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24 Abstract

25 In patients with chronic spinal cord injury (SCI), few therapies are available to improve 

26 neurological function. Neuromodulation of the spinal cord with epidural stimulation (EDS) has 

27 shown promise enabling the voluntary activation of motor pools caudal to the level of the injury. 

28 EDS is performed with multiple electrode arrays in which several stimulation variables such as 

29 the frequency, amplitude, and location of the stimulation significantly affect the type and 

30 amplitude of motor responses. This paper presents a novel technique to predict the final 

31 functionality of a patient with SCI after cervical EDS within a deep learning framework. 

32 Additionally, we suggest a committee-based active learning method to reduce the number of 

33 clinical experiments required to optimize EDS stimulation variables by exploring the stimulation 

34 configuration space more efficiently. We also developed a novel method to dynamically weight 

35 the results of different experiments using neural networks to create an optimal estimate of the 

36 quantity of interest. The essence of our approach was to use machine learning methods to predict 

37 the hand contraction force in a patient with chronic SCI based on different EDS parameters. The 

38 accuracy of the prediction of stimulation outcomes was evaluated based on three measurements: 

39 mean absolute error, standard deviation, and correlation coefficient. The results show that the 

40 proposed method can be used to reliably predict the outcome of cervical EDS on maximum 

41 voluntary contraction force of the hand with a prediction error of approximately 15%. This 

42 model could allow scientists to establish stimulation parameters more efficiently for SCI patients 

43 to produce enhanced motor responses in this novel application. 

44 Author Summary

45 Spinal cord injury (SCI) can lead to permanent sensorimotor deficits that have a major 

46 impact on quality of life. In patients with a motor complete injury, there is no therapy available 
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47 to reliably improve motor function. Recently, neuromodulation of the spinal cord with epidural 

48 stimulation (EDS) has allowed patients with motor-complete SCI regain voluntary movement 

49 below the level of injury in the cervical and thoracic spine. EDS is performed using multi-

50 electrode arrays placed in the dorsal epidural space spanning several spinal segments. There are 

51 numerous stimulation parameters that can be modified to produce different effects on motor 

52 function. Previously, defining these parameters was based on observation and empiric testing, 

53 which are time-consuming and inefficient processes. There is a need for an automated method to 

54 predict motor and sensory function based on a given combination of EDS settings. We developed 

55 a novel method to predict the gripping function of a patient with SCI undergoing cervical EDS 

56 based on a set of stimulation parameters within a deep learning framework. We also addressed a 

57 limiting factor in machine learning methods in EDS, which is a general lack of training 

58 measurements for the learning model. We proposed a novel active learning method to minimize 

59 the number of training measurements required. The model for predicting responses to EDS could 

60 be used by scientists and clinicians to efficiently determine a set of stimulation parameters that 

61 produce a desired effect on motor function.

62
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63 Introduction

64 Spinal cord injury (SCI) refers to an acute traumatic injury to the spinal cord that results 

65 in varying degrees of sensorimotor deficits below the level of injury [1]. Between 1993 and 

66 2012, the total number of cases of SCI increased in the United States as the population increased, 

67 and the total number of new SCIs was approximately 17,000 in 2012 [2]. SCI has a major impact 

68 on health-related quality of life and is associated with annual costs of $80,000 per patient after 

69 the first year of injury [3]. The acute management of SCI includes surgical decompression and 

70 stabilization as well as avoiding secondary injury. The acute management is typically followed 

71 by intensive rehabilitation. Despite aggressive intervention for patients with motor complete SCI, 

72 which is defined as complete loss of motor function below the level of injury, few patients 

73 achieve meaningful neurological recovery with rehabilitation [4]. 

