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Abstract 1 

In the current research on measuring complex behaviours/phenotyping in rodents, 2 

most of the experimental design requires the experimenter to remove the animal from its 3 

home-cage environment and place it in an unfamiliar apparatus (novel environment). This 4 

interaction may influence behaviour, general well-being, and the metabolism of the animal, 5 

affecting the phenotypic outcome even if the data collection method is automated. Most of 6 

the commercially available solutions for home-cage monitoring are expensive and usually 7 

lack the flexibility to be incorporated with existing home-cages. Here we present a low-cost 8 

solution for monitoring home-cage behaviour of rodents that can be easily incorporated to 9 

practically any available rodent home-cage. To demonstrate the use of our system, we 10 

reliably predict the sleep/wake state of mice in their home-cage using only video. We validate 11 

these results using hippocampal local field potential (LFP) and electromyography (EMG) data. 12 

Our approach provides a low-cost flexible methodology for high-throughput studies of sleep, 13 

circadian rhythm and rodent behaviour with minimal experimenter interference.  14 

Keywords: Rodents, Behaviour, Monitoring, Home-Cage, Low-Cost, Raspberry Pi. 15 
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Introduction 1 

Rodents have been widely used for understanding the aetiology, pathophysiology and 2 

pharmacology of neurological disorders; due in part to its similar brain architecture to 3 

primates and complex behavioural repertoire. Recent improvement of sophisticated tools 4 

used for measuring and manipulating brain activity, including optogenetics, two-photon 5 

imaging, wide-field mesoscale imaging, fibre photometry, mini endoscopes [1-7], as well as 6 

the availability of diverse transgenic lines and disease models, further incentivize their use in 7 

mechanistic studies [8-11]. Though non-human primates have been traditionally used to 8 

understand the neural mechanisms underlying executive function and higher-order cognition 9 

(such as decision making, motor skill execution, and perceptual discrimination), high-10 

throughput experiments on non-human primates are not feasible because of cost and 11 

regulation constrains [12]. 12 

The organization of spontaneous home-cage behaviour of rodents reflects the 13 

interplay between multiple neurobiological processes and can provide a high-throughput 14 

phenotyping strategy without experimenter’s intervention. In addition to the lack of observer 15 

bias in monitoring animal behaviour [13], one major advantage of automated home-cage 16 

monitoring is continuous and accurate monitoring particularly during dark periods when mice 17 

are most active [14, 15]. Furthermore, remote monitoring of animals also greatly reduces the 18 

requirement for animal handling which may be stressful and/or confound studies [15-18]. In 19 

certain disease models assessing the signs of ill health, pain and distress is difficult [19] and 20 

since mice are crepuscular and nocturnal animals making observations at the wrong time of 21 

day can result in missing them altogether. Remote home-cage monitoring systems will allow 22 

scientists, veterinarians and animal technicians to monitor animal well-being even during the 23 

dark phases  [20].  24 
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There are multiple pre-existing methods currently used to evaluate animal activity in 1 

the home-cage with different degrees of invasiveness and precision. Each of these approaches 2 

have their own advantages and pitfalls. In mice, subcutaneously implanted small magnets 3 

have been used to determine animal activity with respect to an array of magnetic field sensors 4 

under the home-cage [21].  Flores et al. developed a non-invasive approach for monitoring 5 

animal activity by using piezoelectric sensors positioned on the cage floor [22]. Another non-6 

invasive system to quantify sleep-awake cycles in mice has been developed using passive 7 

infrared (PIR) motion sensors [23]. Similarly, Radiofrequency identification (RFID) tags 8 

have been used to track multiple animals to study their activity in the home-cage. However, 9 

this method has the disadvantage of being expensive, having poor spatial and temporal 10 

resolution as well as the invasiveness of the tag implantation which may provide discomfort 11 

to the animal [24]. Approaches with minimal invasiveness include running wheels and video-12 

based methodologies. Though running wheels are widely used because of their low cost and 13 

ease of implementation for measuring the rodent activity and/or changes in circadian rhythm, 14 

they have also been shown to greatly affect animal behaviour.  15 

Electroencephalogram (EEG) and electromyogram (EMG) signals have been used as 16 

the standard approach to classify sleep-wake states, but this involves the implantation of 17 

electrodes for recordings [25]. Not only is this approach time-consuming and invasive but 18 

also expensive to implement, particularly in high throughput experiments for assessing sleep-19 

wake behaviour under varying pharmacological and environmental manipulations [26]. In the 20 

past, several attempts have been made to develop alternative less invasive methods (other 21 

than EEG/EMG) to classify sleep-awake behaviour in rodents.  For instance, video 22 

monitoring has been used to evaluate periods of sustained immobility as a surrogate of 23 

