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Abstract

Motivation: Tumor sequencing has entered an exciting phase with the advent of single-cell techniques
that are revolutionizing the assessment of single nucleotide variation (SNV) at the highest cellular res-
olution. However, state-of-the-art single-cell sequencing technologies produce data with many missing
bases (MBs) and incorrect base designations that lead to false-positive (FP) and false-negative (FN)
detection of somatic mutations. While computational methods are available to make biological infer-
ences in the presence of these errors, the accuracy of the imputed MBs and corrected FPs and FNs
remains unknown.

Results: Using computer simulated datasets, we assessed the robustness performance of four existing
methods (OncoNEM, SCG, SCITE, and SiFit) and one new method (BEAM). BEAM is a Bayesian evo-
lution-aware method that improves the quality of single-cell sequences by using the intrinsic evolution-
ary information in the single-cell data in a molecular phylogenetic framework. Overall, BEAM and SCITE
performed the best. Most of the methods imputed MBs with high accuracy, but effective detection and
correction of FPs and FNs require sampling a large number of SNVs. Analysis of an empirical dataset
shows that computational methods can improve both the quality of tumor single-cell sequences and
their utility for biological inference.

Conclusions: Tumor cells descend from pre-existing cells, which creates evolutionary continuity in sin-
gle-cell sequencing datasets. This information enables BEAM and other methods to correctly impute
missing data and incorrect base assignments, but correction of FPs and FNs remains challenging when
the number of SNVs sampled is small relative to the number of cells sequenced.

Availability: BEAM is available on the web at https://github.com/SayakaMiura/BEAM.

Contact: s.kumar@temple.edu

2015; Paguirigan, et al., 2015; Shapiro, et al., 2013; Van Loo and Voet,
2014; Yu, et al., 2014; Zafar, et al., 2016). Many studies have performed

1 Introduction : . N . :
single-cell sequencing on tumors to identify clones and their evolutionary

Tumor sequencing is yielding critical insights into somatic drivers of tu-
morigenesis and clonal structure of heterogeneous tumors (Brastianos, et
al., 2015; Gawad, et al., 2014; Gundem, et al., 2015; McFadden, et al.,
2014; Nassar, et al., 2015; Navin, et al., 2011; Nik-Zainal, et al., 2012;
Sanborn, et al., 2015; Xue, et al., 2017; Yachida, et al., 2010; Zhao, et al.,
2016). The rapid advancement of single-cell sequencing technologies has
made it possible to profile somatic mutations carried by individual cells
(Eirew, et al., 2015; Francis, et al., 2014; Gawad, et al., 2014; Gawad, et
al., 2016; Huang, et al., 2015; Hughes, et al., 2014; Navin, 2014; Navin,

relationships (Eirew, et al., 2015; Gawad, et al., 2014; Hou, et al., 2012;
Jan, etal., 2012; Li, etal., 2012; Melchor, et al., 2014; Navin, 2015; Potter,
etal., 2013; Xu, etal., 2012; Yu, et al., 2014). Thus, single-cell sequencing
will be instrumental in revealing the genetic changes that occur during
cancer progression, which is a prerequisite for clone identification and the
inference of evolutionary relationships among cells and relative timing of
mutation events. But, the utility of current single-cell sequencing technol-
ogies is limited by many technical issues (Gawad, et al., 2016; Navin,
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Figure 1. Impact of missing data and sequencing errors on the inferred cell phylogeny. (a)
The true evolutionary tree of 1,000 cells distributed among tumor clones A-K (shown in different
colors); the number of cells sampled for each clone is in parentheses. (b) Cell phylogeny inferred
using simulated single-cell sequences in which 500 SNVs were sampled. Roth, et al. (2016) soft-
ware and parameter settings were used to generate the data with 20% missing bases, 28% false-
positives, and 7% false-negatives. A maximum likelihood method for phylogenetic analysis of
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SNV data (Stamatakis, 2014) was used to infer the cell phylogeny. Branch lengths are drawn to

scale (number of SNVs/site). The inferred cell phylogeny shows greater sequence divergence than

the true phylogeny due to the influence of many false-positive mutations.

2014; Navin, 2015; Ning, et al., 2014; Wang and Navin, 2015). For exam-
ple, the low physical coverage of some genomic regions and positions pre-
vents unambiguous assignment of a nucleotide base to those positions,
known as “missing bases” (MBs). Allelic dropout (ADO) events cause
false-negatives (FNs) when mutant alleles are present but not amplified.
Infidelity of amplification can cause false-positives (FPs) when errors dur-
ing initial amplification are inherited to subsequent molecules and a “mu-
tation” is identified that was not present in the sampled cell. Sometimes a
single-cell cannot be completely separated from other cells, which results
in the sequencing of multiple cells together. FP rates (3x10° — 7x10°° per
homozygous wild-type positions) and ADO rates (0.2 — 0.4 per heterozy-
gous site) can exceed the rate of occurrence of true mutations (Ross and
Markowetz, 2016). MBs also occur at frequencies as high as 58% (Hou,
et al., 2012) in single-cell data sequences (Gawad, et al., 2016). All of
these problems result in inaccurate single-cell sequences even when high
sequencing coverage has been achieved.

