

1 **Nanopore sequencing of *Giardia* reveals widespread intra-isolate structural variation**

2

3 Stephen M. J. Pollo^{1,2}, Sarah J. Reiling³, Janneke Wit⁴, Matthew L. Workentine¹, Rebecca A. Guy⁵, G.

4 William Batoff⁶, Janet Yee⁶, Brent R. Dixon³, and James D. Wasmuth^{1,2*}

5

6 ¹ Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary,
7 Calgary, Alberta, Canada.

8 ² Host-Parasite Interactions training program, University of Calgary, Calgary, Alberta, Canada.

9 ³ Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Ontario, Canada.

10 ⁴ Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine,
11 University of Calgary, Calgary, Alberta Canada.

12 ⁵ Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada,
13 Guelph, Ontario, Canada.

14 ⁶ Department of Biology, Biochemistry and Molecular Biology Program, Trent University, Peterborough,
15 Ontario, Canada.

16 * Corresponding author

17

18 Email Addresses (in same order as authors):

19 stephen.pollo@ucalgary.ca, sarahdieerste@yahoo.de, jwit@ucalgary.ca,

20 matthew.workentine@ucalgary.ca, rebecca.guy@canada.ca, gordonbatoff@trentu.ca, jyee@trentu.ca,

21 brent.dixon@canada.ca, jwasmuth@ucalgary.ca

22 Key words: long read sequencing, MinION, structural variants, heterozygosity, parasite, polyploidy,
23 tetraploid, genome assembly

24 **Abstract**

25 **Background:** Genomes of the parasite *Giardia duodenalis* are relatively small for eukaryotic
26 genomes, yet there are only six publicly available. Difficulties in assembling the tetraploid *G.*
27 *duodenalis* genome from short read sequencing data likely contribute to this lack of genomic
28 information. We sequenced three isolates of *G. duodenalis* (AWB, BGS, and beaver) on the
29 Oxford Nanopore Technologies MinION whose long reads have the potential to address genomic
30 areas that are problematic for short reads.

31 **Results:** Using a hybrid approach that combines MinION long reads and Illumina short reads to
32 take advantage of the continuity of the long reads and the accuracy of the short reads we
33 generated reference quality genomes for each isolate. The genomes for two of the isolates were
34 evaluated against the available reference genomes for comparison. The third genome for which
35 there is no previous data was then assembled. The long reads were used to find structural
36 variants in each isolate to examine heterozygosity. Consistent with previous findings based on
37 SNPs, *Giardia* BGS was found to be considerably more heterozygous than the other isolates that
38 are from Assemblage A. We also find an enrichment of variant-specific surface proteins in some
39 of the structural variant regions.

40 **Conclusions:** Our results show that the MinION can be used to generate reference quality
41 genomes in *Giardia* and further be used to identify structural variant regions that are an
42 important source of genetic variation not previously examined in these parasites.

43

44 **Background**

45 *Giardia duodenalis* (syn. *Giardia lamblia* or *Giardia intestinalis*) is a single-celled,
46 eukaryotic, food and waterborne intestinal parasite that infects roughly 200 million people
47 worldwide [1]. Infections can cause nausea, vomiting, diarrhea, and impaired growth and
48 cognitive development [1]. The species *G. duodenalis* includes eight subtypes, named
49 Assemblages A through H, at least two of which are known to infect humans (A and B) [1]. The
50 cells have two diploid nuclei each containing five chromosome pairs [2]. The haploid genome
51 size is ~12.8 MB [3]. Genome comparisons amongst assemblages of *G. duodenalis* found only
52 77% nucleotide and 78% amino acid identity in coding regions, suggesting the assemblages may
53 represent different species [4]. Six isolates of *G. duodenalis* have reference genomes available
54 [3].

55 Currently, whole genomes are sequenced using second generation technologies, third
56 generation technologies, or strategies involving combinations of technologies (ex. combining
57 PacBio and Illumina as in [5]). Second generation sequencing platforms produce high quality
58 reads with low error rates (0.1% for Illumina HiSeq) but short lengths (mean length <250 bp for
59 Illumina HiSeq), which pose challenges for assembly programs resulting in more fragmented
60 assemblies [6]. In contrast, third generation sequencing platforms produce much longer reads
61 (mean length <10 000 bp for PacBio and MinION) but have higher error rates (10-15% for
62 PacBio and >10% for MinION depending on the chemistry) [6-8]. These longer reads have the
63 potential to resolve many genomic areas that are problematic for second generation data, such as
64 repetitive and/or duplicated regions [8]. Importantly, eukaryotic genomes have many such
65 repetitive and duplicated regions (as much as two thirds of the human genome may be repetitive
66 elements [9]), making eukaryotic genomes especially good candidates for sequencing with third

67 generation technologies. Moreover, third generation data is well suited for examining structural
68 variants within a genome. In diploid and polyploid organisms the different copies of each
69 chromosome can contain large scale differences, including insertions, deletions, duplications,
70 and translocations, in addition to variation at the single nucleotide level (SNPs). Collectively
71 called structural variants, they are a major source of genetic variation, thought to play a larger
72 role in phenotypic variation than SNPs, but are difficult to resolve using second generation data
73 [10–12]. The tetraploidy of *Giardia* trophozoites further complicates short read genome
74 assembly and structural variant detection methods because of the increased computational
75 complexity of constructing four haplotypes for each locus. For a review on the challenges
76 associated with polyploid eukaryotic genomes see [13]. Our expectation is that long read
77 methods can detect and resolve the potentially three overlapping alternate alleles at any given
78 locus.

79 The Oxford Nanopore Technologies (ONT) MinION is a third generation sequencing
80 platform based on nanopore technology [8,14]. Briefly, the nucleic acids to be sequenced are
81 driven through small pores in a membrane by an electrical current which causes fluctuations in
82 the current in the pore [8]. Sensors measure these fluctuations, sending the data to a connected
83 computer for processing and storage [8]. Assembling genomes *de novo* from MinION data
84 involves basecalling of the squiggle files produced by the MinION during sequencing, assembly
85 of the long reads into draft genomes, and polishing of the assemblies.

86 Here we have generated MinION and Illumina sequence data for *G. duodenalis*
87 Assemblage A isolate WB (hereafter referred to as *Giardia* AWB), *G. duodenalis* Assemblage B
88 isolate GS (hereafter referred to as *Giardia* BGS), and *G. duodenalis* isolated from a beaver
89 (hereafter referred to as *Giardia* beaver). After generating reference quality assemblies with the

90 long and short reads, the long reads produced here were then used to investigate heterozygosity
91 in each isolate by detecting the structural variants in each genome.

92

93 **Data Description**

94 We generated Oxford Nanopore Technologies MinION and Illumina MiSeq and iSeq
95 whole genome sequence data for three isolates of *Giardia*. In addition to assembling genomes for
96 the three isolates, we show the long read (MinION) data can be further used to detect structural
97 variant regions within each genome. The sequences can be accessed from the sequence read
98 archive (SRA) under accession number PRJNA561185.

99

100 **Analyses**

101 ***Reference quality assemblies***

102 ***Performance of ONT long reads***

103 The MinION sequencing runs used here produced several hundred thousand reads each
104 with the exception of Run2, which was a second run conducted on a previously used flow cell
105 (Table 1). In addition to producing fewer reads, re-using the flow cell also resulted in lower
106 proportions of reads passing the quality threshold during basecalling with 64% and 81% of 1D
107 reads passing in Run2 compared to 90 – 98% of 1D reads passing in Runs 1, 3, and 4 (Table 1).
108 NanoOK [15] analysis of read error profiles showed that reads from Run2 have lower aligned
109 base identity and higher substitutions per 100 bases compared to the other runs (Table 2).

