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ABSTRACT

Flavin adenine dinucleotide (FAD) and its
precursor flavin mononucleotide (FMN) are
redox cofactors that are required for the activity
of more than hundred human enzymes.
Mutations in the genes encoding these proteins
cause severe phenotypes, including a lack of
energy supply and accumulation of toxic
intermediates. Ideally, patients should be
diagnosed before they show symptoms so that
treatment and/or preventive care can start
immediately. This can be achieved by
standardized newborn screening tests. However,
many of the flavin-related diseases lack
appropriate biomarker profiles. Genome-scale
metabolic models can aid in biomarker research
by predicting altered profiles of potential
biomarkers. Unfortunately, current models,
including the most recent human metabolic
reconstructions Recon and HMR, typically treat
enzyme-bound flavins incorrectly as free
metabolites. This in turn leads to artificial
degrees of freedom in pathways that are strictly
coupled. Here, we present a reconstruction of
human metabolism with a curated and extended
flavoproteome. To illustrate the functional
consequences, we show that simulations with the
curated model — unlike simulations with earlier
Recon versions - correctly predict the metabolic
impact of multiple-acyl-CoA-dehydrogenase
deficiency as well as of systemic flavin-

depletion. Moreover, simulations with the new
model allowed us to identify a larger number of
biomarkers in flavoproteome-related diseases,
without loss of accuracy. We conclude that
adequate inclusion of cofactors in constraint-
based modelling contributes to higher precision
in computational predictions.

Keywords: FAD, FMN, flavoprotein, inborn
errors of metabolism, human genome-scale
reconstruction, constraint-based modelling

1. Introduction

In the past decade, systems biology modelling
has become indispensable to explore the
behaviour of metabolic networks and gain
insight into their response to disease mutations.
Genome-scale models of metabolism comprise
the entire set of biochemical reactions known to
exist in an organism or cell type of interest (as
described in depth in [1]). These models
represent the metabolic potential of living
systems and provide a comprehensive
framework to understand metabolism. Genome-
scale models integrate biochemical and
genotypic data and enable efficient exploration
of associations between genotypes and
phenotypes, and mechanisms of
(patho)physiology [2]. The most recent
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consensus and generic human metabolic
reconstructions are Recon 2.2 [3], Recon 3D
[4], and HMR 2.0 [5]. Both are comprehensive
models aiming to describe all known metabolic
reactions within the human body.

Genome-scale constraint-based models contain
mass-balanced chemical equations for each
metabolic reaction in a specific cell type or
organism [6]. Classically, neither enzyme
kinetics nor enzyme concentration are accounted
for in this approach [7]. The recently published
GECKO method [8] for yeast models, which
links enzyme abundances with reaction fluxes
addresses this issue. Similarly, Shlomi et al. [9]
successfully studied the Warburg effect in
human genome-scale model by taking an
enzyme solvent capacity into consideration.
However, general incorporation of enzyme
concentrations and kinetics in human models
remains to be addressed. Consequently, taking
enzyme-bound cofactors into account remains a
challenge.

Cofactors are molecular compounds required for
the enzyme’s biological activity. Chemically,
they can be divided into two groups: inorganic
ions that are taken up by the cell from the
environment, and more complex organic or
metalloorganic molecules — also called
coenzymes - which are (partly) synthesized in
the cell. The latter are often derived from
vitamins and organic nutrients and their
biosynthesis pathways must be covered by
genome-scale models.

The flavins FAD and FMN are redox cofactors
required for the activity of 111 human enzymes,
52 of which are known to cause human diseases
if inactive [10]. In human cells, flavins are
synthesized from their precursor riboflavine,
also known as vitamin B2. Flavins exist in three
different redox states, namely a quinone,
semiquinone and hydroquinone state. Unlike
nicotinamide adenine dinucleotide (NAD) which
diffuses freely between enzymes, flavins are
bound to enzymes [11]. Enzymes that require
bound FAD or FMN for their enzyme activity
are called flavoproteins.

A classical flavoprotein-dependent disease is
multiple-acyl-CoA-dehydrogenase  deficiency
(MADD), also known as glutaric aciduria type
IL. It is caused by a defect in one of the electron
transfer flavoproteins (encoded by ETFA or
ETFB genes) or in the ‘electron transfer
flavoprotein ubiquinone oxidoreductase’ (ETF-
QO, encoded by ETFDH gene) [12]. These
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FAD-containing enzymes are crucial to link both
mitochondrial fatty acid oxidation (mFAQO) and
amino acid metabolism (mostly that of sarcosine
and dimethylglycine) to the mitochondrial
respiratory chain. Depending on the residual
ETF or ETF-QO activity, MADD may lead to a
life-threatening lack of energy supply to the

body, with episodes of severe metabolic
decompensation, hypoglycaemia, metabolic
acidosis, sarcosinemia and cardiovascular

failure. The available treatment consists of low-
fat, low-protein and high-carbohydrate diet with
riboflavin, glycine and L-carnitine
supplementation. However, this treatment is not
effective for neonatal patients [13] for whom
experimental treatment with sodium-D,L-3-
hydroxybutyrate showed promising results [14].
To screen for and diagnose diseases, as well as
provide a prognosis for disease severity and
treatment outcome, biomarkers are wused.
According to the NIH definition, a biomarker is
“a biological molecule found in blood, other
body fluids, or tissues that is a sign of a normal
or abnormal process, or of a condition or
disease” [15]. They are measured routinely in a
non-invasive manner in plasma, urine or faeces
[16]. Several inborn errors of metabolism (IEM)
have their metabolic phenotypes characterized
[17]. However, for many diseases no known
biomarker profile exists [18] or their sensitivity
is low causing some patients to be wrongly
diagnosed in the screening process [19].
Additionally, clinical presentations of IEM are
often non-specific and are described as a
spectrum rather than a clear one gene — one
phenotype — one disease relation. This further
justifies the search for more sensitive and
accurate  biomarkers. Systems  biology
approaches have already been proven to aid in
such research by revealing known and novel
biomarkers of several IEMs [17,20-23]. Human
genome-scale models, Recon 2 and HMR 2, can
be used to identify biomarkers from altered
patterns of metabolites taken up or excreted by
tissues [24]. These models typically treat flavins
and other enzyme-bound cofactors as free-
floating metabolites, as seen on a Fig. 1A and B
[5,23]. This allows enzymes to inadvertently
oxidize or reduce flavin molecules that are in
reality confined to another enzyme. In the
models, this leads to artificial uncoupling of
pathways. Such an artefact is seen clearly in the
case of MADD where electrons from mFAO
should be coupled to the oxidative
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phosphorylation system by the ETF/ETF-QO
proteins (Fig. 1C). In the current models,
however, FADH produced from mFAO can also
be re-oxidized via other pathways: by reversal of
the mitochondrial succinate dehydrogenase
reaction as well as an artificial reaction that
represents triglycerides synthesis (Fig. 1B,
model Recon2.2). Another artefact in Recon2.2,
but not HMR 2, is that flavin biosynthesis is not
explicitly required due to the presence of an
FAD uptake reaction in the model. Finally, the
current description of the flavoprotein-related
reactions is inconsistent, using sometimes free
FAD and sometimes the final electron acceptor.
Sometimes both options occur in parallel if the
same biochemical reaction occurs twice in the
model, due to inconsistencies in metabolite
naming. Therefore, the effects of defects
associated with FAD  biosynthesis or
flavoproteins could not, until now, be accounted
for by genome-scale constraint-based models.
Furthermore FMN is not used as an electron
acceptor in the current reconstruction, but only
as an intermediate metabolite in the FAD
synthesis.