Many new methods have been developed to compensate for these issues
and allow reliable inference from single-cell sequence datasets. For exam-
ple, OncoNEM (Ross and Markowetz, 2016) and BitPhylogeny (Yuan, et
al., 2015) identify clones and their evolutionary relationship (i.e., clone
phylogeny). SiFit infers cell phylogeny with the consideration of sequenc-
ing errors (Zafar, et al., 2017). SCITE (Jahn, et al., 2016) and Kim and
Simon (2014) methods are designed to infer the order of mutation accu-
mulated over time in a tumor from the single-cell sequences. SCG is de-
signed to deal with the issue of multi-cell sequencing when inferring clone
sequences (Roth, et al., 2016).

These methods produce corrected single-cell sequences, but they do not
report their performance in imputing MBs correctly and reducing FPs and
FNs. The primary focus of these current methods has been to improve the
quality of biological inferences from error-containing single-cell sequenc-
ing data. Consequently, the absolute and relative performance of current
methods for reducing the error present in single-cell sequences is not
known. Significant improvement in the quality of single-cell sequences
will enable use of a large number of sophisticated methods in molecular
phylogenetics (Nei and Kumar, 2000) for inferring the evolutionary his-
tory of clones, reconstructing ancestral clones, identifying early and late
occurring driver mutations, and characterizing inter- and intra-tumor het-
erogeneity. These standard approaches cannot currently be used for tumor
single-cell data, because they are not robust to the presence of high levels
of sequence error (Zafar, et al. (2017). For example, a widely-used maxi-
mum likelihood method (Stamatakis, 2014) produces a cell phylogeny

(Fig. 1b) from simulated single-cell sequence data (with MBs, FPs, and
FNs) that is clearly very different from the true tree (Fig. 1a). In addition
to various inconsistencies in the evolutionary relationships, the branch
lengths leading to the tips of the phylogeny are extensively overestimated,
because all the cells of a clone (same color) are actually identical (Fig.
1a). Consequently, the inferred cell phylogeny shows much greater evo-
lutionary depth, resulting in inflated estimates of tumor heterogeneity and
incorrect mapping of mutations. Therefore, single-cell sequences require
correction before use in downstream biological analysis.

In this article, we present the performance of four existing methods
(OncoNEM, SCG, SCITE, and SiFit) in correctly imputing MBs and re-
ducing the numbers of FPs and FNs. We excluded methods that did not
produce single-cell sequences, e.g., BitPhylogeny (Yuan, et al., 2015) and
the method of Kim and Simon (2014). In addition, we propose and test a
new method, Bayesian Evolution-Aware Method (BEAM), which em-
ploys molecular phylogenetics and a Bayesian prediction framework to
improve the quality of single-cell sequences (see Methods). Our testing
focused on computer simulated datasets, as knowledge of the true single-
cell sequences enables direct assessment of the performance of computa-
tional methods (Ross and Markowetz, 2016; Roth, et al., 2016). We also
analyzed one empirical dataset (Li, et al., 2012) to gauge the utility of
computational approaches in a real-world scenario and the concordance of
the inferences produced.

In the following, we present information on the simulated data used in
our evaluation of methods, followed by a description of the BEAM ap-
proach and the assumptions, parameters, and accuracy measures used. We
then present results from our analyses of simulated and empirical data dis-
cuss the patterns observed.

2 Methods

2.1 Generation of datasets by computer simulations

Roth et al. datasets (R1000x50 and R100x50 datasets): We used the
simulator and parameter settings described by Roth, et al. (2016) to pro-
duce 240 datasets. This simulator first generates a clone phylogeny and
then the clone genotypes. A new model phylogeny is generated for every
dataset (e.g., Fig. 1a for 1,000 cells and 10 distinct clones). To generate a
clone phylogeny, new clones are created by accumulating mutations (a
mutation rate set to 0.1 per site) until all SNV loci (50) are created. The
simulator uses an infinite sites assumption, so no mutations override each
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other, and introduces loss of heterozygosity at a rate of 0.2 per site in
which heterozygous mutants are changed into homozygous mutants with-
out allowing any loss of mutations. A clone genotype is assigned to each
cell by sampling from a categorical distribution (clonal prevalence), which
is generated from a symmetric Dirichlet distribution with the parameter
value of 1. Datasets with 100 and 1,000 cells were produced by Roth, et
al. (2016) in which doublet single-cell sequencing was simulated by sam-
pling two clone genotypes at different rates: 5%, 10%, 20%, and 40% of
the cells. The simulator generated allelic count data with ADO by sam-
pling from the empirical distribution of SNV frequencies specified in
Roth, et al. (2016). The depth of coverage at each locus was chosen from
a Poisson distribution with a mean of 1,000 reads. The number of variant
reads was sampled from a Binomial distribution with the parameter se-
lected from an empirical distribution and the depth of coverage sampled
from a Poisson distribution. To determine if an allele was present or ab-
sent, the Binomial exact test was performed and a p-value threshold of 10~
6 was used. In the resulting data, 3-51% of the observed mutant alleles
were FPs and 2-20% of the observed homozygous wild-type alleles were
FNs. We randomly assigned a “missing” value (MB) to 20% of the bases.

