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Abstract

Binding of small molecules to proteins often involves large conformational changes

in the latter, which open up pathways to the binding site. Observing and pinpointing

these rare events in large scale, all-atom, computations of specific protein-ligand com-

plexes, is expensive and to a great extent serendipitous. Further, relevant collective

variables which characterise specific binding or un-binding scenarios are still di�cult to

identify despite the large body of work on the subject. Here, we show that possible pri-

mary and secondary binding pathways can be discovered from short simulations of the

apo-protein without waiting for an actual binding event to occur. We use a projection

formalism, introduced earlier to study deformation in solids, to analyse local atomic

displacements into two mutually orthogonal subspaces — those which are “a�ne” i.e.

expressible as a homogeneous deformation of the native structure, and those which are

not. The susceptibility to non-a�ne displacements among the various residues in the
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apo- protein is then shown to correlate with typical binding pathways and sites crucial

for allosteric modifications. We validate our observation with all-atom computations

of three proteins, T4-Lysozyme, Src kinase and Cytochrome P450.

Introduction

Modern drug discovery operates around the principle of molecular recognition in the context

of protein-ligand binding. In the preliminary stages, drug discovery programs often invest in

quantifying the binding a�nity of suitable drug candidates towards a well-established protein

target. However, such e↵orts often encounter scenarios where identification of the ligand-

binding cavity on the protein target becomes challenging. In addition, screening across a

large pool of protein receptor candidates as potential drug targets for a specific drug proves

tedious and time consuming.

A popular and inexpensive approach for zeroing on a suitable combination of protein

receptor and ligand has been drug design based on in silico techniques. Towards this end,

macromolecular docking3–7 based techniques are routinely employed for screening protein-

ligand recognition partners. One of the major drawbacks of docking based approach has

been the heuristic choice of the scoring function implemented in the docking programs to

quantify and rank-order the protein-ligand a�nity. Further, the other major criticism has

been that in most of the cases the receptor cavity’s inherent flexibility is not taken into

account for docking purposes. Rather, docking softwares8–19 consider the protein cavity to

be rigid and perform the search for a ligand’s ability to dock only in a limited area of protein,

often pre-determined by the user’s intuition-based inputs. As a result, docking based drug

discovery protocols are fraught often with failures in identifying the correct set of protein

ligand combinations.

Molecular Dynamics simulations, with the recent emergence of Graphics-Processing-Unit

(GPU) based computation and special purpose machine like Anton, has slowly emerged

as an accurate approach to simulate the complete process of protein ligand binding in its
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atomistic details. The approach, majorly pioneered by Shaw and coworkers20–23 has been

able to decipher the kinetic pathways leading to spontaneous recognition of the ligand by the

receptor. This process is frequently being supplemented by judicious application of Markov

State Model24–26 based techniques to infer long time recognition processes by shorter time

simulations. These techniques being unbiased and devoid of user intervention, currently

remain one of the best approaches to explore the protein ligand recognition at their highest

resolution. But the process comes at the expense of high computational cost and extended

wall clock time. As a result, a plan for practical usage of the Molecular dynamics simulation

for the purpose of serious drug discovery is still in its infancy.

The current work o↵ers a practical middle ground between expensive Molecular Dynamics

simulation of protein-ligand recognition processes and inaccurate docking based approach

by employing an idea from materials physics, which correctly accounts for deformations in

protein structure relevant for binding. We use a formalism, introduced earlier to analyse

atomic displacements in solids,27–29 to predict the protein locations which are potentially

susceptible towards ligand recognition. We build on our work under the basic premises that

all external and internal stresses result in two types of mutually orthogonal deformations

namely those which are “a�ne” i.e. expressible as a homogeneous deformation of the native

structure, and those which are not i.e. ’non-a�ne’. As further elaborated in a later section,

the current study characterizes the local arrangements of atoms inside protein by probing

an important metric termed as ”Non A�ne parameter” (NAP)27. The approach is first

convincingly validated by reproducing key conformational changes en route to ligand entry

to a mutant T4 Lysozyme. This formalism is then used to propose potential regions which are

implicated in “gate-opening” and capture the conformational dynamics during the binding

process in the protein receptor Src kinase and Cytochrome P450. Finally, we show how

spatial correlations of NAP can elucidate sites for allosteric control in these proteins.
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Protein models and simulation details

We explore two independent protein-ligand systems. Most of the validations of our approach

has been done on binding of benzene to the solvent-inaccessible cavity of the L99A mutant of

T4 Lysozyme33 (T4Lys) , a system which has served long as the prototypical protein ligand

system for biophysical studies. Some of us had previously performed multi-microsecond

molecular dynamics simulation where we have simulated the complete kinetic process of

ligand recognition33. The details of atomistic simulation process and models for this system

have been discussed therein. Apart from the binding process of simulation, in the current

work, we have also simulated the apo or ligand-unbound form of T4Lys (PDB id: 3DMV) and

and Src kinase (pdb id: 1Y57 ). Some data for Cytochrome P450 (pdb id: 2CPP) has also

been shown. All the apo forms have been modeled using same simulation protocols. We have

used the CHARMM36 force field34. The protein is solvated by 11613 TIP3P water molecules

in a cubical box of dimension 7.18 nm. Su�cient number of ions were added to maintain