The aim of this study is to explore the
physiological effects of  flavin-related
enzymopathies and to identify candidates for
biomarkers. To this end, we modified Recon2.2
to correctly represent flavins as bound cofactors
and we introduced a novel simulation approach
that enables studies of cofactor scarcity in
mammalian models. Moreover, we analysed
metabolic disturbances for 38 flavin-related
diseases, for which genes were included in the
metabolic reconstruction. For 16 of them, which
are known to affect the core metabolism, we
additionally analysed their ATP production
capacity from different carbon sources, showing
metabolic blockages in line with the current
knowledge about these diseases and their
biomarkers.

2. Materials and Methods
2.1. Genome-scale constraint-based modelling

As described earlier [23] metabolic and transport
reactions are summarized in an m X n
stoichiometric matrix S, that contains the
stoichiometric coefficient of each of the m
metabolites in each of the n reactions described
by the model. Gene—protein-reaction
associations use Boolean rules (“and” or “or”
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relationships) to  describe  the
requirement of each reaction.

At steady state, metabolite consumption and
production in equilibrium and therefore b equals
of vector of length m with zeros in the following
equation:

protein

S'v=b
with v a vector of length of n and v, representing
the flux through reaction i. Reaction (ir-)
reversibility is introduced as constraints limiting
minimal and maximal flux values:
L=<v=ufori € {l,...,n}.

2.2. Model curation

We started from Recon 2.2 [3] obtained from the
Biomodels database
(http://identifiers.org/biomodels.db/MODEL16
03150001). Flavoprotein-related reactions were
identified and manually curated based on a
review by Lienhart at al. [10] as well as
information available in the public databases:
KEGG, NCBI Gene and OMIM. Additionally,
several rounds of manual curation revealed
inconsistencies in directionality of reactions of
fatty-acyl CoA ligase, reactions participating in
the mitochondrial transport of fatty-acyl
carnitines, peroxisomal fatty-acid oxidation and
fatty acid synthesis, which were corrected.
Missing reactions in the fatty-acid synthesis
pathway were added. Subsequently, invalid or
duplicated reactions were removed from the
model. The curated model was saved as
Recon2.2 FAD. For detailed information on all
the changes and the underlying documentation,
see Supplementary Table 2.

Similarly, we performed a manual curation of
FAD-related reactions in Recon 3D model
available at (https:/vmh.uni.lu). We identified
all reactions dependent on flavoproteins and
manually replaced the FAD and FADH, with the
final electron acceptor (Table S4), creating
Recon3D_FAD model.

2.3. Model constraints

In simulations of MADD and FAD deficiency,
the minimum required flux through the
‘biomass_reaction’ was set to 0.1 mmol- gDW-
~hr:, to mimic the basic cell maintenance
(protein synthesis, DNA and RNA synthesis
etc.), unless stated otherwise, as in [25]. Other
constraints used only in specific simulations are
indicated where applicable. No changes to the
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model boundaries were made, unless stated
otherwise.

2.4. MADD simulations

Multiple acyl-dehydrogenase deficiency was
simulated as a single gene deletion (ETFDH,
HGNC:3483), and the solution space of the
models was sampled with the optGpSampler
with 10000 points explored and distance of 2000
steps [26]. Additionally, uptake of common
carbon_sources (glucose, fructose, C4:0, C6:0,
C8:0, C10:0, C12:0 C14:0. C16:0, C18:0, C20:0,
C22:0, (C24:0, (C26:0, alanine, arginine,
asparagine, aspartic acid, cysteine, glutamine,
glutaric acid, glycine, histidine, isoleucine,
lysine, methionine, phenylalanine, proline,
serine, threonine, tryptophan, tyrosine, valine,
sarcosine) was set to -1 mmol-gDW-hr-.

2.5. FAD limitation

To study the metabolic response to flavin
deficiency we adapted parsimonious FBA [27]
to mimic the resource re-allocation among
cofactor requiring enzymes upon cofactor
scarcity. Furthermore, we linked cofactor
requirement and cofactor biogenesis in an
approach similar to the method introduced by
Beste et al [28]. In short, flavin-related reactions
were identified using their GPR annotation (with
respect to the Boolean relationship — only
reactions for which the flavoprotein is essential
were selected), split to two irreversible reactions
for each direction and an artificial metabolite
‘cofactor_FAD’ was added to be consumed by
each of them with an very low (0.000002)
stoichiometric coefficient based on an average
human proteome life-time[29] and an average k..
value[30]. Biogenesis of the cofactor was linked
to the artificial ‘cofactor_FAD’ through the
artificial reaction ‘FADisCofactor’. Adjusting
the boundaries of FADisCofactor reaction or
reducing the flux of FAD biogenesis pathway
allowed us to independently study flavin
shortage effects linked to i) FAD biosynthesis
impairments, ii) enzymatic mutations hampering
cofactor binding or iii) defects in cofactor
dissociation and transfer in protein dimers.
Cofactor limitation was obtained by constraining
the flux of the FMN adenyltransferase (FLATI)
reaction. The solution space for the control
model and FAD deficiency model was sampled
using optGpSampler with 10000 points explored
and distance of 2000 steps [26].
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2.6. Calculation of maximum ATP yield per
carbon source