Ross and Markowetz datasets (M10x50 — M50x300 datasets). This col-
lection of 690 datasets was generated using the Ross and Markowetz
(2016) simulator and parameter settings. In their approach, clone phylog-
enies were first generated by iteratively adding a branch with a node to an
existing node that was randomly chosen from a growing phylogeny (1, 5,
10, and 20 clones). Unobserved clones were then introduced by removing
clones that had at least two descendant clones (0, 1, 2, 3, and 4 unobserved
clones). A new clone phylogeny was generated for each dataset, and each
cell is assigned to a clone with a probability corresponding to its size (10,
20, 30, and 50 cells). Figure 2a shows an example phylogeny of 20 cells
used to simulate clone evolution for generating M datasets (M10x50 —
M50x300 datasets) Along the clone phylogeny, true clone genotypes were
generated by assigning mutations with a uniform probability (50, 100,
200, and 300 SNVs). Observed genotypes were derived from true geno-
types by introducing MBs (10%, 20%, 30%, and 40% of SNVs), FPs (10~
596, 5%, 10%, 20%, and 30% of mutant alleles), and FNs (5%, 10%, 20%,
and 30% of wild-type alleles).

2.2 Accuracy measurements

We recorded the numbers of missing bases (MBs), false-positives (FPs),
and false-negatives (FNs) in the simulated single-cell sequence datasets.
The total number of correct positions (with no MB, FP, or FN) were ag-
gregated and divided by the product of the number of cells and the number
of SNVs. This quantity is referred to as the initial sequence quality (Qo),
which is the same as the mean Hamming distance between the true and
the inferred single-cell sequence. After the sequence data was subjected to
computational analysis by BEAM, OncoNEM, SCG, SCITE, and SiFit,
the sequence quality was reassessed (Qgeam, Qonconem, Qsce, Qscite, and
Qsiri, respectively).

While the positions containing MBs, FPs, and FNs are known for sim-
ulated data, no such information exists in the analysis of empirical data
and the computational methods must be applied to all the positions. There-
fore, we also compared the total numbers of MBs, FPs, and FNs before
and after the application of a computational method to a dataset.

2.3 New method evaluated (BEAM)

The new Bayesian evolution-aware method (BEAM) uses classical mo-
lecular evolutionary phylogenetics to impute missing data and detect base
assignment errors in the single-cell sequencing data. It is based on the
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Figure 2: An example cell phylogeny used in computer simulations. In this phy-
logeny, there are eight distinct clones (A — H), each represented by 1 — 5 cells. This
phylogeny was used to generate one dataset by Ross and Markowetz (2016) simulator.

premise that significant evolutionary information is present in the initial
cell sequences regardless of base assignment errors. For example, cells
from the same clone show a strong tendency to occur in close proximity
in the initial cell phylogeny (Fig. 1b), as seen by the location of cells
marked by the same color in the true tree (Fig. 1a), despite the presence
of a large number of MBs, FPs, and FNs in the simulated sequence data.
BEAM uses this intrinsic evolutionary information and computes a Bayes-
ian posterior probability (PP) of observing all possible alleles at each SNV
position in each single-cell sequence, as described below.

For brevity, we explain BEAM using an example dataset that was gen-
erated using the cell phylogeny in Figure 2a. It consists of 20 single-cells
from eight distinct clones and 200 SNVs. The simulated sequence dataset
contained 800 MBs, 429 FPs, and 106 FNs (Fig. 3a). For this data, we first
infer a cell phylogeny from the observed single-cell sequences by using a
maximum likelihood method specifically suited for phylogenetic analysis
of SNV data (Stamatakis, 2014) (Fig. 3a). This approach does not require
the infinite sites assumption, i.e., mutations are allowed to be lost and they
may occur at the same genomic position in different cells, which is differ-
ent from the principle applied in OncoNEM, SiFit, and SCITE (Jahn, et
al., 2016; Ross and Markowetz, 2016; Zafar, et al., 2017).

In this example, cells from the same clones (the same color) generally
cluster together, but identical cells of a clone can show extensive observed
sequence divergence (e.g., brown cells in Fig. 2a and 3a). Given this ini-
tial cell phylogeny and the initial cell sequences, we estimate PP of each
possible base assignment at each position in a cell sequence. This compu-
tation is explained by considering a set of four sequences (Fig. 4). In this
tree, x; to X3 represent the nucleotides at a given position in the tumor cell
sequence; X, is the wild-type base from the normal cell sequence.

