth was U-NO₂ in UFH-001 cells (IC₅₀ ~25 μM). This compound also
584 inhibited the growth of MCF 10A cells in addition to that of the T47D cells, but requiring
585 nearly three times the concentration compared to UFH-001 cells (Table 3). The MCF
586 10A cells were the most resistant to compounds U-CH₃ and U-F, with IC₅₀ values
587 observed in the range of 500 μM. The concentration required to block growth of T47D
588 cells was also in this range at 48 h but improved somewhat at 96 h of exposure (Table
589 3). We repeated the experiments under hypoxic conditions (Fig 6) with similar results.
590 In addition, we tested the effects of the USB's on cells in which CA IX or CA XII was
591 knocked out in UFH-001 (UFH-001 KO) or T47D (T47D KO) cells, respectively, which
592 have been previously characterized [72]. Surprisingly, the result was the same, i.e., the
593 USB's still blocked cell growth at high concentrations even in the absence of CA IX or
594 CA XII expression.

595 **Fig 5. Effects of USBs on breast cancer cell growth.** Breast cancer cell lines grown
596 under normal culture conditions for 24 h were exposed to compounds for 48 h [U-CH₃
597 (Panel A), U-F (Panel B), U-NO₂ (Panel D)] or 96 h [U-CH₃ (Panel D), U-F (Panel E), or
598 U-NO₂ (Panel F)]. MTT assay was performed at 48 h and 96 h, respectively. Data
599 shown are an average of at least three independent experiments and are represented
600 as the mean ± SEM.

601
602 **Fig 6. Effects of USBs on cell growth in the presence or absence of hypoxia or in**
603 **CA knockout cells.** One day after plating, breast cancer cell lines were exposed to
604 normoxic or hypoxic conditions for 48 h in the presence of U-CH₃, U-F, or U-NO₂ at the
605 given concentrations in UFH-001 empty vector control (EV) cells (Panel A), UFH-001
606 CA IX KO (UFH-001 KO) cells (Panel B), T47D EV cells (Panel C) and T47D CA XII KO
607 (T47D KO) cells (Panel D). MTT assay was performed and shown as % cell growth.
608 Data shown represent at least three independent experiments and are shown as the
609 mean ± SEM.

610
611 Both UFH-001 and T47D cells are able to form spheroids (S4 Fig). UFH-001 cells
612 form spheroids as early as 24 h after plating (even when the plating density is low). The
613 spheroids appear dense and round. The T47D cells also form spheroids, which are

614 somewhat larger than UFH-001 spheroids. Neither the loss of CA IX nor CA XII affects
615 spheroid formation over the 96 h observation period. We were unable to measure
616 activity in these spheroids because of the limited number of cells.

617 To specifically test for cytotoxicity, LDH release over 48 h in the presence or
618 absence of the USB compounds was measured. The inhibitors caused only limited
619 cytotoxicity when exposed to cells (Fig 7), relative to a positive control (S5 Fig). UFH-
620 001 cells were the most sensitive, but only at high concentrations of compound U-NO₂
621 (Fig 7). The MCF 10A cells were also somewhat sensitive to U-NO₂ but again at high
622 concentrations (Fig 7A). T47D cells showed no loss of membrane permeability in
623 response to inhibitor treatment (Fig 7C).

624 **Fig 7. Effects of USBs on breast cancer cell viability.** The cytotoxic effects of USBs
625 were evaluated using the LDH release assay. MCF 10A (Panel A), UFH-001 (Panel B)
626 and T47D (Panel C) cells were grown in 96-well plates and exposed to U-CH₃, U-F or
627 U-NO₂ for 48 h, under normoxic conditions. LDH release was assayed after treatment,
628 results were evaluated, and data analyzed using Prism. Data shown are representative
629 of three independent experiments and as the mean ± SEM, *p < 0.05.
630

631 These observations led us to question whether the growth arrest and (limited)
632 cytotoxicity observed with the inhibitors was due to the activation of apoptosis. To test
633 this, caspase activity assays were employed. These data revealed that apoptosis was
634 not activated, as caspase activity did not change in either UFH-001 or T47D cells in the
635 presence of USB compounds (S6A and S6B Fig, respectively).

636 Because of the USB-induced growth arrest, albeit at high concentrations, the effects
637 on cell cycle transition were evaluated after exposure to inhibitors for 48 h, under
638 normoxic conditions (Fig 8). Of the diploid population, ~ 40% of the UFH-001 cells were
639 in the G1 phase of the cell cycle (Dp G1) and a much lower percentage were in G2

640 phase (Dp G2). The number of T47D cells in G1 (~ 60%) was significantly higher than
641 the number of cells in the G2 phase of the cell cycle (~ 20%). A significantly higher
642 percentage of cells were observed in the G1 phase in T47D compared to UFH-001
643 cells, while cells in G2 phase were much higher in UFH-001 than T47D cells (Fig 8C). In
644 the presence of USB compounds, there was no change in the number of UFH-001 cells
645 in S phase when compared to the control cells (Fig 8D). However, a significant
646 decrease in the number of T47D cells in S phase was noted with exposure to U-CH₃
647 and U-F, but not U-NO₂ (Fig 8E). Higher concentrations of U-CH₃ and U-F were used
648 for experiments with T47D cells, because both the K_i values obtained from the MIMS
649 experiments (Fig 3G) and the IC₅₀ values obtained from the cell growth assays (Table 3)
650 were much higher for these compounds relative to compound U-NO₂, and by
651 comparison to the more sensitive UFH-001 cells.

652 **Fig 8. Effects of USBs on cell cycle transition in breast cancer cells.** Cell cycle
653 analysis was performed in UFH-001 (Panel A) and T47D (Panel B) cells treated with
654 varying concentrations of USB compounds for 48 h, under normoxic conditions. Post
655 treatment, cells were stained with Propidium Iodine containing RNase A, data was
656 obtained using the FACS caliber instrument and results analyzed with FCS Express and
657 ModFit LT softwares. The percentage of breast cancer cells in G-phase (Panel C), all
658 phases of the cell cycle in UFH-001 (Panel D) and T47D cells (Panel E), were quantified
659 using Prism. Data are represented as mean of at least three independent experiments ±
660 SEM and NC = negative control.
661

662 **Effect of USB inhibitors on CA expression in breast cancer 663 cells**

664 We next examined if inhibition of CA IX and CA XII activity induced an upregulation
665 of the targets or expression of other CA isoforms as a compensatory mechanism. To
666 achieve this, UFH-001 and T47D cells were treated with increasing concentrations of
667 USB compounds for 48 h, under normoxic conditions. Immunoblotting with cell lysates

668 was performed using antibodies against CA II, CA IX and CA XII. No upregulation of
669 other CA isoforms was observed in response to USB treatment (S7 Fig). However,
670 there were changes in the endogenously expressed CAs. For instance with U-CH₃
671 treatment, both UFH-001 and T47D cells showed increases in the expression of CA IX
672 and CA XII, respectively, compared to controls (S7A and S7B Fig, respectively).
673 Treatment with compound U-F, at lower concentrations (1 μ M and 10 μ M) increased CA
674 IX and CA XII expression, in UFH-001 and T47D cells, respectively when compared to
675 the control. However, at higher concentrations (100 μ M) a decrease in CA IX and CA XII
676 expression was observed (S7A Fig) and in some cases even to a lesser extent than the
677 control cells (S7B Fig). Similar to U-F, compound U-NO₂ also increased, somewhat, the
678 expression of CA IX and CA XII at lower drug concentrations but ultimately reduced
679 expression, more so with CA IX than CA XII, at concentrations of 100 μ M of the
680 compound, when compared to the untreated controls (S7A and S7B Fig).

681

682 **Effect of USB inhibitors on cell mobility**

683 While cells grown on polystyrene plates provide useful models, studies of cells
684 grown on more compliant surfaces allow them to recapitulate, in part, their behavior *in*
685 *vivo*. We have taken advantage of Boyden Chambers to monitor migration and invasion
686 of UFH-001 and T47D cells in the presence or absence of USB compounds. The results
687 show that only the UFH-001 cells have the ability to migrate and invade which was
688 tested at 24 and 48 h, respectively (Fig 9A and 9C). All three USB compounds blocked
689 UFH-001 cell migration at high concentrations: U-CH₃ and U-NO₂ were the most
690 effective. Significant inhibition of UFH-001 cell invasion was observed with only U-F

691 treatment and at the highest concentration, well above their K_i values for inhibition of
692 activity. Not unexpectedly, we did not observe T47D cell migration and invasion in either
693 the absence or presence of the USBs (Fig 9B and 9D) and thus we are unable to make
694 a definitive statement regarding any potential effect of the sulfonamide inhibitors on
695 cells that do not possess these features.

696 **Fig 9. Effects of USBs on breast cancer cell migration and invasion.** Serum starved
697 UFH-001 and T47D cells were allowed to either migrate for 24 h or invade for 48 h
698 towards a chemoattractant in the presence or absence of USB compounds. Bright-field
699 images of migrating and invading cells are shown in Panel A (UFH-001 cells) and Panel
700 B (T47D cells). Data are quantified for UFH-001 and T47D cells Panel C (migration) and
701 Panel D (invasion). NC= negative control. Data shown are an average of duplicate
702 experiments \pm SEM. * p < 0.05, and *** p < 0.001.
703
704

705
706
707
708
709

710
711
712
713
714

715
716
717
718
719

720
721
722
723

724

725 Discussion

726

727 In the current study, we investigated the binding of a class of USB-based
728 compounds that were specifically designed to inhibit the cancer-associated isoforms,
729 CA IX and CA XII, over the off-target CA II. We have shown, as others have previously,
730 that residue 131 is important for isoform selectivity of these compounds towards CA IX
731 and CA XII [66-68, 77, 83]. In addition, our model shows that serine residues 132 and
732 135 located within the active site of CA XII are required for USB selectivity (compared to
733 the other CAs), towards this isoform. This then raises the question: Can we relate these
734 structural data to the K_i values published for recombinant CAs [68]? Data in Table 1
735 show that compounds U-CH₃ and U-F exhibit K_i values for CA II that are one to two
736 orders of magnitude greater than for CA IX or CA XII. Our structural data illustrate that
737 these differences are caused by residue 131, which is a phenylalanine in CA II, forcing
738 a lower energy conformation of U-CH₃ and U-F in the active site of CA II [66]. This
739 differs from the more favorable conformation adopted by inhibitors in CA IX [66] and
740 predicted in CA XII (Fig 1). U-NO₂ conformation is similar among the three CA isoforms,
741 hence the similar K_i values. Therefore, we must conclude that residue 131 does not
742 cause steric hindrance in the active site of CA II for U-NO₂ but clearly does create steric
743 hindrance for the other two inhibitors. This may be related to physiochemical properties
744 or flexibility of the tail moiety.