150 mM salt concentration. All MD simulations were performed with the Gromacs 5.0.6

simulation package35. During the simulation, the average temperature was maintained at

303K using the Nose-Hoover thermostat36,37 with a relaxation time of 1.0 ps and an average

isotropic pressure of 1 bar was maintained with the Parrinello-Rahman barostat38. The

Verlet cuto↵ scheme was employed throughout the simulation with the truncated and shifted

Lenard Jones interaction extending to 1.2 nm and long-range electrostatic interactions39

treated by Particle Mesh Ewald (PME) summation40. All bond lengths involving hydrogen

atoms of the protein and the ligand benzene were constrained using the LINCS algorithm41

and water hydrogen bonds were fixed using the SETTLE42 approach. Simulations were

performed using the leapfrog integrator with a time step of 2 fs and initiated by randomly

assigning the velocities of all particles. The total time for our simulations of the apo-proteins

amounted to (T4Lys=493.54ns, Src kinase=460.00ns, P450=500ns) 1453.54 ns which was

su�cient to obtain equilibrated data. It is quite remarkable that our projection formalism

yields useful data from such short runs.

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2018. ; https://doi.org/10.1101/342253doi: bioRxiv preprint 

https://doi.org/10.1101/342253
http://creativecommons.org/licenses/by-nc-nd/4.0/


�i

RjrjRi, ri

a. b.

c.

�
µ

I II
1

0.8

0.6

0.4

0.2

0.0

III

I II III

�I

Figure 1: a. Schematic diagram used for defining the NAP, �i for particle i (see text). The
neighbourhood ⌦i centred around i is shown as a sphere. The reference positions of the
neighbours Rj are shown in light grey while the instantaneous positions rj are shown in
dark grey. We have subtracted o↵ the displacement of particle i (Ri = ri) for simplicity.
b. The distribution of the eigenvalues �µ of PCP for three locations in the protein T4Lys,
location A corresponds to a carboxyl C atom in helix 7, B corresponds to a carboxyl O
atom in helix 5 and C corresponds to an ↵ � C in a relatively inflexible portion of a �
sheet. In each of the locations A and B, which are active during ligand binding, the largest
eigenvalue is separated from the rest by a large gap �i. The gap is markedly smaller in
location C which is relatively inert. c. Local structure of the T4Lys protein showing the
neighbourhood analysed in b. The helices and �� sheets are in purple while the rest of the
protein is in green. The dominant eigenvector is also shown in transparent purple (see also
SI movies V1 & V2.

Non A�ne Parameter is a novel collective coordinate

for protein structure

Atoms of an isolated protein molecule in aqueous solution and at non-zero temperatures

undergo continuous random motion. For most proteins, these atomic motions may be anal-

ysed in terms of displacement fluctuations about some fixed native structure. Some of these

fluctuations represent local a�ne distortions of the native state while others correspond to

non-trivial conformation changes. It is the latter which are associated with functional aspects

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2018. ; https://doi.org/10.1101/342253doi: bioRxiv preprint 

https://doi.org/10.1101/342253
http://creativecommons.org/licenses/by-nc-nd/4.0/


of the protein. Determining functionally relevant conformational changes is a challenge, es-

pecially if such distortions are subtle and have to be extracted from the random background

noise. We show now how a collective variable may be defined, which does exactly that. This

collective variable, which we call the non-a�ne parameter, was first defined for crystalline

solids. In solids, non-a�ne displacements are obtained by systematically projecting out27

trivial homogeneous deformations of atoms, capturing only those displacements responsible

for irreversible plastic events.28,29 The NAP, is the squared sum of the mean amplitudes

of these displacements. In proteins NAP behaves as a collective coordinate responsible for

revealing binding pathways and also for determining possible allosteric couplings between

spatially distant residues.

Consider for example (see Fig 1a) an atom i and its neighbourhood ⌦i which contains

j = 1, n⌦ neighbours. The size of ⌦i is fixed. Too small a ⌦i results in large fluctuations while

making ⌦i too large may average out the relevant signal and make it disappear. Typically, we

use a neighbourhood which contains 50� 100 atoms excluding H-atoms. The instantaneous

positions of the atoms ri at any particular time step are compared with a set of fixed reference

positions Ri taken, for example, from the (ligand-free) native state of the protein. NAP is

then defined as the value of the quantity �i > 0 = min
D

Pn⌦

j=1[rj �ri�D(Rj �Ri)]2 where the

minimisation is over choices of the deformation matrix D. NAP is therefore the least square

error incurred in trying to represent an arbitrary displacement as an a�ne or homogeneous

deformation of the reference configuration.