To calculate the maximum ATP yield per carbon
source we adapted the method developed by
Swainston et al [3]. All model boundaries for
uptake of nutrients were set to 0 except for a set
of compounds defined collectively as a minimal
medium (Ca», Cl, Fer, Fe~, H-, HO, K+, Na-, NH,
SO., Pi) for which the boundaries of uptake and
export fluxes were set to -1000 and 1000
mmol-gDW-+h+. Additionally, lower bounds of
EX_ribflv(e) were set to -1000 — to simulate
riboflavin addition to the minimal medium since
the Recon 2.2_flavo model depended on this
vitamin to synthesize FAD. For each of the
specified carbon sources, the uptake flux was set
to -1 mmol-gDW+h forcing the model to
consume it at a fixed rate. The demand reaction
for ATP, ‘DM_atp_c_' is used to account for
cellular maintenance requirements. It was used
as an objective function for flux maximization.
Under aerobic conditions the possible intake flux
of oxygen was set to -1000 mmol-gDW+h' by
changing the lower bound of the corresponding
exchange reaction, EX_o2(e).

2.7. Analysis of biomarkers for inborn errors of
metabolism

Inborn errors of metabolism and known genes
mutated in these IEMs were retrieved from the
OMIM database (34, https://www.omim.org).
GPR associations in the model were used to
identify affected reactions and they were
subsequently removed from the model for the
simulation of the corresponding disease.
Maximum ATP yield was calculated for a set of
carbon sources linked to known biomarkers, as
described above. Changes in the maximum ATP
yields between the diseased model and its
healthy counterpart were compared to reported
biomarkers [32].

Secondly, a method described originally by
Shlomi et al. [24] and modified by Sahoo et al.
[33] was used to screen for potential biomarkers.
In short, the min and max values of each
exchange reaction were calculated in disease or
healthy models. In the disease models a gene
knock-out was simulated by simultaneously
blocking all reactions associated with the tested
gene. In the healthy models all reactions
associated with the tested gene were
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simultaneously activated. Min-max intervals
were then compared to test if the flux range
would yield a higher or lower exchange reaction
flux, and as the result, would lead to increased or
decreased concentrations of a studied metabolite
in the bodily fluids (blood/plasma, urine).

A list of tested single enzyme deficiencies
together with their respective objective functions
and biomarkers has been provided (See Table S3
[Known biomarkers & diseases]).

2.8. Software

Model curation and all simulations were carried
out with MatLab R2015a (MathWorks Inc.,
Natick, MA) using the Gurobi5.6 (Gurobi
Optimization Inc., Houston TX) linear
programming solver and the COBRA toolbox
[34]. For FVA analysis GLPK 4.63 (GNU
Linear Programming Kit,
https://www.gnu.org/software/glpk/) solver was
used. Data analysis was performed using
MatLab R2015a. All supplementary files,
models, and scripts can be found at
https://github.com/WegrzynAB/Papers .

3. Results

32. A new
biochemistry

representation of flavoprotein

We started by manually curating the existing
Recon 2.2 model to improve the simulation of
flavin dependent reactions. We assembled a list
of 111 flavoproteins (Table S1 [Flavoproteins]).
The genes encoding 62 of these proteins were
already present in Recon 2.2 and they were
associated with 378 reactions. First, the gene-
protein-reaction (GPR) associations in the
selected reactions were examined. Wrongly
annotated genes were corrected. In the
mitochondrial and peroxisomal beta-oxidation
pathways, many GPR associations were
extended to account for complete oxidation of
fatty acids. Secondly, the directionalities of
fatty-acyl CoA ligases, reactions participating in
the mitochondrial transport of fatty-acid-
carnitines, and fatty acid synthesis reactions
were checked, and inconsistencies were
corrected. Lastly, missing reactions in
unsaturated fatty acid synthesis and peroxisomal
beta-oxidation were added. Altogether 548
reactions were corrected, 31 were added, and 49
reactions were deleted from the model (Table
S2). In the original Recon 2.2 model FAD was
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represented as a free metabolite similar to
NADH (Fig 1A, top). This approach artificially
generated a pool of free FAD, while
physiologically FAD is a part of an active
holoenzyme rather than a free metabolite. Thus,
systemic effects of flavoprotein deficiencies
could not be properly accounted for. We have
changed the model to more precisely describe
the cofactor dependency of these reactions. To
this end, FAD has first been removed as a free
metabolite and replaced by the final electron
acceptor in each reaction, such as ubiquinone-10
or ETF (Fig. 1A, middle). This approach allows
a more accurate representation of the electron
channelling in the pathway, which is clearly
visible in the scheme describing how fatty-acid
oxidation links to oxidative phosphorylation (Fig
1C). At this stage, 157 reactions were curated
and 33 reactions were deleted. This curated
model version was called Recon 2.2_FAD.
Removing FAD and FMN as free metabolites
from all redox reactions, however, made these
reactions completely independent from flavin
biosynthesis. To preserve a link between
riboflavin dependency and flavoprotein-related
reactions, an artificial metabolite called
‘cofactor_FAD’ was generated from the newly
synthesized FAD (Recon2.2_flavo model). This
cofactor was added as an additional substrate to
all flavoprotein-dependent reactions, to be
consumed with a low stoichiometric coefficient
(Fig. 1A, bottom). The Ilatter was estimated
based on available data on protein half-lives
[29] and catalytic turnover rates (k.) [30] in
humans. Thus, it can be seen as a flavin-
maintenance requirement. In the resulting model
version all flavoprotein-dependent reactions are
strictly dependent on the presence of riboflavin
and flavin biosynthesis, yet without introducing
the artificial degrees of freedom of the Recon 2.2
model. We have additionally tested if the chosen
stoichiometric  coefficient did not overly
constrain the model. To this end we tested the
sensitivity of the flavoprotein-related reaction
flux through the model to changes in the
cofactor stoichiometric coefficient. Only a minor
effect on the flux was observed (Fig. S4B). In
total 420 reactions were linked to the FAD
biosynthesis by cofactor consumption.

