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1 Abstract

2 In the current research on measuring complex behaviours/phenotyping in rodents,
3 most of the experimental design requires the experimenter to remove the animal from its
4  home-cage environment and place it in an unfamiliar apparatus (novel environment). This
5 interaction may influence behaviour, general well-being, and the metabolism of the animal,
6  dffecting the phenotypic outcome even if the data collection method is automated. Most of
7  the commercially available solutions for home-cage monitoring are expensive and usually
8 lack the flexibility to be incorporated with existing home-cages. Here we present a low-cost
9 solution for monitoring home-cage behaviour of rodents that can be easily incorporated to
10 practicaly any available rodent home-cage. To demonstrate the use of our system, we
11 reliably predict the sleep/wake state of mice in their home-cage using only video. We validate
12 these results using hippocampal local field potential (LFP) and electromyography (EMG) data.
13 Our approach provides a low-cost flexible methodology for high-throughput studies of sleep,

14 circadian rhythm and rodent behaviour with minimal experimenter interference.
15  Keywords: Rodents, Behaviour, Monitoring, Home-Cage, Low-Cost, Raspberry Pi.
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1 Introduction

2 Rodents have been widely used for understanding the aetiology, pathophysiology and
3  pharmacology of neurological disorders; due in part to its similar brain architecture to
4  primates and complex behavioura repertoire. Recent improvement of sophisticated tools
5 used for measuring and manipulating brain activity, including optogenetics, two-photon
6 imaging, wide-field mesoscale imaging, fibre photometry, mini endoscopes [1-7], as well as
7  the availability of diverse transgenic lines and disease models, further incentivize their use in
8 mechanistic studies [8-11]. Though non-human primates have been traditionally used to
9 understand the neural mechanisms underlying executive function and higher-order cognition
10  (such as decision making, motor skill execution, and perceptua discrimination), high-
11 throughput experiments on non-human primates are not feasible because of cost and

12 regulation constrains [12].

13 The organization of spontaneous home-cage behaviour of rodents reflects the
14  interplay between multiple neurobiological processes and can provide a high-throughput
15  phenotyping strategy without experimenter’s intervention. In addition to the lack of observer
16  bias in monitoring animal behaviour [13], one mgor advantage of automated home-cage
17 monitoring is continuous and accurate monitoring particularly during dark periods when mice
18  are most active [14, 15]. Furthermore, remote monitoring of animals also greatly reduces the
19  requirement for animal handling which may be stressful and/or confound studies [15-18]. In
20  certain disease models assessing the signs of ill health, pain and distress is difficult [19] and
21 since mice are crepuscular and nocturnal animals making observations at the wrong time of
22 day can result in missing them altogether. Remote home-cage monitoring systems will allow
23 scientists, veterinarians and animal technicians to monitor animal well-being even during the

24  dark phases [20].
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1 There are multiple pre-existing methods currently used to evaluate animal activity in
2 the home-cage with different degrees of invasiveness and precision. Each of these approaches
3 have their own advantages and pitfalls. In mice, subcutaneously implanted small magnets
4  have been used to determine animal activity with respect to an array of magnetic field sensors
5 under the home-cage [21]. Flores et al. developed a non-invasive approach for monitoring
6 animal activity by using piezoelectric sensors positioned on the cage floor [22]. Another non-
7 invasive system to quantify sleep-awake cycles in mice has been developed using passive
8 infrared (PIR) motion sensors [23]. Similarly, Radiofrequency identification (RFID) tags
9  have been used to track multiple animals to study their activity in the home-cage. However,
10 this method has the disadvantage of being expensive, having poor spatial and temporal
11 resolution as well as the invasiveness of the tag implantation which may provide discomfort
12 totheanimal [24]. Approaches with minimal invasiveness include running wheels and video-
13 based methodologies. Though running wheels are widely used because of their low cost and
14  ease of implementation for measuring the rodent activity and/or changes in circadian rhythm,
15  they have also been shown to grestly affect animal behaviour.
16 Electroencephalogram (EEG) and electromyogram (EMG) signals have been used as
17  the standard approach to classify sleep-wake states, but this involves the implantation of
18  electrodes for recordings [25]. Not only is this approach time-consuming and invasive but
19  also expensive to implement, particularly in high throughput experiments for assessing sleep-
20  wake behaviour under varying pharmacological and environmental manipulations [26]. In the
21  past, severa atempts have been made to develop alternative less invasive methods (other
22 than EEG/EMG) to classify sleep-awake behaviour in rodents. For instance, video
23 monitoring has been used to evaluate periods of sustained immobility as a surrogate of
24 EEG/EMG-defined sleep [27, 28]. All these methods have been able to provide 90-95%