The minimisation process is actually equivalent27 to a projection. The instantaneous

displacement of atom i is ui = ri �Ri. Within the region ⌦i, displacements of neighbouring

particles relative to that of i are given by �ij = uj �ui. Next we define a projection of �ij

onto the non-a�ne subspace using a projection operator P where P = I � R(RTR)�1RT, and

the n⌦d⇥d2 elements of Rj↵,��0 = �↵�Rj�0 , taking i to be at the origin. Finally, one may show

�(Ri) = �

TP� where we have used the definition �, as an n⌦d dimensional column vector

constructed by rearranging �ij. This projection formalism can be carried out for any given
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Figure 2: a. Distribution of the eigenvalues of the PCP matrix at a specific location in the
protein T4Lys (blue histogram) compared with the fitted Marchenko-Pastur distribution
(red curve). b. A similar fit for a truly random correlation matrix constructed out of vectors
with the same number of components as in the first case but now taken from a Gaussian
random distribution of zero mean and unit standard deviation.c. Three dimensional plot of
the local NAP, �i, the gap �i and the NAP susceptibility for all locations analysed for three
di↵erent proteins of widely diverse structure and function viz. T4Lys (purple symbols), Src
kinase (cyan symbols) and P450 (green symbols). The relation between all three variables for
the three proteins is same within the scatter of the data. All the neighbourhoods analysed
contained 50 � 100 atoms.

set of {Ri}. This identification also allows us to compute statistical averages, probability

distributions and spatio-temporal correlation functions using standard methods of statistical

mechanics. For example, one derives27 the equilibrium ensemble average h�i =
P

µ �µ where

�µ are the eigenvalues of the matrix PCP with C = h�T
�i the local displacement correlator,

and we have suppressed the particle index i for simplicity. Associated with NAP, we can

also define the local NAP susceptibility h(�i � h�ii)2i and the spatial correlation function

h(�i � h�ii)(�j � h�ji)i, in the same way as it is done for a crystalline solid.28

One of our important results concerns the distribution of the eigenvalues �µ. For crys-

talline solids we had observed28 that (1) this distribution is non uniform and the largest

eigenvalue is separated from the rest by a large gap and (2) the eigenvector corresponding

to the largest eigenvalue represented the dominant plastic mode eg. the creation of a defect

dipole. Quite interestingly, the situation is similar here.

In Fig.1b we have plotted the relative magnitudes of the eigenvalues of the local PCP
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Figure 3: NAP as a good descriptor of ligand binding event: Correlation between time
profile of inter-helix distance (blue curves right-hand axis) and corresponding NAP of the
helices (red curve, left hand axis) during the process of ligand (benzene) recognition to
the buried cavity of L99A T4 Lysozyme. a. The trajectory involving helix4-helix6 gateway
leading to ligand binding, b. the trajectory involving helix7-helix9 gateway leading to ligand
recognition. Below each of these curves we also show the ligand (pink) and the protein (green)
at three time slices with positions corresponding to (1) outside the gate, (2) within the gate
and (3) after the binding event. The three time time slices are also labelled (black dots) in
the NAP vs time plots a. and b.

matrix for three di↵erent locations on the protein T4Lys. The first one (I) corresponds to

an Carbon atom on a Carboxyl group on residue 132 (amino acid Asn) in a region of helix

7, the second one (II) on an Oxygen atom of a Carboxyl group on helix 5 corresponding to

residue 105 (amino acid Gln), and the third one (III) for an ↵� Carbon atom within � sheet

1, belonging to residue 13, (amino acid Leu). We shall see later that regions I and II are

both quite active during binding events while region III is relatively inert. The eigenvalue

spectrum surprisingly bears an imprint of this behaviour. The active regions appear to be

dominated by a single non-a�ne mode which is particularly soft. The eigenvalue for this

mode is larger than the rest by a substantial amount producing a gap �i in the non-a�ne

spectrum. The inert regions of the proteins have more uniformly distributed eigenvalues. By

looking at the structure alone, (see Fig. 1c) it would have been impossible to guess this fact.
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In Fig. 2a &b we show that the distribution of the eigenvalues of the PCP matrix are

not random. The soft modes that prove out to be useful in our study correspond to a set of

eigenvalues which are quite well separated from the spectrum of the rest of the eigenvalues.

In order to demonstrate this, in Fig. 2 a, we plot the distribution of the various eigenvalues

of the PCP matrix for region (I) of T4Lys (Fig. 1c), which is involved in the gate opening

resulting from the movements of helices 7 and 9. This is fitted to the Marchenko Pastur

(MP) distribution from the prediction from Random Matrix Theory43–45. It is clear that

the fit is not perfect and there are several eigenvalues which are separated from the rest

by gaps. On the other hand, if the matrix PCP was was constructed out of � which

were completely random then we should have obtained the distribution enclosed under the

red curve representing the MP distribution for our data. This is shown explicitly for a

random correlation matrix in Fig. 2 b. The fact that we have a sparsely distributed tail

of few relatively very large eigenvalues widely separated from the rest of the spectrum and

these large eigenmodes contribute most towards the major conformational changes, clearly

demonstrates that our analysis is not a straightforward strain-analysis.46 Instead, indeed,

there is an underlying physics that can be revealed by focusing on the non-a�ne subspace

P� of the total displacement �. Non-a�nity may play an important role in guiding a

majority of the routine functions performed by the proteins.