3.3. Metabolic role of the flavoproteome

We mapped the known human flavoproteins
(Table S1) to the original and the updated
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versions of Recon 2.2. For each flavoprotein we
identified all the associated metabolic
reaction(s). Also reactions for which a non-
flavoprotein isoenzyme was present, were
included in the mapping. We found that the
majority (270 out of 381 for Recon 2.2 and 263
out of 401 for Recon 2.2_FAD/flavo) of the
reactions associated with flavoproteins were
localized in peroxisomes and mitochondria (Fig.
S1A). Out of the 65 flavoprotein genes included
in the Recon 2.2 38 are linked to known human
diseases (Table S1 [Diseases]). Moreover, our
curation added seven additional disease-linked
flavoproteins genes (NOSI, MTRR, NQO2,
L2HGDH, IYDI1, D2HGDH and FOXREDI) to
the Recon 2.2 gene set (Fig. 2A). In total 73% of
the disease-linked flavoproteins were mapped
onto Recon 2.2 _FAD/flavo, while 69% of them
were mapped on the Recon 2.2 model. Among
the disease-linked flavoproteins that were not
included in our models are those of non-
metabolic function: a chaperone (ALR), a pro-
apoptotic factor (AIFM1I), a histone demethylase
(KDM1A), and a proton channel (NOX1).

We then investigated the reliance of metabolic
subsystems, as defined in the original Recon 2.2
model, on flavoproteins.  Vitamin B6
metabolism, cytochrome metabolism, butanoate
metabolism, D-alanine  metabolism, and
limonene and pinene detoxyfication were most
heavily affected with more than 30% of their
reactions depending on flavoproteins (Fig. 2B).
Additionally, oxidative phosphorylation was
also affected with 2 out of 8 of its reactions
linked to the flavoproteins (Fig. S1B).

34. The improved model correctly simulates
MADD

To simulate MADD, we deleted the ETFDH
gene (HGNC:3483; Fig 1B and C) from all
model versions and calculated the steady-state
solution space. Indeed, the flux through the ETF
dehydrogenase reaction was completely blocked
in all three models, confirming that the deletion
was effective (Fig. S2A). The biomass
production flux remained largely unchanged in
all the models (Fig. S2B). This is not surprising,
since the simulations were performed with
carbon and energy sources other than fatty acids
available, such as sugars and amino acids. As we
had suspected, deletion of ETFDH did not
dramatically reduce the fatty-acid oxidation flux
in the original Recon2.2 model (Fig. 3).
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This can be explained from the fact that in
Recon 2.2 the FADH, produced by the acyl-CoA
dehydrogenases in the fatty-acid beta-oxidation
is not strictly coupled to ETF dehydrogenase,
but can be reoxidized by other reactions utilising
FADH, (Fig. 1B). This prediction is clearly
incorrect, since mitochondrial fatty-acid
oxidation is severely impaired in MADD
patients [13]. In contrast, deletion of ETFDH
caused a total block of the mitochondrial fatty-
acid oxidation in Recon2.2_ FAD and
Recon2.2_flavo (Fig. 3), in agreement with the
disease phenotype. Since we had, as part of the
curation, removed the incorrect FAD reaction
from the model, we checked that this could not
explain our results. Indeed, the results were not
altered by addition of free FAD uptake reaction
back to the Recon2.2_FAD model, neither by
only deleting free FAD uptake reaction from
Recon 2.2 model (Fig. S2C).

Subsequently we compared the maximum
stoichiometric ATP yield per unit of consumed
carbon source in aerobic conditions between the
models. If a substrate was incompletely
metabolized, this caused a decrease of the
maximum ATP yield. If the substrate could not
be metabolised to produce ATP, then the
obtained yield was zero. In contrast to the
original model, Recon2.2 FAD and
Recon2.2_flavo predicted that ETFDH deletion
eliminated any ATP yield from fatty-acids with
chain lengths C4 through CI4, which are
primarily substrates of mFAO in the models.
Longer fatty acids (C/6 to C26) can be partially
oxidized by peroxisomal beta-oxidation and
therefore still yield some ATP if ETFDH is
deficient, also in Recon2.2 FAD and
Recon2.2_flavo (Table 1). Instead of the
mitochondrial acyl-CoA dehydrogenase, the
peroxisomal pathway contains a hydrogen
peroxide producing acyl-CoA oxidase, which is
not dependent on the ETF system as electron
acceptor. Glycolysis and the TCA cycle
remained unchanged, since they do not depend
on ETFDH either. Accordingly, aerobic sugar
metabolism was not affected by ETFDH
deficiency in any of the models (Table 1).

3.5. FAD deficiency

Subsequently, we studied the systemic effects of
riboflavin deficiency caused by reduced FMN
and FAD synthesis from their precursor
riboflavin (vitamin B2). Mutations of FAD
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synthase (encoded by the FLADI gene) are
known to exist. Some mutants maintain residual
catalytic activity and are therefore responsive to
dietary riboflavin, while others are completely
non-responsive to riboflavin supplementation
[35]. FLADI mutations cause MADD-like
symptoms in patients, with elevated levels of
multiple acylcarnitines and organic acids in
blood and/or urine [35].

We repeated the calculation of ATP yields per
unit of carbon source with and without
riboflavin. In Recon2.2_FAD model, FAD had
been removed as an electron acceptor from all
flavoprotein-dependent reactions, thus
completely uncoupling these reactions from
FAD biosynthesis (Fig. 1A). Accordingly, the
ATP yield of none of the substrates was affected
by the absence of riboflavin in this model (Table
1). In contrast, in Recon 2.2_flavo all
flavoprotein-dependent reactions are strictly
dependent on the presence of flavins (Fig. 1A).
Therefore, if FAD and FMN are depleted due to
riboflavin deficiency, none of the flavoprotein-
dependent reactions can run anymore.
Consistently, we found that in the Recon
2.2_flavo model the mitochondrial beta-
oxidation and the TCA cycle were fully blocked
in the absence of riboflavin. Therefore, ATP
could only be generated in glycolysis, leading to
only 2 ATP per sugar molecule and no ATP was
generated from any of the fatty-acid substrates in
the absence of riboflavin. We noted that the net
ATP yields of all substrates in the presence of
riboflavin were lower in Recon 2.2_flavo than in
Recon2.2_FAD (Table 2). The reason is that the
active FAD biosynthesis in Recon2.2_flavo
requires ATP.