25 agreement with tethered EEG/EMG recordings, however these methods are sometimes
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1 difficult to implement because of their technical complexity or the expense of the required
2 software/hardware which makes them unsuitable for high throughput studies of animal
3 behaviour. Here, we present a low-cost rodent home-cage behaviour monitoring system built
4  around the Raspberry Pi (RPi) using open-source software technologies that is suitable for
5 high-throughput data acquisition with virtually no experimenter interventions. We show that
6 our system is capable to reliably video-monitor multiple home-cages simultaneously and
7 remotely at variable frame rates (from 10-120 Hz). To demonstrate the capabilities of our
8  system, we present areliable sleep-wake classification based only on video data collected in
9 thehome-cage and validate it against a standard EEG/EMG based scoring.

10 In summary, low-cost automated home-cage monitoring and analysis systems, like the

11 one proposed here, represent a platform upon which custom systems can be built, allowing

12 researchersto study rodent behaviour with minimal experimenter interference [29-32].

13 Material and Methods
14

15  Animals

16 All experiments were carried out on adult (20-30 g, age 4 month) wild type C57BL/6 mice (n
17 = 10). Mice were housed under standard conditions, in clear plastic cages under 12 h light, 12
18  h dark cycles. All the animals were either grouped or singly housed in Optimice® (Animal
19  Care Systems) home-cages depending on the experimental protocol they were going through.
20 Mice were given ad libitum access to water and standard laboratory mouse diet . All
21 protocols and procedures were approved by the Animal Welfare Committee of the University
22 of Lethbridge and were in accordance with guidelines set forth by the Canadian Council for

23 Anima Care.
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1 Surgery
2 Loca field potential (LFP) and electromyography (EMG) electrodes were implanted in

3 C57BL6J mice anesthetized with isoflurane (2.5% induction, 1-1.5 maintenance). For
4  hippocampal LFP recordings, a monopolar electrode made of Teflon coated stainless-steel
5  wire (bare diameter 50.8 um) was inserted in the brain (at coordinates -2.5mm AP, 2mm ML
6 and 1.1mm DV from bregma), targeting the CA1 region. For EMG recordings, a multi-
7  stranded Teflon-coated stainless-steel wire (bare diameter 127 um) was inserted into the neck
8  musculature using a 23-gauge needle. The reference and ground screws were placed on the
9 skull over the cerebellum. The other end of electrode wires were clamped between two
10  receptacle connectors (Mill-Max Mfg. Corp.) glued to the headpiece which in turn was
11 secured to the skull using metabond and dental cement.

12 Electrophysiology

13 After electrode implantation, the animals were allowed to recover for 7 days before being
14  habituated to the recording setup consisting of a home-cage without the lid placed in the
15 middle of a large Plexiglas box used as secondary containment. During 24 hour LFP and
16  EMG recordings, the electrophysiological tethers were connected to a motorized commutator
17 (NeuroTek Inc.). The hippocampal LFP and neck EMG signals were amplified, filtered (0.1-
18 2000 Hz) and digitized at 4 kHz using a Digital Lynx SX System (Neuralynx, Inc.) and

19  Cheetah software (Neuralynx, Inc.).

20 System architecture/Hardware

21 Our system consists of a RaspberryPi (model 3B+), an infrared Picamera module (v2 NoIR),
22 a wide-angle lens (AUKEY optics) and IR LEDs (DC12V SMD3528-300-IR (850nm))
23 placed on the home-cage lid to monitor the mouse behaviour (Fig. 1). To make sure that the
24  field of view covered the entire home-cage, we placed the camera lens on the home-cage lid

25  through a custom made hole at its centroid and sealed it with hot glue. The Picamera module
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1 isconnected to the Mobile Industry Processor Interface (MIPI) Camera Seria Interface (CSI)
2 port on the RaspberryPi via a 15cm ribbon cable. The RaspberryPi further connects to the

3 computer network either viaaLAN cable or a Wi-Fi connection (Fig. 1 A-D).