The relation between activity i.e. a large NAP susceptibility and gaps, �i, appears to

be an universal feature of all the three proteins, with very diverse structures and functions,

studied by us. In Fig, 2c we have plotted the NAP susceptibility, �i and NAP for several

regions within three proteins T4Lys, P450 and Src kinase. In all of these proteins the three

quantities are positively correlated with each other and the nature of the correlation (the

slope of the curves) appears to be the same within the error bars for all the proteins.

We demonstrate next that regions of the protein which are involved in a binding event and

show large NAP values during the process of ligand binding also have large NAP susceptibility

in the apo form of the proteins without the ligand. The motions of the protein during binding
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events are also captured by the dominant non-a�ne eigenmode. Finally we show that large

NAP correlations between spatially distant parts of the proteins point out domains of possible

allosteric control.

Non A�ne Parameter successfully tracks the ligand bind-

ing event in T4 Lysozyme

We first validate the ability of NAP to successfully trace the ligand binding pathway for

a recently studied protein-ligand system by Mondal et al.33, namely benzene binding to

T4Lys. Briefly, Mondal et al. has recently captured the full details of the benzene bind-

ing pathways to the buried cavity of T4Lys using multi-microsecond long atomistic MD

simulations. The resulting binding trajectories had identified more than one binding path-

ways. A key observation from those simulated trajectories was that the benzene binding to

the solvent-inaccessible cavity of T4Lys did not require large-scale protein conformational

change. Rather, the simulations discovered that it is the subtle displacement of helices of the

protein which opens up productive pathways leading to ligand binding in the buried cavity.

Specifically, as plotted in the right hand axis of Fig. 3a, a subset of the trajectories

pinpointed that prior to benzene binding, the distance between helix-4 and helix-6 increases

transiently by around 2 � 3 Å from its equilibrium value, facilitating benzene-gating in the

cavity, before it reverts back to its original equilibrium distance after the binding event is

complete. On the other hand, another subset of trajectories, spawned from same starting

configuration, revealed an alternate pathway of ligand binding, where the transient increase

in the distance between a di↵erent pair of helices namely, helix-7 and helix-9 triggers the the

ligand entry to the cavity, as depicted in Fig. 3b (right hand axis). The snapshots shown at

the bottom panel of the Fig. 3a and b captures the location of the benzene relative to the

helix gateway during the period of binding event. The three di↵erent snapshots labelled as

1, 2 and 3 respectively represent the the helix conformations before, during and after the
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ligand binding event. The creation of a helix gateway prior to ligand binding (snapshot 2 in

each case) is very evident from the increased inter-helix distance.

We calculate the time profile of NAP, averaged over all heavy atoms involving these

helices and compare its correspondence with corresponding inter-helix distance. As presented

in Fig. 3a, we plot the profile of average NAP involving helix-4 and helix-6 on the left hand

axis and that of average distance between these two helices on the right hand axis, for the part

of time period spanning the benzene entry to the cavity. We find that, both NAP profile and

distance profile involving helix-4 and helix-6 follows almost identical trend during the course

of ligand entry. Similarly, as shown in Fig. 3b, for the other trajectory where ligand binding

occurred via helix-7 and helix-9 gateway, time profile of NAP involving helix-7 and helix-9

reproduces the trend of distance fluctuation involving helix-7 and helix-9 quite accurately.

The remarkable consistency between the NAP profile and displacement profile of key-profiles

responsible for ligand binding suggests that these subtle helix fluctuations are results of non-

a�ne displacements of local environment for each particle. Overall, these results validate the

potential of NAP as a suitable collective variable or descriptor for tracking ligand binding

kinetics.

NAP susceptibility of apo protein highlights potential

ligand hotspots

The results discussed in previous section have validated the role of NAP as a good descriptor

of a ligand binding event and its ability to track the ligand binding pathways. But the

validation needed the extensive simulation of actual ligand binding events. As an important

finding of the current work, in this section we show that by analysing the NAP susceptibility

on a ligand-free (apo) protein itself, one can predict potential protein sites for facile ligand

approach, otherwise known as “ligand hotspots”. Since MD simulations of the apo protein