110 NanoOK analysis of 1D read error profiles for all runs indicated a 9 – 17% error rate in
111 the regions of reads that aligned to the reference genome (Table 2, aligned base identity) and a
112 24 – 46% error rate across the entirety of reads that aligned to the reference genome (Table 2,
113 overall base identity). The analysis also showed more deleted bases than inserted bases in the
114 reads (Table 2). Average and maximum read lengths for all runs are presented in Table 1.
115 Notably, the maximum 1D read length generated in the sequencing runs analyzed here was
116 1,132,445 bases, though this read did not align to any *Giardia* reference genome nor did it have
117 significant BLAST hits longer than ~45 bp in the nr database (data not shown). It is presumably
118 a strand that got stuck but continued to generate (incorrect) sequence data.

119 Of the 39 long read *de novo* assemblies performed (13 input combinations x 3 assembly
120 programs; see Materials and Methods long read assembly evaluation), five did not have
121 sufficient numbers of reads to generate any contigs (AWB_2338_1D_smartdenovo,
122 AWB_2338_1Dsq for all three assemblers, and AWB_2331_2338_1D_smartdenovo). The
123 remaining assemblies were all polished with Nanopolish eight times and the evaluation metrics
124 were calculated for the nine resulting draft assemblies from each *Giardia* AWB and BGS
125 input/assembler combination for a total of 315 assemblies (Supplementary Table 1). The top
126 performing AWB and BGS assemblies for each metric are listed in Supplementary Table S2. No
127 assembly ranked first in more than two of the metrics. To further examine the effects of 1D vs
128 1Dsq input reads, pooling reads for the same isolate from multiple runs, assembly program, and
129 number of genome polishing iterations, for each metric the values for all the assemblies were
130 plotted (Supplementary Figs. S1 – S10). The average value and standard deviation for each
131 group were also calculated (Supplementary Tables S3 – S10). Figure 1 shows the effects of 1D
132 vs 1Dsq input reads, assembly program, and number of genome polishing iterations on BGS

133 assemblies for four of the metrics – the two that don't require a reference genome (number of
134 contigs and genome size), gene finding (BUSCO score), and accuracy measured as average
135 percent identity. The averages and standard deviations that correspond to Figure 1 can be found
136 in Supplementary Tables S4, S8, and S10. The other metrics and the values for AWB assemblies
137 show similar trends (Supplementary Figs. S1 – S10).

138

139 **Table 2.** Read error profiles for *Giardia* AWB and *Giardia* BGS MinION sequencing runs.

Error Type	AWB_01 50 Reads	AWB_01 57 Reads	AWB_23 31 Reads	AWB_23 38 Reads	BGS_22 37 Reads	BGS_22 44 Reads
Proportion of Reads Counted (%)	87.55	83.56	28.04	52.61	12.62	77.47
Overall Base Identity (%)	76.907	74.577	54.293	65.904	58.255	56.636
Aligned Base Identity (%)	90.526	89.352	83.076	83.915	91.429	89.954
Identical Bases per 100	80.430	78.338	71.024	71.597	80.855	78.834
Inserted Bases per 100	5.291	3.881	7.811	5.087	3.473	4.478
Deleted Bases per 100	5.860	8.450	6.758	9.592	8.105	7.886
Substitutions per 100	8.415	9.334	14.406	13.725	7.569	8.801
Mean Insertion	1.638	1.462	1.755	1.480	1.482	1.530
Mean Deletion	1.621	1.787	1.591	1.788	1.848	1.898

140 Using NanoOK [15], 1D reads were aligned to the corresponding reference genome and the error
141 profiles of aligned reads were evaluated. NanoOK outputs read error profiles for each reference
142 contig. To get overall error profiles for all reads, the values for each contig were multiplied by
143 the proportion of total reads that aligned to that contig. The sum of these values for each error
144 metric were scaled according to the proportion of total sequencing reads that were used for
145 NanoOK's analysis.

146

147

148 *Hybrid assemblies*

149 Hybrid assemblies for *Giardia* AWB were created from every AWB long read assembly
150 in Supplementary Table 1. All of the AWB hybrid assemblies with the highest complete BUSCO
151 score (117, Supplementary Table S11) were constructed from a SMARTdenovo long read
152 assembly. For this reason, and because of the performance of the long read SMARTdenovo
153 assemblies in general (See Discussion of long read assemblies), the *Giardia* BGS and beaver
154 hybrid assemblies were constructed from Illumina reads and the SMARTdenovo assemblies of
155 the 1D MinION reads. The AWB hybrid assemblies outperformed their long read counterparts in
156 all metrics measured (Supplementary Tables S1 and S11) and, for all three isolates, the hybrid
157 assemblies had higher complete BUSCO scores than their corresponding long read assembly.
158 The best hybrid assembly for each isolate was selected for all further analysis on the basis of
159 maximum complete BUSCO score (AWB_hybrid_106_0150015723312338_1dsmartx0,
160 BGS_hybrid_gs3-20-2019_22372244_1dsmartx0, Beaver_hybrid_107218_2309_1dsmartx0).
161 For each of these assemblies, alignment to the AWB reference genome showed that the full
162 chromosome was recovered for chromosomes 1 – 4 and the majority of chromosome 5 was also
163 recovered (Fig. 2).

164

165 *Structural variant analysis*

166 We predicted structural variants from the long reads and hybrid assemblies to examine
167 the variation between the four copies of each chromosome in the *Giardia* isolates sequenced.
168 *Giardia* AWB, BGS, and beaver had 392, 1860, and 483 variants respectively (Table 3), which

169 affect 2072, 4151, and 3423 genes respectively. For each isolate, the full lists of predicted
170 structural variants and genes affected by each variant can be found in Supplementary Tables S12
171 – S14. Notably among the genes affected are known virulence factors including variant-specific
172 surface proteins (VSP), tenascins, and high cysteine membrane proteins [16]. In AWB, BGS, and
173 beaver 39, 97, and 56 of the structural variants were found to have significantly more VSP than
174 expected, respectively. Figure 3 shows alignments of the three hybrid genomes to the AWB
175 reference genome with the predicted structural variants for each genome.

176

177 **Table 3.** Structural variants (SVs) in *Giardia* AWB, BGS, and beaver. Numbers in brackets are
178 average lengths (bp) of the variants.

	AWB	BGS	beaver
Number of SVs	392	1860	483
# Duplications	45 (14520.4)	185 (48239.6)	69 (37535.0)
# Deletions	46 (15487.1)	298 (34454.6)	74 (46361.1)
# Inversions	162 (19437.9)	746 (28782.2)	234 (12866.7)
# Inverted Duplications	2 (2257.0)	14 (2680.1)	0 (0.0)
# Transversions	104 (2.3)	436 (20.8)	46 (4.0)
# Insertions	33 (299.6)	181 (596.4)	60 (286.9)
Proportion of genome contained in SVs	0.1876	0.5662	0.3372
Number of genes in SVs	2072	4151	3423

179

180

181

182 ***Genome of Giardia beaver***

183 The genome of *Giardia* beaver was assembled into 8 contigs totalling 11,467,485 bp. It
184 has a maximum contig length of 2.759 Mb and an N50 of 1.965 Mb. One hundred thirteen
185 complete BUSCOs were found out of 134 detected across the three *Giardia* isolates examined
186 here. *Giardia* beaver has 49.56% GC content, similar to values found for *Giardia* AWB (49.0)
187 and other assemblage A isolates (49.25; 49.04) [2,17].

188

189 **Discussion**

190 *Long read assemblies and assemblers that lead to reference quality hybrid assemblies*

191 Among the three assemblers tested, the SMARTdenovo assemblies for both *Giardia*
192 AWB and BGS showed the lowest variability in all metrics except average indel size (Fig. 1 and
193 Supplementary Figs. S1 – S10). Moreover, the SMARTdenovo assemblies had the highest
194 average values for average percent identity, BUSCO score, and proportion of reference covered
195 1X (where higher values indicate better performance) (Supplementary Table S1) and consistently
196 strong performance in all metrics except average indel size (Fig. 1 and Supplementary Figs. S1 –
197 S10). Despite thirteen of the top performing assemblies (8 AWB, 5 BGS) being Abruijn
198 assemblies (Supplementary Table S2), plotting values for each metric showed Abruijn had the
199 most variable performance (Supplementary Figs. S1 – S10, Supplementary Tables S7 – S8).
200 Canu assemblies generally performed somewhere between the SMARTdenovo and Abruijn
201 assemblies (Supplementary Tables S7 – S8).