Figure 1. Animal home-cage monitoring system architecture and web interface. (A)
Basic rack with multiple home-cages. (B) Top view and, (C) side view of a mouse home-cage
with a wide-angle lens and camera mounted on top and connected to a Raspberry Pi (RPi).
This RPi is responsible for data acquisition and for controlling external peripherals. The RPi

further connects to a computer network either via Ethernet or Wi-Fi connection, (D) allowing

O 00 N o v b

the remote user to view the animal activity in the home-cage, via web browser. (E) The home
10  page of the web interface allows the user to view the animal activity in its home-cage in real-

11 time and to start/stop recording videos and to capture images.
12 System interface

13 The remote user can view the live feed of the animal activity in the home-cage via a
14  customized web interface (Fig. 1 E). In addition to live home-cage monitoring, it is possible
15  to record video data to do off-line behavioural analysis. The web interface was created using
16  PHP, JavaScript and CSS, which runs on an Apache web server on the Raspberry Pi and is
17  based on Silvan Melchior's implementation
18  (https://github.convVsilvanmelchior/RPi_Cam Web_Interface). All the code we used and
19  developed, is open-source and it can be downloaded from
20  https://github.com/surjeets/Animal_Home_Cage and https://github.com/surjeets’'Home-Cage-

21 Python-and-MATLAB-Code.

22 The web interface has Home, Settings, Preview and GPIO Control tabs; by default,
23 the opening page is the Home page (Fig. 1-E) where users can view the live camera feed,
24  start/stop video recording, capture an image or stop the camera. Users can change the camera
25 settings on the Settings page (e.g. video resolution, frame rate, brightness, contrast,

26 sharpness, I1SO, rotation, annotations, video splitting, etc.) (Fig. 2). Users can also
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1 preview/download/delete captured images and videos on the Preview page (Fig. 3). The
2 dtorage space available on the SD card (or selected storage device) is indicated on this page.
3 Further, users can aso manually control external peripherals attached to the system (e.g.
4  LEDs, buzzers, motors, etc.) viathe GPIO Control interface (Fig. 4).

5 Fig 2. Web interface for camera settings. This interface allows a user to change camera

6  settings such as: video resolution, frame rate, brightness, contrast, sharpness, 1SO, rotation,

7  annotations, video splitting etc.

8 Fig 3. Preview of recorded videos/captured images. This interface allows the user to
9  preview/download/delete captured images and videos. Further, storage space available on the
10  SD card for recording more videos/capturing images is also indicated.

11 Fig 4. Remote control of external peripherals. This interface allows the user to manually
12 control externa peripherals attached to the system via the RPi GPIO pins (e.g. LEDs,

13 Buzzers, motors, €tc.).

14 The real-time video streaming is based on the program RaspiMJPEG which is an
15  OpenMAX-application developed by Silvan Melchior and is based on the Multimedia
16  Abstraction Layer (MMAL) library [33]. In the web interface of our system, the
17 RaspiMJIPEG makes a connection to the camera (MMAL) and generates a continuous stream
18  of single frames which are saved in the /dev/shm/mjpeg directory of the RPi (e.g. cam.jpg).
19  This folder is a virtual memory shared location that speeds up the execution by avoiding
20  having to do many read/write to disk operations. These frames are accessed via URLSs on the
21 Apache Web server. The script cam_pic.php returns the latest one and cam_pic_new.php
22 merges the frames into an mjpeg stream. The stream of the frames (preview images) is
23 maintained throughout even during capturing/recording video/image. The captured
24  video/image data is stored in the media folder (/media) of the RPi, the images are stored in
25  JPEG format while the video is stored in h264 format but can be automatically packaged into

26 an mp4 file when the recording ends. Alternatively, the video stream can also be assessed
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1 using the iSpy Connect software (www.ispyconnect.com) running on a windows machine by

2 adding the following url: http://<your_pi_ip>:<port>/html/cam.jpg or http://
3 <your_pi_ip>:<port>/html/cam_pic_new.php? in the JPEG URL or MJPEG URL tab within
4  video source. This allows the user to simultaneously capture a video stream on a desktop
5 computer and on the RP. This implementation allows to schedule video recordings across

6  multiple cages.