We estimate relative probabilities of different bases to assign to x;. We
represent nucleotides at the three other tip nodes by the vector x = (x,, Xs,
X4) and let y = (yi, Y2) represent the vector of nucleotides y; and y, at the
two ancestral nodes in this phylogeny. In order to estimate x; given the
single-cell sequences 1 to 4, we compute the Bayesian posterior probabil-
ity for each possible set of nucleotides (x;, y) following Liu, et al. (2016):

f(xax;b) = f(x1) x f(xly;b) / f(x;b) (equation 1)

Here, b is the vector of branch lengths by, ..., bs. We compute the proba-
bility f(xa|x;b) for all possible combinations of x;, y1, and y,. The posterior
probability (PP) of base A at x;, for example, is given by:

PP (x1 = A) = Zyx-a f(A) x f(xly; b) / f(x; b) (equation 2)

We compute PP for each possible base assignment at each position (i)
in the single-cell sequence 1. If there are m single-cell sequences and n
SNV positions in the dataset, mxn computations are performed. We as-
signed the base with PP > 0.7 to the position of interest. This cut-off was
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Figure 3. An overview of the BEAM approach. (a) The initial cell phylogeny,

along with branch lengths, derived from single-cell sequence data simulated using
the model tree in Figure 2. The Ross and Markowetz (2016) simulator and parame-
ter settings were used. The number of MBs, FPs, and FNs in the initial sequence
data are shown in the box. (b) Cell phylogeny produced from the data in which MBs
were imputed and FPs and FNs were corrected. The remaining MBs, FPs, and FNs
are shown. (c) Improved cell phylogeny after recomputing PPs by using the phylog-
eny in panel b. (d) The final cell phylogeny produced by BEAM along with the
remaining MBs, FPs and FNs. The topology and branch lengths are very similar to
those in the model tree shown in Figure 2.

selected because it led to the best performance in computer simulations.
When none of the bases show PP > 0.7 at a position, we assign the base or

missing value originally observed at that position.

X1

X3

X3

by

Figure 4. A simple tree used in explaining PP computation. x; is a base in

the single-cell sequence, yi is a base in the ancestral sequence, and b; refers
to a branch length.

In our example, BEAM improves the single cell sequences by imputing
base identities at MB positions by reducing these from 800 to 93, reducing
FPs from 429 to 155, and reducing FNs from 106 to 92. Because of these
improvements, the inferred cell phylogeny becomes more accurate (Fig.
3b). At the same time, the erroneously long tip branches in the initial phy-
logeny are shortened via elimination of FPs (Fig. 3a).

In the next step, we use the new cell phylogeny (Fig. 3b) and recompute
PPs by applying equations 1 and 2. Now, MBs decrease from 93 to 14 and
FPs and FNs increased slightly (155 to 162 and 92 to 109, respectively;
Fig. 3c). The cell phylogeny inferred using these single-cell sequences
looks similar to the true phylogeny (Fig. 2).

The next step is clone annotation. Clones delineation can proceed by
using the bootstrap procedure to assess the robustness of the branching
patterns (Felsenstein, 1985; Nei and Kumar, 2000), merging cells by iter-
ative clustering of nodes along branches (Ross and Markowetz, 2016), or
by using a k-medoids clustering approach on a distance matrix that is ob-
tained from the latest cell phylogeny (Zafar, et al., 2017). BEAM provides
the user with an option to assign identical sequences to all the cells of a
clone by erasing potentially spurious mutations. In our simulations, we
found that it was best to assign identical clone sequences to cells that were
connected with effectively zero branch lengths in the phylogeny when the
number of new mutations was small (default: <2% of SNVs; Fig. 3d). In
this case, BEAM will finalize sequences by computing PPs of each possi-
ble base assignment and comparing the average PPs between potential ba-
ses in order to assign the base with the highest average PP to all the cells
from the same clone. Ultimately, BEAM produces refined single-cell se-
quences as well as the cell phylogeny.

2.4 Options used for analyzing data

We used default or recommended parameters to perform SCG, SCITE,
OncoNEM, and BEAM analyses. SCG (Roth, et al., 2016) was performed
with the doublet option. When the status of mutations (presence or ab-
sence) within a predicted clone genotype had <0.95 probability, we as-
signed missing values to those positions. To assign a clone for each cell,
SCG additionally computed the probability of having a predicted clone
genotype for each cell. Thus, we assigned the predicted clone genotype
with the highest probability. When none of predicted clone genotypes had
a high probability (>0.01) for a cell, no predicted clone genotype was as-
signed to the cell. Cells lacking clone genotype assignments were re-
moved, and datasets consisting entirely of cells lacking clone genotype
assignments were removed from accuracy considerations as we consid-
ered that SCG failed to correct sequences for these datasets.