EEG/EMG-defined sleep [27, 28]. All these methods have been able to provide 90-95% 24 

agreement with tethered EEG/EMG recordings, however these methods are sometimes 25 
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difficult to implement because of their technical complexity or the expense of the required 1 

software/hardware which makes them unsuitable for high throughput studies of animal 2 

behaviour. Here, we present a low-cost rodent home-cage behaviour monitoring system built 3 

around the Raspberry Pi (RPi) using open-source software technologies that is suitable for 4 

high-throughput data acquisition with virtually no experimenter interventions. We show that 5 

our system is capable to reliably video-monitor multiple home-cages simultaneously and 6 

remotely at variable frame rates (from 10-120 Hz). To demonstrate the capabilities of our 7 

system, we present a reliable sleep-wake classification based only on video data collected in 8 

the home-cage and validate it against a standard EEG/EMG based scoring. 9 

In summary, low-cost automated home-cage monitoring and analysis systems, like the 10 

one proposed here, represent a platform upon which custom systems can be built, allowing 11 

researchers to study rodent behaviour with minimal experimenter interference [29-32].   12 

Material and Methods 13 

 14 

Animals 15 

All experiments were carried out on adult (20-30 g, age 4 month) wild type C57BL/6 mice (n 16 

= 10). Mice were housed under standard conditions, in clear plastic cages under 12 h light, 12 17 

h dark cycles. All the animals were either grouped or singly housed in Optimice® (Animal 18 

Care Systems) home-cages depending on the experimental protocol they were going through. 19 

Mice were given ad libitum access to water and standard laboratory mouse diet . All 20 

protocols and procedures were approved by the Animal Welfare Committee of the University 21 

of Lethbridge and were in accordance with guidelines set forth by the Canadian Council for 22 

Animal Care.  23 
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Surgery 1 

Local field potential (LFP) and electromyography (EMG) electrodes were implanted in 2 

C57BL6J mice anesthetized with isoflurane (2.5% induction, 1-1.5 maintenance). For 3 

hippocampal LFP recordings, a monopolar electrode made of Teflon coated stainless-steel 4 

wire (bare diameter 50.8 μm) was inserted in the brain (at coordinates -2.5mm AP, 2mm ML 5 

and 1.1mm DV from bregma), targeting the CA1 region. For EMG recordings, a multi-6 

stranded Teflon-coated stainless-steel wire (bare diameter 127 µm) was inserted into the neck 7 

musculature using a 23-gauge needle. The reference and ground screws were placed on the 8 

skull over the cerebellum. The other end of electrode wires were clamped between two 9 

receptacle connectors (Mill-Max Mfg. Corp.) glued to the headpiece which in turn was 10 

secured to the skull using metabond and dental cement.  11 

Electrophysiology 12 

After electrode implantation, the animals were allowed to recover for 7 days before being 13 

habituated to the recording setup consisting of a home-cage without the lid  placed in the 14 

middle of a large Plexiglas box used as secondary containment. During 24 hour LFP and 15 

EMG recordings, the electrophysiological tethers were connected to a motorized commutator 16 

(NeuroTek Inc.). The hippocampal LFP and neck EMG signals were amplified, filtered (0.1-17 