7 Offline Behaviour Analysis

8  To process the recorded videos, we implemented two offline algorithms for behavioural data
9 anaysis using OpenCV and Python (https://github.com/surjeets’Home-Cage-Python-and-
10 MATLAB-Code), one for motion detection and another for animal tracking in the home-cage.
11 Using these simple algorithms, we were able to demonstrate our approach by performing

12 sleep/wake analysis with accuracy comparable to EMG recordings based methods.

13 Motion detection, tracking and sleep/wake scoring

14  We use a simple and well-known computer vision method to detect motion and to track
15 animals in the home-cage. To estimate the amount of motion in a video we extract the
16  background [34-37] and take the difference between consecutive frames (frame differencing)

17 [38].

18 For motion detection we implemented the algorithm shown in Fig 5 (Algorithm 1).
19  First, the background is estimated by calculating the weighted mean of previous frames along
20  with the current frame. In this way our system can dynamically adjust to the background even
21 with the small changes in the lighting conditions. After this, frame differencing is performed

22 by subtracting the weighted mean from the current frame to get adelta frame:

delta_frame = |background_estimation - current_frame|
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1 The delta frame is then thresholded (assigning a constant value to all the pixels above the
2 threshold and zero to the rest) to find regions in the image that contain substantial difference
3 from the background. These regions correspond to “motion regions” in each video frame.

4 Next, we calculated the area of each motion region in the thresholded delta frame. If
5 these motion regions have an area larger than a threshold (the area that a mouse occupies in
6 the visual field is assumed to be larger than a certain number of pixels), the motion is
7  considered to be caused by the mouse (the motion region is shown with a rectangle around it
8 Fig 6-A). This threshold was set to avoid other objects (e.g. cables or bedding) or pixel

9 fluctuations due to breathing being incorrectly detected as mouse motion.

10  For animal tracking we implemented the algorithm shown in Fig 5 (Algorithm 2). This
11 algorithm assumes that there is a high contrast between the mouse and the home-cage
12 background. First, a Gaussian filter (size = 21, sigma = 3.5) is used to reduce noise in each
13 video frame, then intensity-based thresholding is applied to segment the filtered image.
14  Subsequently, to find the animal location, the contour with the largest area is detected, which,
15 in the home-cage, is usually the animal. Finaly, to calculate the trgjectory of an animal, the
16  centroids of the detected largest contour in each frame are connected (Fig 6-B). These
17  trajectories can be used to calculate the distance travelled by the animal or to visualize its
18  spatial occupancy.

19

20 Fig 5. Off-line video analysis algorithms. Algorithm 1 (top) quantifies animal activity and
21 Algorithm 2 (bottom) calculates and draws the trgectory of the animal detected. Both
22 agorithms are presented in pseudo-code (in our repository, they are implemented in Python
23 using openCV).

24

25 Fig 6. Animal motion detection and tracking. (A) Results of activity detection algorithm
26 showing day (left column) and night (right column) time activity of the animal in the home-
27 cage. (B) Results for animal tracking algorithm with the centroid marked with a white dot
28  (left) and the tracking plot generated by connecting the detected centroids in each frame
29  (right).

10
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2 We use the centroid of the motion-detected region to track the animal position in the
3 home-cage (Fig 6B). These trgectories can be used to calculate the distance travelled by the
4 animal or to visualize its spatial occupancy. Finally, we use our motion measure (motion
5 signal) to predict when the animal is sleeping or awake. For sleep/wake scoring, we filtered
6 the video-based mation signal below 0.1 Hz using a zero-lag Chebyshev filter and detrended
7 using 10 sec windows with 5 sec overlap (using the locdetrend function from the Chronux
8  Toolbox) to remove the variations in the baseline across light and dark cycle. The result was
9 thenrectified and integrated using 20-sec moving windows. Next, this signal was thresholded
10  using its 50-60 percentile to classify waking and sleep periods. If the signal was below the
11  threshold for at least 40 sec, the animal was assumed to be asleep, or awake otherwise. This
12 threshold was chosen based on the optimal length based on the accuracy of sleep detection
13 (Fig.9A). A similar criteria was reported in [27, 28, 39]. The EMG based sleep/wake scoring
14 was performed by filtering the raw EMG activity between 90 Hz and 1000 Hz and then
15  rectifying and integrating it using 20-sec moving windows. A state was scored as sleep when
16 the EMG signal was smaller than its 50-60 percentile, otherwise it was classified as awake
17 [27]. The accuracy of video-based classification was calculated by counting the amount of
18  time the video-based scoring was the same as the EMG-based scoring divided by the total