Finally, we analysed the response of the models
to a gradual limitation of the rate of the FAD
synthase reaction (Fig. 4A). First, we computed
how the maximum flux capacity of the summed
flavoprotein-catalysed reactions responded to a
limitation of FAD biosynthesis. The Recon
2.2_FAD model remained unresponsive to the
rate of FAD biosynthesis (Fig. 4B). This is not
surprising, since in Recon 2.2_FAD, the final
electron acceptor replaced FAD in each reaction;
hence, all flavoproteins were artificially
independent of the FAD. Recon 2.2_flavo
instead made the flavoprotein-catalysed
reactions dependent on a low rate of
biosynthesis (Fig. 1A). This resulted in a linear
decrease of the flavoproteome-dependent flux
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capacity in Recon2.2_flavo, when the FAD
synthesis flux was below 0.05 mmolxgDW-xh-.
Subsequently, we calculated how the shape of
the actual steady-state solution space for the
FAD-related reactions changed due to the
cofactor_FAD limitation. The overall average
steady-state flux (Fig. 4C) was lower than its
maximum capacity (Fig. 4B). The
responsiveness of the Recon 2.2_flavo model
was preserved but since the pathways worked
below  their = maximum  capacity, the
cofactor_FAD limitation started to play a role
only when the cofactor availability was close to
zero (Fig. 4C).

3.6. Prediction of biomarkers

Genome-scale metabolic-models have been
shown to assist in biomarker prediction. The
authors of the original Recon 2.04 model [23],
used the method by Sahoo et al [33] to predict
biomarkers based on altered maximum uptake
and secretion rates of metabolites. We tested the
same method for biomarker prediction in Recon
2.04, Recon2.2 and Recon2.2_flavo models
against the golden standard set of known
biomarkers [17]. Prediction accuracies (correctly
predicted biomarkers compared to total
predicted biomarkers), and their p-values,
calculated as reported in Thiele et al. [23] were
similar in all the models (Table 2, GS) and in
agreement with the previously published 77%
accuracy in Recon 2 [23]. With respect to True
Positive Rate (the percentage of known
biomarkers that was correctly predicted) our
Recon 2.2_flavo model scored highest with
33%, while Recon 2.2 and Recon 2.04 had 31%
and 26% TPR respectively (Table 2). This shows
that we could recover more biomarkers without
a loss in accuracy. Furthermore, we used the
same method to study flavoproteome-related
diseases and their associated biomarkers (Table
S3 [Known biomarkers&diseases]) in our Recon
2.2_flavo model. For this subset of diseases TPR
was only 24%, coupled with lower accuracy of
59%. The p-value of the prediction accuracy was
higher for this subset of diseases (Table 2, FD).
The high p-value can be linked to the relatively
small number of diseases in our FD set and
therefore a higher chance of obtaining the same
values distribution by chance. The low TPR
values for all tested models reflect the FVA-
based method’s inability to predict many known
biomarkers for important flavoproteome-related
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diseases, such as those in fatty-acid metabolism
and oxidative phosphorylation (Table S3
[FVA]). For instance, typical biomarkers of
fatty-acid oxidation defects, acyl carnitines were
not altered in disease simulations.

To circumvent this caveat of the classical
method, we decided to study the maximum ATP
yields for a selected range of carbon sources that
are also biomarkers in human diseases,
modifying the method of Swainston et al.[3].
This method allows to study the capacity to
metabolise a carbon source under defined model
boundaries and compare the outcome from the
disease model and control model. We selected
16 diseases which are known to affect core
metabolism and for which we expected changes
in the net ATP production from certain carbon
sources. In total for 11 out of 16 diseases
studied, the known biomarkers, marked in red
boxes in Fig. 5, could be linked to the metabolic
changes seen in the Recon 2.2_flavo model. For
FOXREDI, PRODH and ETFDH deficiencies
the Recon 2.2 model did not predict any
metabolic changes while our flavoproteome-
curated models showed reduced ATP yield from
carbon sources known as biomarkers for these
diseases. Moreover, our method revealed
disrupted amino acid metabolism in ACADSB,
DLD, GCDH, IVD, and ACADS8 deficiencies,
which may point to new possible biomarker
profiles. In all MADD variants (ETFDH, ETFA
or ETFB deficiency) a full block of
mitochondrial FAO capacity was seen only in
our improved models. Long-chain fatty acids
(above C20:0) were still partially metabolised as
peroxisomal FAO remained functional. In
contrast, and as expected, when simulating
deficiency of the peroxisomal enzyme ACOXI,
only the peroxisomal FAO was impaired.

For many diseases, metabolic biomarkers are not
known, or the known biomarkers fail to
differentiate between patients with different
severity of the disease. Our models predicted
metabolic changes at the level of maximum ATP
yield per carbon source in all tested flavin-
related diseases. Clear disease-specific patterns
are seen, which allow to distinguish between
different diseases. Most of the changes were
identified in the amino acids metabolism. Those
compounds are routinely used in the newborn
screening test; however, they have not yet been
related to these diseases.

3.7. Compatibility with Recon 3D
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During the writing of this manuscript Recon 3D
came out [4], another major update of the human
metabolic  reconstruction that had been
developed in parallel to Recon 2.2 [3]. The
number of reactions was increased by 74% to
13,543, and the number of metabolites by 56%
to 4,140 in Recon 3D compared to Recon 2.2.
Furthermore, the representation of enzymes
involved in oxidative phosphorylation system
has been corrected according to the fix made in
Recon 2.2 [3]. However, the change of the gene
mapping from GenelD to HGNC standard
proposed in Recon 2.2 was not applied in Recon
3D. We tested the applicability of our curation
to Recon 3D, in order to ensure that it can be
readily used with different model versions.
Similar to previous model versions, Recon 3D
treats FAD as a free cofactor. Our method of
replacing FAD with the final electron acceptor
was easily applied to Recon 3D (Table S4). The
impact of FAD cofactor limitation was similar as
in the Recon2.2-derived models (Fig. S4A).
Additionally, we tested how Recon 3D
responded to simulation of MADD. As seen
before, there was a significant remaining total
flux through the mFAO reactions in the Recon
3D model with ETFDH deficiency, while in the
flavoproteome-curated models the mFAO flux
was correctly blocked by MADD (Fig.S5A). We
verified that the deletion was effective (Fig.
S5B), and that the biomass production flux
remained largely unchanged in all the models
(Fig. S5C).