2000 Hz) and digitized at 4 kHz using a Digital Lynx SX System (Neuralynx, Inc.) and 18 

Cheetah software (Neuralynx, Inc.).  19 

System architecture/Hardware 20 

Our system consists of a RaspberryPi (model 3B+), an infrared Picamera module (v2 NoIR), 21 

a wide-angle lens (AUKEY optics) and IR LEDs (DC12V SMD3528-300-IR (850nm)) 22 

placed on the home-cage lid to monitor the mouse behaviour  (Fig. 1). To make sure that the 23 

field of view covered the entire home-cage, we placed the camera lens on the home-cage lid 24 

through a custom made hole at its centroid and sealed it with hot glue. The Picamera module 25 
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is connected to the Mobile Industry Processor Interface (MIPI) Camera Serial Interface (CSI) 1 

port on the RaspberryPi via a 15cm ribbon cable. The RaspberryPi further connects to the 2 

computer network either via a LAN cable or a Wi-Fi connection (Fig. 1 A-D).  3 

Figure 1. Animal home-cage monitoring system architecture and web interface. (A) 4 

Basic rack with multiple home-cages. (B) Top view and, (C) side view of a mouse home-cage 5 

with a wide-angle lens and camera mounted on top and connected to a Raspberry Pi (RPi). 6 

This RPi is responsible for data acquisition and for controlling external peripherals. The RPi 7 

further connects to a computer network either via Ethernet or Wi-Fi connection, (D) allowing 8 

the remote user to view the animal activity in the home-cage, via web browser. (E) The home 9 

page of the web interface allows the user to view the animal activity in its home-cage in real-10 

time and to start/stop recording videos and to capture images. 11 

System interface 12 

The remote user can view the live feed of the animal activity in the home-cage via a 13 

customized web interface (Fig. 1 E). In addition to live home-cage monitoring, it is possible 14 

to record video data to do off-line behavioural analysis. The web interface was created using 15 

PHP, JavaScript and CSS, which runs on an Apache web server on the Raspberry Pi and is 16 

based on Silvan Melchior’s implementation 17 

(https://github.com/silvanmelchior/RPi_Cam_Web_Interface). All the code we used and 18 

developed, is open-source and it can be downloaded from 19 

https://github.com/surjeets/Animal_Home_Cage and https://github.com/surjeets/Home-Cage-20 

Python-and-MATLAB-Code. 21 

The web interface has Home, Settings, Preview and GPIO Control tabs; by default, 22 

the opening page is the Home page (Fig. 1-E) where users can view the live camera feed, 23 

start/stop video recording, capture an image or stop the camera. Users can change the camera 24 

settings on the Settings page (e.g. video resolution, frame rate, brightness, contrast, 25 

sharpness, ISO, rotation, annotations, video splitting, etc.) (Fig. 2). Users can also 26 
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preview/download/delete captured images and videos on the Preview page (Fig. 3). The 1 

storage space available on the SD card (or selected storage device) is indicated on this page. 2 

Further, users can also manually control external peripherals attached to the system (e.g. 3 

LEDs, buzzers, motors, etc.) via the GPIO Control interface (Fig. 4).  4 

Fig 2. Web interface for camera settings. This interface allows a user to change camera 5 

settings such as: video resolution, frame rate, brightness, contrast, sharpness, ISO, rotation, 6 

annotations, video splitting etc. 7 

Fig 3. Preview of recorded videos/captured images. This interface allows the user to 8 

preview/download/delete captured images and videos. Further, storage space available on the 9 

SD card for recording more videos/capturing images is also indicated. 10 

Fig 4. Remote control of external peripherals. This interface allows the user to manually 11 

control external peripherals attached to the system via the RPi GPIO pins (e.g. LEDs, 12 

Buzzers, motors, etc.). 13 

The real-time video streaming is based on the program RaspiMJPEG which is an 14 

OpenMAX-application developed by Silvan Melchior and is based on the Multimedia 15 

Abstraction Layer (MMAL) library [33]. In the web interface of our system, the 16 

RaspiMJPEG makes a connection to the camera (MMAL) and generates a continuous stream 17 

of single frames which are saved in the /dev/shm/mjpeg directory of the RPi (e.g. cam.jpg). 18 

This folder is a virtual memory shared location that speeds up the execution by avoiding 19 

having to do many read/write to disk operations. These frames are accessed via URLs on the 20 

Apache Web server. The script cam_pic.php returns the latest one and cam_pic_new.php 21 

merges the frames into an mjpeg stream. The stream of the frames (preview images) is 22 

maintained throughout even during capturing/recording video/image. The captured 23 

video/image data is stored in the media folder (/media) of the RPi, the images are stored in 24 