745 In the physiological setting of intact cells, inhibition of CA IX activity in UFH-001 cells
746 by USBs was significantly more efficient than inhibition of CA XII in T47D cells (Fig 3).
747 This was unexpected based on the relatively similar K_i values obtained using
748 recombinant proteins (Table 1) [68]. This difference in efficacy was about an order of
749 magnitude between the cell line that expresses CA IX versus the cell line that expresses

750 CA XII. Because of the difference in CA IX and CA XII as prognosticators for patient
751 outcome, this result suggests the potential for selective therapeutic targeting for CA IX,
752 in the clinical setting, despite the similar efficacy of the drugs with the purified proteins.
753 However, there was also a difference in K_i values between purified protein and those in
754 intact cells. For CA IX, this difference varied across inhibitors ranging from 3-fold (U-F)
755 to 500-fold higher (U-NO₂) (i.e., inhibition of CA IX in cells versus recombinant protein).
756 For CA XII, this difference was nearly three orders of magnitude for all USBs. It is
757 possible that part of this difference lies in the use of different techniques for analyzing
758 activity. Recombinant protein activity was measured using stop flow kinetics [55] while
759 enzymatic activity in cells was measured using MIMS, a technique originally developed
760 to define the catalytic mechanisms of purified CAs [75, 82], including that for CA IX [84].
761 That differences in the K_i values are based on technique seems unlikely because the
762 rate constants calculated for recombinant CA IX are similar across these techniques
763 [84-86]. Further, rate constants determined in isolated membranes containing either CA
764 IX or CA XII [27, 72] show strikingly similar values, suggesting that the membrane
765 environment does not influence catalytic activity. Yet, we must also consider that the
766 cellular environment (intact cells) adds layers of complexity relative to even isolated
767 membranes. The cells are in suspension during the MIMS assay, having been released
768 from plates using a non-enzymatic procedure. Thus, many of the cells are still in
769 “colonies” which means that the extracellular matrix is still intact. This layer, comprised
770 of glycoproteins, proteoglycans, and fibrous proteins like collagen, may provide a barrier
771 for incoming molecules (like USBs). Yet, the permeant sulfonamide, ethoxzolamide,
772 inhibits activity even inside the cell and with no time delay. In addition, the USBs are
773 impermeant over the course of the assay, and thus inhibitor concentration is preserved

774 outside of the cells.

775 The effect of the USB inhibitors on cell growth followed a trend similar to that
776 observed for activity, but is more problematic. For both the UFH-001 and T47D cells,
777 the inhibitors were less effective by about two orders of magnitude, based on IC_{50}
778 values. We initially conducted these experiments under normoxic conditions, even
779 though aggressive forms of cancer exist in hypoxic environments. Our rationale for
780 using normoxia was based on the lack of difference in the K_i values of the USB
781 compounds for CA IX and CA XII between normoxic and hypoxic cell culture conditions.
782 However, Elena et al. showed that U-F (SLC-0111) activated apoptotic and necrotic
783 programs only in acidified medium [87], a condition associated with hypoxia. But again,
784 these effects were seen at only high concentrations of inhibitor, orders of magnitude
785 above the K_i values that we have measured for inhibition of CA activity. Regardless, we
786 repeated the growth studies with cells exposed to hypoxia, but the data were identical.
787 Several studies have shown that these USB compounds are effective at blocking tumor
788 growth [68, 88, 89], so this is clearly a useful strategy for treating breast cancer patients.
789 So, we must ask why there is a disconnect between the loss of CA activity, particularly
790 that of CA IX, and the inhibition of cell growth/cytotoxicity. The activity assay is
791 conducted for about 6 min, while the growth, migration/invasion, and cytotoxicity
792 experiments are conducted for up to 96 h. Under these later conditions it is possible that
793 the inhibitors undergo chemical inactivation by oxidation, reduction, or cleavage
794 reducing their ability to block the CAs. It is difficult to measure these parameters in the
795 context of cell culture. It is also possible that the drugs are transported into cells over
796 the long term, reducing the local concentration around exofacial catalytic sites of CA IX
797 or CA XII. However, the studies in which we tested USB compounds, in cells where CA

798 IX and CA XII were ablated, showed the same inhibitory effect of sulfonamides on cell
799 growth. This suggests that, at very high concentrations of the USB's, they are acting
800 independently of their inhibition of exofacial CA activity. Indeed, others have recently
801 observed this as well [90, 91]. In these latter studies, investigators identified a potential
802 new sulfonamide target, RMB39 (RNA binding motif protein 39) that is also called
803 CAPER α . They demonstrated that indisulam (an aryl sulfonamide drug in phase II
804 clinical trials for the treatment of advanced stage solid tumors) promotes the recruitment
805 of RBM39 to the CUL4-DCAF15 E3 ubiquitin ligase leading to RBM39 ubiquitination and
806 proteasomal degradation [90, 91]. Mutations in RBM39 that prevent its recruitment
807 increase its stability, conferring resistance to indisulam's inhibition of cell growth and
808 cytotoxicity [90]. Another series of studies used a naphthalene sulfonamide to bind to
809 the pY705 in STAT3 (signal transducer and activator of transcription 3). This binding
810 inhibits STAT3 phosphorylation and dimerization, which is required for its interaction
811 with DNA [92, 93]. *In vivo*, this sulfonamide blocks tumor growth in a breast cancer
812 xenograft. With these "off target" effects of sulfonamides, we must consider that
813 exofacial CA activity, alone, does not regulate cell growth.

814 In conclusion, we have shown that specific residues within the catalytic sites of CA
815 IX and CA XII determine the binding affinities of the USB inhibitors. These interactions,
816 particularly at residue 131, provide the rationale for selective inhibition of recombinant
817 CA IX and CA XII over the off-target CA II. Based on K_i values, determined in the
818 context of cells, we conclude that USB inhibition of activity shows strong specificity for
819 CA IX relative to CA XII. This was surprising based on the similar K_i values between
820 recombinant CA IX and CA XII. Because there are now data to further prove that CA IX
821 acts to stabilize pH in the tumor setting, blocking its activity may alter the

822 microenvironment, specifically in those tumors that express CA IX over CA XII. While
823 we observe the same trend in cell growth inhibition, (i.e., UFH-001 cells are more
824 sensitive to USB inhibition than T47D cells), the inhibitor IC₅₀ values increase by
825 another two orders of magnitude. This leads us to question the role of CA activity in cell
826 growth. Indeed, the presence of CA IX or CA XII is not required for USB-mediated cell
827 growth inhibition. Obviously, the inhibitors do block cell growth in culture and tumor
828 growth in xenograft and metastatic models, so their value as chemotherapeutic agents
829 may still be considerable. That said, the mechanism of action of sulfonamides need
830 further investigation.

831
832
833
834

835 **Acknowledgements**

836
837 The authors would like to recognize the exceptional cell culture skills of Xiao Wei Gu.
838
839

840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

857 References

858

859

860 1. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene
861 expression patterns of breast carcinomas distinguish tumor subclasses with clinical
862 implications. *Proc Natl Acad Sci U S A.* 2001;98(19):10869-74. doi:
863 10.1073/pnas.191367098. PubMed PMID: 11553815; PubMed Central PMCID:
864 PMCPMC58566.

865 2. Harvey JM, Clark GM, Osborne CK, Allred DC. Estrogen receptor status by
866 immunohistochemistry is superior to the ligand-binding assay for predicting response to
867 adjuvant endocrine therapy in breast cancer. *J Clin Oncol.* 1999;17(5):1474-81. doi:
868 10.1200/JCO.1999.17.5.1474. PubMed PMID: 10334533.

869 3. Abe O, Abe R, Enomoto K, Kikuchi K, Koyama H, Masuda H, et al. Effects of
870 chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year
871 survival: an overview of the randomised trials. *Lancet.* 2005;365(9472):1687-717.
872 PubMed PMID: WOS:000229082300022.

873 4. Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in
874 breast cancer. *Nat Rev Cancer.* 2009;9(9):631-43. doi: 10.1038/nrc2713. PubMed
875 PMID: 19701242.

876 5. Schneider BP, Winer EP, Foulkes WD, Garber J, Perou CM, Richardson A, et al.
877 Triple-negative breast cancer: risk factors to potential targets. *Clin Cancer Res.*
878 2008;14(24):8010-8. doi: 10.1158/1078-0432.CCR-08-1208. PubMed PMID: 19088017.

879 6. Dawood S, Hu R, Homes MD, Collins LC, Schnitt SJ, Connolly J, et al. Defining
880 breast cancer prognosis based on molecular phenotypes: results from a large cohort
881 study. *Breast Cancer Res Treat.* 2011;126(1):185-92. doi: 10.1007/s10549-010-1113-7.
882 PubMed PMID: 20711652; PubMed Central PMCID: PMCPMC3026074.

883 7. Stead LA, Lash TL, Sobieraj JE, Chi DD, Westrup JL, Charlott M, et al. Triple-
884 negative breast cancers are increased in black women regardless of age or body mass
885 index. *Breast Cancer Res.* 2009;11(2):R18. doi: 10.1186/bcr2242. PubMed PMID:
886 19320967; PubMed Central PMCID: PMCPMC2688946.

887 8. Fang JS, Gillies RD, Gatenby RA. Adaptation to hypoxia and acidosis in
888 carcinogenesis and tumor progression. *Semin Cancer Biol.* 2008;18(5):330-7. doi:
889 10.1016/j.semcan.2008.03.011. PubMed PMID: 18455429; PubMed Central PMCID:
890 PMCPMC2953714.

891 9. Verduzco D, Lloyd M, Xu L, Ibrahim-Hashim A, Balagurunathan Y, Gatenby RA,
892 et al. Intermittent hypoxia selects for genotypes and phenotypes that increase survival,
893 invasion, and therapy resistance. *PLoS One.* 2015;10(3):e0120958. doi:
894 10.1371/journal.pone.0120958. PubMed PMID: 25811878; PubMed Central PMCID:
895 PMC4374837.

896 10. Sadri N, Zhang PJ. Hypoxia-inducible factors: mediators of cancer progression;
897 prognostic and therapeutic targets in soft tissue sarcomas. *Cancers (Basel).*
898 2013;5(2):320-33. doi: 10.3390/cancers5020320. PubMed PMID: 24216979; PubMed
899 Central PMCID: PMC3730324.

900

901

902 11. Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and
903 targets for cancer therapy. *Trends Pharmacol Sci.* 2012;33(4):207-14. doi:
904 10.1016/j.tips.2012.01.005. PubMed PMID: 22398146; PubMed Central PMCID:
905 PMC3437546.

906 12. Brown JM. Tumor hypoxia in cancer therapy. *Methods Enzymol.* 2007;435:297-
907 321. doi: 10.1016/S0076-6879(07)35015-5. PubMed PMID: 17998060.

908 13. Chiche J, Brahimi-Horn MC, Pouyssegur J. Tumour hypoxia induces a metabolic
909 shift causing acidosis: a common feature in cancer. *J Cell Mol Med.* 2010;14(4):771-94.
910 doi: 10.1111/j.1582-4934.2009.00994.x. PubMed PMID: 20015196; PubMed Central
911 PMCID: PMC3823111.

912 14. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? *Nat Rev
913 Cancer.* 2004;4(11):891-9. doi: 10.1038/nrc1478. PubMed PMID: 15516961.

914 15. Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic
915 strategy. *Nat Rev Drug Discov.* 2011;10(10):767-77. doi: 10.1038/nrd3554. PubMed
916 PMID: WOS:000295396100025.

917 16. Swietach P, Vaughan-Jones RD, Harris AL. Regulation of tumor pH and the role
918 of carbonic anhydrase 9. *Cancer Metastasis Rev.* 2007;26(2):299-310. doi:
919 10.1007/s10555-007-9064-0. PubMed PMID: 17415526.

920 17. Gottlieb RA, Giesing HA, Zhu JY, Engler RL, Babior BM. Cell acidification in
921 apoptosis - granulocyte-colony-stimulating factor delays programmed cell-death in
922 neutrophils by up-regulating the vacuolar H⁺-Atpase. *P Natl Acad Sci USA.*
923 1995;92(13):5965-8. doi: DOI 10.1073/pnas.92.13.5965. PubMed PMID:
924 WOS:A1995RF05000043.

925 18. Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ. Acid-mediated tumor
926 invasion: a multidisciplinary study. *Cancer Res.* 2006;66(10):5216-23. doi:
927 10.1158/0008-5472.CAN-05-4193. PubMed PMID: 16707446.