Since Recon 3D has a much larger metabolic
coverage than its predecessors, we tested its
capability of detecting biomarkers. However, the
model showed no substantial change in the
accuracy (74%) of biomarker predictions, while
a significant decrease in the TPR value (10%)
was observed (Table S5).

4. Discussion

We present an updated version of Recon 2.2 that
was curated and extended to correctly represent
the flavoprotein-catalysed reactions.
Furthermore, we introduced a new method to
study the role of enzyme-bound cofactors, such
as FAD. Curating the representation of FAD in
Recon 2.2 allowed to correctly simulate aberrant
metabolic behaviour upon single enzyme
deficiencies. Since the predecessor of Recon 2,
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the metabolic reconstruction Recon 1 [36], was
published, many groups have extended and
improved model versions. They used it as a basis
for tissue specific models [5,23,37-40], studied
the effects of diet [38], and predicted biomarkers
for enzymopathies [17,23,24,38]. Work by
Smallbone [41] and Swainston et al. [3] focused
on a full mass and charge balance and on
simulations of energy metabolism. However,
despite their crucial role in metabolism, none of
the curative efforts in human reconstructions,
including the most recent Recon 3D [4], focused
on cofactors, not even organic cofactors that are
(in part) synthesized in the cell. Metabolism
related to other apoenzymes requiring other
bound cofactors for their activity (metals, iron-
sulfur clusters, or heme) would potentially profit
from the same solution to further enhance
biomarker research in genome-scale models.
Flavoprotein-linked diseases can lead to very
strong metabolic responses in patients, such as
episodes of severe metabolic derangement,
hypoglycaemia, metabolic acidosis,
sarcosinemia and cardiovascular failure in
MADD patients. Acylcarnitines, as well as
sarcosine are known to be changed in the plasma
and urine of MADD patients [12-14]. The
original Recon 2.2 model could not predict any
of the known biomarkers and no systemic effects
of MADD were seen in the simulations, because
the model incorrectly comprised alternative
routes to reoxidize FADH.. In our new model, in
which the electrons are transferred to the final
electron acceptor of each flavoprotein-catalysed
reaction rather than to a soluble FAD pool, and
in which flavoprotein-dependent reactions are
dependent on flavin synthesis, both systemic
effects and metabolic changes linked to
biomarkers were predicted correctly. This is
seen clearly by a full block of mFAO capacity
while peroxisomal FAO remained functional in
MADD. In contrast, when simulating deficiency
of the peroxisomal enzyme ACOXI, only the
peroxisomal FAO was impaired, leading to
reduced metabolism of long-chain fatty acid
substrates (Fig. 5). This extension is relevant for
a correct description of mitochondrial fatty-acid
oxidation defects, which can be partly rescued
by peroxisomes [42].

In total, we tested metabolic changes for 45
diseases, out of which 31 are associated with
biochemical biomarkers. A caveat of the existing
methods for biomarker predictions is that they
only include the metabolites that are known as
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biomarkers. The models, however predict many
more metabolites with altered production or
consumption rates. These are potential novel
biomarkers. Since they have most often not been
explored experimentally, however, we do not
know if the predictions are correct. If these
would be tested, we would get a more complete
insight into the accuracy of our predictions.
Therefore, we propose usage of true positive
rates for more correct description of model
performance. Using Recon 2, Recon 2.2, and
Recon 2.2_flavo, we predicted biomarkers for
diseases included in the compendium of inborn
errors of metabolism published by Sahoo et al.
[17] with True Positive Rates of 26%, 31% and
33% respectively, while accuracies, as calculated
in Thiele et al. [23], remained similar to
previously published 77% (77%, 75% and 76%
respectively). A lower (17% and 24%) TPR was
reported with Recon2.2 and Recon2.2_flavo
respectively for biomarkers of the flavoprotein-
related diseases subset, with accuracies of 78%
and 59% respectively. However more detailed
studies of metabolism, using ATP production
yield estimation performed for 16 flavoprotein-
related diseases linked to the core metabolism,
showed promising results for both our models.
This method allowed us to test if alternative
metabolic pathways exists that allow ATP
production from the single carbon sources in
various IEMs. The metabolic changes identified
with this method were in line with clinical data,
including impaired FAO and sarcosine
degradation in all MADD cases, no proline
degradation in PRODH deficiency and blocked
very-long chain FAO in ACOX] deficiency [43].
Interestingly, ATP-generating breakdown of
amino acids has been predicted to be affected in
several diseases analysed. Valine breakdown has
been predicted by our model to be significantly
impaired in isobutyryl-CoA dehydrogenase
deficiency (ACADS8) which is in line with the
literature knowledge about this disease [44].
Furthermore, our models predict a decreased
ATP yield from breakdown of several amino
acids, and a general impairment of energy
metabolism in SDHA deficiency. This extremely
rare disease is indeed known to affect energy
metabolism. However, due to its low prevalence,
no specific biomarkers are known [45]. Our
models predict valine, leucine, threonine, and
methionine degradation pathways to be most
severely affected in this disease. FAD-
containing enzymes are crucial in both fatty acid


https://doi.org/10.1101/343624
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/343624; this version posted October 17, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

oxidation and amino acid metabolism as was
highlighted in flavoproteome mapping (Fig. 2B
and S1B). Consistently, their impact on
biomarkers became more pronounced after our
curation (Fig. 5). For all 16 tested flavoprotein—
related diseases we predicted new metabolic
changes that may lead to new biomarker
patterns. Our data suggests that these diseases
might have multiple identifiable biomarkers.
Using a multimarker approach or specific
biomarkers ratios, which is common in
cardiovascular risk assessment [46], instead of
only single compounds, we could better
differentiate between different diseases and
potentially also between patients with different
severity of the defects which has been proven
recently for Zellweger syndrome patients
differentiation [19]. The latter was not pursued
here, since we only studied complete enzyme
deficiencies.