do not need to track rare binding events, these cost a small fraction of the time needed for
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Figure 4: NAP susceptibility of apo proteins (a,c) and ligand binding hotspots (b,d). a The
spatial distribution of the NAP susceptibility shown as a colour map red (scaled to 100) to
blue (0) for L99A T4 Lysozyme. b. In the adjacent panel, we show the same protein now
together with snapshots of the ligand. Ligand snapshots in red represents configurations
obtained from 4 - 5 µs and blue from 5 - 6 µs of a long MD trajectory. After 6 µs the
ligand stays close to the binding gateway. Panels c and d show the corresponding plots
for Src kinase. In c the colours have meanings same as in a. Panel d is reproduced with
permission from Ref.20, red represents configurations earlier than 15 µs while blue from 15-20
µs. Locations within the protein which are important for ligand binding are numbered and
are described in detail in the text. Note that in both cases the regions which have large NAP
susceptibility are also those where ligands spend most of their time during binding events.
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Figure 5: NAP correlation function plotted as a colour map spanning residue ids where
correlation values larger than a threshold (= 4 percent of the maximum value) are shown
in yellow while the rest is kept black; a T4Lys, b Src kinase. Highly correlated, spatially
distant regions are sites for possible allosteric modification. Such pairs of sites are numbered
in both cases with the font sizes corresponding to the relative value of the correlation (see
also SI Text). The numbers correspond to the same regions as in Fig. 4. It is observed
for T4Lys that the residue 18 from region 5 (yellow) has the highest correlation with the
residue 137 in region 3 (black) as demonstrated by the largest font. In case of Src kinase,
the residues 420 and 310, from regions 5(yellow) and 1(blue) respectively, have the highest
correlation.

simulating the full protein-ligand systems. Figs. 4 a and c illustrate the spatial distribution of

computed NAP susceptibility of two protein systems in their ligand-free (apo) form, namely,

T4Lys and Src kinase. For the purpose of comparison, we have also plotted the locations

on protein surface which ligand frequently visits in previously carried out multi-microsecond

long unbiased ligand-binding simulations ( Figs. 4 b and d)

Fig. 4a represents the three-dimensional map of NAP susceptibility of T4Lys. Location

2 of T4Lys includes residues with very high NAP susceptibility (shown in red spheres). A

comparison with corresponding location 2 of the time-trace of the ligand in Fig. 4 b, as ob-

tained from unbiased ligand-binding trajectories, identifies this location as the native ligand

binding site at the buried cavity near the 102nd residue (a part of helix 5). Further, apart

13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2018. ; https://doi.org/10.1101/342253doi: bioRxiv preprint 

https://doi.org/10.1101/342253
http://creativecommons.org/licenses/by-nc-nd/4.0/


from the final ligand binding location at the 102nd residue, the computed NAP susceptibili-

ties around ligand-free T4Lys were also found to be quite high near locations 1 and 3, which

are respectively the 105th (a part of helix 5) and 137th residues (gateway between helix-7

and helix-9). The residues 102 and 105 (which are parts of helix-5) act as hinge-centers or

pivots about which the neighboring residues undergo relative re-arrangement opening up the

gateway between helices 4 and 6. Similarly, the residue 137 (which is a part of helix-8) acts

as a pivot for the gateway between helix 7 and 9. The residue 164 corresponds to location

4 in T4Lys which also has a very high NAP-susceptibility value as it is a terminal residue-

part of random coil, mildly contributing towards re-arrangement in helix-9. Interestingly, as

shown in Fig. 4b, previously simulated independent binding trajectories have also revealed

that the pathways leading to ligand entry to the buried cavity of T4Lys involve the helices

near locations 1, 2 and 3. More over, the NAP susceptibility analysis recognises multiple lo-

cations with moderate NAP susceptibility (shown by green sphered residues), which are also

regularly visited by ligands. Although away from major binding sites, these sites serve as

possible precursors to intermediates leading to final molecular recognition. Taken together,

the ability to correctly predict eventual ligand binding site and other accessory potential

ligand hotspots at T4Lys in its apo form by measuring NAP susceptibility, without the need

for prior of knowledge of protein-ligand binding interactions, rates NAP susceptibility as a

very promising metric.

The display of the hinge action which opens the gateway to the hydrophobic binding

cavity is demonstrated by the supporting movie V1 (opening-up of helix-7 and helix-9) and

V2 (opening-up of helix-4 and helix-6), see (SI Text for further details). Note that these

are not MD simulation snapshots but represent the dominant eigen-displacements arising

from a single non-a�ne mode with the largest eigenvalue. The collective motion involves a

“twisting” of the helices and is a very special linear combination of hundreds of local normal

modes from which all a�ne (strain-like) distortions have been systematically projected out.

We return to this issue later in the paper.
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The ability of NAP susceptibility to predict the potential ligand hotspots on a pro-

tein surface is also validated in another popular receptor protein, namely the Src kinase.

Fig. 4 c shows the NAP susceptibility map around Src kinase in its ligand-free form while

the corresponding simulated ligand binding trajectories, as previously simulated by Shaw

and coworkers, is shown in Fig. 4 d. In this case as well, the ATP-binding site (location

2) is correctly predicted to have one of the highest NAP susceptibilities in the apo-form

and independent simulated ligand-binding trajectories also confirm this. Moreover, other

locations of kinase rated as high to intermediate NAP susceptibility for ligand approach are

also independently found to be locations regularly traced by ligand in the unbiased ligand

binding trajectories by Shaw and coworkers20. Specifically, so-called PIF site, MYR site and

G-loop site of kinase (PIF-site:region1, MYR-site:region4, ), which were found to attract

regular ligand visit in actual ligand binding trajectories, are also predicted to have high

to moderate NAP susceptibility for the ligand in apo form of the kinase itself. However,

interestingly, our NAP susceptibility analysis also predicts a new location 5 deemed highly

susceptible to ligand, which is otherwise not known as a ligand hotspot. The discovery of this

new site prompted further analysis to justify the observed high susceptibility for the ligand.