OncoNEM (Ross and Markowetz, 2016) analyses were performed us-
ing true rates of false positive and false negative base assignment errors in
the input files (observed sequences). Maximum Bayes factor for which a
smaller model was preferred was 10, and the model search stopped when
the best scoring tree stabilized for at least 200 iterations. Mutant nucleo-
tides were assigned when the probability of observing the mutation at a
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Figure 5: Improvement in the single-cell sequences realized by using computational methods for processing larger datasets (R1000x50). (a) Sequence quality of data input to

computational methods and of data output from four computational methods. (b) Proportions of missing bases imputed correctly by computational methods. (c) The ratio of the

number of FPs and FNs in the output and the input sequences (output/input).

given position was > 0.95 and missing bases were assigned when the prob-
ability of observing the mutant nucleotide was between 0.05 and 0.95.
SCITE (Jahn, et al., 2016) analyses were performed by giving true rates
of false-positive and false-negative detections of mutations. The desired
number of repetitions of the MCMC was 1, and the desired chain length
of each MCMC repetition was 900,000. Often, mutant nucleotides were
not assigned to any cells. When mutant nucleotides were not assigned to
any cells, those sites were assigned with wild-type bases. When multiple
possible cell phylogenies for a dataset were produced, we used the option
to marginalize out the alternatives. We distinguished heterozygous and
homozygous mutations for R1000x50 and R100x50 datasets. When mul-
tiple cell sequences were inferred for a single cell, we replaced incon-
sistent base assignments with MBs. For SiFit (Zafar, et al., 2017) analyses,
we also input true rates of false positive and false negative detection of
mutations. The number of iterations run for each restart was 10,000. Cell
genotypes were inferred by inferring the order of mutations along the cell
phylogeny predicted by SiFit. LOH rate and deletion rate were set to zero.

2.4 Empirical data

We analyzed a single-cell sequencing dataset from muscle-invasive blad-
der tumors (Li, et al., 2012), which has been analyzed previously in other
articles proposing new methods (Ross and Markowetz, 2016; Zafar, et al.,
2017). We obtained sequenced reads in FASTQ format by using SRA
toolkit (v2.8.1)(Leinonen, et al., 2011). We mapped these sequenced reads
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to the human genome sequence (hgl8 from UCSC database; https://ge-
nome.ucsc.edu/) by using the Burrows-Wheeler alignment tool (BWA
v0.7.12)(Li and Durbin, 2009) with aln and samse options. Samtools
(v1.3.1)(Li, et al., 2009) was used to remove reads with low mapping qual-
ity (<40) when creating BAM files, which were sorted by chromosome
coordinate. This initial data processing follows the protocol described in
Zafar, et al. (2016).

We then used Monovar (Zafar, et al., 2016) to call mutations. We per-
formed mpileup in Samtools with the options presented in the instructions
for Monovar (i.e., minimum base quality was zero). Monovar analysis was
performed with the default or recommended options, i.e., offset for prior
probability of false-positive error was 0.002; offset for prior probability of
allelic drop out was 0.2; threshold for variant calling was 0.05; and the
number of threads used in multiprocessing was 2.

For downstream computational analysis, we selected SNVs in coding
regions that were identified by Zafar, et al. (2016). Nucleotides identified
among the majority of normal cells were assigned as wild-types, and the
other bases found in tumor cells were assigned as mutants. Our analyses
did not distinguish homozygous and heterozygous mutations. Following
Zafar, et al. (2016), we assigned missing values to positions with coverage
depth less than 6x, in addition to positions where Monovar did not predict
a genotype. Lastly, we removed one cell that contained a very large num-
ber of missing bases.
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Figure 6: Improvement in the single-cell sequences for medium sized datasets (R100x50). (a) Sequence quality of the data input to five computational methods and of

output from computational processing. (b) Proportions of missing bases imputed correctly by computational methods. (c) The ratio of the number of FPs and FNs in output and

input sequences (output/input).
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Figure 7: Detection and correction of FP and FNs in datasets containing 1000
cell sequences with SNVs. Scatter graphs show the relationships of the number of
the FPs and FNs in the input data (x-axis) and the output data (y-axis) produced by
(a) BEAM and (b) SCG. Linear regression slopes through the origin are 0.62 and
1.12, respectively. (c) The initial cell phylogeny when the number of SNVs is small
(50), which is very different from the true cell phylogeny and the cell phylogeny
derived using 500 SNVs (Fig. 1b).