JPEG format while the video is stored in h264 format but can be automatically packaged into 25 

an mp4 file when the recording ends. Alternatively, the video stream can also be assessed 26 
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using the iSpy Connect software (www.ispyconnect.com) running on a windows machine by 1 

adding the following url: http://<your_pi_ip>:<port>/html/cam.jpg or http:// 2 

<your_pi_ip>:<port>/html/cam_pic_new.php? in the JPEG URL or MJPEG URL tab within 3 

video source. This allows the user to simultaneously capture a video stream on a desktop 4 

computer and on the RPi. This implementation allows to schedule video recordings across 5 

multiple cages.  6 

Offline Behaviour Analysis 7 

To process the recorded videos, we implemented two offline algorithms for behavioural data 8 

analysis using OpenCV and Python (https://github.com/surjeets/Home-Cage-Python-and-9 

MATLAB-Code), one for motion detection and another for animal tracking in the home-cage. 10 

Using these simple algorithms, we were able to demonstrate our approach by performing 11 

sleep/wake analysis with accuracy comparable to EMG recordings based methods.  12 

Motion detection, tracking and sleep/wake scoring 13 

We use a simple and well-known computer vision method to detect motion and to track 14 

animals in the home-cage. To estimate the amount of motion in a video we extract the 15 

background [34-37] and take the difference between consecutive frames (frame differencing) 16 

[38]. 17 

For motion detection we implemented the algorithm shown in Fig 5 (Algorithm 1). 18 

First, the background is estimated by calculating the weighted mean of previous frames along 19 

with the current frame. In this way our system can dynamically adjust to the background even 20 

with the small changes in the lighting conditions. After this, frame differencing is performed 21 

by subtracting the weighted mean from the current frame to get a delta frame:  22 

�����_���	� �  |
���������_����	����� – �������_���	�|  
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The delta frame is then thresholded (assigning a constant value to all the pixels above the 1 

threshold and zero to the rest) to find regions in the image that contain substantial difference 2 

from the background. These regions correspond to “motion regions” in each video frame.  3 

Next, we calculated the area of each motion region in the thresholded delta frame. If 4 

these motion regions have an area larger than a threshold (the area that a mouse occupies in 5 

the visual field is assumed to be larger than a certain number of pixels), the motion is 6 

considered to be caused by the mouse (the motion region is shown with a rectangle around it 7 

Fig 6-A). This threshold was set to avoid other objects (e.g. cables or bedding) or pixel 8 

fluctuations due to breathing being incorrectly detected as mouse motion.  9 

For animal tracking we implemented the algorithm shown in Fig 5 (Algorithm 2). This 10 

algorithm assumes that there is a high contrast between the mouse and the home-cage 11 

background. First, a Gaussian filter (size = 21, sigma = 3.5) is used to reduce noise in each 12 

video frame, then intensity-based thresholding is applied to segment the filtered image. 13 

Subsequently, to find the animal location, the contour with the largest area is detected, which, 14 

in the home-cage, is usually the animal. Finally, to calculate the trajectory of an animal, the 15 

centroids of the detected largest contour in each frame are connected (Fig 6-B). These 16 

trajectories can be used to calculate the distance travelled by the animal or to visualize its 17 

spatial occupancy.  18 

 19 

Fig 5. Off-line video analysis algorithms. Algorithm 1 (top) quantifies animal activity and 20 

Algorithm 2 (bottom) calculates and draws the trajectory of the animal detected. Both 21 

algorithms are presented in pseudo-code (in our repository, they are implemented in Python 22 

using openCV). 23 

 24 

Fig 6. Animal motion detection and tracking. (A) Results of activity detection algorithm 25 

showing day (left column) and night (right column) time activity of the animal in the home-26 

cage.   (B) Results for animal tracking algorithm with the centroid marked with a white dot 27 

(left) and the tracking plot generated by connecting the detected centroids in each frame 28 