928 19. Stubbs M, McSheehy PM, Griffiths JR, Bashford CL. Causes and consequences
929 of tumour acidity and implications for treatment. *Mol Med Today.* 2000;6(1):15-9.
930 PubMed PMID: 10637570.

931 20. Chegwidden WR, Dodgson SJ, Spencer IM. The roles of carbonic anhydrase in
932 metabolism, cell growth and cancer in animals. *Exs.* 2000;90(90):343-63. Epub
933 2001/03/28. PubMed PMID: 11268523.

934 21. Frost SC. Physiological functions of the alpha class of carbonic anhydrases.
935 *Subcell Biochem.* 2014;75:9-30. doi: 10.1007/978-94-007-7359-2_2. PubMed PMID:
936 24146372.

937 22. Gilmour KM. Perspectives on carbonic anhydrase. *Comp Biochem Physiol A Mol
938 Integr Physiol.* 2010;157(3):193-7. doi: 10.1016/j.cbpa.2010.06.161. PubMed PMID:
939 20541618.

940 23. McKenna R, Frost SC. Overview of the carbonic anhydrase family. *Subcell
941 Biochem.* 2014;75:3-5. doi: 10.1007/978-94-007-7359-2_1. PubMed PMID: 24146371.

942 24. Pastorekova S, Pastorek J. Cancer-related carbonic anhydrase isozymes and
943 their inhibition. In: Supuran CT, Scozzafava A, Conway J, editors. *Carbonic Anhydrase:
944 Its Inhibitors and Activators.* Boca Raton: CRC Press; 2004. p. 255-81.

945 25. Supuran CT. Carbonic anhydrases--an overview. *Current pharmaceutical design.*
946 2008;14(7):603-14. Epub 2008/03/14. PubMed PMID: 18336305.

947 26. Supuran CT. Structure and function of carbonic anhydrases. *Biochem J.*
948 2016;473(14):2023-32. doi: 10.1042/BCJ20160115. PubMed PMID: 27407171.

949 27. Li Y, Tu C, Wang H, Silverman DN, Frost SC. Catalysis and pH control by
950 membrane-associated carbonic anhydrase IX in MDA-MB-231 breast cancer cells. *J
951 Biol Chem.* 2011;286(18):15789-96. doi: 10.1074/jbc.M110.188524. PubMed PMID:
952 21454639; PubMed Central PMCID: PMC3091188.

953 28. Li Y, Wang H, Oosterwijk E, Tu C, Shiverick KT, Silverman DN, et al. Expression
954 and activity of carbonic anhydrase IX is associated with metabolic dysfunction in MDA-
955 MB-231 breast cancer cells. *Cancer Invest.* 2009;27(6):613-23. doi:
956 10.1080/07357900802653464. PubMed PMID: 19367501; PubMed Central PMCID:
957 PMCPMC2873695.

958 29. Lock FE, McDonald PC, Lou Y, Serrano I, Chafe SC, Ostlund C, et al. Targeting
959 carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche.
960 *Oncogene.* 2013;32(44):5210-9. doi: 10.1038/onc.2012.550. PubMed PMID: 23208505.

961 30. Lou Y, McDonald PC, Oloumi A, Chia S, Ostlund C, Ahmadi A, et al. Targeting
962 tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic
963 anhydrase IX inhibitors. *Cancer Res.* 2011;71(9):3364-76. doi: 10.1158/0008-
964 5472.CAN-10-4261. PubMed PMID: 21415165.

965 31. Atkins M, Regan M, McDermott D, Mier J, Stanbridge E, Youmans A, et al.
966 Carbonic anhydrase IX expression predicts outcome of interleukin 2 therapy for renal
967 cancer. *Clinical Cancer Res.* 2005;11(10):3714-21. doi: Doi 10.1158/1078-0432.Ccr-04-
968 2019. PubMed PMID: WOS:000229086600016.

969 32. Bui MH, Seligson D, Han KR, Pantuck AJ, Dorey FJ, Huang YD, et al. Carbonic
970 anhydrase IX is an independent predictor of survival in advanced renal clear cell
971 carcinoma: Implications for prognosis and therapy. *J Urology.* 2003;169(4):172-.
972 PubMed PMID: WOS:000181721400663.

973 33. Chen LQ, Howison CM, Spier C, Stopeck AT, Malm SW, Pagel MD, et al.
974 Assessment of carbonic anhydrase IX expression and extracellular pH in B-cell
975 lymphoma cell line models. *Leuk Lymphoma.* 2015;56(5):1432-9. doi:
976 10.3109/10428194.2014.933218. PubMed PMID: WOS:000356532000053.

977 34. Chiche J, Ilc K, Laferriere J, Trottier E, Dayan F, Mazure NM, et al. Hypoxia-
978 inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting
979 acidosis through the regulation of the intracellular pH. *Cancer Res.* 2009;69(1):358-68.
980 doi: 10.1158/0008-5472.CAN-08-2470. PubMed PMID: WOS:000262273100044.

981 35. Dorai T, Sawczuk IS, Pastorek J, Wiernik PH, Dutcher JP. The role of carbonic
982 anhydrase IX overexpression in kidney cancer. *Eur J Cancer.* 2005;41(18):2935-47. doi:
983 10.1016/j.ejca.2005.09.011. PubMed PMID: 16310354.

984 36. Genega EM, Ghebremichael M, Najarian R, Fu Y, Wang Y, Argani P, et al.
985 Carbonic anhydrase IX expression in renal neoplasms: correlation with tumor type and
986 grade. *Am J Clin Pathol.* 2010;134(6):873-9. doi: 10.1309/AJCPPR57HNJMSLZ.
987 PubMed PMID: 21088149; PubMed Central PMCID: PMCPMC3778911.

988 37. Generali D, Fox SB, Berruti A, Brizzi MP, Campo L, Bonardi S, et al. Role of
989 carbonic anhydrase IX expression in prediction of the efficacy and outcome of primary
990 epirubicin/tamoxifen therapy for breast cancer. *Endocr Relat Cancer.* 2006;13(3):921-
991 30. doi: 10.1677/erc.1.01216. PubMed PMID: 16954440.

992 38. Kivela AJ, Parkkila S, Saarnio J, Karttunen TJ, Kivela J, Parkkila AK, et al.
993 Expression of transmembrane carbonic anhydrase isoenzymes IX and XII in normal
994 human pancreas and pancreatic tumours. *Histochem Cell Biol.* 2000;114(3):197-204.
995 PubMed PMID: 11083462.

996 39. Kock L, Mahner S, Choschzick M, Eulenburg C, Milde-Langosch K, Schwarz J, et
997 al. Serum carbonic anhydrase IX and its prognostic relevance in vulvar cancer. *Int J*
998 *Gynecol Cancer*. 2011;21(1):141-8. doi: 10.1097/IGC.0b013e318204c34f. PubMed
999 PMID: 21330838.

1000 40. Leibovich BC, Sheinin Y, Lohse CM, Thompson RH, Cheville JC, Zavada J, et al. Carbonic anhydrase IX is not an independent predictor of outcome for patients with
1001 clear cell renal cell carcinoma. *J Clin Oncol*. 2007;25(30):4757-64. doi:
1002 10.1200/JCO.2007.12.1087. PubMed PMID: 17947723.

1003 41. Liao SY, Lerman MI, Stanbridge EJ. Expression of transmembrane carbonic
1004 anhydrases, CAIX and CAXII, in human development. *BMC Dev Biol*. 2009;9:22. doi:
1005 10.1186/1471-213X-9-22. PubMed PMID: 19291313; PubMed Central PMCID:
1006 PMC2666674.

1007 42. Woelber L, Kress K, Kersten JF, Choschzick M, Kilic E, Herwig U, et al. Carbonic
1008 anhydrase IX in tumor tissue and sera of patients with primary cervical cancer. *BMC*
1009 *Cancer*. 2011;11:12. doi: 10.1186/1471-2407-11-12. PubMed PMID: 21223596;
1010 PubMed Central PMCID: PMCPMC3027191.

1011 43. Wykoff CC, Beasley NJ, Watson PH, Turner KJ, Pastorek J, Sibtain A, et al. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. *Cancer Res*.
1012 2000;60(24):7075-83. PubMed PMID: 11156414.

1013 44. Watson PH, Chia SK, Wykoff CC, Han C, Leek RD, Sly WS, et al. Carbonic
1014 anhydrase XII is a marker of good prognosis in invasive breast carcinoma. *Br J Cancer*.
1015 2003;88(7):1065-70. doi: 10.1038/sj.bjc.6600796. PubMed PMID: 12671706; PubMed
1016 Central PMCID: PMC2376369.

1017 45. Barnett DH, Sheng S, Charn TH, Waheed A, Sly WS, Lin CY, et al. Estrogen
1018 receptor regulation of carbonic anhydrase XII through a distal enhancer in breast
1019 cancer. *Cancer Res*. 2008;68(9):3505-15. doi: 10.1158/0008-5472.CAN-07-6151.
1020 PubMed PMID: 18451179.

1021 46. Creighton CJ, Cordero KE, Larios JM, Miller RS, Johnson MD, Chinnaiyan AM,
1022 et al. Genes regulated by estrogen in breast tumor cells in vitro are similarly regulated in
1023 vivo in tumor xenografts and human breast tumors. *Genome Biol*. 2006;7(4):R28. doi:
1024 10.1186/gb-2006-7-4-r28. PubMed PMID: 16606439; PubMed Central PMCID:
1025 PMC1557996.

1026 47. Deroo BJ, Korach KS. Estrogen receptors and human disease. *J Clin Invest*.
1027 2006;116(3):561-70. doi: 10.1172/JCI27987. PubMed PMID: 16511588; PubMed
1028 Central PMCID: PMC2373424.

1029 48. Kummola L, Hamalainen JM, Kivela J, Kivela AJ, Saarnio J, Karttunen T, et al. Expression of a novel carbonic anhydrase, CA XIII, in normal and neoplastic colorectal
1030 mucosa. *BMC Cancer*. 2005;5:41. doi: 10.1186/1471-2407-5-41. PubMed PMID:
1031 15836783; PubMed Central PMCID: PMC1097719.

1032 49. Pastorek J, Pastorekova S, Callebaut I, Mornon JP, Zelnik V, Opavsky R, et al. Cloning and characterization of MN, a human tumor-associated protein with a domain
1033 homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding
1034 segment. *Oncogene*. 1994;9(10):2877-88. PubMed PMID: 8084592.

1035 50. Pastorekova S, Zavadova Z, Kostal M, Babusikova O, Zavada J. A novel quasi-
1036 viral agent, MaTu, is a two-component system. *Virology*. 1992;187(2):620-6. PubMed
1037 PMID: 1312272.

1042 51. Pastorekova S, Parkkila S, Parkkila AK, Opavsky R, Zelnik V, Saarnio J, et al.
1043 Carbonic anhydrase IX, MN/CA IX: analysis of stomach complementary DNA sequence
1044 and expression in human and rat alimentary tracts. *Gastroenterology*. 1997;112(2):398-
1045 408. PubMed PMID: 9024293.

1046 52. Saarnio J, Parkkila S, Parkkila AK, Haukipuro K, Pastorekova S, Pastorek J, et
1047 al. Immunohistochemical study of colorectal tumors for expression of a novel
1048 transmembrane carbonic anhydrase, MN/CA IX, with potential value as a marker of cell
1049 proliferation. *Am J Pathol*. 1998;153(1):279-85. doi: 10.1016/S0002-9440(10)65569-1.
1050 PubMed PMID: 9665489; PubMed Central PMCID: PMC1852958.