19  recording time:

Y. abs( sleepwake classificationg,; — sleepwake classification,;ze,)

accuracy = . .
Y total recording time

20

11
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1 Camera settings and temporal precision evaluation

2 In some behavioural tasks (e.g. reach and grasp, grooming behaviour) it is very important to
3 acquire the data at high frame rates. With the Picamera camera board V2.1 (8MP Sony
4  IMX219 sensor), it is possible to record video @ 30 fps in full resolution (no shutter lag and
5  simultaneous recording), and also @120 fps if using the 2 x 2 analogue binning mode (which
6 is a clocking scheme to collect the charge of a 2x2 CCD pixel area). We evauated the
7  tempora precision of the frame acquisition of the RPi Camera by comparing the average
8  number of dropped frames and variation in interframe intervals (IFIV) in a video at different
9 framerates (30, 60, 90 and 120 fps) and recording formats: h264, which is the compression
10 standard MPEG-4 AVC and raw YUV, which is an uncompressed bitmap data format. In
11  order to quantify the tempora precision of the frame acquisition of the Picamera, we
12 recorded the time stamps of each frame acquisition into a csv file using the picamera python

13 library [40].

14 To evaluate the time difference in simultaneous frame acquisition, multiple RPis were
15  simultaneously triggered with an external square TTL pulse. On another RPi (besides the
16  ones being triggered), we monitored the transition (high or low) of selected GPIO pins in
17  real-time that corresponded to external trigger pulses that represent the start and stop times of
18  video recording (Fig. 7) using piscope [41]. The timestamps of acquired frames on different
19  RPis were later aligned offline to quantify any temporal differences in the acquisition. Table
20 1 shows that the jitter in the frame acquisition on different RPis is in the order of few
21 microseconds.

22 Off-linealignment of the video with additional signals
23

24  To align the video recordings to LFP or EMG signals, we keep track of the times when the

25 video acquisition begins and ends in the same acquisition system that records the

12
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1 electrophysiological signals. We do this by setting a TTL signal (Transistor-Transistor Logic
2 5V) toHIGH in one of the GPIO pins of the RPi when the video acquisition starts and set to
3 LOW when the acquisition terminates. Additionally, we also record the times when each
4  video frame is acquired

(see https://picamerareadthedocs.io/en/rel ease-

5  1.13/api_camerahtml).

¢ Results

7 High Frame Rate Acquisition

8  The tempora precision and resolution required for the video recordings depends largely on

9 thebehaviour we are interested in. For example, if oneisinterested in skilled reaching or play
10  behaviour this might require to record video at higher resolution and frame rates than if we
11  are interested in monitoring the genera activity in the home-cage. Since the temporal
12 precision of the video varies depending on the settings we used, we compared some of the
13 file formats and recording settings in this system. We observed that there are dropped frames
14  when we save the video in raw YUV format above 30 fps at full resolution. This situation
15  gets worse when the frame rate augments. For example, a 90 fps we can only achieve a
16  frame rate of 77.61 + 4.59 fps with a lag of 54.45 + 31.78 ms between consecutive frames
17 (Table 1). In contrast, using the H264 encoding we were able to record at 120 fps with no

18 missed frames (120.54 + 0.00 fps) and almost no lag between frames (2.44 £ 0.46 ps).

19

Expected Frame rate achieved | Variance in | Frame rate | Variance in

framerate (raw YUV format)” interframe interval | achieved (h264 | interframe
(IFIV)  for raw | encoded)’ interval (IFIV)
YUV format” for h264

encoded”

30 fps 2898+ 1.70fps 39.70 + 66.83 ms 30.00 + 0.00 fps 2.00£0.18 ps

60 fps 52.84 + 3.34 fps 81.34 + 27.66 ms 60.20 + 0.00 fps 0.63+0.31 ps

90 fps 77.61 + 4.59 fps 54.45 + 31.78 ms 90.24 + 0.00 fps 2.23+0.35us

120 fps N.A. N.A. 120.54 + 0.00 fps 244+ 0.46 ps

13
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1 Table 1. Comparison of frames per second (fps) and variance in Inter frame interval

2 (IFIV) of the video data acquired over multiple trials: 15-minute video (320 X 240) was
3 recorded in araw (YUV) format and h264 encoding for 10 trials at a fixed frame rate (fps) on
4 multiple RPis (n=5). results expressed as mean + standard deviation.