202 Analysis of the 207 AWB and 108 BGS assemblies indicates that the optimal long read
203 only assembly pipeline for MinION sequenced *Giardia* is a SMARTdenovo assembly from 1D
204 reads (either pooled or non-pooled input to reach sufficient genome coverage) followed by four

205 or five rounds of polishing with Nanopolish (See Supplementary Material for discussion of 1D
206 vs 1Dsq input reads, pooling different sequencing runs for the same organism, and number of
207 rounds of genome polishing). However, it was the unpolished long read assemblies that resulted
208 in the best hybrid assemblies (1D read, SMARTdenovo assembled, no polishing with
209 Nanopolish; Supplementary Table S11). Interestingly, the BGS assemblies are larger than the
210 reference BGS assembly that was generated from 454 data [4], potentially due to the fragmented
211 nature of the reference assembly. The AWB and BGS hybrid assemblies generated here have
212 higher complete BUSCO scores than the available reference genomes (117 for both hybrids vs
213 114 AWB reference and 116 BGS reference) and were assembled into very large pieces (AWB
214 hybrid N50: 616 kb; BGS hybrid N50: 1,645 kb), suggesting they are of reference quality (Figs.
215 2 and 3). Moreover, the hybrid genome for *Giardia* beaver has a similarly high complete
216 BUSCO score and similar contig numbers and contig lengths to the AWB and BGS hybrids,
217 indicating that reference quality assemblies can be generated *de novo* for *Giardia* with as little as
218 one ONT MinION and one multiplexed Illumina MiSeq sequencing run.

219 An optimal assembly pipeline for MinION data can change with each release of new
220 programs specializing in handling long error prone reads. Already having the scripts to calculate
221 the evaluation metrics used here makes re-evaluations easier to perform and enables evaluation
222 of assembler performance that is current with each new program or version release. The typical
223 publication process, from numerous drafts of a manuscript and peer-review, can be time-
224 consuming and not conducive to keeping such an analysis current. Therefore, a blog or
225 community forum similar to an analysis on github of MinION basecalling programs [18] would
226 be more appropriate. These media may also make it easier to discuss issues surrounding
227 installation of these programs and running them in various computing environments. For

228 example, some of the programs used here took up to a month to get installed and running
229 properly. Having a current analysis of available long read assemblers would therefore also allow
230 researchers to determine which programs are worth the time to get working and when it may be a
231 better use of time to go with programs that need less configuration (like Canu which worked
232 immediately) but will still perform adequately for the intended purpose.

233

234 *Structural variants reveal different levels of intra-isolate variation*

235 Despite having similar genome sizes, the three isolates examined here have very different
236 total numbers of variants detected and proportions of their genomes that are within a structural
237 variant region (Table 3, Fig. 3). When *Giardia* BGS was first sequenced, the authors noted a
238 much higher allelic sequence heterozygosity than what was observed in AWB (0.53% in BGS vs
239 0.01% in AWB) [4]. The same trend is observed in the structural variants here with BGS being
240 considerably more heterozygous than AWB. The differences in allelic sequence heterozygosity
241 were attributed to AWB and BGS being in different assemblages [4]. While the values for
242 *Giardia* beaver (an assemblage A isolate) being more similar to AWB than BGS (Table 3)
243 tentatively support the hypothesis that assemblage B is more heterozygous than assemblage A,
244 many more genomes from each assemblage are needed to confirm it. Further, single cell
245 sequencing could be used to examine the population structure of the isolates at a genetic level.
246 Nonetheless, assemblage-specific variations in heterozygosity, or even isolate-specific variations
247 in heterozygosity, will be important to consider in future comparisons between *Giardia* genomes.
248 Previous genomic comparisons between assemblages [4] and within assemblages [19] have
249 focused on SNPs and analyses of specific gene families. Including structural variant information

250 provides a more complete picture of the heterozygosity and genetic diversity of each isolate by
251 capturing differences in gene dosage as well as gene content.

252

253 *Effects of recombination in Giardia on structural variants*

254 Recombination between different cells (outcrossing) within and between isolates of
255 *Giardia* has been suggested to occur through an as-yet undiscovered mechanism [20–23].
256 Outcrossing recombination events would allow for changes in gene copy number if the event
257 involved or encompassed a structural variant like a duplication or deletion. Alternatively, large
258 inversions can prevent recombination in the inverted areas [24], preventing gene flow during
259 recombination events in *Giardia*. These regions are therefore important to keep in mind in future
260 studies on recombination in *Giardia* as they may confound the analyses. Several dozen structural
261 variants from each of the isolates examined here were found to be significantly enriched for
262 VSP, supporting the suggestion that recombination is a potential source of VSP variation [25].
263 Expansions and contractions of this gene family through inheritance during outcrossing events of
264 duplicated or deleted loci that affect VSP could be an important factor in the number and
265 distribution of these genes between the various *Giardia* assemblages and isolates. As key surface
266 proteins involved in host immune evasion [26], these expansions and contractions of the VSP
267 repertoire could partially explain differences in pathogenicity between isolates. Moreover, as
268 mediators of the *Giardia* cell's interaction with its surrounding environment, expansions and
269 contractions of the VSP repertoire could affect host range. Alternatively, these genes could be
270 hotspots for recombination events that generate structural variants. Then in addition to their roles
271 as surface proteins they would also be potential factors influencing the evolution of *Giardia*
272 genomes.

273

274 **Conclusions**

275 The present study demonstrates that high quality genomes can be generated for *Giardia*
276 for a few thousand dollars per genome, thus enabling future large scale comparative genomic
277 studies of the genus. Moreover, third generation long reads can be further used to investigate
278 heterozygosity and genome organization in *Giardia* despite its tetraploidy. We showed that
279 structural variant regions affect many genes notably virulence factors including VSP, suggesting
280 an important mechanism in the inheritance and distribution of these proteins among *Giardia*
281 isolates. Finally, we have generated a reference genome sequence for a new isolate, *Giardia*
282 beaver, with accompanying prediction of its structural variants.

283

284 **Methods**

285 *Giardia duodenalis* isolates

286 *Giardia* AWB (ATCC 30957) and *Giardia* BGS (ATCC 50580) were obtained from the
287 American Tissue Culture Collection, while *Giardia* beaver was a gift from Dr. Gaetan Faubert
288 from McGill University. *Giardia* trophozoites were grown in TYI-S-33 medium [27] in 16-mL
289 screw capped glass tubes incubated at 37°C.

290

291 *DNA extraction*

292 Ten 16-mL culture tubes of each *Giardia* isolate (AWB, BGS, and beaver) grown to late
293 logarithm stage (~5 - 8 x 10⁵ cells/mL) were used for genomic DNA isolation. The culture

294 tubes were chilled on ice for 5 min and the cells were collected by centrifugation at 1,100 x g for
295 15 min at 4°C. Genomic DNA was extracted with DNAzol Reagent (ThermoFisher Scientific)
296 by following the manufacturer's instructions. Briefly, each cell pellet was resuspended and lysed
297 in DNAzol Reagent by gentle pipetting followed by a freeze (30 min at 80°C) and thaw (10 min
298 at room temperature) step. The lysate was then centrifuged at 10,000 x g for 10 min at 4°C to
299 remove insoluble cell debris. The supernatant was transferred to a new tube and the DNA was
300 recovered by centrifugation of the supernatant at 4,000 x g for 5 min at 4°C. The DNA pellet was
301 washed twice with 75% ethanol then air-dried. The DNA was resuspended initially in 8 mM
302 NaOH then neutralized by addition of HEPES to a final concentration of 9 mM.