1051 53. Potter C, Harris AL. Hypoxia inducible carbonic anhydrase IX, marker of tumour
1052 hypoxia, survival pathway and therapy target. *Cell Cycle*. 2004;3(2):164-7. PubMed
1053 PMID: 14712082.

1054 54. Swietach P, Wigfield S, Cobden P, Supuran CT, Harris AL, Vaughan-Jones RD.
1055 Tumor-associated carbonic anhydrase 9 spatially coordinates intracellular pH in three-
1056 dimensional multicellular growths. *J Biol Chem*. 2008;283(29):20473-83. doi:
1057 10.1074/jbc.M801330200. PubMed PMID: 18482982.

1058 55. Swietach P, Wigfield S, Supuran CT, Harris AL, Vaughan-Jones RD. Cancer-
1059 associated, hypoxia-inducible carbonic anhydrase IX facilitates CO₂ diffusion. *BJU Int*.
1060 2008;101 Suppl 4:22-4. doi: 10.1111/j.1464-410X.2008.07644.x. PubMed PMID:
1061 18430118.

1062 56. Stubbs M, McSheehy PM, Griffiths JR. Causes and consequences of acidic pH in
1063 tumors: a magnetic resonance study. *Adv Enzyme Regul*. 1999;39:13-30. PubMed
1064 PMID: 10470364.

1065 57. Lee SH, McIntyre D, Honess D, Hulikova A, Pacheco-Torres J, Cerdan S, et al.
1066 Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo.
1067 *Br J Cancer*. 2018. doi: 10.1038/s41416-018-0216-5. PubMed PMID: 30206370.

1068 58. Supuran C, Dedhar S, Carta F, Winum JY, McDonald PC. Carbonic anhydrase
1069 inhibitors with antimetastatic activity. Google Patents; 2012.

1070 59. Supuran CT. Structure-based drug discovery of carbonic anhydrase inhibitors. *J*
1071 *Enzyme Inhib Med Chem*. 2012;27(6):759-72. doi: 10.3109/14756366.2012.672983.
1072 PubMed PMID: 22468747.

1073 60. Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? *J*
1074 *Enzyme Inhib Med Chem*. 2016;31(3):345-60. doi: 10.3109/14756366.2015.1122001.
1075 PubMed PMID: 26619898.

1076 61. Supuran CT. Advances in structure-based drug discovery of carbonic anhydrase
1077 inhibitors. *Expert Opin Drug Discov*. 2017;12(1):61-88. doi:
1078 10.1080/17460441.2017.1253677. PubMed PMID: 27783541.

1079 62. Supuran CT, Winum JY. Designing carbonic anhydrase inhibitors for the
1080 treatment of breast cancer. *Expert Opin Drug Discov*. 2015;10(6):591-7. doi:
1081 10.1517/17460441.2015.1038235. PubMed PMID: 25891195.

1082 63. Pinard MA, Mahon B, McKenna R. Probing the surface of human carbonic
1083 anhydrase for clues towards the design of isoform specific inhibitors. *Biomed Res Int*.
1084 2015;2015:453543. doi: 10.1155/2015/453543. PubMed PMID: 25811028; PubMed
1085 Central PMCID: PMC4355338.

1086
1087

1088 64. Carter MJ, Parsons DS. The purification and properties of carbonic anhydrases
1089 from guinea-pig erythrocytes and mucosae of the gastrointestinal tract. *Biochem J.*
1090 1970;120(4):797-808. PubMed PMID: 4992954; PubMed Central PMCID:
1091 PMC1179673.

1092 65. Lindskog S. Purification and properties of bovine erythrocyte carbonic anhydrase. *Biochimica Et Biophysica Acta.* 1960;39(2):218-26. doi: Doi 10.1016/0006-
1093 3002(60)90156-6. PubMed PMID: WOS:A1960WF20900004.

1094 66. Mboge MY, Mahon BP, Lamas N, Socorro L, Carta F, Supuran CT, et al. Structure activity study of carbonic anhydrase IX: Selective inhibition with ureido-
1095 substituted benzenesulfonamides. *Eur J Med Chem.* 2017;132:184-91. doi:
1096 10.1016/j.ejmech.2017.03.026. PubMed PMID: 28363153.

1097 67. Pacchiano F, Aggarwal M, Avvaru BS, Robbins AH, Scozzafava A, McKenna R,
1098 et al. Selective hydrophobic pocket binding observed within the carbonic anhydrase II
1099 active site accommodate different 4-substituted-ureido-benzenesulfonamides and
1100 correlate to inhibitor potency. *Chem Commun (Camb).* 2010;46(44):8371-3. doi:
1101 10.1039/c0cc02707c. PubMed PMID: 20922253.

1102 68. Pacchiano F, Carta F, McDonald PC, Lou Y, Vullo D, Scozzafava A, et al. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and
1103 show antimetastatic activity in a model of breast cancer metastasis. *J Med Chem.*
1104 2011;54(6):1896-902. doi: 10.1021/jm101541x. PubMed PMID: 21361354.

1105 69. Debreczeni JE, Emsley P. Handling ligands with Coot. *Acta Crystallogr D Biol
1106 Crystallogr.* 2012;68(Pt 4):425-30. doi: 10.1107/S0907444912000200. PubMed PMID:
1107 22505262; PubMed Central PMCID: PMC3322601.

1108 70. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. *Acta
1109 Crystallogr D Biol Crystallogr.* 2004;60(Pt 12 Pt 1):2126-32. doi:
1110 10.1107/S0907444904019158. PubMed PMID: 15572765.

1111 71. Chen Z, Ai L, Mboge MY, McKenna R, Frost CJ, Heldermon CD, et al. UFH-001
1112 cells: A novel triple negative, CAIX-positive, human breast cancer model system.
1113 *Cancer Biol Ther.* 2018;1-32. doi: 10.1080/15384047.2018.1449612. PubMed PMID:
1114 29561695.

1115 72. Chen Z, Ai L, Mboge MY, Tu C, McKenna R, Brown DB, et al. Differential
1116 expression and function of CAIX and CAXII in breast cancer: A comparison between
1117 tumorgraft models and cells. *PLoS One.* 2018.

1118 73. Laemmli UK. Cleavage of structural proteins during the assembly of the head of
1119 bacteriophage T4. *Nature.* 1970;227(5259):680-5. PubMed PMID: 5432063.

1120 74. Silverman DN. Carbonic anhydrase: oxygen-18 exchange catalyzed by an
1121 enzyme with rate-contributing proton-transfer steps. *Methods Enzymol.* 1982;87:732-52.
1122 PubMed PMID: 6294458.

1123 75. Silverman DN, Lindskog S. The catalytic mechanism of carbonic anhydrase -
1124 implication of a rate limiting protolysis of water. *Acc Chem Res.* 1988;21:30-6.

1125 76. Aggarwal M, Kondeti B, McKenna R. Insights towards sulfonamide drug
1126 specificity in alpha-carbonic anhydrases. *Bioorg Med Chem.* 2013;21(6):1526-33. doi:
1127 10.1016/j.bmc.2012.08.019. PubMed PMID: 22985956; PubMed Central PMCID:
1128 PMC3593968.

1129

1130

1131

1132

1133

1134 77. Pinard MA, Boone CD, Rife BD, Supuran CT, McKenna R. Structural study of
1135 interaction between brinzolamide and dorzolamide inhibition of human carbonic
1136 anhydrases. *Bioorg Med Chem.* 2013;21(22):7210-5. doi: 10.1016/j.bmc.2013.08.033.
1137 PubMed PMID: 24090602.

1138 78. Fisher SZ, Aggarwal M, Kovalevsky AY, Silverman DN, McKenna R. Neutron
1139 diffraction of acetazolamide-bound human carbonic anhydrase II reveals atomic details
1140 of drug binding. *J Am Chem Soc.* 2012;134(36):14726-9. doi: 10.1021/ja3068098.
1141 PubMed PMID: 22928733; PubMed Central PMCID: PMCPMC3524527.

1142 79. Soule HD, Maloney TM, Wolman SR, Peterson WD, Jr., Brenz R, McGrath CM,
1143 et al. Isolation and characterization of a spontaneously immortalized human breast
1144 epithelial cell line, MCF-10. *Cancer Res.* 1990;50(18):6075-86. PubMed PMID:
1145 1975513.

1146 80. Tait L, Soule HD, Russo J. Ultrastructural and immunocytochemical
1147 characterization of an immortalized human breast epithelial cell line, MCF-10. *Cancer*
1148 *Res.* 1990;50(18):6087-94. PubMed PMID: 1697506.

1149 81. Chavez KJ, Garimella SV, Lipkowitz S. Triple negative breast cancer cell lines:
1150 one tool in the search for better treatment of triple negative breast cancer. *Breast Dis.*
1151 2010;32(1-2):35-48. doi: 10.3233/BD-2010-0307. PubMed PMID: 21778573; PubMed
1152 Central PMCID: PMCPMC3532890.

1153 82. Li Y, Wang H, Tu C, Shiverick KT, Silverman DN, Frost SC. Role of hypoxia and
1154 EGF on expression, activity, localization and phosphorylation of carbonic anhydrase IX
1155 in MDA-MB-231 breast cancer cells. *Biochim Biophys Acta.* 2011;1813(1):159-67. doi:
1156 10.1016/j.bbamcr.2010.09.018. PubMed PMID: 20920536; PubMed Central PMCID:
1157 PMCPMC3014402.

1158 83. Mahon BP, Hendon AM, Driscoll JM, Rankin GM, Poulsen SA, Supuran CT, et al.
1159 Saccharin: a lead compound for structure-based drug design of carbonic anhydrase IX
1160 inhibitors. *Bioorg Med Chem.* 2015;23(4):849-54. doi: 10.1016/j.bmc.2014.12.030.
1161 PubMed PMID: 25614109; PubMed Central PMCID: PMC4352949.

1162 84. Wingo T, Tu C, Laipis PJ, Silverman DN. The catalytic properties of human
1163 carbonic anhydrase IX. *Biochem Biophys Res Commun.* 2001;288(3):666-9. doi:
1164 10.1006/bbrc.2001.5824. PubMed PMID: 11676494.

1165 85. Alterio V, Vitale RM, Monti SM, Pedone C, Scozzafava A, Cecchi A, et al.
1166 Carbonic anhydrase inhibitors: X-ray and molecular modeling study for the interaction of
1167 a fluorescent antitumor sulfonamide with isozyme II and IX. *J Am Chem Soc.*
1168 2006;128(25):8329-35. doi: 10.1021/ja061574s. PubMed PMID: 16787097.

1169 86. Vullo D, Franchi M, Gallori E, Pastorek J, Scozzafava A, Pastorekova S, et al.
1170 Carbonic anhydrase inhibitors: inhibition of the tumor-associated isozyme IX with
1171 aromatic and heterocyclic sulfonamides. *Bioorg Med Chem Lett.* 2003;13(6):1005-9.
1172 PubMed PMID: 12643899.

1173 87. Andreucci E, Peppicelli S, Carta F, Brisotto G, Biscontini E, Ruzzolini J, et al.
1174 Carbonic anhydrase IX inhibition affects viability of cancer cells adapted to extracellular
1175 acidosis. *J Mol Med (Berl).* 2017;95(12):1341-53. doi: 10.1007/s00109-017-1590-9.
1176 PubMed PMID: 28929255.

1177 88. Lou Y, McDonald PC, Oloumi A, Chia S, Ostlund C, Ahmadi A, et al. Targeting
1178 tumor hypoxia: Suppression of breast tumor growth and metastasis by novel carbonic
1179 anhydrase IX inhibitors. *Cancer Res.* 2011;71:3364-76.