74 Among novel interventions for chronic SCI, neuromodulation using epidural stimulation 

75 (EDS) caudal to the level of injury has shown promise in allowing patients to regain voluntary 

76 locomotor activity [5]. Edgerton et al. discovered that EDS enabled patients with motor and 

77 sensory complete SCI to regain fine voluntary movement below the level of injury [6, 7]. In the 

78 presence of EDS, patients were able to voluntarily control the force generated in specific muscle 

79 groups in response to visual and auditory cues. After repeated training, stimulation thresholds to 

80 produce voluntary motor activity decreased. Recently, EDS has been applied to the cervical 

81 spine to improve hand function, which is less related to central pattern generation than 

82 locomotion. These patients demonstrated up to a 300% increase in hand strength [8].

83 The foregoing studies used multi-electrode epidural stimulation arrays spanning 2-3 

84 cervical or lumbosacral spinal segments. There are multiple stimulation variables that can be 

85 modified to change the effect of EDS, including stimulation amplitude, electrode polarity, 
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86 stimulation frequency, pulse width, and stimulation location. Optimizing the stimulation 

87 configuration and location markedly affects the type and amplitude of efferent motor responses 

88 [6, 9, 10]. Identifying the optimal configuration is conventionally performed by empirical 

89 methods that systematically explore the array space, which is a time consuming and expensive 

90 process. Recently, an active machine learning technique using a structured Gaussian process was 

91 used to optimize stimulus variables in four spinally transected rats with implanted multi-

92 electrode epidural arrays [11]. The algorithm was able to select stimuli that produced the best 

93 motor response out of a very large set of parameters and independently identify stimulation 

94 locations associated with specific tasks. Ultimately, it was able to match the efficacy of human 

95 experimenters in identifying the optimal stimulation variables.

96 Given the extensive input and output information associated with modifying stimuli and 

97 characterizing motor responses, respectively, there is a need for efficient machine learning 

98 algorithms to explore the wide range of stimulation properties and locations available with EDS. 

99 We developed a novel approach for predicting the effect of different stimulation configurations 

100 on hand function in a subject with chronic SCI following placement of a cervical epidural spinal 

101 cord stimulator. We focused on predicting the outcome of different stimulation configurations in 

102 an automated fashion using an active learning method for guiding the experiments. Apart from 

103 the prediction of the outcome of stimulation, we also developed a novel method based on 

104 artificial neural networks to interpret the outcomes of several experiments and aggregate them as 

105 a single target value. This was used to combine EMG signals from different trials into one value. 

106 We refer to this process in the following sections as the “dynamic weighting method.”

107 Results
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108 Our dataset consisted of 237 samples taken from a single patient with chronic SCI in 

109 which each sample was a combination of stimulation parameters (i.e., frequency, intensity, and 

110 location) and a target outcome score. In order to evaluate the proposed method, a 10-fold cross-

111 validation of test and training data was used (i.e., training on 9 folds, and testing on the 

112 remaining 1 fold while cycling the test fold and averaging all test performance results). Using 

113 this strategy, the following results were obtained from all 237 samples. 

114 Outcome prediction performance

115 Table 1 presents a comparison between the performance of the proposed dynamic weight 

116 prediction method and other simple, commonly used approaches to characterize the outcome 

117 such as mean and median. The comparison is made in terms of mean absolute error (MAE), 

118 standard deviation (STD) of prediction errors, and Pearson's correlation coefficient ( ) between 𝑟

119 the actual target and the predicted values. As shown in the table, the dynamically weighted 

120 predictions outperform the other methods by a considerable margin; the MAE and STD values 

121 for the dynamic weighting method are about 27% and 24% lower than the MAE and STD values 

122 for the mean and median estimates, and the correlation coefficient is greater. In addition, Table 1 

123 compares the results using i) a neural network predictor trained alongside the dynamic weight 

124 predictor, and ii) a support vector regression (SVR) predictor trained on the dynamically 

125 weighted targets. From this comparison, training a new SVR predictor instead of using the 

126 existing neural predictor yielded more accurate predictions. 

127 Table 1: Comparison between the proposed dynamic weighting score weighting approach 

128 and mean/median approaches.

Mean Median Proposed 
approach 
(NeuralNet)

Proposed 
approach 
(SVR)

MAE (%) 21.07 21.63 20.01 15.23
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STD (%) 26.65 27.38 26.12 20.25
r 0.55 0.57 0.60 0.64

129 MAE, mean absolute error; NeuralNet, neural network; STD, standard deviation of error; SVR, 

130 support vector regression.