3 Results

3.1 Analysis of simulated large datasets

We first present results from the analysis of 120 large datasets that con-
sisted of 1000 cells each with 50 SNVs (R1000x50). The initial sequence
quality (Qo) of these datasets ranged from 65—75% (Fig. 5a), which was
caused by 20% MBs, 7-51% FPs, and 2—-16% FNs. Four of the five meth-
ods were able to handle these large datasets and produced refined single-
cell sequences of much higher quality than the input (Fig. 5a). The average
Qeeam Was 89% and varied from 80% - 95%. The performance was the
best when the input sequences contained the fewest errors and the worst
when the input sequence error was the largest. SCITE performed similarly
well (Qscite = 90%) and showed very similar trends describing the rela-
tionship between input and output quality. While SCG also worked well
(Qsce = 89%), it showed much greater variability in performance. SiFit
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Pl >,
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Cjﬁ SiFit o ® 75%
@ =
@ m 8 BEAM
2 50% SCITE @5
g Input OncoNEM g %
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D 50, E
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25%

showed the smallest improvements (Qsirir = 80%). Overall, the sequence
quality improved for all datasets after a computational method was used.

We found that the correct imputation of MBs was the primary reason
for the improvements observed for R1000x50 datasets. The fraction of
MBs found in the single-cell sequences decreased, on average, by 100%,
100%, 100%, and 96% after the application of BEAM, SCG, and SCITE,
respectively, and most of the missing data were correctly imputed (88%,
88%, and 87%, respectively)(Fig. 5b). Although SiFit imputed all of the
MBs without producing new MBs, SiFit correctly imputed a much smaller
fraction of MBs than the other methods (70% of MBs were correctly im-
puted). Interestingly, however, no method showed a significant ability to
reduce the total number FPs and FNs in this data (Fig. 5¢), as the numbers
of FPs and FNs in the output were greater than in the input (output/input
ratio > 1.0). Of all the methods, SiFit showed the worst average ratio
(2.18), which can happen because the correction procedure has to be ap-
plied to all the bases in the input sequence data as the positions with FP
and FN are not known in the real world data analysis. This causes the cre-
ation of many new false positives and false negatives.

Next, we tested the accuracy of computational methods for datasets in
which the number of sequenced cells was reduced to 100 (R100x50).
Again, all methods successfully improved single-cell sequences with very
similar output sequence quality (Fig. 6a). Outcomes were similar to those
observed for R1000x50 datasets, except that SiFit performed much better
and OncoNEM produced results. As with the larger dataset (R1000x50),
the correct imputation of MBs was the primary improvement observed
(Fig. 6b), and all of the methods produced sequences in which the num-
bers of FPs and FNs were similar to or much larger than the error in the
input sequence data (Fig. 6c).

In both R1000x50 and R100x50 datasets, we observed that the identi-
fication of FPs and/or FNs was less effective than the imputation of MBs
for all the methods (Fig. 5¢ and 6c¢). We hypothesized that, unlike the im-
putation of MBs, detection and correction of FPs and FNs was very sensi-
tive to the available cell relationship information that can be gleaned from
the initial error-prone single-cell sequencing data. We tested this hypoth-
esis by increasing the number of SNVs used to 500 (R1000x500), while
keeping the number of errors per SNV the same as in R1000x50 dataset.
We applied BEAM and SCG to the new collection of datasets and found
that the output/input ratio of FPs and FNs for BEAM became much less
than 1 (Fig. 7a). That is, BEAM was able to produce sequences with ~40%
fewer FPs and FNs. This improvement over R1000x50 datasets is ex-
plained by the fact that the initial cell relationships derived using the input
data in BEAM are more accurate when the number of SNVs analyzed is
large (compare phylogenies in Fig. 7c and 1b). This improvement enables
the Bayesian analysis to generate better predictions, because the phyloge-
netic prior is closer to the truth.

Figure 8: Improvement in the single-cell se-
quences for datasets containing a small num-
ber of cells (M). (a) Sequence quality of the data
SiFit input to computational methods and of the data
output from all five methods. (b) Proportions of
SCITE missing bases imputed correctly. These are ag-
gregate patterns from the analysis of 690 da-
tasets; see figures 9 and 10 for more detailed re-

OncoNEM sults.

SCG
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Figure 9: Improving FPs and FNs in the single-cell sequences. The ratio of FP and FN base assignments in the output and the input sequences (output/input) for BEAM, SCG,

SCITE, SiFit, and OncoNEM. For SCG, the trend was truncated at 2.0 for simplicity.

The performance of SCG did not improve, and still created more FP
and FN errors in the output (Fig. 7b). This may be because SCG first clus-
ters cells to identify clones and then assigns clone genotypes. This proce-
dure does not appear to benefit from increased evolutionary information
in the dataset. Additional analyses support this reasoning, as BEAM, On-
coNEM, SCITE, and SiFit were able to detect and correct many FPs and
FNs when the number of SNVs sampled was large in relation to the num-
ber of cells sampled.