1180 89. Touisni N, Maresca A, McDonald PC, Lou Y, Scozzafava A, Dedhar S, et al.
1181 Glycosyl coumarin carbonic anhydrase IX and XII inhibitors strongly attenuate the
1182 growth of primary breast tumors. *J Med Chem.* 2011;54(24):8271-7. Epub 2011/11/15.
1183 doi: 10.1021/jm200983e. PubMed PMID: 22077347.

1184 90. Han T, Goralski M, Gaskill N, Capota E, Kim J, Ting TC, et al. Anticancer
1185 sulfonamides target splicing by inducing RBM39 degradation via recruitment to
1186 DCAF15. *Science.* 2017;356(6336). doi: 10.1126/science.aal3755. PubMed PMID:
1187 28302793.

1188 91. Uehara T, Minoshima Y, Sagane K, Sugi NH, Mitsuhashi KO, Yamamoto N, et al.
1189 Selective degradation of splicing factor CAPERalpha by anticancer sulfonamides. *Nat
1190 Chem Biol.* 2017;13(6):675-80. doi: 10.1038/nchembio.2363. PubMed PMID: 28437394.

1191 92. Yu W, Li C, Zhang W, Xia Y, Li S, Lin JY, et al. Discovery of an orally selective
1192 inhibitor of signal transducer and activator of transcription 3 using advanced multiple
1193 ligand simultaneous docking. *J Med Chem.* 2017;60(7):2718-31. doi:
1194 10.1021/acs.jmedchem.6b01489. PubMed PMID: 28245116.

1195 93. Yu W, Xiao H, Lin J, Li C. Discovery of novel STAT3 small molecule inhibitors via
1196 in silico site-directed fragment-based drug design. *J Med Chem.* 2013;56(11):4402-12.
1197 doi: 10.1021/jm400080c. PubMed PMID: 23651330.

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227 **Table 1.** Inhibition constant (K_i) values for recombinant human CA II, IX, and XII with ureido-
1228 substituted benzene sulfonamide (USB) compounds **U-CH₃**, **U-F**, and **U-NO₂** obtained from
1229 Applied Photophysics stopped-flow kinetics experiments.
1230

USB Compound	K_i (nM) \pm 5% error		
	CA II	CA IX	CA XII
U-CH₃ 	1765	7	6
U-F 	960	45	4
U-NO₂ 	15	1	6

1231 *K_i values were previously published by Pacchiano et al. [67, 68].*

1232
1233 **Table 2.** Residues within the active site of human CA II, CA IX and CA XII that differ
1234 among all three isoforms and make up the selective pocket (CA II numbering).
1235

Residues in Selective Region	CA II	CA IX	CA XII
67	Asn	Gln	Lys
91	Ile	Leu	Thr
131	Phe	Val	Ala
132	Gly	Ala	Ser
135	Val	Leu	Ser

1236 *Information adapted from Pinard et al. [63]*

1237
1238
1239
1240
1241

1242 **Table 3.** IC₅₀ values for compounds **U-CH₃**, **U-F**, and **U-NO₂** in MCF 10A, UFH-001 and
1243 T47D cells obtained from MTT assay experiments.
1244

Cell Lines	MCF 10A Cells		UFH-001 Cells		T47D Cells	
Treatment	48 h	96 h	48 h	96 h	48 h	96 h
U-CH₃ (μM)	491 ± 10	508 ± 10	80 ± 2	74 ± 1	330 ± 10	101 ± 10
U-F (μM)	550 ± 10	550 ± 10	62 ± 1	51 ± 1	537 ± 10	252 ± 20
U-NO₂ (μM)	64 ± 1	69 ± 1	26 ± 1	20 ± 1	61 ± 1	78 ± 1

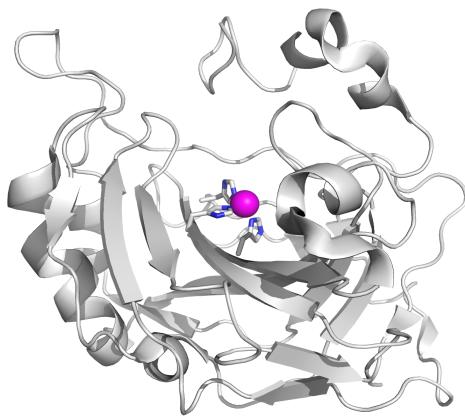
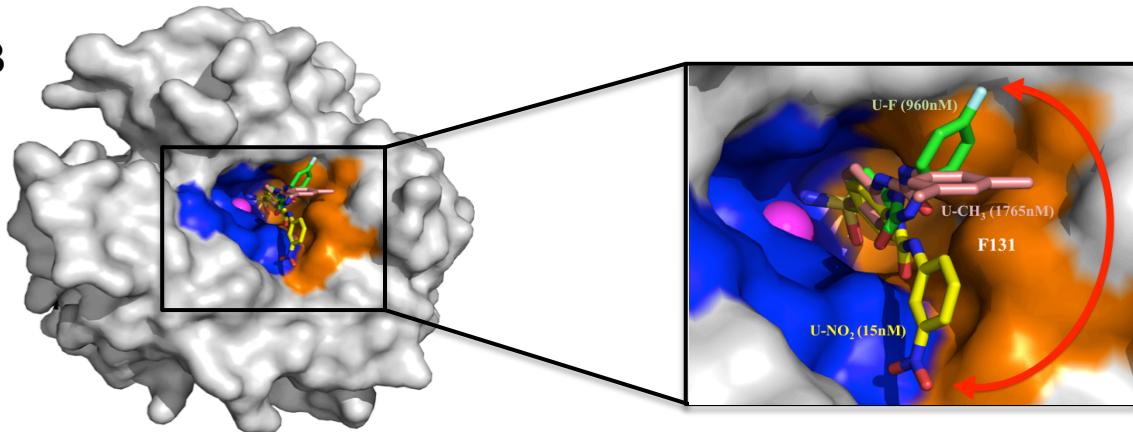
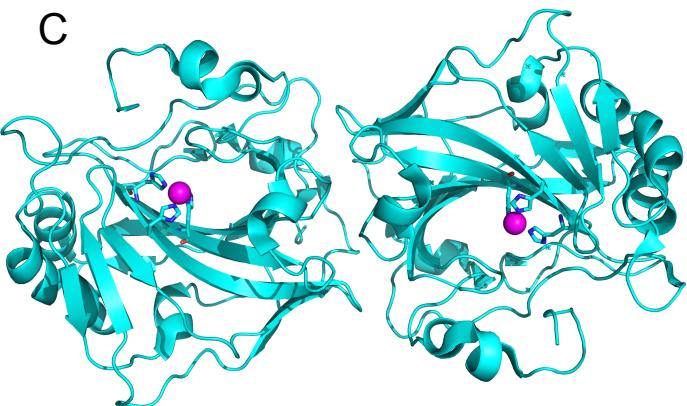
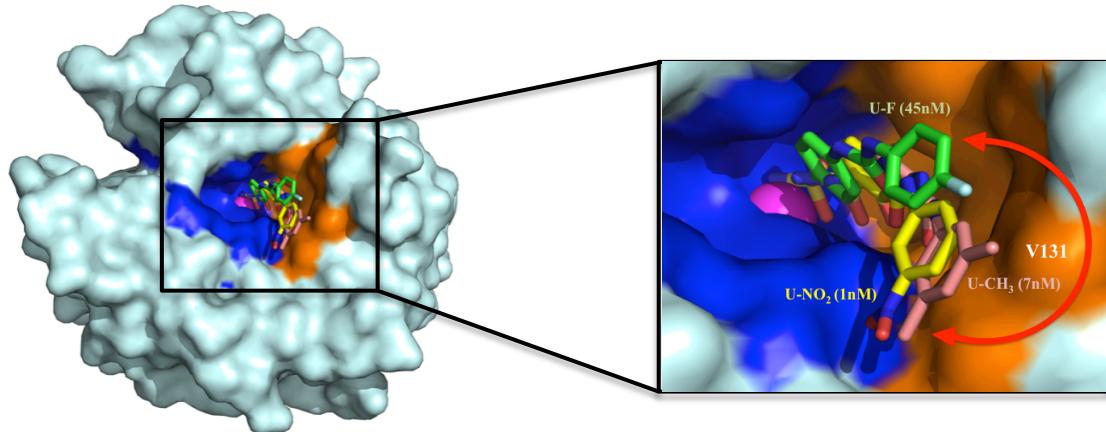
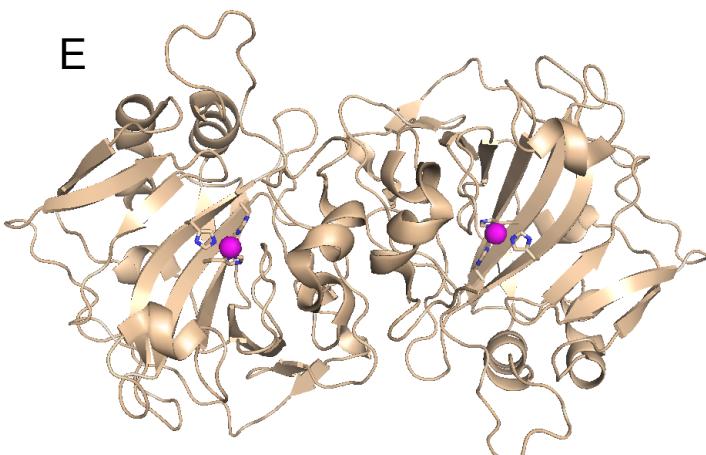
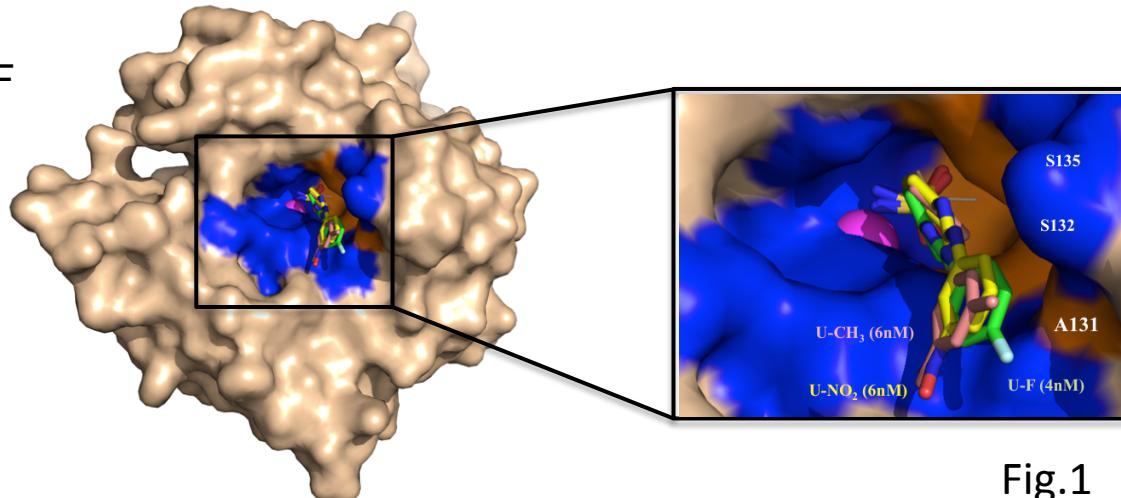
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278

Supporting information

S1 Fig. Effect of classical sulfonamide inhibitors on CA activity in UFH-001 and T47D cells. CA activity was measured in UFH-001 cells (Panel A) and T46D cells (Panel B) using the MIMS assay in the absence or presence of acetazolamide (ACZ) or ethoxzolamide (EZA). Data are representative of two independent experiments. First order rate constants were calculated according to the formula described in the Methods. It is noted that the scale on the y-axis is different between these two representative plots. This difference represents the different isotopic enrichments of CO₂, but the concentration of CO₂ is identical between the two experiments.