131 Fig 1 shows the histogram of errors between target values and predictions using the 

132 proposed dynamic weighting approach combined with SVR and the equally weighted averaging 

133 approach combined with SVR. The error histogram corresponding to the dynamic weighting 

134 approach is more concentrated around zero (i.e., has a lower variance). Moreover, the range of 

135 errors associated with the combined dynamic weighting and SVR is smaller than the range of 

136 errors associated with equally weighted averages.

137 Fig 1. Histogram of errors using dynamic weighting and SVR compared to mean and SVR.

138 Increasing the efficiency of learning

139 Fig 2 compares the learning curves derived from using the committee-based active 

140 learning method and the random sample selection approaches for , MAE, and STD performance 𝑟

141 measures. The horizontal axis in these figures is the fraction of the patient’s data from the entire 

142 dataset that was used for training the learning methods. The active learning method was able to 

143 reach the same accuracy as the random sampling method, as reflected by the r-values, despite 

144 using 30% less of training data (Fig 2a). In other words, the active learning method reduced the 

145 number of samples required to train the model by approximately 30% to achieve the same 

146 prediction performance as the random sample selection. The performance of the active learning 

147 approach was superior to the random sampling method, and this improved performance is 

148 reflected in the MAE and STD measures seen in Fig 2b and Fig 2c. 

149 Fig 2. The performance of active learning compared to random sampling in terms of (a) r-

150 value, (b) mean absolute error (MAE), and (c) standard deviation (STD). 
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151 In this figure, the X-axis represents the fraction of training data used from the entire available 

152 data samples, and the Y-axis represents each performance measure.

153 Discussion

154 Spinal EDS is emerging as a potential therapy for patients with motor complete cervical 

155 and thoracic SCI to achieve previously inaccessible purposeful, voluntary movements in the 

156 hands and legs. The mechanism by which this occurs is unclear. EDS may directly activate 

157 proprioceptive fibers in the dorsal column and dorsal roots [12] or indirectly affect interneurons 

158 [13]. As demonstrated previously, different lower extremity movements such as stepping, 

159 standing, and isolated motions are subject to substantial variability based on the configuration 

160 and location of the electrode array as well as the stimulation parameters [14-17] and may depend 

161 on the individual characteristics of each patient. Similarly, the effect of EDS on upper extremity 

162 movements is affected by the stimulation parameters applied in the cervical spine [8]. 

163 Previously, identifying stimulation parameters has been based on empirical testing and visual 

164 observation. Given the inefficiency and time consuming nature of empirically testing every 

165 combination of these variables, computational models have been pursued to predict the motor 

166 responses produced by EDS based on the intensity and location of the stimulus [18]. We 

167 addressed the inefficiency of prior approaches by developing a novel technique using machine 

168 learning methods to predict the hand contraction force of a patient with chronic SCI based on 

169 different EDS parameters. The accurate prediction of hand contraction force will reduce the 

170 lengthy testing sessions needed to obtain stimulation settings empirically. This is the first study 

171 to use such an approach in a patient with cervical SCI so far was we know.

172 In this study, the proposed dynamic weighting method was used to derive a target value 

173 of hand force generation for the purpose of training a model to predict the outcome of cervical 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2018. ; https://doi.org/10.1101/341719doi: bioRxiv preprint 

https://doi.org/10.1101/341719
http://creativecommons.org/licenses/by/4.0/


9

174 EDS. Dynamic weighting proved to be more accurate than using equally weighted averages. In 

175 general, the dynamic weighting method can be applied to derive a single quantity when there are 

176 several measurement samples available, which is useful when the traditional filtering and 

177 averaging methods are not sufficient. We limited the active learning queries to a pool of samples 

178 that were generated during subject testing before – this was not an exhaustive set of all possible 

179 stimulation combinations, but did represent the available dataset from this patient. However, the 

180 algorithm could be allowed in future applications to query the entire space of stimulation 

181 variables that is reasonable to obtain based on hardware limitations and patient comfort. The 

182 committee-based active learning method that we described increased learning efficiency, which 

183 can reduce the number of clinical experiments necessary to identify optimal stimulation 

184 configurations.