5

6 Multiple camera synchronization

7  The system presented here assumes that a single camera is placed on the home-cage
8  providing atop-down view. However, it is possible to use more than one camera if they can
9  be synchronized [42]. To test this, we evaluated the temporal alignment of two cameras
10 recording video synchronously (see Methods). We found that the temporal difference
11  between the two cameras is in the order of less than ten microseconds when using H264
12 encoding at 320 x 240 pixel resolution and frame rates from 30-120 (last column of Table 1

13 and Fig. 7).

14  Fig 7. Simultaneous video acquisition on multiple Raspberry Pis. Example of two
15  Raspberry Pis (RP) triggered by an external TTL pulse (Trigger) to simultaneously start/stop
16  video recording RPis (RPi 1 and RPi2).

17

18 Slegp-wake state classification

19  To classify the behaviour of the mouse into sleep and wake states, we applied the following
20 criteria if the mouse was not moving (according to our motion detection algorithm) for more
21 than 40 sec, we assumed that it was asleep, otherwise we assumed it was awake (see Methods
22 and Fig 5). To validate this classification, we simultaneously recorded hippocampal local
23 field potentials (LFP) and EMG signals and compared them to our video-only based
24  classfication (Fig. 8A-B). The high-throughput methodology for sleep-wake monitoring
25 presented here can be easily incorporated into any existing phenotyping test battery, e.g.

26 circadian studies (Fig. 8B). For example, our 24 hour sleep/wake classification algorithm
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1 shows that animals were more active during the dark cycle than during the light cycle

2 (Fig.8C-D, n=5, one-way anova, Bonferroni correction, F( gy = 12.03, p = 0.0085).

Fig 8. Sleep-wake state classification. (A) Example of hippocampal (HPC) LFP and its
spectrogram and rectified EMG activity recorded from a naturally sleeping animal during 24h
(B) Comparison of hypnogram scoring the sleep and waking states calculated based on the
EMG and video monitoring. (C) Example actogram generated using Algorithm 1, for a day-
night sleep-wake state classification for one mouse. (D) Mean estimated awake duration

O 0w N o v b

expressed in terms of percentage activity for day and night cycles (12 hr each) for n = 5

10  animals (mean + standard deviation, ~ denotes p < 0.01; one-way ANOVA using Bonferroni

11  post hoc).
12
13 Our sleep-wake classification was highly correlated to the 24 hr LFP/EMG recordings

14 (90.52% £ 0.4 accuracy. Fig. 9C). Similar results were obtained for shorter recordings (data
15 not shown).

16 We chose a 40 sec threshold to determine the behavioural state of the animal based on
17  the optimal accuracy of our method compared to the EMG based classification (Fig. 9A). A
18  very similar finding is reported in [28]. The performance of our method decreased when
19 using shorter windows thresholds because the mouse could be immobile for very short
20  periods of time but not asleep. Analogously, when using long windows, the accuracy drops
21  because mice can sleep during short periods (see Discussion). We found that the estimated
22 digributions of the duration of the detected sleep events using the video-based and EMG
23 based methods is generally similar. However, they differ when the durations of the events are
24  small, close to 1-2 sec or between 10-30 seconds (Fig. 9B). In addition, the accuracy of the
25  video-based method changes with respect to the noise in the motion detection signal, which
26 inturn is modulated (in part) by the smoothening of this signal (see Methods). When the

27  video-based motion detection signal was smoothened using very short windows, small

15


https://doi.org/10.1101/342501
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/342501; this version posted May 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

1 motion fluctuations could be incorrectly detected as wakening. The smoothening over longer

2 windows improves the accuracy of the method up until an asymptotic value (Fig. 9C).