S2 Fig. CA mRNA expression in breast cells lines. Panel A: mRNA expression (from microarray data) in a normal immortalized basal type breast cell line (MCF10A) compared to a triple negative breast cancer cell line (UFH-001) and Panel B: MCF10A versus T47D cells were analyzed using data mining techniques. Accession numbers, GSE107209 (for comparison between MCF10A and UFH-001 cell lines) and NCI-60 data sets for T47D cells, were used for this comparison.

S3 Fig. Effect of U-NO₂ on CA activity. CA activity was measured in normoxic and hypoxic cells UFH-001 cells (Panel A) or normoxic and hypoxic T47D cells (Panel B) in the presence of U-NO₂ to determine K_i values across an extensive range of inhibitor concentrations.







S4 Fig. Effect of CA knockdown on spheroid growth. Western blots of lysates from UFH-001 cells (EV controls and KO cells) exposed to normoxic or hypoxic conditions (Panel A) were compared to lysates from T47D cells (EV controls and KO cells) exposed to normoxic and hypoxic conditions (Panel B). Panel C shows spheroid development of UFH-001 cells (EV controls and KO cells) while Panel D shows spheroid development of T47D cells (EV controls and KO cells) over 96 h in culture. GAPDH and actin were used as loading controls.

S5 Fig. Total LDH activity released by breast cell lines. Cells were grown in 96 well plates for 24 h at which point they were treated with a drug which is cytotoxic (β -caryophyllene) as a positive control or left untreated (NC) under normoxic conditions. LDH assays were performed after 48 h of treatment, results were evaluated at 450 nm (absorbance), and data was analyzed using Prism. Total LDH activity (nmol/min) was assessed in Panel A) MCF10A cells; Panel B UFH-001 cells; and Panel C t47D cells. Data represent the mean \pm SEM of 3 independent experiments.

S6 Fig. Effect of USBs on activation of apoptosis. Activation of apoptotic pathways was evaluated using the caspase activity assay in Panel A) UFH-001 and Panel B) T47D cells after 48 h of treatment with either absence (negative control, NC) or presence of USB-based compounds, under normoxic conditions. These data were compared to the presence of staurosporine (positive control, PC). Data shown for the USB-treated cells are the averages of at least three independent experiments. For the PC-treated cells, these data represent the average of two independent experiments.

S7 Fig. Effects of USB compounds on CA expression in breast cancer cells.

Immunoblotting is shown for CA IX, CA XII, and CA II from cells grown for 2-3 days and then treated with compounds U-CH3, U-F, or U-NO2 for 48 h, under normoxic conditions. GAPDH was used as a loading control. Data are representative of 3 independent experiments. Panel A, UFH-001 cells. Panel B, T47D cells.

A**B****C****D****E****F****Fig.1**

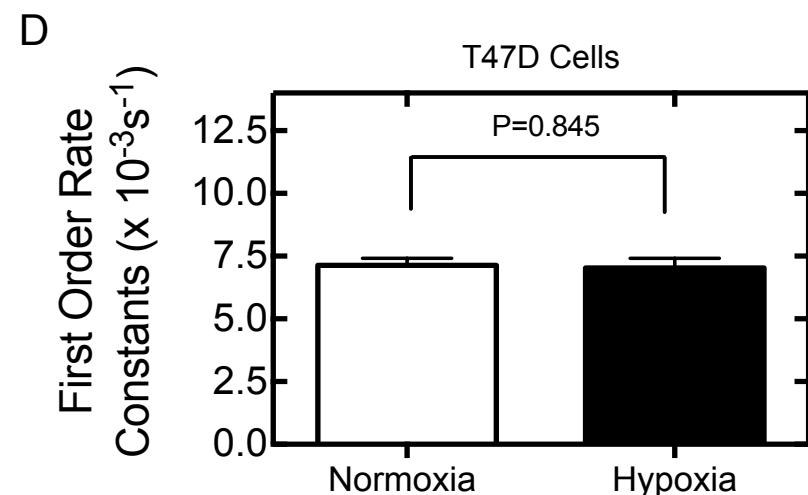
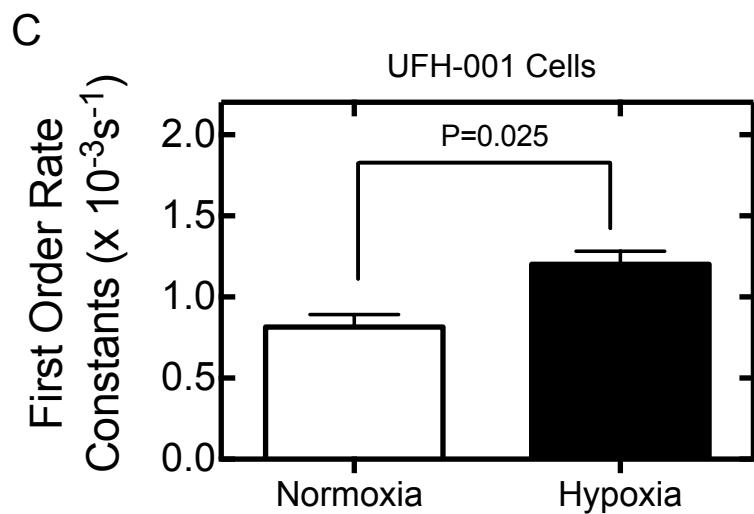
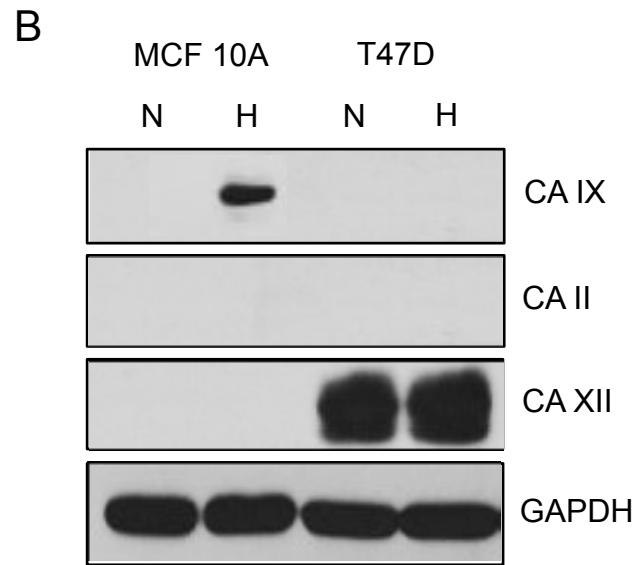
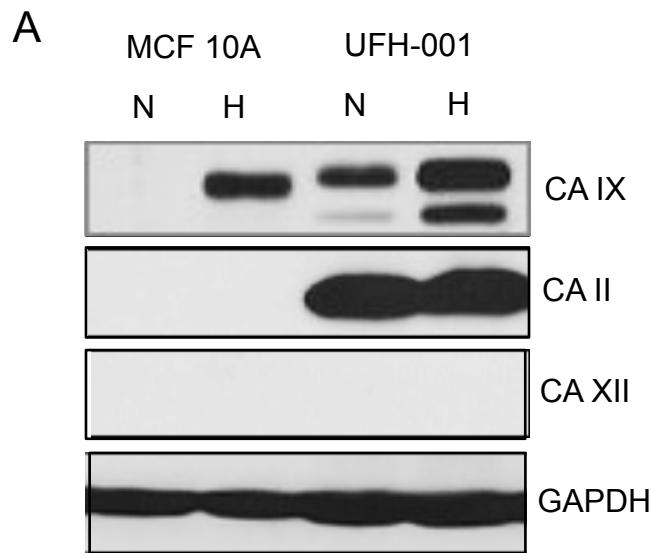
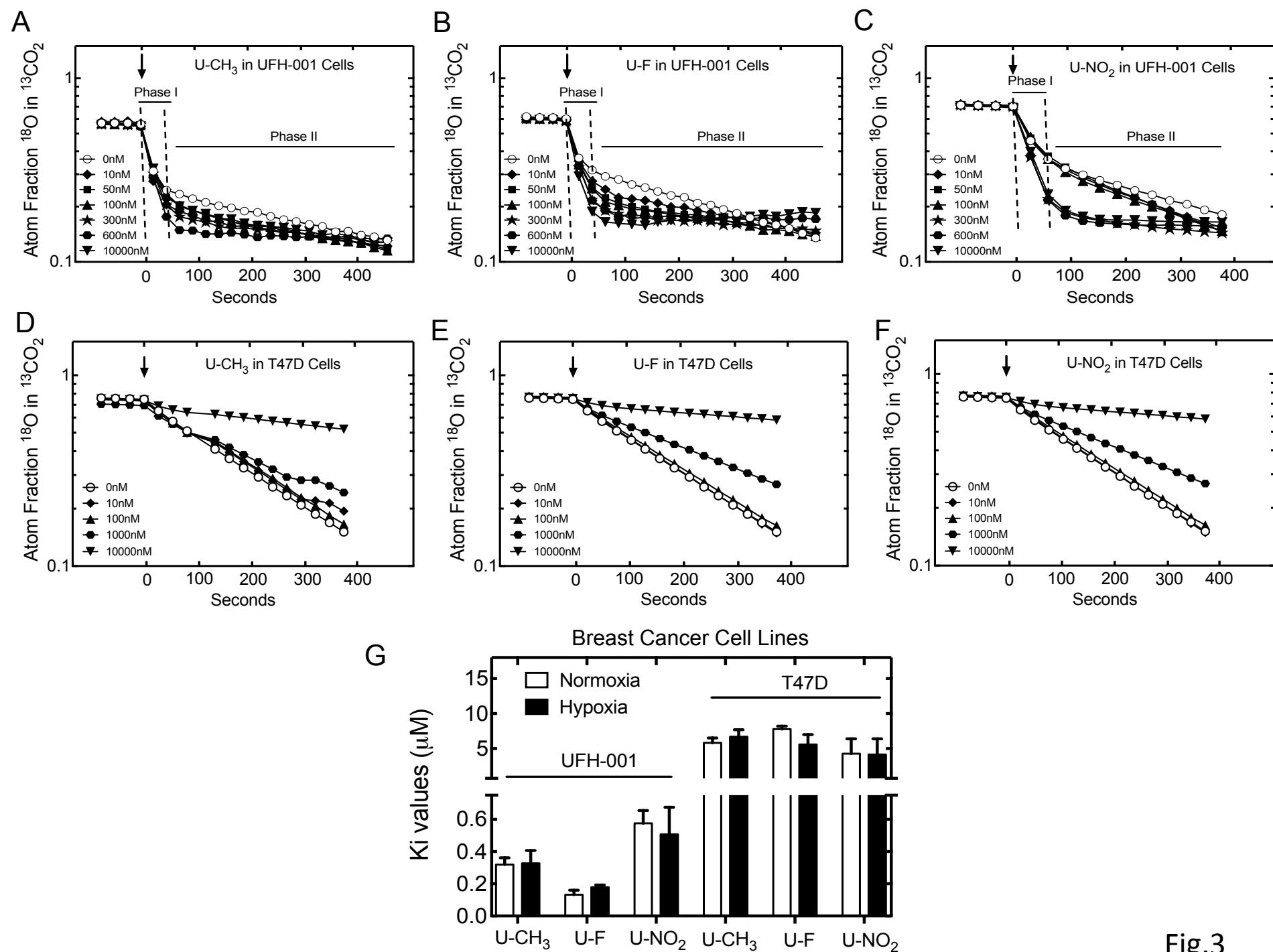
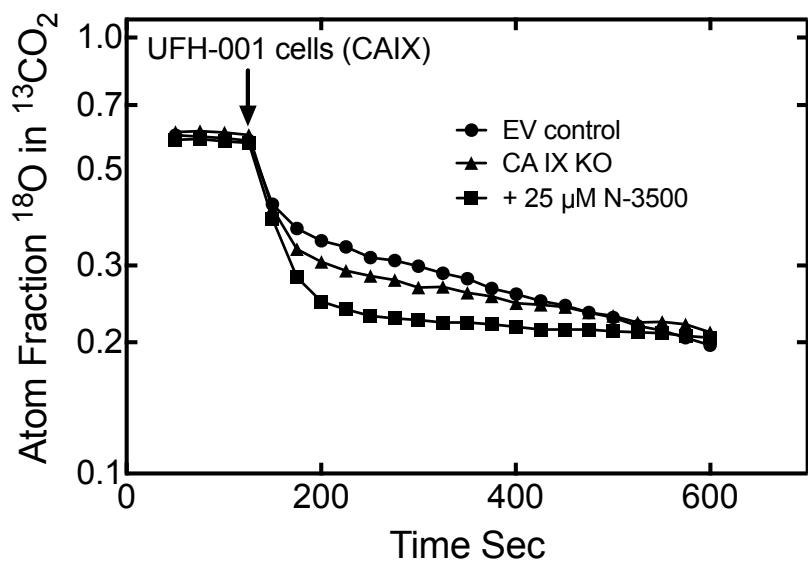
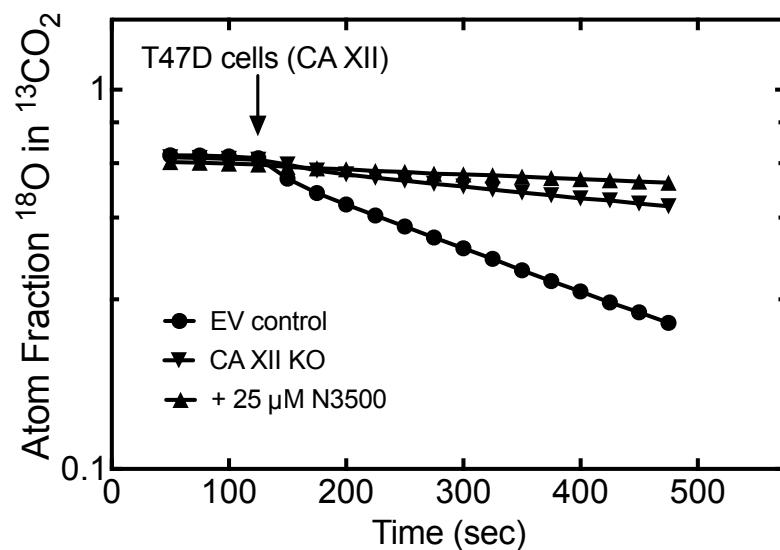