In the next section, we show that the newly obtained regions of Src kinase which have high

NAP-susceptibility also play an important role in establishing an allosteric communication

across the protein structure.

NAP correlations and allostery

In the previous section, we have explored the NAP susceptibilities for di↵erent locations of the

protein and using this as a metric we were able to extract the important ligand hotspots, in

accordance with the simulated ligand binding trajectories. Similarly spatial NAP correlation

function or covariance, calculated at the same time, as defined previously, measures the

correlation between non-a�ne displacement fluctuations at two di↵erent, possibly distant,
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locations. We link this quantity to a measure of allostery in the protein systems i.e. the

ability of spatially distal sites in proteins to influence catalytic or binding activity..

In Fig. 5, we plot residue-residue NAP covariance matrix representing spatial correlation

functions for our two protein systems, namely T4Lys (Fig. 5a) and Src kinase (Fig. 5b)

respectively. On the two axes we have the residue ids and the value of the spatial correlation

function between two residues is given by the colour of the point. High values above a suitable

cut-o↵ are in yellow and the rest are in black. We are interested in those o↵-diagonal residues

that are spatially far away from each other, since spatially adjacent residues will be trivially

correlated due to direct interactions. As shown in Fig. 5a, we could get five prominent

locations in the matrix for T4Lys which have high NAP correlation at a spatially far-o↵

distance (see SI Text for further details of these regions). For example, we found that a

very high NAP correlation exists between residue 137 in region 3 and residue 18 in region 5

(labelled (3,5)) of T4Lys. This allosteric connection can be seen to be contributing towards

regulation of the hydrogen bond between the residue 22 Glu and residue 137 Arg. It is

confirmed by Greener et al.47 that, using a newly introduced method ExProSE , the breaking

of a hydrogen bond between Arg137 and Glu22 causes the opening motion taking the protein

from a closed active site cleft conformation to an open active site cleft conformation. Also,

earlier, Mchaourab et al.48 have confirmed that in solution there is a conformeric equilibrium

between substrate-bound and substrate-unbound T4 Lysozyme which is in accord with the

active site cleft opening upon substrate removal due to Hinge-Bending motion. Mchaourab et

al. used the Site-Directed Spin Labeling to detect these motions. From our NAP formalism,

too,28 we can see that the softest non-a�ne modes corresponding to the residues 18 and

137 act as the nucleating-precursors to the opening of the active site cleft. These modes

contribute by initially breaking the hydrogen bond between residues 22 and 137 and therefore

we can directly see the increasing distance between residue 22 and 137 in video V3 in the

supplementary info.

For Src kinase too, as shown in Fig. 5b, we could identify five regions of high NAP
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correlations at distant locations. For example, residue 416 (Tyr) of region 5 of src kinase

has a very high NAP correlation with residue 328 (Val) (an element of Helix-↵c) of region 1

(labelled (1,5). This is supported by a previous report49 of coupling between the activation

loop and Helix-↵c. A hallmark of active conformation of kinase50 is the autophosphorylation

of the activation loop (404 - 432) at the residue 416 (Tyr) and ”↵C-in” conformation of Helix-

↵c. Analysis of non-a�nity shows that the softest non-a�ne modes (video V4 in supporting

info) at residue 416 and residue 328 in our simulations act as incipients for residue 416 (Tyr)

protruding outward from the activation loop region, thereby becoming more exposed for the

phosphorylation at this site (this site being tyrosine which is favourable for phosphorylation),

and at the same time inward rotation of Helix-↵c. In summary, our analysis based upon NAP-

susceptibility and NAP spatial correlation function points towards allosteric contact between

Helix-↵c (helix undergoing inward rotation) and activation loop of kinase (phosphorylation

site Tyr416 getting exposed).

Multiple active sites in Cytochrome P450

The family of Cytochrome P450 proteins are quite versatile and are present in many di↵erent

human tissues performing many tasks such as oxygen metabolism by binding to Heme, break-

down of toxins and hormones, synthesis of cholesterol51 etc. They are often associated with

intracellular membranes such as in mitochondria and the endoplasmic reticulum. Exten-

sive studies using sequence-based co-evolutionary analysis and anisotropic thermal di↵usion

MD simulations have identified four principal active regions in P450 related to membrane

association, catalytic activity, Heme binding and dimerization.52

Our results for the NAP susceptibility is shown in Fig. 6. Remarkably, we can also identify

the same regions as obtained in the earlier study,52 although the variant of P450 used by

us is somewhat di↵erent. A complete analysis of all the di↵erent binding and allosteric

processes of P450 analysed using the NAP values, eigenvectors and correlation functions is

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2018. ; https://doi.org/10.1101/342253doi: bioRxiv preprint 

https://doi.org/10.1101/342253
http://creativecommons.org/licenses/by-nc-nd/4.0/


1

3
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4

Figure 6: Relative NAP susceptibility plotted with the same color scale as in Fig 4 for
Cytochrome P450. We have identified four regions of high activity. Region 1 and 2 are
associated with membrane binding and catalytic activity respectively while 3 and 4 may
correspond to Heme binding and dimerisation.

much beyond the scope of the present work and will be published elsewhere.