Fig. 9. Performance of video-based sleep/wake classification. (A) Relationship between
the time length of continuous inactivity threshold and accuracy of sleep/wake video-based
classification. Y-axis shows the difference in minutes between the average amounts of sleep
detected using the video-based and EMG classification in 2 hr interval (n=5 animals). (B)
Density estimations of sleep events durations for EM G-based (gray) and video-based (red)
classification (top). The density was estimated using the RASH method described in [43].
10 Box and raster plots (bottom) of the sleep detected events of the different durations in
11  seconds (X-axis). (C) Correlation between the video-based and EMG-based sleep/wake

12  classifications for different smoothing windows durations. Error bars represent the S.E.M for

O 0w N o v b

13 n=5animals.

14 Discussion

15  When studying complex behaviour, experimental designs that require the experimenter to
16 move the animal from its home-cage environment to an unfamiliar apparatus (novel
17 environment) are relatively disruptive, time- and labour-consuming and require additional
18  laboratory space. This disruption may influence behaviour, general well-being, and
19  metabolism of the animal, affecting the phenotypic outcome, even if the data collection
20 method is automated, therein possibly creating spurious findings. Therefore, monitoring the
21 animalsin their home-cage has severa advantages. Though there are already open-source and
22 commercia solutions available to monitor anima behaviour [44-51], they are usually
23 difficult to construct, require a new infrastructure/space, and are expensive. Conversely, we
24  propose a video-based system that is composed of off-the-shelf components and designed to
25 besimple and easily integrated in existing home-cage setups with minimal modifications for
26 remote behaviour monitoring. Such a system can be used for short-term welfare assessment

27  (e.g. post-surgery monitoring) by enabling 24 hr monitoring, even in the dark phase where
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1 welfare assessment without disturbance to the cage is difficult and subjective. Further, video
2 data collected with this system can be used to classify sleep-wake states of an animal in the
3 home-cage using video-based tracking. The simple video-based tracking algorithm that we
4 use has an accuracy above 90% when compared with tethered LFP/EMG recordings for
5 sleep-wake state classification. This algorithm is based on the quantification of motion during
6 aperiod to determineif the animal is awake or asleep. We found that the highest accuracy of
7  the sleep/wake classification is reached when the time window threshold for no motion
8  period to be considered as sleep is close to 40 secs compared to the gold standard EEG/EMG
9 based classification. The performance of our classification method mainly depends on two
10 factors: the amount of time we use as a threshold to assume the animal is asleep and the
11 amount of noise (or smoothness) in the motion detection signal. When considering shorter
12 time windows as a threshold, this method incorrectly classifies periods of quiet wakefulness
13 assleep. Analogously, when the window is too large, this method incorrectly classifies long
14  periods of sleep that contain small movement as wake periods (e.g. twitches) (Fig. 9A). The
15  smoothness of the motion detection signal is determined (in part) by the length of the
16  smoothening window. If the window is small, the motion detection signal contains small
17  changesin the home-cage (illumination, cables, bedding, etc), that can cause the algorithm to
18 incorrectly detect these changes as the mouse being awake. We can alleviate this problem by
19  extending the smoothening signal to reach an asymptotic performance compared to the EM G-
20 based classification (Fig. 9C). This has been previously reported in similar video-based
21  sleep/wake classification approaches [27, 28]. Although these results show that our video-
22 based agorithm reliably determines whether the animal is awake or asleep (compared to an
23 LFP-EMG based algorithm), for a more in depth classification of sleep into Rapid-Eye

24  Movement (REM) and non-Rapid Eye Movement (NREM) sleep states, our video analysis
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1 should be complemented with more advance computer vision techniques [52] or additional

2 brainsignals.

3 Our system has some advantages and limitations due to the technology we use. For
4 example, an advantage of the video based tracking algorithm presented here it is a higher
5 tempora resolution (in the order of milliseconds) and spatia resolution (in the order of
6 millimeters), both determined by the video camera, as compared to standard tracking
7 approaches such as RFID systems. In contrast, a home-cage RFID system with an array of 18
8 RFID sensors (ID20LA) has a spatia resolution of 5 cm and a tempora resolution of 1Hz
9 [24]. One disadvantage of our system is that it can only track one animal at a time due to the
10 potential high similarity between multiple mice (e.g. same fur colour and shape) [47],
11 compared to the multiple animal tracking capability of an RFID based system. However,
12 RFID (and video-hybrid) systems are highly specialized, difficult to setup and expensive [46,
13 51, 53, 54]. A potential approach to improve video-based tracking methods is to extract high
14  leve features from each animal to identify every individual using machine learning [55, 56].
15  However, such agorithms need to be highly calibrated and tested to provide reliable results.
16  Another possible limitation of our system is the processing power of the RR if extensive
17 online video processing is required. For example, streaming live video over a network and
18  simultaneously performing object recognition on the RPi in real time might result in eventua
19  frame dropping. Despite these limitations, the system has several advantages for large scale
20  monitoring of rodents: it can be easily integrated with any available rodent cage-rack system.
21 Further, a user can remotely monitor day/night activity of animals in multiple cages, from
22 virtually anywhere via the web interface which can be applied not only for research but
23 animal care and husbandry.
24 Finally, in addition to the sleep/wake classification application presented in this work,