303 RNA was removed from the DNA sample by the addition of 1 - 2 µL of 20 µg/µL RNase
304 A (BioShop) followed by incubation at 65°C for 10 min. The degraded RNA was precipitated by
305 the addition of ammonium acetate, incubation at 4°C for 20 min, and centrifugation at 12,000 x g
306 for 30 min at 4°C. The supernatant was transferred to a new tube and the DNA was precipitated
307 by the addition of 95% ethanol, incubation at room temperature for 5 min, and centrifugation at
308 12,000 x g for 20 min at 4°C. The DNA pellet was washed once with 0.01M ammonium acetate
309 in 75% ethanol and once with 75% ethanol alone. The DNA pellet was air-dried before
310 resuspension in TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA).

311

312 *MinION sequencing*

313 The 1Dsq library preparation kit SQK-LSK308 was used as recommended by the
314 manufacturer (Oxford Nanopore Technologies, Oxford, United Kingdom). Approximately 200
315 ng of prepared library was loaded onto a FLO-MIN107 (R9.5) flow cell. Data collection was

316 carried out with live basecalling for 48 h, or until no more strands were being sequenced. All
317 sequences were deposited in the sequence read archive (SRA) under accession number
318 PRJNA561185.

319

320 *Illumina sequencing*

321 Libraries were prepared using NexteraXT and paired-end sequenced on the MiSeq (v3,
322 2x300 cycles) or iSeq 100 (I1, 2x150 cycles) platforms according to manufacturer instructions
323 (Illumina Inc). All sequences were deposited in the SRA under accession number
324 PRJNA561185.

325

326 *Long read basecalling, de novo assembly, and genome polishing*

327 Basecalling of all MinION output files was performed with the program Albacore
328 (version 2.0.2) [28] using the full_1dsq_basecaller.py method to basecall both 1D and 1Dsq
329 reads. The flowcell and kit parameters were FLO-MIN107 and SQK-LSK308 respectively. The
330 general command used to run Albacore was: full_1dsq_basecaller.py --flowcell
331 FLO-MIN107 --kit SQK-LSK308 --input PATH/TO/FAST5/FILES --
332 save_path ./ --worker_threads 38

333 *De novo* assemblies were performed using the programs Abruijn (version 2.1b) [29],
334 Canu (version 1.6) [30], and SMARTdenovo (version 1.11 running under Perl version 5.22.0)
335 [31]. Abruijn assemblies were conducted using the nanopore platform setting, coverage estimates
336 calculated as the number of bases in the input reads divided by the reference genome size (Table

337 1) all rounded to the nearest integer, and all other default settings (one polishing iteration,
338 automatic detection of kmer size, minimum required overlap between reads of 5000 bp,
339 automatic detection of minimum required kmer coverage, automatic detection of maximum
340 allowed kmer coverage). Canu assemblies were performed using Canu's settings for uncorrected
341 nanopore reads (-nanopore-raw), genome sizes estimated from the reference genome sizes (Table
342 1), and setting gnuplotTested=true to bypass html output report construction. SMARTdenovo
343 assemblies were conducted using default settings (kmer length for overlapping of 16 and
344 minimum required read length of 5000 bases). The general commands used to run each of the
345 assemblers, with variable parameters written in upper case, were:

346 Abruijn: abruijn PATH/TO/READS out_nano COVERAGE_ESTIMATE --
347 platform nano --threads 56

348 Canu: canu -p UNIQUE_NAME genomeSize=12.8m -nanopore-raw
349 PATH/TO/READS gnuplotTested=true

350 SMARTdenovo: smartdenovo.pl -p UNIQUE_NAME PATH/TO/READS >
351 UNIQUE_NAME.mak , followed by the command: make -f UNIQUE_NAME.mak

352 Genome polishing is an error correction step performed on assemblies generated from
353 third-generation data to compensate for the high error rate of the reads [8]. It involves re-
354 evaluating the base calls from the MinION squiggle files together with the read overlap
355 information from the assembly to improve base accuracy and correct small insertions and
356 deletions [32]. Here polishing was performed with the program Nanopolish (version 0.8.5)
357 following the directions for “computing a new consensus sequence for a draft assembly” [33].
358 Briefly, the draft genome was first indexed using BWA (version 0.7.15-r1140) [34] and the

359 basecalled reads were aligned to the draft genome using BWA. SAMtools (version 1.6 using
360 htslib 1.6) [35] was then used to sort and index the alignment. Nanopolish then computed the
361 new consensus sequence in 50kb blocks in parallel, which were then merged into the polished
362 assembly. The general commands used to run Nanopolish were:

```
363 nanopolish index -d PATH/TO/FAST5/FILES PATH/TO/READS  
  
364 bwa index PATH/TO/ASSEMBLY/TO/POLISH  
  
365 bwa mem -x ont2d -t 8 PATH/TO/ASSEMBLY/TO/POLISH PATH/TO/READS |  
366 samtools sort -o reads.sorted.bam -T reads.tmp  
  
367 samtools index reads.sorted.bam  
  
368 python ~/nanopolish/scripts/nanopolish_makerange.py  
369 PATH/TO/ASSEMBLY/TO/POLISH | parallel --results  
370 nanopolish.results -P 14 nanopolish variants --consensus  
371 UNIQUE_NAME_polished_x${POLISHING_ITERATION}.{1}.fa -w {1} -r  
372 PATH/TO/READS -b reads.sorted.bam -g PATH/TO/ASSEMBLY/TO/POLISH  
373 -t 4 --min-candidate-frequency 0.1  
  
374 python ~/nanopolish/scripts/nanopolish_merge.py  
375 UNIQUE_NAME_polished_x${POLISHING_ITERATION}.*.fa >  
376 UNIQUE_NAME_polished_x${POLISHING_ITERATION}_genome.fa  
  
377  
  
378 Read error profile analysis
```

379 Read error profiles were examined for the six *Giardia* AWB and *Giardia* BGS runs using
380 the program NanoOK (version v1.31) [15]. NanoOK extracts fasta sequences from the fast5 files
381 produced by the MinION and aligns them to the reference genome using the LAST aligner
382 (version 876) [36]. It then calculates error profiles for each set of reads that aligned to each
383 contig in the reference. To obtain overall values for all reads in the sequencing run, for each error
384 metric the value for each contig was extracted from the .tex file produced by NanoOK and
385 multiplied by the proportion of the total reads mapping to that contig. These values were then
386 summed to yield the metric value with respect to all reads in the sequencing run. The sums were
387 scaled according to the proportion of the total reads that were included in the metric calculation -
388 those that were mapped to the contigs - to yield the metric value for all reads used in the analysis.

389

390 *Long read assembly evaluation*

391 The effects on final assembly quality were evaluated for the following parameters: 1D vs
392 1Dsq input reads, pooling reads for the same organism from multiple runs, assembly program,
393 and number of genome polishing iterations. Firstly, 13 distinct input combinations, that represent
394 all permutations of pooling runs for the same organism for both 1D and 1Dsq reads, were used
395 for *de novo* assemblies: AWB_0157 1D reads, AWB_0157 1Dsq reads, AWB_0150_0157 1D
396 reads, AWB_0150_0157 1Dsq reads, AWB_2338 1D reads, AWB_2338 1Dsq reads,
397 AWB_2331_2338 1D reads, AWB_0150_0157_2331_2338 1D reads, AWB_0150_0157_2338
398 1Dsq reads, BGS_2244 1D reads, BGS_2244 1Dsq reads, BGS_2237_2244 1D reads, and
399 BGS_2237_2244 1Dsq reads (Table 1). Each of these input combinations was used to perform a
400 *de novo* assembly with each of the three assemblers used: Abruijn, Canu, and SMARTdenovo.
401 All of the resulting assemblies that produced contiguous sequences were polished with

402 Nanopolish. Eight rounds of Nanopolish polishing were performed on the Canu and
403 SMARTdenovo assemblies and seven rounds were performed on the Abruijn assemblies (which
404 get polished once by Abruijn).