185 The SVR model produced more accurate predictions of motor function than a neural 

186 network. However, it should be mentioned that in other possible applications of the proposed 

187 dynamic weighting method, using the jointly trained neural predictor with enough training data 

188 might be a reasonable option. In order to limit the number of experiments required to obtain 

189 training data, an active learning method similar to the one that we described can be used. This 

190 approach used 30% less data than the random sampling method and yielded similar accuracy, 

191 which may translate into a genuine saving of time and discomfort for each patient.

192 The current study has some limitations. Training the model was limited to 237 samples 

193 from the subject. Using a larger number of samples would have improved the training of our 

194 deep learning model and made it more generalizable. However, given that this is a novel 

195 application and with only two cervical SCI patients implanted to date that we are aware of, this 

196 study may be timely for future implantations. In this study, we only addressed hand contraction 
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197 because we had a reliable method for quantifying this. There are a variety of other movements 

198 necessary to achieve meaningful hand function, however, and simultaneously optimizing these 

199 and other outcome variables during EDS treatment may require modification of our technique. 

200 Our approach can likely be applied in a similar manner to the lumbosacral spine as well in order 

201 to predict walking ability in response to EDS. 

202 Materials and methods

203 Ethics statement

204 The study and the experimental protocols were approved by the UCLA Institutional 

205 Review Board (IRB#12-001416) and FDA IDE (G140103).

206 Experimental setup and data collection

207 Data collection procedures. A 28-year-old male with chronic SCI was enrolled in the 

208 current study. The patient sustained an injury at C5 from a motorcycle accident and the severity 

209 of his injury was assessed using the International Standards for Neurological Classification of 

210 Spinal Cord Injury (ISNCSCI) as an American Spinal Injury Association (ASIA) Impairment 

211 Scale (AIS) C.

212 A 32-contact paddle (Coverage X32, Boston Scientific Corporation) was implanted in the 

213 dorsal aspect of the cervical spine (Fig 3). In this study, the paddle contacts in each row were 

214 stimulated together. We explored stimulation frequencies of 5, 30, 60 and 90 Hz and intensities 

215 between 1 mA to 6 mA. 

216 Fig 3. X-ray showing the epidural stimulation paddle contacts and their placement 

217 implanted in the cervical spine.

218 The data used in this study consisted of 29 different experimental sessions (each session 

219 on a separate day) that were conducted over a 15-week period. Prior to each session, 
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220 experimental configurations (i.e., frequency, intensity, and location) were selected based on 

221 decisions by a human expert.

222 Hardware setup. A custom designed hand-grip device with adjustable tension control 

223 was used for the maximum voluntary contraction (MVC) hand-grip task. The application of this 

224 device for quantifying voluntary upper extremity motor function in patients with SCI has been 

225 described previously [19]. The tension of the hand-grip device was adjusted to accommodate the 

226 patient’s range of potential generated force. A data acquisition device (RZ5D BioAmp Processor, 

227 TDT Corporation) was used to record 16 EMG channels as well as a manual synchronization 

228 pulse at a sampling frequency of 24.4 KHz. The brachioradialis EMG channel was included in 

229 the analysis. Apart from the EMG signal a manual pulse signal, which is henceforth called the 

230 synchronization signal, was created manually during the experiments. This was used to mark the 

231 beginning and the end of each hand-grip MVC task.

232 Study design 

233 This study consisted of 29 different sessions. In each session, the subject was asked to 

234 perform multiple MVC experiments, which included baseline (without any stimulation) and 

235 during epidural stimulation (using different stimulation configurations). In each experiment, the 

236 subject performed three MVC hand-grip trials sequentially (all with the same stimulation 

237 configuration). Each trial was initiated with a verbal cue indicating that the subject should grip 

238 the device handle as strongly as he could. Each EMG signal interval that corresponded to a 

239 single trial within an experiment was called a signal portion. Raw signal portions were used to 

240 measure the score of each trial. The score was defined as the median of the top 5% of the highest 

241 EMG amplitudes (Fig 4), which was normalized by the baseline score using equation 1. The 

242 target score was derived by aggregating the scores of the three trials using mean, median, or the 
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243 proposed weighting method. A feature vector, a combination of location, intensity, and 

244 frequency, defined the stimulation configuration during each particular experiment.