Limitations in accuracy and True Positive Rates
of biomarker predictions with existing methods
and models, may have different causes. Cellular
lipid profiles are very complex [19], and
currently incompletely represented in the human
genome-scale models. Since many flavoprotein-
related diseases affect lipid metabolism it is
likely that a better representation of the lipid
metabolism will improve the predictions.
Additionally, our new method of cofactor
implementation could be extended to account for
all different cofactors required in human
metabolism. Future improvement of our method
may involve a differentiation in stoichiometric
coefficients of flavin usage per enzyme
depending on the specific protein half-life. This
would allow the incorporation of differences in
efficiency of flavin utilization for various flavin-
dependent enzymes, thereby increasing the
accuracy of metabolic predictions. In addition,
one should remain critical on our assumption
that all FAD or FMN is tightly bound as a
prosthetic group. While some flavoproteins have
FAD covalently bound, most have a non-
covalent, yet tight-binding FAD or FMN. Some
flavoproteins, however, may have a relatively
low FAD binding affinity. This holds for
instance for bacterial two-component
monooxygenases in which reduced FAD must be
translocated from one protein domain to another
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[47]. Low FAD affinity of cancer-associated
variants of NAD(P)H quinone oxidoreductase 1
leads to low protein stability [48]. We are not
aware of low-affinity flavoproteins that depend
on free diffusion of reduced FAD.

We noted that the currently most extensive
reconstruction of human metabolism, Recon 3D,
showed a significant decline in the number of
correctly predicted biomarkers compared to its
predecessors (Table S5). By extending the
coverage of the metabolic network, alternative
pathways have been created. One may
hypothesise that their physiological relevance is
smaller in reality than in the model, e.g. due to
kinetics, spatial separation, or thermodynamics.
This limitation can possibly be overcome by
using tissue-specific models with an appropriate
set of boundaries for the exchange reactions, as
has been proposed recently by Thiele et al. [49].
Finally, it is quite likely that some biomarkers
will only be predicted correctly when kinetic and
thermodynamic constraints are included.
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TABLES

Table 1. Comparison of maximum ATP yields in a medium without riboflavin (B2 -), with riboflavin (B2
+), and in a model with ETFDH knocked out in the presence of B2 (MADD). Minimal medium: Ca>, Cl,
Fe», Fe-, H-, HO, K-, Na:, NH, SO, Pi, plus the indicated carbon and energy source. Note that this medium is
insufficient for cell growth. ATP yield was expressed stoichiometrically as the net rate of ATP production (in
steady-state equal to the rate of the ATP demand reaction) divided by the rate of carbon-source consumption in
mmol - g DW- . h-. If no ATP was produced at all, the yield was set to zero, irrespective of whether the carbon
source was consumed, to avoid division by zero. We verified that the precise value of the stoichiometric
coefficient for FAD consumption in Recon2.2_flavo did not affect the maximum ATP yield from single carbon
sources at the accuracy presented here.

ATP yield

Carbon . Recon2.2 Recon2.2 FAD Recon2.2_flavo

source :Theoretical:
B2- B2+ MADD B2- B2+ MADD: B2- B2+ MADD

Glucose 31 32 32 32 32 32 32 2 32 32

Fructose 31 32 32 32 32 32 32 2 32 32
C4:0 21.5 22 22 22 22 22 0 0 22 0
C6:0 35.25 36 36 36 36 36 0 0 36 0
C8:0 49 50 50 50 50 50 0 0 50 0
C10:0 62.75 64 64 64 64 64 0 0 63.99 0
C12:0 76.5 82.5 82.5 82.5 78 78 0 0 77.99 0
C14:0 90.25 92 92 92 92.5 92.5 0 0 92.49 0
C16:0 104 106.75 106.75 106.75 108.25 108.25 2.25 0 108.24 0
C18:0 117.75 120 120 120 1215 1215 1275 0 12149 12.75
C20:0 131.5 134 134 134 1355 1355 25 0 13549 25
C22:0 14525 147.25 14725 14725 147 147 38 0 14699 38
C24:0 159 160.5 160.5 160.5 15925 159.25 50.25 0 159.24 50.25
C26:0 17275 17075 170.75 170.75 169.5 1695 61.75 0 16949 61.75

Cn:0, a saturated fatty acid of length n
+ Theoretical yields as calculated by Swainston et al. after Salway[50]

Table 2. Comparison of the prediction accuracy of Recon 2.04, Recon 2.2 and Recon 2.2_flavo against the
gold standard (GS) [17] or against our compendium of flavoprotein-related diseases (FD).

Recon2 Recon2.2 Recon2.2_flavo | Recon2.2 Recon2.2_flavo

GS GS GS FD FD
Correct prediction 76 88 94 11 16
Wrong prediction -
wrong direction: 23 29 30 3
Accuracy’ 77% 75% 76% 78% 59%
P value
(Fischer test) 7.93 x 10~ 1.2 x 10- 2.6 x 10- 0.16 0.12
Wrong prediction - 187 169 162 53 39
no change:
True positive rate: 26% 31% 33% 17% 24%

- wrong direction — where the model predicted the metabolite to change in the opposite direction from the

experimental values
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» Prediction accuracy measured as a ratio of correct positive predictions to sum of all predicted biomarkers
(correct and wrong direction) as reported in Thiele et al.[23]

-no change - where model predicted no change in the metabolite, despite it being known as a biomarker

+ True Positive Rate measured as a ratio of correct predictions to the sum of all biomarkers in the database.

FIGURES
A FMN FAD biosynthesis E FAD
Recon 2.2
Metabolite A + FAD @ > Metabolite B + FADH

FAD biosynthesis
FMN———— > FAD

Recon 2.2 FAD (enzyme)
Metabolite A + e  acceptor > Metabolite B + e donor

FAD biosynthesis FAD is cofactor

FMN >FAD > cofactor_FAD
Recon 2.2 flavo cofactor FAD FAD/FADH,
Metabolite A + e acceptor @ Metabolite B + e donor