405 All assemblies and polished versions of the assemblies were aligned to the corresponding
406 reference genome using the LAST aligner (version 876) [36] following the example for human-
407 ape alignments [37]. Briefly, the reference genome was indexed using LAST, then substitution
408 and gap frequencies were determined using the last-train method [38]. Finally, alignments were
409 performed using the lastal method and the determined substitution and gap frequencies. The
410 resulting alignments were then filtered to retain only those alignments with an error probability <
411 $1e^{-5}$. *Giardia* AWB assemblies were aligned to only the contigs from the reference genome
412 labelled GLCHR01, GLCHR02, GLCHR03, GLCHR04, and GLCHR05 (representing the five
413 chromosomes of *Giardia duodenalis*). Filtered alignments were converted to other file formats
414 (for metric calculation) using the maf-convert method in the LAST aligner.

415 Average percent identity was calculated from alignments in blasttab format by taking the
416 sum of the percent identity multiplied by the alignment length for each aligned portion and
417 dividing that sum by the total alignment length. Proportion of mismatching bases was calculated
418 from alignments in psl format by taking the sum of mismatching bases for all aligned portions
419 divided by the total alignment length. Total number of indels per 1000 aligned bases was
420 calculated from alignments in psl format by taking the sum of the number of insertions in the
421 query and the number of insertions in the target for all aligned portions, dividing that sum by the
422 total alignment length and multiplying by 1000. Average size of indels was calculated from
423 alignments in psl format by taking the sum of the number of bases inserted in the query and the
424 number of bases inserted in the target for all aligned portions and dividing that sum by the total

425 number of indels. The proportions of the reference covered 0, 1, 2, 3, or 4 times were calculated
426 using BEDtools (version v2.27.1) [39]. Alignments were first converted to SAM format and
427 SAMtools was used to sort the alignment and convert it to a bam file. The genomecov function
428 of BEDtools was then used to analyze the coverage of every base in the reference genome in the
429 alignment. The proportion of bases in the reference genome with 0, 1, 2, 3, and 4 fold coverage
430 in the assembly were retrieved.

431 The assembly evaluation metrics Number of Contigs and Genome Size were calculated
432 for each assembly from the assembly fasta file. BUSCOs were calculated for each assembly
433 using BUSCO v3.0.2 (BLAST+ v2.6.0, HMMER v3.1b2 , and AUGUSTUS v3.2.3), with the
434 eukaryote_odb9 dataset and default options (-sp fly) [40].

435 Average and standard deviation values for the groupings presented in the tables and
436 figures for each metric were calculated in R [41]. R was also used to construct the scatter plots
437 for the figures.

438

439 *Hybrid assemblies*

440 Hybrid genome assemblies were generated using the program Pilon (version 1.22) [42].
441 Briefly, short, highly accurate reads are mapped to a long-read assembly to correct for the higher
442 error rate in the long reads. For each hybrid assembly, the Illumina reads were mapped using
443 BWA to the long read assembly. After sorting and indexing the alignments with SAMtools, pilon
444 was run with default parameters to generate the hybrid assemblies. The general command to run
445 pilon was:

```
446 pilon -Xmx200g --genome GENOME_TO_CORRECT --frags
447 BAM1.sorted.bam --frags BAM2.sorted.bam --output UNIQUE_NAME
```

448 The improvement of the hybrid assembly over the long read assembly from which it was
449 built was measured by the BUSCO scores of each (calculated as described above). BUSCO
450 scores were preferred because they do not depend on having a reference sequence and gene
451 finding depends on assembly accuracy. The best hybrid assembly for each isolate was deposited
452 at DDBJ/ENA/GenBank under the accession numbers VSRS00000000 (*Giardia* beaver),
453 VSRT00000000 (*Giardia* AWB), and VSRU00000000 (*Giardia* BGS). The versions described
454 in this paper are versions VSRS01000000, VSRT01000000, and VSRU01000000 respectively.

455

456 *Structural variant prediction and analysis*

457 Structural variants were predicted using the programs ngmlr and sniffles [10]. For each
458 *Giardia* isolate, the long reads were mapped to the best hybrid assembly using ngmlr v0.2.7. The
459 resulting alignments were sorted with SAMtools and the variants were called with sniffles
460 v1.0.10. The general commands to run ngmlr and sniffles were:

```
461 ngmlr -t 56 -r HYBRID_ASSEMBLY -q LONG_READS -o
462 UNIQUE_NAME_ngmlr.sam -x ont
463 sniffles -t 56 --genotype --cluster --report_seq -n -1 -m
464 ALIGNED_LONG_READS_ngmlr_sorted.bam -v UNIQUE_NAME_SVs.vcf
```

465 Genes likely to be affected by the structural variants were identified by mapping known
466 proteins from the *Giardia* AWB reference genome to the hybrid assembly used to predict the

467 structural variants with the program exonerate v2.2.0 [43] and finding the genes overlapping the
468 variant regions using BEDtools. The general commands were:

```
469 exonerate -m protein2genome -q AWB_PROTEINS.gff -t
470 HYBRID_ASSEMBLY.fasta -M 250000 -n 1 --showalignment FALSE --
471 showvulgar FALSE --showtargetgff > UNIQUE_NAME.txt
472 sed '/^#/d' UNIQUE_NAME.txt > UNIQUE_NAME.gff
473 sed '1,2d;$d' UNIQUE_NAME.gff > UNIQUE_NAME_2.gff
474 bedtools intersect -a UNIQUE_NAME_SVs.vcf -b UNIQUE_NAME_2.gff -
475 wb > UNIQUE_NAME_intersect_vcf_genesonlyn1gff.txt
```

476 For each variant type, the list of putatively affected genes was examined and genes of
477 interest were analyzed for enrichment in the variants. For each predicted variant, 10000 random
478 samples of the same size as the variant were selected from the genome. For each sample the
479 overlapping genes were found and the genes of interest were counted. The 95th percentile was
480 calculated from the resulting distribution of genes of interest using the nearest-rank method to
481 find the count above which there is significant enrichment of the gene of interest (ie. the cutoff
482 for rejecting H₀). The subsampling experiment was implemented in Java, the code for which is
483 available on github at https://github.com/StephenMJPollo/SV_Subsampling.

484

485 *Genome assembly for Giardia beaver*

486 The genome of *Giardia* beaver was assembled *de novo* from 1D minION reads using
487 SMARTdenovo (see discussion; commands are the same as in methods above). Illumina reads
488 were added to create a hybrid assembly as described above.

489

490 **Availability of source code and requirements**

491 Project name: SV_Subsampling

492 Project home page: https://github.com/StephenMJPollo/SV_Subsampling

493 Operating system: Linux

494 Programming Language: Java

495 Other requirements: BEDtools

496

497 **Availability of supporting data and materials**

498 Sequence reads are available on the SRA under accession number PRJNA561185. The
499 hybrid assemblies generated are available from GenBank under the accession numbers
500 VSRS00000000 (*Giardia* beaver), VSRT00000000 (*Giardia* AWB), and VSRU00000000
501 (*Giardia* BGS). The versions described in this paper are versions VSRS01000000,
502 VSRT01000000, and VSRU01000000 respectively. All other supporting material will be
503 submitted to the GigaScience GigaDB database.

504

505 **Additional Files**

506 **Supplementary_Discussion:** Additional discussion on long read only assemblies.

507 **Supplementary Figures:** Figures S1 – S10 with corresponding legends.

508 **Supplementary Tables:** Tables S1 – S15.

509

510 **List of abbreviations**

511 bp: base pairs; BUSCO: benchmarking universal single copy orthologs; ONT: Oxford Nanopore

512 Technologies; SNPs: single nucleotide polymorphisms; SRA: sequence read archive; SVs:

513 structural variants; VSP: variant-specific surface proteins.

514

515 **Consent for publication**

516 Not applicable.

517

518 **Competing interests**

519 The author(s) declare that they have no competing interests.

520

521 **Funding**

522 This work was supported by the Ontario Ministry of Agriculture, Food, and Rural Affairs

523 (OMAFRA #FS2016-3010) to BRD, Alberta Agriculture and Forestry (AAF #2016F013R) to

524 JDW, Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery

525 (#222982) to JY, and a NSERC Visiting Fellowship in Canadian Government Laboratories to
526 SJR.