3.2 Analysis of smaller datasets

Next, we next analyzed 690 datasets that were generated by Ross and
Markowetz (2016) (M datasets). All contained fewer cells than the R1000
datasets (largest) and R100 datasets (medium-sized), but the M datasets
contained the same or larger numbers of SNVs (50, 100, 200, and 300
SNVs) compared to the R datasets. All five methods produced results for
all datasets, in which the initial quality of cell sequences was between 65
and 75%. BEAM, SCITE, and SiFit increased the quality of the sequences
to an average 92% (Fig. 8a), but OncoNEM (82%) was less accurate and
SCG performed poorly (65%). OncoNEM and SCG did not impute miss-
ing data as accurately as BEAM, SCITE and SiFit (Fig. 8b).

All methods, except SCG, decreased the numbers of FPs and FNs in the
analysis of M datasets (Fig. 9), because the ratio of the number of SNVs
to the number of cells was greater than that for R datasets. In fact, increas-
ing the number of SNVs provides a proportional increase in the perfor-
mance of BEAM, OncoNEM, and SiFit. Patterns observed for M datasets
(Fig. 9) confirm the results for R datasets with 500 SNVs (Fig. 7): BEAM
becomes more accurate with larger numbers of SNVs and SCG’s perfor-
mance does not improve. OncoNEM performed the best in correcting FPs
and FNs in M datasets, but achieves this at the expense of producing many
MBs (Fig. 8).

As expected, the quality of the inferred sequences became higher as the
number of SNVs increased (Fig. 10a). The quality of the inferred se-
quences was higher when the number of cells was high (Fig. 10b), because
all methods utilize similar cell sequences (or clusters of SNVs) to impute
MBs and correct FPs and FNs. For example, the PP calculation is affected
by the base assignments of neighboring cells, which will become more
accurate when a base assignment is supported by larger number of cells
from the same clone. Overall, BEAM, SCITE, and SiFit provided the most
robust results when the number of cells was small, and OncoNEM and
SCG were greatly impacted if multiple cells per clone were not sampled.
Lastly, the quality of the output sequences was a direct function of the
fraction of MBs (Fig. 10c), FPs (Fig. 10d), and FNs (Fig. 10e).

Before proceeding with an analysis of empirical datasets, it is important
to note that we did not introduce any loss of mutant alleles in our simula-
tions, e.g., loss of heterozygosity (LOH) and the loss of genomic seg-
ments. Such mutations will negatively impact the performance of most
methods, as the evolutionary relatedness of sequences will be disturbed by
such losses. Therefore, such positions should be detected and removed be-
fore applying these computational methods. Also, we found that a high
rate of doublet sequencing did not adversely impact the performance of
any of the computational methods (Fig. 10f). This result is consistent with
the finding in Jahn, et al. (2016), who reported that doublet sequencing did
not lead to lower accuracy in biological inference, which was a major mo-
tivation for the development of SCG (Roth, et al., 2016).
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Figure 10: The relationship of the output sequence quality with the various sim-
ulation parameters. (a) Number of SNVs in the data, (b) number of cells se-
quenced, and fractions of (c) missing bases, MBs, (d) false positives, FPs, and (e)
false negatives, FNs in M datasets. (f) Effect of increasing doublet sequencing rates
on the quality of the output sequencing for R datasets.
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3.3 Analysis of an empirical dataset

We applied all five methods to a previously published dataset of a muscle-
invasive bladder tumor (Li, et al., 2012). This dataset contained 55 cells
with 84 SNVs in protein coding regions (see Methods). The cell
phylogeny before and after the application of BEAM is shown in Figures
1laand 11b, respectively. As observed from computer simulated datasets,
the phylogeny based on the initial single-cell sequences shows high
diversity among cells, with no clear demarcation of clones; note that we
colored tips in Figure 11a based on BEAM’s clone predictions in Figure
11b). Following the application of BEAM, the cell phylogeny shows
distinct clonal structure with 11 different tumor clones (Fig. 11b).

Li et al. (2012) suggested that all of the tumor cells were derived from
a single ancestral cell. This conclusion is supported by BEAM, as the
inferred cell phylogeny showed that all of the tumor cells had a common
ancestral cell. Li et al. (2012) reported that a set of 15 cells, which they
identified as a single clone, arose early in the tumor’s evolution. BEAM
found that 14 of these cells belonged to a group of early-emerging clones
(gray, green, and pink clones in Fig. 11b), and one cell was a part of a
later arising (yellow) clone. Two BEAM-identified clones (purple and red)
are the closest relatives and were contained in the second clone in Li et al.
(2012). Cells from the third clone in Li et al. (2012) are divided among 5
closely-related clones by BEAM. Therefore, the cell phylogeny produced
by BEAM provides a more detailed clonal structure, which remains
consistent with the clonal structure (three major clones) presented by Li et
al. (2012).