(right).   29 
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 1 

We use the centroid of the motion-detected region to track the animal position in the 2 

home-cage (Fig 6B). These trajectories can be used to calculate the distance travelled by the 3 

animal or to visualize its spatial occupancy. Finally, we use our motion measure (motion 4 

signal) to predict when the animal is sleeping or awake. For sleep/wake scoring, we filtered 5 

the video-based motion signal below 0.1 Hz using a zero-lag Chebyshev filter and detrended 6 

using 10 sec windows with 5 sec overlap (using the locdetrend function from the Chronux 7 

Toolbox) to remove the variations in the baseline across light and dark cycle. The result was 8 

then rectified and integrated using 20-sec moving windows. Next, this signal was thresholded 9 

using its 50-60 percentile to classify waking and sleep periods. If the signal was below the 10 

threshold for at least 40 sec, the animal was assumed to be asleep, or awake otherwise. This 11 

threshold was chosen based on the optimal length based on the accuracy of sleep detection 12 

(Fig.9A). A similar criteria was reported in [27, 28, 39]. The EMG based sleep/wake scoring 13 

was performed by filtering the raw EMG activity between 90 Hz and 1000 Hz and then 14 

rectifying and integrating it using 20-sec moving windows. A state was scored as sleep when 15 

the EMG signal was smaller than its 50-60 percentile, otherwise it was classified as awake 16 

[27]. The accuracy of video-based classification was calculated by counting the amount of 17 

time the video-based scoring was the same as the EMG-based scoring divided by the total 18 

recording time: 19 

�������� �
∑ �
�� ��������� ����������������� � ��������� ��������������������

����� ��������� ��	�
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Camera settings and temporal precision evaluation 1 

In some behavioural tasks (e.g. reach and grasp, grooming behaviour) it is very important to 2 

acquire the data at high frame rates. With the Picamera camera board V2.1 (8MP Sony 3 

IMX219 sensor), it is possible to record video @ 30 fps in full resolution (no shutter lag and 4 

simultaneous recording), and also @120 fps if using the 2 × 2 analogue binning mode (which 5 

is a clocking scheme to collect the charge of a 2x2 CCD pixel area). We evaluated the 6 

temporal precision of the frame acquisition of the RPi Camera by comparing the average 7 

number of dropped frames and variation in interframe intervals (IFIV) in a video at different 8 

framerates (30, 60, 90 and 120 fps) and recording formats: h264, which is the compression 9 

standard MPEG-4 AVC and raw YUV, which is an uncompressed bitmap data format. In 10 

order to quantify the temporal precision of the frame acquisition of the Picamera, we 11 

recorded the time stamps of each frame acquisition into a csv file using the picamera python 12 

library [40]. 13 

To evaluate the time difference in simultaneous frame acquisition, multiple RPis were 14 

simultaneously triggered with an external square TTL pulse.  On another RPi (besides the 15 

ones being triggered), we monitored the transition (high or low) of selected GPIO pins in 16 

real-time that corresponded to external trigger pulses that represent the start and stop times of 17 

video recording (Fig. 7) using piscope [41]. The timestamps of acquired frames on different 18 

RPis were later aligned offline to quantify any temporal differences in the acquisition. Table 19 

1 shows that the jitter in the frame acquisition on different RPis is in the order of few 20 

microseconds.  21 

Off-line alignment of the video with additional signals 22 

 23 

To align the video recordings to LFP or EMG signals, we keep track of the times when the 24 

video acquisition begins and ends in the same acquisition system that records the 25 
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electrophysiological signals. We do this by setting a TTL signal (Transistor-Transistor Logic 1 

5V) to HIGH in one of the GPIO pins of the RPi when the video acquisition starts and set to 2 

LOW when the acquisition terminates. Additionally, we also record the times when each 3 

video frame is acquired (see https://picamera.readthedocs.io/en/release-4 

1.13/api_camera.html).  5 

Results 6 

High Frame Rate Acquisition 7 

The temporal precision and resolution required for the video recordings depends largely on 8 

the behaviour we are interested in. For example, if one is interested in skilled reaching or play 9 

behaviour this might require to record video at higher resolution and frame rates than if we 10 

are interested in monitoring the general activity in the home-cage. Since the temporal 11 

precision of the video varies depending on the settings we used, we compared some of the 12 

file formats and recording settings in this system. We observed that there are dropped frames 13 

when we save the video in raw YUV format above 30 fps at full resolution. This situation 14 

gets worse when the frame rate augments. For example, at 90 fps we can only achieve a 15 

frame rate of 77.61 ± 4.59 fps with a lag of 54.45 ± 31.78 ms between consecutive frames 16 