25  our system could also be applied to study different aspects of animal behaviour. For example,
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1 our system can produce actograms and determine the proportion of sleep and wake periods
2 during the day (Fig. 8C-D). A similar trend is observed in systems using running wheels for
3 phenotyping circadian rhythms [39]. Even though running wheels are widely used to study
4  circadian rhythm in rodents, it has been shown that long-term access to a running wheel
5  affect animal behaviour and disease pathology [26]. The home-cage video monitoring system
6 does not introduce such confounding factors, rather it allows researchers to evauate
7  additional behavioural parameters such as the distance travelled, or the time spent in certain

8  areas of the cage, which can provide additional data on anxiety or behavioural inhibition.

s Conclusions

10  In this paper, we present a low-cost home-cage reliable behavioural monitoring system that
11  can be easily adapted and extended to a large variety of conditions and pre-existing
12 experimental setups. We demonstrated that our system can be used to study natural sleep
13 patterns of mice in their home-cage using only video. Due to its suitability for remote
14  behaviour monitoring and minimization of experimenter bias at low-cost, systems like the
15 one presented here, can become a useful tool for high-throughput data collection and

16  behavioural analysis of rodentsin their home-cage.
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AniHome Home Preview GPIO Control

Load Preset: | Select option v
Custom Values:
Video res: 768 X 576 px
Resclutions Video fps: 5 recording, 5 boxing
Image res: 3280 X 2464 px
oK
Video Spiit (seconds, default 0=off) 0 s OK
Annotation (max 127 characters). Text: OK | Default
Annotation size(0-99): 50 |OK
Sharpness (-100...100), default 0 0 |ok
Contrast (-100...100), default 0: 0 |ok
Brightness (0...100), default 50: 50 0K
Saturation (-100...100), default O: 0 |oK
1S0 (100...800), default 0: 0 |oK
Exposure Compensation (-10...10), default 0; 0 oK
Exposure Mode, default ‘auto” Auto
White Balance, default ‘auto’ Auto v
White Balance Gains (x100): gainr 150 |gainb| 150 | OK
Image Effect, default 'none" None
Rotation, default 0: ‘Norotate |
Flip, default ‘none'; [Both v
Shutter speed (0...330000), default 0 0 |ok
Image quality (0...100), default 10: 10 oK
14P4 Boxing mode : [or v
Reset Settings: reset settings
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Algorithm 1: Algorithm to quantify animal activity

Input : » video frames ( /)
Output: motion count
for f =1 to n do
resize the frame;
convert it to grayscale;
apply Gaussian blur;
Erama (V) § /* processed frame */
/* model background by calculating running average of a
frame sequence */
6 bg(x,y)«— (1 — a)* bg(x,y) + a % g (X, ) ; /* a is the
weight of input image */
4 (Sframe (xy) = Eframe (y)— bg(xy);
8 threshold  frame (X, ) ;
9 dilate the thresholded image to fill in holes;

N s W N =

10 find contours on thresholded image;
11 if contour < min area  then

12 ‘ Animal Status: not moving ;
13 else

14 Animal Status: moving;

15 motionCounter += 1;

16 end

17 end

Algorithm 2: Algorithm for animal tracking

Input : » video frames ( /)

Output: Track plot

for f =1 to n do

resize the frame;

convert it to grayscale;

apply Gaussian blur;

Livame (£.7) /* processed frame */
Zitwesh XV 5 /* thresholded frame */
find max ontour 10 G ppesn (X, V)5

find centroid (x,y ) in max copour 3

draw a track of the animal;

E-T- A - Y R L

10 end
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