527

528 **Authors' contributions**

529 Resources and investigation: GWB, JW, and SJR. Investigation, formal analysis,
530 software, writing original draft, and visualization: SMJP. Funding acquisition and supervision:
531 RAG, JY, BRD, and JDW. Conceptualization and methodology: SMJP, SJR, MLW, RAG, BRD,
532 and JDW.

533

534 **Acknowledgements**

535 Not applicable

536

537 **References**

- 538 1. Certad G, Viscogliosi E, Chabé M, Cacciò SM. Pathogenic mechanisms of *Cryptosporidium*
539 and *Giardia*. Trends Parasitol. 2017;33:561–76.
- 540 2. Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, et al. Genomic
541 minimalism in the early diverging intestinal parasite *Giardia lamblia*. Science. 2007;317:1921–
542 6.
- 543 3. Aurrecoechea C, Brestelli J, Brunk BP, Carlton JM, Dommer J, Fischer S, et al. GiardiaDB
544 and TrichDB: Integrated genomic resources for the eukaryotic protist pathogens *Giardia lamblia*

545 and *Trichomonas vaginalis*. Nucleic Acids Res. 2009;37:526–30.

546 4. Franzén O, Jerlström-Hultqvist J, Castro E, Sherwood E, Ankarklev J, Reiner DS, et al. Draft
547 genome sequencing of *Giardia intestinalis* Assemblage B isolate GS: Is human giardiasis caused
548 by two different species? Plos Pathog. 2009;5:e1000560.

549 5. Stroehlein AJ, Korhonen PK, Chong TM, Lim YL, Chan KG, Webster B, et al. High-quality
550 *Schistosoma haematobium* genome achieved by single-molecule and long-range sequencing.
551 Gigascience. 2019;8:1–12.

552 6. Rhoads A, Au KF. PacBio sequencing and its applications. Genomics Proteomics
553 Bioinformatics. 2015;13:278–89.

554 7. Tyson JR, O’Neil NJ, Jain M, Olsen HE, Hieter P, Snutch TP. Whole genome sequencing and
555 assembly of a *Caenorhabditis elegans* genome with complex genomic rearrangements using the
556 MinION sequencing device. bioRxiv. 2017;

557 8. Lu H, Giordano F, Ning Z. Oxford nanopore minION sequencing and genome assembly.
558 Genomics Proteomics Bioinformatics. 2016;14:265–79.

559 9. de Koning APJ, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may
560 comprise over two-thirds of the human genome. PLoS Genet. 2011;7:e1002384.

561 10. Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, Von Haeseler A, et al.
562 Accurate detection of complex structural variations using single-molecule sequencing. Nat
563 Methods. 2018;15:461–8.

564 11. Jeffares DC, Jolly C, Hoti M, Speed D, Shaw L, Rallis C, et al. Transient structural variations
565 have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat

566 Commun. 2017;8:14061.

567 12. Weischenfeldt J, Symmons O, Spitz F, Korbel JO. Phenotypic impact of genomic structural
568 variation: insights from and for human disease. Nat Rev Genet. 2013;14:125–38.

569 13. Kyriakidou M, Tai HH, Anglin NL, Ellis D, Strömvik M V. Current Strategies of Polyploid
570 Plant Genome Sequence Assembly. Front Plant Sci. 2018;9:1–15.

571 14. Feng Y, Zhang Y, Ying C, Wang D, Du C. Nanopore-based fourth-generation DNA
572 sequencing technology. Genomics Proteomics Bioinformatics. 2015;13:4–16.

573 15. Leggett RM, Heavens D, Caccamo M, Clark MD, Davey RP. NanoOK: Multi-reference
574 alignment analysis of nanopore sequencing data, quality and error profiles. Bioinformatics.
575 2016;32:142–4.

576 16. Dubourg A, Xia D, Winpenny JP, Naimi S Al, Bouzid M, Sexton DW, et al. *Giardia*
577 secretome highlights secreted tenascins as a key component of pathogenesis. Gigascience.
578 2018;7:1–13.

579 17. Adam RD, Dahlstrom EW, Martens CA, Bruno DP, Barbier KD, Ricklefs SM, et al.
580 Genome Sequencing of *Giardia lamblia* Genotypes A2 and B Isolates (DH and GS) and
581 Comparative Analysis with the Genomes of Genotypes A1 and E (WB and Pig). Genome Biol
582 Evol. 2013;5:2498–511.

583 18. Wick R. A comparison of different Oxford Nanopore basecallers. 2017.
584 <https://github.com/rrwick/Basecalling-comparison#m>.

585 19. Ankarklev J, Franzén O, Peirasmaki D, Jerlström-Hultqvist J, Lebbad M, Andersson J, et al.
586 Comparative genomic analyses of freshly isolated *Giardia intestinalis* assemblage A isolates.

587 BMC Genomics. 2015;16:1–14.

588 20. Cooper MA, Sterling CR, Gilman RH, Cama V, Ortega Y, Adam RD. Molecular Analysis of
589 Household Transmission of *Giardia lamblia* in a Region of High Endemicity in Peru. J Infect
590 Dis. 2010;202:1713–21.

591 21. Cooper MA, Adam RD, Worobey M, Sterling CR. Population Genetics Provides Evidence
592 for Recombination in *Giardia*. Curr Biol. 2007;17:1984–8.

593 22. Ankarklev J, Lebbad M, Einarsson E, Franzén O, Ahola H, Troell K, et al. A novel high-
594 resolution multilocus sequence typing of *Giardia intestinalis* Assemblage A isolates reveals
595 zoonotic transmission, clonal outbreaks and recombination. Infect Genet Evol. 2018;60:7–16.

596 23. Birk CW. *Giardia* Sex? Yes, but how and how much? Trends Parasitol. 2010. p. 70–4.

597 24. Wellenreuther M, Mérot C, Berdan E, Bernatchez L. Going beyond SNPs: The role of
598 structural genomic variants in adaptive evolution and species diversification. Mol Ecol.
599 2019;28:1203–9.

600 25. Jerlström-hultqvist J, Franzén O, Ankarklev J, Xu F, Nohýnková E, Andersson JO, et al.
601 Genome analysis and comparative genomics of a *Giardia intestinalis* assemblage E isolate. BMC
602 Genomics. 2010;11:543–58.

603 26. Prucca CG, Slavin I, Quiroga R, Elías E V., Rivero FD, Saura A, et al. Antigenic variation in
604 *Giardia lamblia* is regulated by RNA interference. Nature. 2008;456:750–4.

605 27. Clark CG, Diamond LS. Methods for Cultivation of Luminal Parasitic Protists of Clinical
606 Importance. Clin mi. 2002;15:329–41.

607 28. Vera D. Dockerfile for the Albacore basecaller from Oxford Nanopore. 2017.

608 https://github.com/dvera/albacore.

609 29. Lin Y, Yuan J, Kolmogorov M, Shen MW, Chaisson M, Pevzner PA. Assembly of long
610 error-prone reads using de Bruijn graphs. *Proc Natl Acad Sci.* 2016;113:E8396–405.

611 30. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and
612 accurate long-read assembly via adaptive k -mer weighting and repeat separation. *Genome Res.*
613 2017;27:722–36.

614 31. Ruan J. Ultra-fast *de novo* assembler using long noisy reads. 2017.

615 https://github.com/ruanjue/smardenovo.

616 32. Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled *de novo* using
617 only nanopore sequencing data. *Nat Methods.* 2015;12:733–6.

618 33. Simpson J. Signal-level algorithms for MinION data. 2017. <https://github.com/jts/nanopolish>.

619 34. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform.
620 *Bioinformatics.* 2010;26:589–95.

621 35. Cock PJA, Bonfield JK, Chevreux B, Li H. SAM/BAM format v1.5 extensions for *de novo*
622 assemblies. *bioRxiv.* 2015;00:1–3.

623 36. Kielbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame genomic sequence
624 comparison. *Genome Res.* 2011;21:487–93.

625 37. Mcfrith. last-genome-alignments. 2017. <https://github.com/mcfrith/last-genome-alignments>.