(Table 1). In contrast, using the H264 encoding we were able to record at 120 fps with no 17 

missed frames (120.54 ± 0.00 fps) and almost no lag between frames (2.44 ± 0.46 µs). 18 

Expected 
frame rate 

Frame rate achieved 
(raw YUV format)* 

Variance in 
interframe interval 
(IFIV) for raw 
YUV format* 

Frame rate 
achieved (h264 
encoded)* 

Variance in 
interframe 
interval (IFIV) 
for h264 
encoded* 

30 fps 28.98 ± 1.70 fps 39.70 ± 66.83 ms 30.00 ± 0.00 fps 2 .00 ± 0.18 µs 
60 fps 52.84 ± 3.34 fps 81.34 ± 27.66 ms 60.20 ± 0.00 fps 0.63 ± 0.31 µs 
90 fps 77.61 ± 4.59 fps 54.45 ± 31.78 ms 90.24 ± 0.00 fps 2.23 ± 0.35 µs 
120 fps N.A. N.A. 120.54 ± 0.00 fps 2.44 ± 0.46 µs 

 19 
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Table 1. Comparison of frames per second (fps) and variance in Inter frame interval 1 

(IFIV) of the video data acquired over multiple trials: 15-minute video (320 X 240) was 2 

recorded in a raw (YUV) format and h264 encoding for 10 trials at a fixed frame rate (fps) on 3 

multiple RPis (n=5). *results expressed as mean ± standard deviation. 4 

 5 

Multiple camera synchronization 6 

The system presented here assumes that a single camera is placed on the home-cage 7 

providing a top-down view. However, it is possible to use more than one camera if they can 8 

be synchronized [42]. To test this, we evaluated the temporal alignment of two cameras 9 

recording video synchronously (see Methods). We found that the temporal difference 10 

between the two cameras is in the order of less than ten microseconds when using H264 11 

encoding at 320 x 240 pixel resolution and frame rates from 30-120 (last column of Table 1 12 

and Fig. 7). 13 

Fig 7. Simultaneous video acquisition on multiple Raspberry Pis. Example of two 14 

Raspberry Pis (RPi) triggered by an external TTL pulse (Trigger) to simultaneously start/stop 15 

video recording RPis (RPi 1 and RPi2).  16 

 17 

Sleep-wake state classification 18 

To classify the behaviour of the mouse into sleep and wake states, we applied the following 19 

criteria: if the mouse was not moving (according to our motion detection algorithm) for more 20 

than 40 sec, we assumed that it was asleep, otherwise we assumed it was awake (see Methods 21 

and Fig 5). To validate this classification, we simultaneously recorded hippocampal local 22 

field potentials (LFP) and EMG signals and compared them to our video-only based 23 

classification (Fig. 8A-B). The high-throughput methodology for sleep-wake monitoring 24 

presented here can be easily incorporated into any existing phenotyping test battery, e.g. 25 

circadian studies (Fig. 8B). For example, our 24 hour sleep/wake classification algorithm 26 
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shows that animals were more active during the dark cycle than during the light cycle 1 

(Fig.8C-D, n=5, one-way anova, Bonferroni correction, F(1,9) = 12.03, p = 0.0085). 2 

 3 

Fig 8. Sleep-wake state classification. (A) Example of hippocampal (HPC) LFP and its 4 

spectrogram and rectified EMG activity recorded from a naturally sleeping animal during 24h  5 

(B) Comparison of hypnogram scoring the sleep and waking states calculated based on the 6 

EMG and video monitoring. (C) Example actogram generated using Algorithm 1, for a day-7 

night sleep-wake state classification for one mouse. (D) Mean estimated awake duration 8 

expressed in terms of percentage activity for day and night cycles (12 hr each) for n = 5 9 

animals (mean ± standard deviation, * denotes p < 0.01; one-way ANOVA using Bonferroni 10 

post hoc).  11 

 12 

Our sleep-wake classification was highly correlated to the 24 hr LFP/EMG recordings 13 