The initial cell phylogeny (Fig. 11a) was transformed into the final cell
phylogeny (Fig. 11b) by BEAM, because the final single-cell sequences
contained only 6 positions with missing values. This is a major
improvement, as the original dataset contained 666 positions with missing
values. In imputing MBs, BEAM assigned a mutant base to 337 positions
and the normal base to 323 positions. 63% of the mutant base and 74% of
the wild-type base assignments made by BEAM were also suggested by
all other methods (Fig. 11c and d, respectively). In fact, more than 93%
of BEAM’s assignments for MBs were shared with at least one other
computational tool. Therefore, extensive consensus exists among
methods. We also examined whether BEAM’s base assignments for MBs
were supported by the read count data. As mentioned in an earlier section,
Monovar does not assign a base when there are only a few reads. So, we

(a) Initial phylogeny

tested whether the wild type base assignments by BEAM were supported
by higher read counts than other bases at the examined positions. This was
indeed the case, the read counts of wild type alleles assignments averaged
7 times higher. Assignment of mutant alleles to MBs were also supported
by 22% larger read counts than the wild type alleles. Therefore, read count
data generally supports the assignments made by BEAM.

In addition to imputing almost all MBs in the observed sequences (99%
of MBs), BEAM corrected wrong mutant and wild-type base assignments.
In these predictions, 105 mutation calls were found to be false positives,
65% of which were also detected by at least two other methods. That is,
they were consensus assignments (2 3 out of 5 methods). Also, 183 wild-
types were detected to be false negatives, i.e., they should have been
mutant assignments. 88% of these were consensus assignments, becase at
least two other methods suggested the same base assignment. Therefore,
we expect that the use of these computational methods will enable better
biological conclusions.

4 Discussion

We have reported that computational methods are generally capable of
imputing missing bases with high accuracy and, thus, can improve the
quality of the tumor single cell sequences. In particular, BEAM, SCG and
SCITE performed well in imputing missing bases for datasets with a large
number of cells. Our results also confirm Ross and Markowetz (2016)
conclusion regarding the accuracy of SCG for datasets representing a large
number of cells but containing few SNVs. However, we have newly re-
ported that the gain in accuracy is due to correct imputation of missing
data, and that SCG does not perform well in correcting FPs and FNs. In
fact, all methods require a large number of SNVs to detect and correct FPs
and FNs. And, as mentioned earlier, no other methods provided infor-
mation on their performance in accurately imputing MBs and correcting
FPs and FNs, so our results provide the knowledge of potential errors that
each method may produce in actual empirical data analyses, which will be
a guide to analyze the inferences of these methods for practitioners.

We have shown that, when the number of SNVs sampled is large, many
methods also show good performance in detecting and correcting false
positive and false negative mutation assignments. In our analyses, BEAM,
SCITE, and SiFit methods performed very well for datasets containing a

(b) BEAM phylogeny (¢) MBs to Wild-types

! 74%
(all)

(d) MBs to Mutants

1%
(%

Normal

Figure 11: Analysis of an empirical dataset. (a) The cell phylogeny produced by using the initial single-cell sequences from Li et al. (2012). (b) The cell phylogeny produced by

BEAM after imputing MBs and correcting FPs and FNs. The proportions of imputed MBs that were assigned a (c) wild-type base and (d) a mutant base are shown, with different

slices indicating the number of methods (in parentheses) that made the same assignment, including BEAM.
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small number of cells, both for small and large number of SNVs. These
three methods employ molecular phylogenetics, but BEAM is based ex-
clusively on classical molecular phylogenetic methods and applies a
Bayesian framework to impute MBs and correct FPs and FNs by using the
initial cell sequence phylogeny as a prior. In contrast, SCITE and SiFit
employ a model that account for sequencing error rates in the process of
inferring the evolutionary tree of cells, which also results in improved cell
sequences (Jahn, et al., 2016; Zafar, et al., 2017). SiFit produces refined
cell sequences by inferring the order of mutations along the inferred max-
imum likelihood cell phylogeny with given error rates, whereas SCITE
uses a Bayesian method to search for a cell phylogeny that intrinsically
maps mutations along branches in the phylogeny. We consider BEAM and
SCITE to be in the same class of methods, with the difference that SCITE
needs to model sequencing error rates but BEAM does not. Interestingly,
both of them show comparable results, which are among the best. That is,
BEAM obviates the need to apply the same sequencing error rate model
throughout the tree, which may be preferable because mutational patterns
change in cells based on their evolved state (Frank and Nowak, 2004),
potentially resulting in heterogeneity of error rate models among clones.

Our results show that methods that incorporate the cell phylogeny are
more powerful than others, especially when the number of cells per clone
is small and the number of SNVs is large. This is because BEAM, SiFit,
and SCITE perform better than OncoNEM, which aims to infer clone phy-
logeny, and SCG, which employs a mixture model that identifies groups
of cells with shared clone genotypes. Because tumor cells descend from
pre-existing cells, there is evolutionary continuity in cell sequencing da-
tasets, which enables computational methods to correctly impute missing
data and make correct base assignments. We find that molecular evolu-
tionary methods that have been successfully applied for species and strain
phylogenetics for decades serve as a strong foundation for phylogenetic
approaches with greater power to impute missing data and refine cell se-
quences for small datasets.
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