626 38. Hamada M, Ono Y, Asai K, Frith MC. Training alignment parameters for arbitrary
627 sequencers with LAST-TRAIN. *Bioinformatics.* 2017;33:926–8.

628 39. Quinlan AR, Hall IM. BEDTools: A flexible suite of utilities for comparing genomic
629 features. *Bioinformatics*. 2010;26:841–2.

630 40. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva E V, Zdobnov EM. BUSCO:
631 Assessing genome assembly and annotation completeness with single-copy orthologs.
632 *Bioinformatics*. 2015;31:3210–2.

633 41. R Core Team. R: A language and environment for statistical computing. 2013. <http://www.r-project.org/>.

635 42. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: An
636 integrated tool for comprehensive microbial variant detection and genome assembly
637 improvement. *PLoS One*. 2014;9:e112963.

638 43. Slater GSC, Birney E. Automated generation of heuristics for biological sequence
639 comparison. *BMC Bioinformatics*. 2005;6:1–11.

640

641

642

643

644

645

646

647

648 **Figure 1.** Performance metrics for all *Giardia* BGS long read assemblies. The title above each
649 scatterplot denotes the metric being plotted on the y-axis. The left column shows the differences
650 between 1D (red Xs) vs 1Dsq (blue circles) data for each assembly protocol. Note that the data
651 are paired. The middle column shows the assemblies separated by assembly program: abruijn
652 (black Xs), canu (green circles), and SMARTdenovo (purple boxes). In the left and middle
653 columns, the assemblies are randomly assigned along the x-axis for visualization purposes, hence
654 there are no units. The right column shows polished sets of assemblies with the x-axis denoting
655 how many times the draft assembly was polished. The dashed grey line shows the size of the
656 *Giardia* BGS reference assembly.

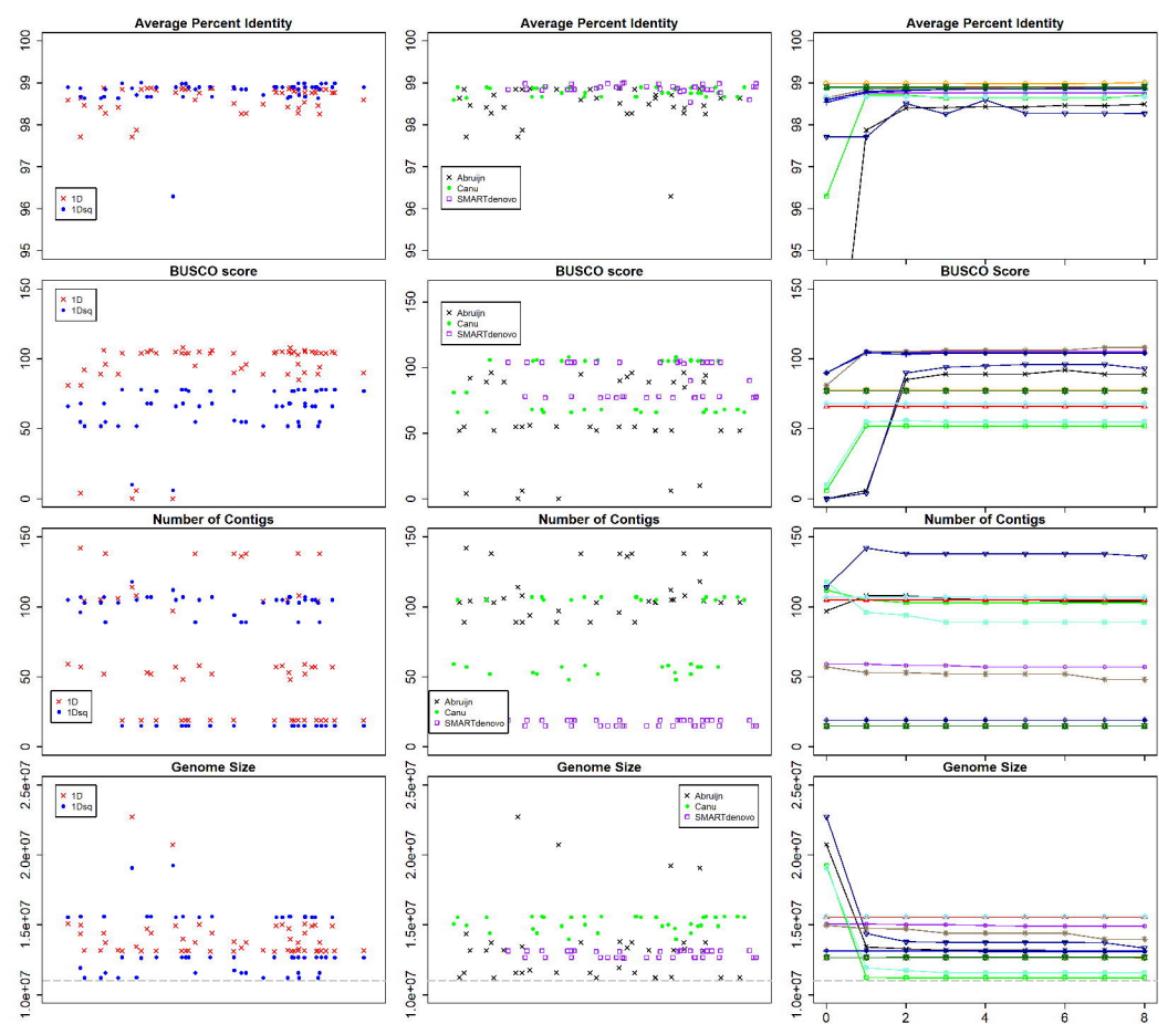
657

658 **Figure 2.** Dotplots (Oxford Grids) of pairwise whole genome alignments between the *Giardia*
659 AWB reference genome and A) the *Giardia* AWB hybrid genome, B) the *Giardia* beaver hybrid
660 genome, and C) the *Giardia* BGS hybrid genome. Each of the five *Giardia* chromosomes from
661 the reference genome is represented as a column and each contig from the hybrid genome is
662 represented as a row. Contig names and dots in the plot coloured red represent forward
663 alignments while contig names and dots coloured in blue are reverse alignments.

664

665 **Figure 3.** Whole genome alignments with predicted structural variants. The hybrid assembly
666 contigs are shown as coloured boxes next to the reference *Giardia* AWB chromosome to which
667 they align (black lines with vertical names beside each). Translucent purple boxes above the
668 contigs show the locations and sizes of predicted structural variants in all three hybrid genomes.

669 Note to reviewers: an interactive version of figure 3 that has filtering capabilities for viewing the
670 structural variants can be found at: http://pages.cpsc.ucalgary.ca/~stephen.pollo/Giardia_SV_Fig/