(90.52% ± 0.4 accuracy. Fig. 9C). Similar results were obtained for shorter recordings (data 14 

not shown). 15 

We chose a 40 sec threshold to determine the behavioural state of the animal based on 16 

the optimal accuracy of our method compared to the EMG based classification (Fig. 9A). A 17 

very similar finding is reported in [28]. The performance of our method decreased when 18 

using shorter windows thresholds because the mouse could be immobile for very short 19 

periods of time but not asleep. Analogously, when using long windows, the accuracy drops 20 

because mice can sleep during short periods (see Discussion).  We found that the estimated 21 

distributions of the duration of the detected sleep events using the video-based and EMG 22 

based methods is generally similar. However, they differ when the durations of the events are 23 

small, close to 1-2 sec or between 10-30 seconds (Fig. 9B). In addition, the accuracy of the 24 

video-based method changes with respect to the noise in the motion detection signal, which 25 

in turn is modulated (in part) by the smoothening of this signal (see Methods). When the 26 

video-based motion detection signal was smoothened using very short windows, small 27 
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motion fluctuations could be incorrectly detected as wakening. The smoothening over longer 1 

windows improves the accuracy of the method up until an asymptotic value (Fig. 9C).   2 

 3 

Fig. 9. Performance of video-based sleep/wake classification. (A) Relationship between 4 

the time length of continuous inactivity threshold and accuracy of sleep/wake video-based 5 

classification. Y-axis shows the difference in minutes between the average amounts of sleep 6 

detected using the video-based and EMG classification in 2 hr interval (n=5 animals). (B) 7 

Density estimations of sleep events durations for EMG-based (gray) and video-based (red) 8 

classification (top). The density was estimated using the RASH method described in [43]. 9 

Box and raster plots (bottom) of the sleep detected events of the different durations in 10 

seconds (X-axis). (C) Correlation between the video-based and EMG-based sleep/wake 11 

classifications for different smoothing windows durations. Error bars represent the S.E.M for 12 

n=5 animals. 13 

Discussion 14 

When studying complex behaviour, experimental designs that require the experimenter to 15 

move the animal from its home-cage environment to an unfamiliar apparatus (novel 16 

environment) are relatively disruptive, time- and labour-consuming and require additional 17 

laboratory space. This disruption may influence behaviour, general well-being, and 18 

metabolism of the animal, affecting the phenotypic outcome, even if the data collection 19 

method is automated, therein possibly creating spurious findings. Therefore, monitoring the 20 

animals in their home-cage has several advantages. Though there are already open-source and 21 

commercial solutions available to monitor animal behaviour [44-51], they are usually 22 

difficult to construct, require a new infrastructure/space, and are expensive.  Conversely, we 23 

propose a video-based system that is composed of off-the-shelf components and designed to 24 

be simple and easily integrated in existing home-cage setups with minimal modifications for 25 

remote behaviour monitoring. Such a system can be used for short-term welfare assessment 26 

(e.g. post-surgery monitoring) by enabling 24 hr monitoring, even in the dark phase where 27 
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welfare assessment without disturbance to the cage is difficult and subjective. Further, video 1 

data collected with this system can be used to classify sleep-wake states of an animal in the 2 

home-cage using video-based tracking. The simple video-based tracking algorithm that we 3 

use has an accuracy above 90% when compared with tethered LFP/EMG recordings for 4 

sleep-wake state classification. This algorithm is based on the quantification of motion during 5 

a period to determine if the animal is awake or asleep. We found that the highest accuracy of 6 

the sleep/wake classification is reached when the time window threshold for no motion 7 

period to be considered as sleep is close to 40 secs compared to the gold standard EEG/EMG 8 

based classification. The performance of our classification method mainly depends on two 9 

factors: the amount of time we use as a threshold to assume the animal is asleep and the 10 

amount of noise (or smoothness) in the motion detection signal. When considering shorter 11 

time windows as a threshold, this method incorrectly classifies periods of quiet wakefulness 12 