Fig.2

A**B****Fig.4**

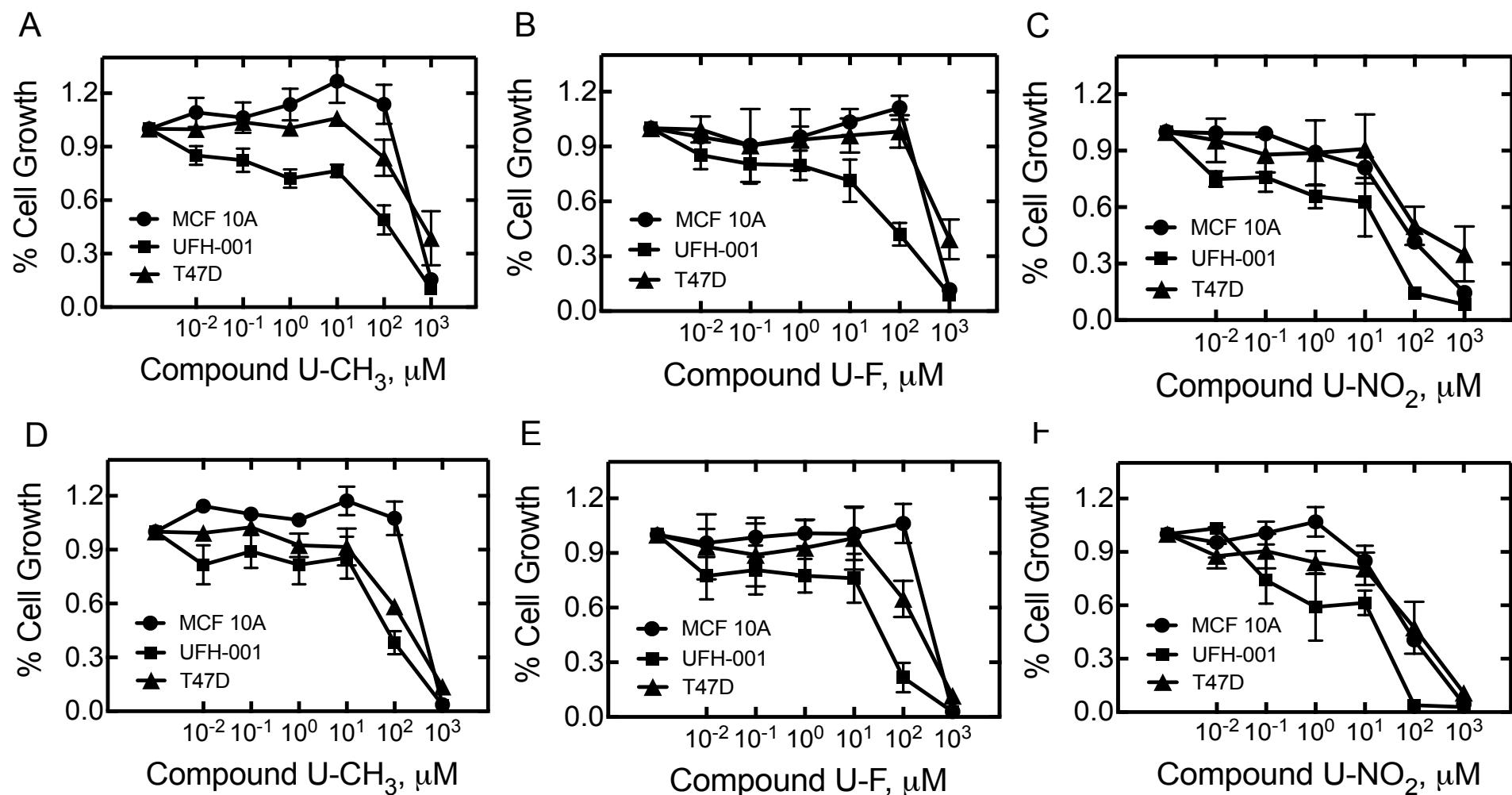


Fig.5

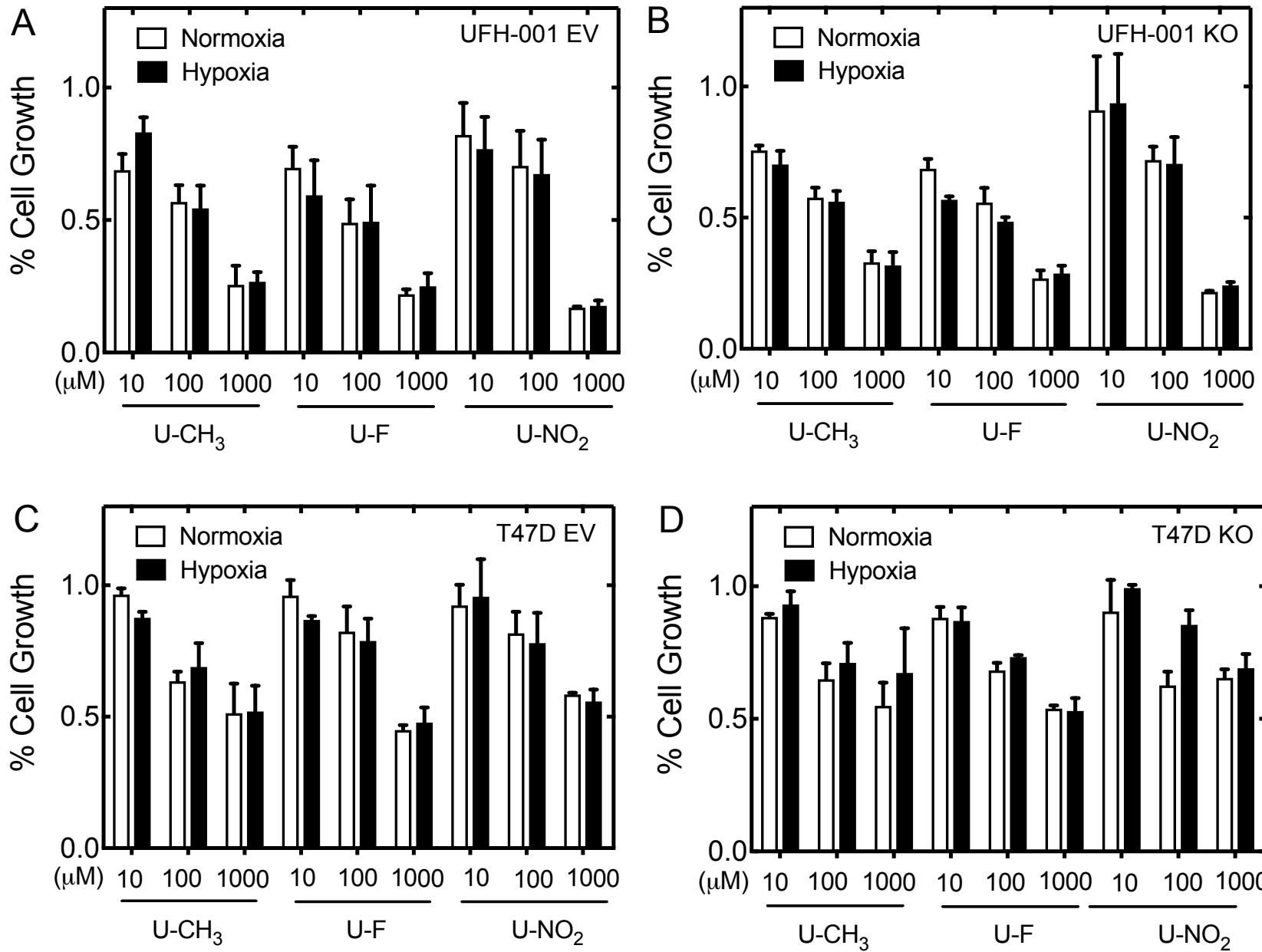


Fig.6

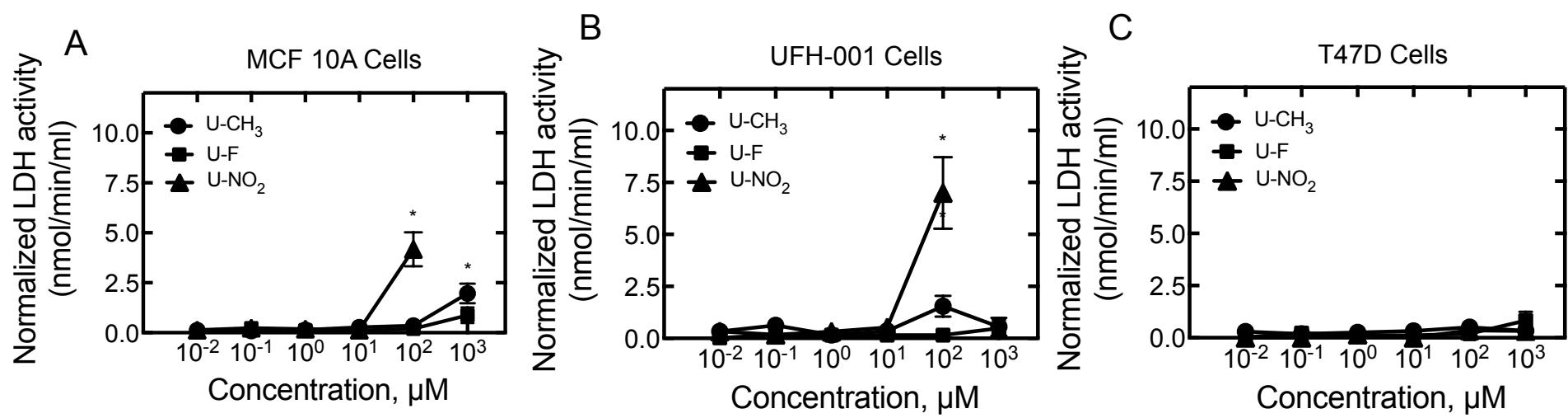
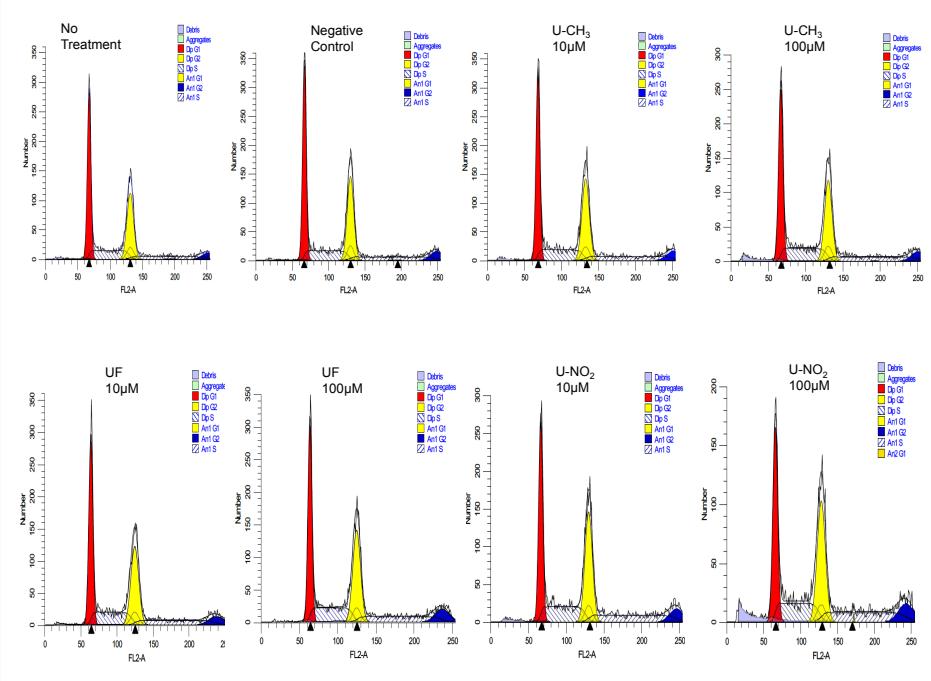
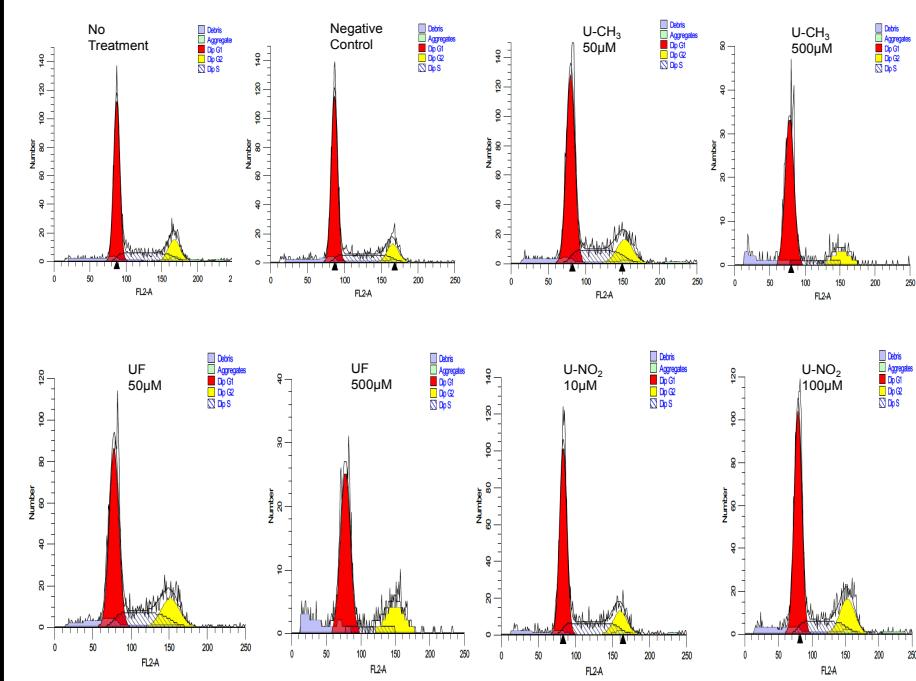
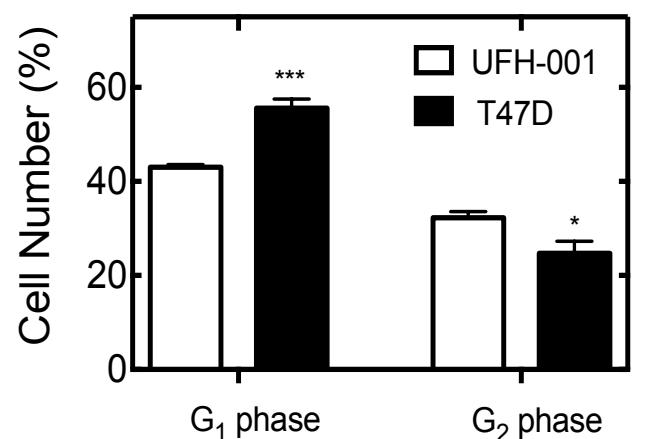