Discussion and conclusion

Pinpointing sites of catalytic activity, binding of ligands or other functionally important con-

formational changes in proteins is a challenge when such displacements in protein residues

are subtle and easily masked by background noise. Accurate “order parameters” or collective

variables need to be designed to study such activity. It is often unclear how such collective

variable may be defined. Drawing from ideas which were first demonstrated in crystalline

solids27–29 we have defined a new collective variable, NAP, which quantifies non-a�ne ther-

mally excited displacements of proteins. Firstly, we show that the susceptibility of di↵erent

locations of a protein to non-a�ne displacements can be used as an indicator to determine
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regions which are important for binding events. Secondly, from the analysis of the NAP sus-

ceptibility values we conclude that the regions with higher values of NAP susceptibilities are

also those which contain a dominant non-a�ne mode whose eigenvalue is separated from the

those of the the rest of the modes by a large gap. The eigenvalue spectrum of the non-a�ne

modes is also highly non-random. The eigenvector corresponding to this dominant mode

involves atomic displacements that are the ones prone to act as binding gate-ways and the

time spent by a ligand during a binding event at a particular residue is determined by the

NAP susceptibility of this region. We also show that a positive correlation exists between

the NAP value, its susceptibility and the magnitude of the gap in all the proteins studied

by us.

Our analysis is fundamentally di↵erent from principal component analysis (PCA)53–55 or

other PCA based methods56 which are used extensively for analysing protein configurations

obtained from simulations. The restriction to the coarse graining volumes ⌦i makes the anal-

ysis local and the projection to the non-a�ne sub space guarantees that all trivial motions

are filtered out. Finally, the large gap in the non-a�ne excitation spectrum between the

dominant eigenmode and the rest ensures that there is very little mixing of the modes. As

an example, recall the (un-)twisting motion of the helices observed in T4Lys as shown in the

supplementary video V1 (see SI Text). Such a motion requires a special linear superposition

of a large number of normal modes. The dominant PCA mode on the other hand cannot

capture these motions (see supplementary FIg. S1 in SI Text) in detail although atomic

displacements in the relevant regions are large. Unfortunately, these displacements are also

contaminated by unimportant, a�ne motons which mask the gate opening feature.

The ability to compute NAP susceptibility by our approach helps us to unify two di↵erent

proposed hypotheses of protein-ligand recognition, namely “conformational selection”57–62

(in which protein’s intrinsic ability to shift to a ligand-preferred conformation guides the

molecular recognition) and “induced fit” (in which ligand induces the protein to change its

conformation). Our calculations show that these ideas are not in conflict but follows from
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standard fluctuation-response behaviour connecting local fluctuations of non-a�ne part of

atomic displacements to the response of the protein to the conjugate local non-a�ne field.28

This is a simple consequence of a fluctuation response relation viz. h�i = h�i0 + h�h(� �

h�i)2i0 if we identify ligands with local fields h� which generate NAP in proportion to their

susceptibilities at h� = 0. The ligand, in this case acts as such an “external” field and the

response of the protein to the field is proportional to the fluctuations of local NAP in its apo

state without the field (ligand).

Additionally, we see that the spatial correlation of NAP among various residues can be

used to discover sites of possible allosteric control. NAP susceptibilities and correlations may

be obtained readily from simulations of the apo protein without the ligand and come at a

fraction of the cost needed for detailed simulations of ligand binding events. This implies that

our proposed method is extremely well suited to be adapted for high throughput searches of

possible protein ligand pairs and allosteric control.

It is to be noted that In our work we have focussed on the projection of the displacements

to the non-a�ne subspace which is orthogonal to local strain.46 Since binding hotspots fea-

ture large displacements, both strain and strain fluctuations may be large together with large

NAP values. NAP however, quantifies the error made in trying to fit the local displacements

to an a�ne model and therefore large NAP values also signify that a description in terms of

strain becomes invalid in those regions.
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Regions of Proteins involved in allostery

L99A T4 Lysozyme , PBD ID 3MDV

The following are the 5 regions of T4Lys with high NAP susceptibiity:

regions residues description

1 105 part of helix-5

2 102 part of helix-5

3 137 part of helix-8

4 162 163 164 —

5 18 66 68 —
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The relative values of the spatial NAP-correlation for the 5 locations shown in Fig.4(a) for

T4Lys are as follows:

regions residues Correlation function value

1,5 18,105 0.55

3,4 133,164 0.67

1,4 105,164 0.71

4,5 18,164 0.75

3,5 18,137 1.00

Src kinase, PBD ID 1Y57

The following are the 5 regions of Src-kinase with large NAP susceptibility

regions residues description

1 310 311 315 329 328 PIF site

2 326 337 340 389 ATP binding site

3 481 482 G-loop site

4 360 364 457 484 486 487 488 489 525 526 532 533 MYR site

5 386 387 408 410 416 417 419 420 422 423 424 440 Activation loop region

The relative values of the spatial NAP-correlation for the 5 points shown in Fig.4(b) for

Src-Kinase are as follows:

regions residues Correlation function value

3,4 481,486 0.25

2,4 326,532 0.35

1,3 481,310 0.39

4,5 533,416 0.87

1,5 328,416 1.00
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Description of Videos

We have included four videos which show prominent non-a�ne displacements. In each of

these videos we have applied the eigenvectors corresponding to the largest eigenvalue of the

local PCP matrix to cause displacements of the atoms corresponding to the native structure

of the protein. Note that these are not MD simulations.