671 This version would be added to the GigaScience GigaDB database linked to the paper

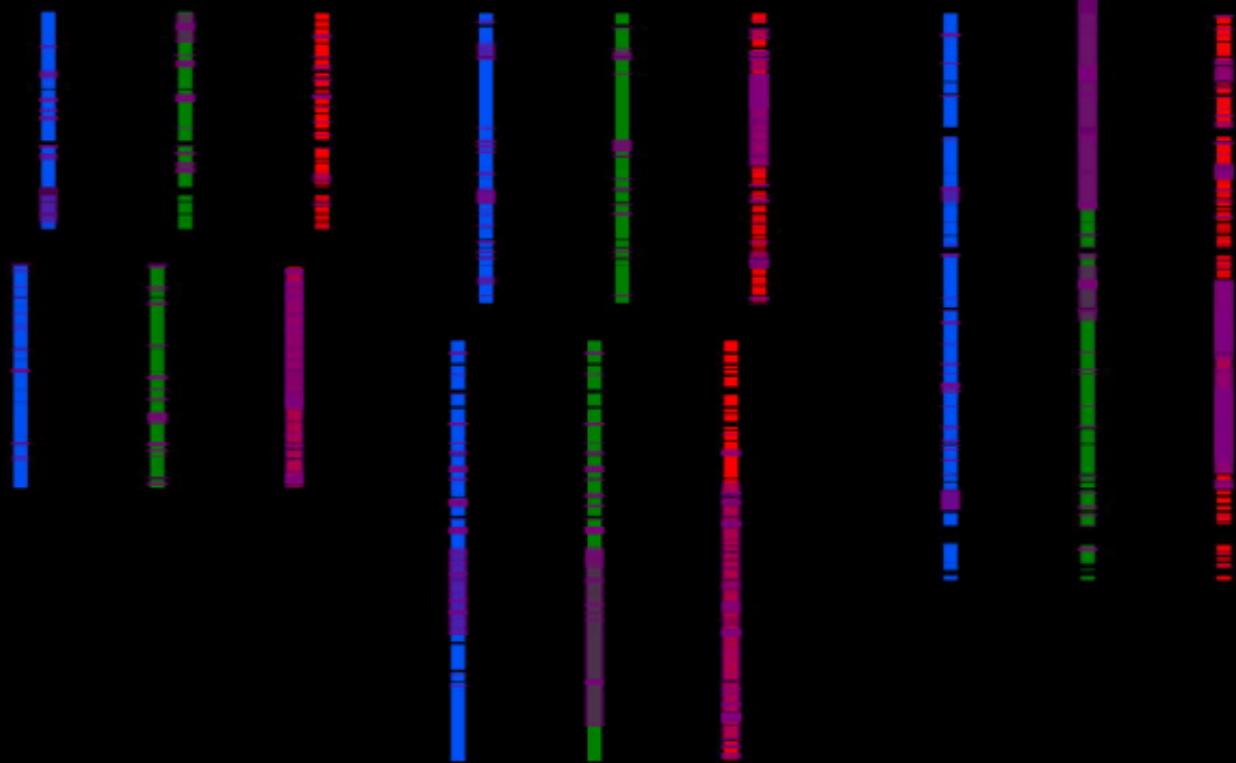
672

673 Table 1 on next page should go between pages 5 and 6.

Table 1. MinION sequencing run metadata, Albacore [28] basecalling results for both 1D and 1Dsq basecalling, and read statistics. “Pass” and “Fail” refer to reads that met or did not meet the quality threshold, respectively. Run 2 was conducted on a previously used flow cell after 64-72 h run time and so had few pores left.

Name Used in this Document	AWB_0150	AWB_0157	AWB_2331	AWB_2338	Beaver_2302	Beaver_2309	BGS_2237	BGS_2244
Run Name	SRRun1	SRRun1	SRRun2	SRRun2	SRRun3	SRRun3	SRRun4	SRRun4
Run ID	20170720_01 50_GiardiaW B_20170719	20170720_01 57_GiardiaW B_20170719	20170721_23 31_GiardiaW B_20170721	20170721_23 38_GiardiaW B_20170721	20170726_23 02_GiardiaB eaver_20170 726	20170726_23 09_GiardiaB eaver_20170 726	20170731_22 37_GiardiaG S_20170731	20170731_22 44_GiardiaG S_20170731
Isolate	<i>Giardia</i> AWB	<i>Giardia</i> AWB	<i>Giardia</i> AWB	<i>Giardia</i> AWB	<i>Giardia</i> beaver	<i>Giardia</i> beaver	<i>Giardia</i> BGS	<i>Giardia</i> BGS
Reference Genome Size (bp)	12827416	12827416	12827416	12827416	N/A	N/A	11001532	11001532
Total Number of 1D Reads	1225	329039	237	19531	1668	382740	1508	885046
Number of 1D Reads Pass	1207	304219	152	15842	1603	354581	1449	804942
Number of 1D Reads Fail	18	24820	85	3689	65	28159	59	80104
Total Number of 1Dsq Reads	172	60156	16	1904	146	53553	212	143371
Number of 1Dsq Reads Pass	68	25755	0	192	69	29349	124	62452
Number of 1Dsq Reads Fail	104	34401	16	1712	77	24204	88	80919
Average Length of 1D Reads	5066.15	7195.29	3450.08	6484.00	5113.00	8270.88	6534.03	9417.60
Longest 1D Read	42781	470735	32138	330795	37229	1132445	56642	485807
Average Length of 1Dsq Reads	5335.22	7685.61	2853.62	7344.74	5273.86	8472.84	5529.57	9829.82
Longest 1Dsq Read	18489	43102	6523	32705	22740	59564	25876	66185

A


OLCB01	OLCB02	OLCB03	OLCB04	OLCB05
sg101_pink				
sg121_pink				
sg108_pink				
sg122_pink				
sg110_pink				
sg111_pink				
sg123_pink				
sg124_pink				
sg125_pink				
sg126_pink				
sg127_pink				
sg128_pink				
sg129_pink				
sg130_pink				
sg131_pink				
sg132_pink				
sg133_pink				
sg134_pink				
sg135_pink				
sg136_pink				
sg137_pink				
sg138_pink				
sg139_pink				
sg140_pink				
sg141_pink				
sg142_pink				
sg143_pink				
sg144_pink				
sg145_pink				
sg146_pink				
sg147_pink				
sg148_pink				
sg149_pink				
sg150_pink				
sg151_pink				
sg152_pink				
sg153_pink				
sg154_pink				
sg155_pink				
sg156_pink				
sg157_pink				
sg158_pink				
sg159_pink				
sg160_pink				
sg161_pink				
sg162_pink				
sg163_pink				
sg164_pink				
sg165_pink				
sg166_pink				
sg167_pink				
sg168_pink				
sg169_pink				
sg170_pink				

B

OLCB01	OLCB02	OLCB03	OLCB04	OLCB05
sg101_pink				
sg121_pink				
sg108_pink				
sg122_pink				
sg110_pink				
sg111_pink				
sg123_pink				
sg124_pink				
sg125_pink				
sg126_pink				
sg127_pink				
sg128_pink				
sg129_pink				
sg130_pink				
sg131_pink				
sg132_pink				
sg133_pink				
sg134_pink				
sg135_pink				
sg136_pink				
sg137_pink				
sg138_pink				
sg139_pink				
sg140_pink				
sg141_pink				
sg142_pink				
sg143_pink				
sg144_pink				
sg145_pink				
sg146_pink				
sg147_pink				
sg148_pink				
sg149_pink				
sg150_pink				
sg151_pink				
sg152_pink				
sg153_pink				
sg154_pink				
sg155_pink				
sg156_pink				
sg157_pink				
sg158_pink				
sg159_pink				
sg160_pink				
sg161_pink				
sg162_pink				
sg163_pink				
sg164_pink				
sg165_pink				
sg166_pink				
sg167_pink				
sg168_pink				
sg169_pink				
sg170_pink				

C

OLCB01	OLCB02	OLCB03	OLCB04	OLCB05
sg101_pink				
sg121_pink				
sg108_pink				
sg122_pink				
sg110_pink				
sg111_pink				
sg123_pink				
sg124_pink				
sg125_pink				
sg126_pink				
sg127_pink				
sg112_pink				
sg109_pink				
sg113_pink				
sg114_pink				
sg115_pink				
sg116_pink				
sg117_pink				
sg118_pink				
sg119_pink				
sg120_pink				
sg121_pink				
sg122_pink				
sg123_pink				
sg124_pink				
sg125_pink				
sg126_pink				
sg127_pink				
sg128_pink				
sg129_pink				
sg130_pink				
sg131_pink				
sg132_pink				
sg133_pink				
sg134_pink				
sg135_pink				
sg136_pink				
sg137_pink				
sg138_pink				
sg139_pink				
sg140_pink				
sg141_pink				
sg142_pink				
sg143_pink				
sg144_pink				
sg145_pink				
sg146_pink				
sg147_pink				
sg148_pink				
sg149_pink				
sg150_pink				
sg151_pink				
sg152_pink				
sg153_pink				
sg154_pink				
sg155_pink				
sg156_pink				
sg157_pink				
sg158_pink				
sg159_pink				
sg160_pink				
sg161_pink				
sg162_pink				
sg163_pink				
sg164_pink				
sg165_pink				
sg166_pink				
sg167_pink				
sg168_pink				
sg169_pink				
sg170_pink				