as sleep. Analogously, when the window is too large, this method incorrectly classifies long 13 

periods of sleep that contain small movement as wake periods (e.g. twitches) (Fig. 9A). The 14 

smoothness of the motion detection signal is determined (in part) by the length of the 15 

smoothening window. If the window is small, the motion detection signal contains small 16 

changes in the home-cage (illumination, cables, bedding, etc), that can cause the algorithm to 17 

incorrectly detect these changes as the mouse being awake. We can alleviate this problem by 18 

extending the smoothening signal to reach an asymptotic performance compared to the EMG-19 

based classification (Fig. 9C). This has been previously reported in similar video-based 20 

sleep/wake classification approaches [27, 28]. Although these results show that our video-21 

based algorithm reliably determines whether the animal is awake or asleep (compared to an 22 

LFP-EMG based algorithm), for a more in depth classification of sleep into Rapid-Eye 23 

Movement (REM) and non-Rapid Eye Movement (NREM) sleep states, our video analysis 24 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/342501doi: bioRxiv preprint 

https://doi.org/10.1101/342501
http://creativecommons.org/licenses/by/4.0/


18 

 

should be complemented with more advance computer vision techniques [52] or additional 1 

brain signals.  2 

Our system has some advantages and limitations due to the technology we use. For 3 

example, an advantage of the video based tracking algorithm presented here it is a higher 4 

temporal resolution (in the order of milliseconds) and spatial resolution (in the order of 5 

millimeters), both determined by the video camera, as compared to standard tracking 6 

approaches such as RFID systems. In contrast, a home-cage RFID system with an array of 18 7 

RFID sensors (ID20LA) has a spatial resolution of 5 cm and a temporal resolution of 1Hz 8 

[24]. One disadvantage of our system is that it can only track one animal at a time due to the 9 

potential high similarity between multiple mice (e.g. same fur colour and shape) [47], 10 

compared to the multiple animal tracking capability of an RFID based system. However, 11 

RFID (and video-hybrid) systems are highly specialized, difficult to setup and expensive [46, 12 

51, 53, 54]. A potential approach to improve video-based tracking methods is to extract high 13 

level features from each animal to identify every individual using machine learning [55, 56]. 14 

However, such algorithms need to be highly calibrated and tested to provide reliable results. 15 

Another possible limitation of our system is the processing power of the RPi if extensive 16 

online video processing is required. For example, streaming live video over a network and 17 

simultaneously performing object recognition on the RPi in real time might result in eventual 18 

frame dropping. Despite these limitations, the system has several advantages for large scale 19 

monitoring of rodents: it can be easily integrated with any available rodent cage-rack system. 20 

Further, a user can remotely monitor day/night activity of animals in multiple cages, from 21 

virtually anywhere via the web interface which can be applied not only for research but 22 

animal care and husbandry.  23 

Finally, in addition to the sleep/wake classification application presented in this work, 24 

our system could also be applied to study different aspects of animal behaviour. For example, 25 
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our system can produce actograms and determine the proportion of sleep and wake periods 1 

during the day (Fig. 8C-D). A similar trend is observed in systems using running wheels for 2 

phenotyping circadian rhythms [39]. Even though running wheels are widely used to study 3 

circadian rhythm in rodents, it has been shown that long-term access to a running wheel 4 

affect animal behaviour and disease pathology [26]. The home-cage video monitoring system 5 

does not introduce such confounding factors, rather it allows researchers to evaluate 6 

additional behavioural parameters such as the distance travelled, or the time spent in certain 7 

areas of the cage, which can provide additional data on anxiety or behavioural inhibition.  8 

Conclusions 9 

In this paper, we present a low-cost home-cage reliable behavioural monitoring system that 10 

can be easily adapted and extended to a large variety of conditions and pre-existing 11 

experimental setups. We demonstrated that our system can be used to study natural sleep 12 

patterns of mice in their home-cage using only video. Due to its suitability for remote 13 

behaviour monitoring and minimization of experimenter bias at low-cost, systems like the 14 

one presented here, can become a useful tool for high-throughput data collection and 15 

behavioural analysis of rodents in their home-cage.  16 
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