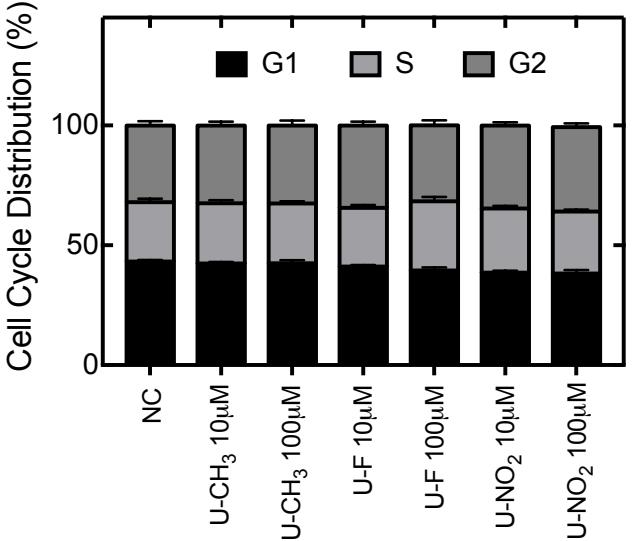




Fig.7


UFH-001 Cells


T47D Cells

Breast Cancer Cells

UFH-001 Cells

T47D Cells

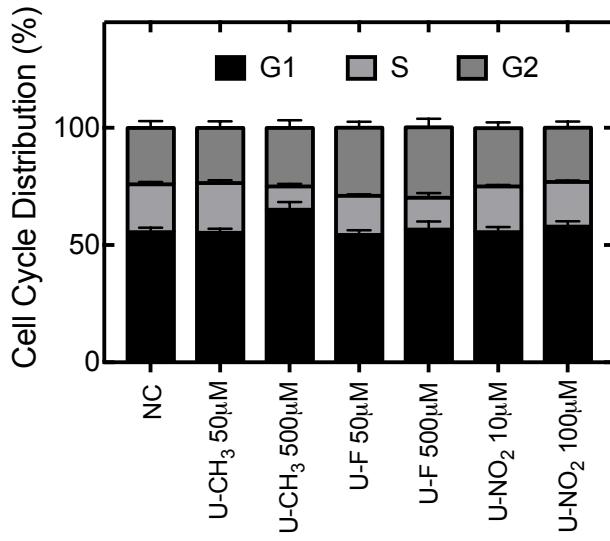


Fig.8

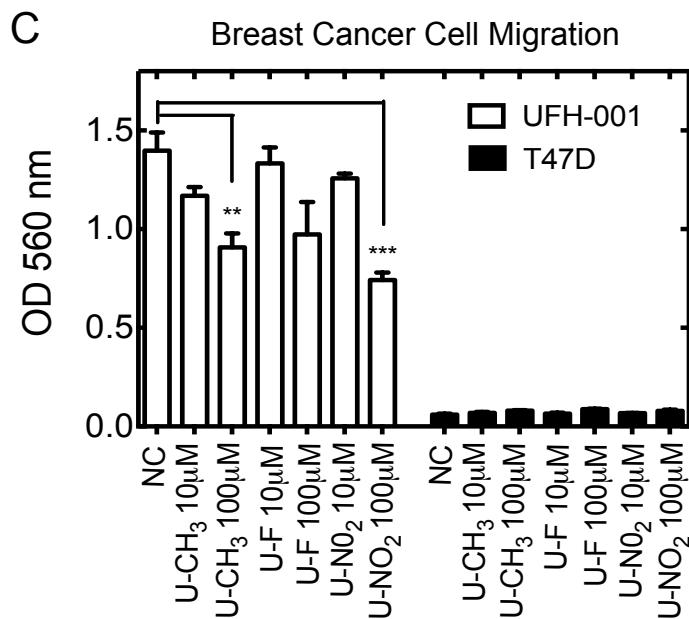
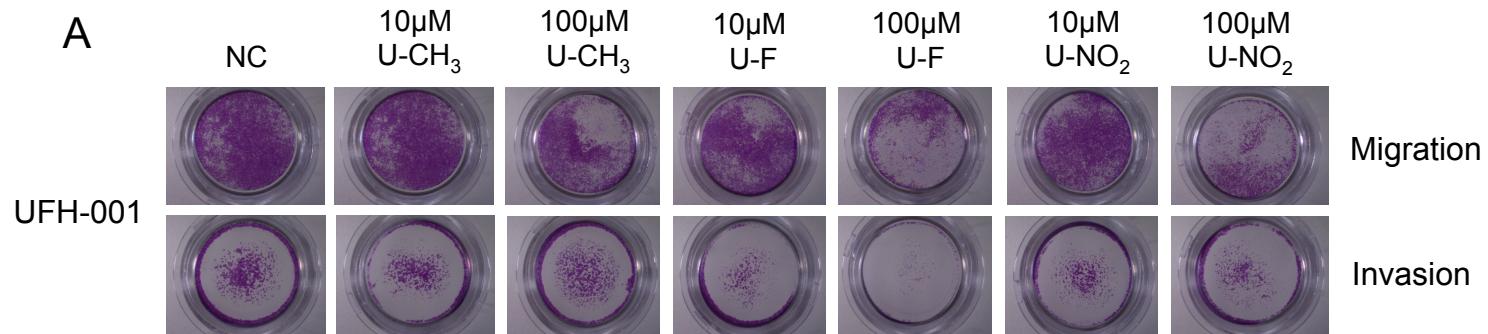




Fig.9