FAD

acyl-CoA FAD
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E% 2-enoyl-CoA FADH, FAD + succinate
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ju ! FAD <\
Triglycerides FADH_ + fumarate :.
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Fig. 1. Schematic representation of the difference in handling of the covalently bound cofactors
(represented by FAD) between Recon 2.2 and the newly curated models. A. General scheme of the reactions
associated with flavoproteins; top: current Recon 2.2; middle: FAD replaced by the final electron acceptor in the
reaction equation; bottom: linking the reactions to FAD biosynthesis via the artificial metabolite
‘cofactor_FAD’; B. Scheme of electron transfer from fatty-acid oxidation to the oxidative phosphorylation
pathway as in Recon 2.2, C: Scheme of electron transfer from fatty-acid oxidation to the oxidative
phosphorylation pathway in our models, Recon 2.2_FAD and Recon 2.2_flavo. Yellow — flavoproteins.
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Fig. 3. New models can correctly simulate the physiology of MADD. Overall flux through the mFAO (sum

of fluxes through the mFAO reactions). Only in the new models Recon2.2
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of the mitochondrial fatty-acid oxidation flux was observed upon deletion of ETFDH. Flux values were
obtained by sampling the solution space using the optGpSampler (10000 points explored, 2000 steps). Boxes
span 25 to 75+ percentiles, lines show medians, whiskers indicate minimum and maximum values.
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Fig. 4. Coupling of FAD-related reactions to FAD-biosynthesis enabled the new model to respond to low
cofactor availability. A. Schematic representation of FAD biosynthesis, RFK — riboflavin kinase, FLADI flavin
adenine dinucleotide synthetase 1. B. Average flux through the FAD-related reactions as a function of FAD
biosynthesis flux. Maximum capacity was calculated by maximizing the objective function — a sum of fluxes
through all the FAD-related reactions. C. Average and SD of the flux through the FAD-dependent reactions
from the sampled solution space (using the optGpSampler with 10000 points explored and 2000 steps distance)
in response to declining cofactor biosynthesis flux.
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Fig. 5. Changes in the ATP yield from different carbon sources in flavoprotein-related diseases predict
metabolic adaptations in energy metabolism. For each disease, predictions from all three models are shown,
first (light-grey): Recon 2.2, second (grey): Recon 2.2_FAD, third (black): Recon 2.2_flavo. Ratios between
ATP yields in disease model vs. healthy model are shown as a gradient (white — no change (1), dark blue —
reaction is blocked in disease model (0)). Red frames - metabolites known to be affected, elevated in blood
and/or plasma, in patients. See Supplementary Table 3 [Known biomarkers&diseases] for details about the
IEM’s and the reactions used as biomarkers. ACADL — Acyl-CoA dehydrogenase very long-chain deficiency
(MIM:201475); ACADSB - Short/branched-chain acyl-CoA dehydrogenase deficiency (MIM:610006); ACOX1
— Adrenoleukodystrophy (MIM:264470); DLD — Dihydrolipoamide dehydrogenase deficiency (MIM:246900);
SARDH- sarcosinemia (OMIM entry MIM:268900); DPYD - Dihydropyrimidine dehydrogenase deficiency
(MIM:274270); ETFA - Glutaric aciduria ITA (MIM:231680); ETFB - Glutaric aciduria I[IB (MIM:231680);
ETFDH - Glutaric aciduria IIC(MIM:231680); GCDH- glutaryl-CoA dehydrogenase deficiency
(MIM:231670); IVD- Isovaleric academia (MIM:243500); NDUFV1 - Leigh syndrome (MIM:256000);
PRODH - Hyperprolinemia 1 (MIM:239500); SDHA - Mitochondrial complex II deficiency (MIM:252011);
ACADS - Isobutyryl-CoA dehydrogenase deficiency (MIM:611283); FOXRED I— mitochondrial complex I
deficiency (MIM: 252010);

Supporting information
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Fig S1. Mapping of the flavoproteome on the models before (grey, Recon 2.2) and after curation
(black, Recon 2.2_FAD/flavo). A. Number of flavoprotein-related reactions in each compartment.
Numbers above the bars show the number of flavoproteins in the compartment. Values in the bars
show the percentage of all reactions in the subsystem that are affected by flavoproteins. B. Average
percentage of the reactions associated with flavoproteome in the subsystem grouped by higher level metabolic
functions (as defined in Recon 2.2).
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Fig S2. Biomass and ETFDH flux in the models used for MADD simulation. Flux values were
obtained by sampling the solution space using the optGpSampler (10000 points explored, 2000 steps).
Boxes span 25+ to 75« percentiles, lines show medians, whiskers indicate minimum and maximum
values. MADD was simulated by deletion of ETFDH in the models A. The flux via the biomass
synthesis reaction remains unchanged in all models. B. None of the three models carry flux via the
ETFDH reaction in the MADD simulation. C. Removal of FAD uptake in the Recon2.2 model does
not change the incorrect model behaviour in MADD case, similarly adding a free FAD uptake to our
curated model does not cause incorrect flux predictions.
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Fig S3. Biomarker predictions for single gene deficiencies. Detailed in Table 3 [FVA].
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Fig S4. Average flux through the FAD-related reactions as a function of FAD biosynthesis flux. Maximum
capacity was calculated by maximizing the objective function — a sum of fluxes through all the FAD-related
reactions. A. Coupling of FAD-related reactions to FAD-biosynthesis enabled the modified Recon 3D_FAD
model to respond to low cofactor availability similarly to Recon 2.2_FAD; B. Sensitivity of the average flux
through flavoprotein-dependent reactions to changes in the cofactor’s stoichiometric coefficient. C. FAD
biosynthesis flux required to reach the 66% of the maximal flux through the FAD-related reactions depending
on the different stoichiometric coefficient of cofactor.
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Fig S5. Recon 3D can correctly simulate the physiology of MADD after our FAD fix was
applied. Flux values were obtained by sampling the solution space using the optGpSampler (10000
points explored, 2000 steps). Boxes span 25+ to 75+ percentiles, lines show medians, whiskers indicate
minimum and maximum values. MADD was simulated by deletion of ETFDH in the models; A. Total
flux through the mFAO (sum of fluxes through the mFAO reactions); B. None of the three models
carry flux via the ETFDH reaction in the MADD simulation; C. The flux via the biomass synthesis
reaction remains unchanged in all models.

Table S1. Information about human flavoproteome.

Table S2. Manual curation process of Recon 2.2.

Table S3. Metabolic biomarkers for flavoprotein-related diseases.

Table S4. FAD curation step applied for Recon 3D.

Table S5. Biomarker prediction accuracy and TPR between Recon 2.04, Recon 2.2, and Recon 3D.

Files S1 and S2 (containing models and scripts) are available as separate files.
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