NAME Phenomenon

V1 opening-up of helices 4 and 6

V2 opening-up of helices 7 and 9

V3 close to open configuration

V4 allosteric contact: activation loop and Helix-↵c

1. The video V1 demonstrates the opening of the helices 4 and 6 in order to enable

the ligand to enter the binding site using the pathway depicted in Fig. 2 a of the

manuscript. Note the twisting of the helices in this video and in V2 below.

2. The video V2 demonstrates the opening of the helices 7 and 9 in order to enable

the ligand to enter the binding site using the pathway depicted in Fig. 2 b of the

manuscript.

3. The video V3 demonstrates the non-a�ne modes for the residues having high spatial

NAP correlation shown in Fig.4(a), thereby demonstrating the allosteric contact be-

tween regions 3 and 5 of T4Lys. The color scheme used is same as Fig.4(a). The loop

in vicinity of region 3 of which ARG137 is a part is shown in black . and the loop of

which TYR18 is a part, being a neighbourhood of region 5, is shown in yellow. The

Alfa-carbon atoms of the two residues (TYR18 , ARG137 of regions 5 and 3 respec-

tively) having high spatial NAP correlation are shown in pink solid bubbles. Here

we see the residue 22(GLU) yellow, initially forming a hydrogen bond with residue

ARG(137) black moving apart from residue 137 black. Thus, the non-a�ne modes at
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residue 18 and 137 act as nucleating precursors which tend to take T4Lys molecule

from the closed conformation to open conformation.

4. The video V4 demonstrates the non-a�ne modes for the residues having high correla-

tion shown in Fig.4(b), thereby demonstrating the allosteric contact between regions 1

and 5 of SRC-Kinase. The color scheme used is same as Fig.4(b). The activation loop

alongwith residue Tyr416 being a part of region 5 is shown in yellow. and the Alfa-c

helix alongwith residue 328 being a neighbourhood of region 1 is shown in blue. The

Alfa-carbon atoms of the two residues (Tyr416 , Val328 of regions 5 and 1 respectively)

having high spatial NAP correlation are shown in pink solid bubbles. Here we see the

residue 416 protruding outside from the activation loop region thereby becoming more

exposed and facilitating the phosphorylation. At the same time, the Alfa-c helix is

seen to be undergoing an inward rotation. Non-a�ne modes analysis show that the

incipients for the outwards protruding of Tyr416 and incipients for the inwards rotation

of Alfa-c helix have an allosteric contact.

Relation with PCA

In our work non-a�ne modes of fluctuations are projections from the total displacements �

by allowing the operator or matrix P to act on � i.e. we calculate P�. We therefore perform

a normal mode analysis over this projected subspace containing solely the non-a�ne modes

of deformation by calculation of the local, projected Sample Correlation Matrix (SCM)

h(P�)(P�)T i where angular brackets represent ensemble average for the trajectories of

atoms in the ligand free protein. Carrying out this ensemble average we obtain the correlator

as PCP. Here C = h��

T i is an SCM for ordinary (total) displacement � undergone by the

atoms within the coarse-grain volume.

We have shown that from a normal mode analysis of P� we obtain the eigenvalues

and eigenvectors describing the most important and relevant dynamical modes for protein
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Figure S1: The solid cyan image is the original crystal structure of T4 Lysozyme. The
ghost cyan image is the final orientation of the protein after the application of the most
prominent (highest eigenvalue) eigenmode obtained from the Principal Component Analysis.
For comparison with our NAP susceptibility calculations, the regions of large susceptibility
are highlighted with the same color scheme as in Fig.5 of the manuscript. Note that now no
helix twisting motion can be seen in region 1 and 2. The PCA displacements are seen to be
mostly a�ne.

function. The softest eigenmodes or the eigenvectors corresponding to the largest eigenvalues

are demonstrated in the videos provided in the supporting material (videos V1-V4). The

modes of fluctuations shown in these videos indeed demonstrate that these non-a�ne modes

are actually responsible for bringing about the important functions like the opening-up of

the gateways leading to the binding pockets and the allosteric interactions between the distal

functional sites.

This projection to the non-a�ne subspace is crucial. An ordinary principal component

analysis (PCA) keeps the full displacement correlator of the whole protein without the pro-

jection. In Fig. S1 we show the result of this calculation for T4Lys. Understandably, none of

the relevant conformation changes related to gate opening can be seen. The displacements

are overwhelmingly a�ne.
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