245 Fig 4. Score calculation in a single EMG portion. 

246 The markers show that it is unreliable simply to use the peak value, and the results are improved 

247 using the proposed method.

248 Preprocessing 

249 Fig 5 shows the proposed preprocessing steps. Preprocessing started with a 10x 

250 decimation (down-sampling by a factor of ten) and full-wave rectification of the EMG and 

251 synchronization signals (the original signal had a sampling frequency of 24.4 KHz). The rectified 

252 signals were filtered using median filtering with a window size of 200 ms for the synchronization 

253 signal and mean filtering with the same window size for the EMG signal to eliminate noise and 

254 spike-like values due to analog to digital conversion errors. Next, the EMG and synchronization 

255 signals were normalized using unity-based normalization (i.e., scaling values to the range of zero 

256 and one). The synchronization signal was used to split the EMG signal to three portions, each 

257 corresponding to the EMG signal during a single trial (Fig 6). For each portion, the median 

258 amplitude among the 5% of maximum amplitudes was calculated as the score of that trial. The 

259 logic behind selecting the median amplitude among the 5% of maximum amplitudes, instead of 

260 simply using the peak value, is that the median value significantly increases the robustness of 

261 score calculation in the presence of noise and unwanted effects on the EMG signal. The 

262 maximum value may be an outlier and not be a good representative of the ‘true’ maximum value 

263 of the signal. As shown in Fig 4, simply using the peak value results in inaccurate score 

264 measurements due to the noise and artifacts affecting the EMG signal.

265 Fig 5. The proposed preprocessing pipeline.
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266 Fig 6. The synchronization signal was used to divide the EMG signal to three portions and 

267 each corresponded to a trial within the experiment.

268 After calculating the scores associated with each experiment within a session, the final 

269 scores for each stimulation experiment were calculated using the following formula. 

270   (1)𝑆𝑐𝑜𝑟𝑒 =
𝑆𝑐𝑜𝑟𝑒𝑠𝑡𝑖𝑚 ‒ 𝑆𝑐𝑜𝑟𝑒𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑆𝑐𝑜𝑟𝑒𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

271 Where Scorebaseline is the score before applying any stimulation, and Scorestim is the score during 

272 stimulation. The final score is the percentage of variation between the stimulation score and the 

273 baseline score obtained during each test session. 

274 Calculation of target values

275 Three scores were available for each experiment corresponding to each trial. We 

276 calculated a single target score (the aggregated value using a weighted average of the scores for 

277 each signal portion where a score for each signal portion is the median of the top 5% of the 

278 highest EMG amplitudes) from these scores as the outcome of each experiment. The simplest 

279 approach would have been to average these values [20]; however, many scores were 

280 contaminated by noise and some could have been limited by subject effort. Accordingly, using a 

281 simple average or median of scores may not be an accurate measure of the real expected target 

282 values. The problem becomes more complicated considering that, within each experiment, the 

283 subject was less fatigued in the first trial compared to the following two. Therefore, we used a 

284 weighted average to calculate the target values, and the weights were determined using a 

285 predictor model that dynamically predicted the appropriate weights for each trial score. We 

286 created two neural networks in which one network was used as an outcome predictor, and the 

287 other one was used as a weight predictor, and we trained them jointly. The first neural network 

288 was responsible for predicting the stimulation outcome, and the second one was responsible for 
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289 predicting the weights that were applied to each trial score in the calculation of the target value. 

290 Fig 7 demonstrates the proposed network architecture. The dotted areas (a) and (b) in Fig 7 show 

291 the outcome predictor and the dynamic weight predictor, respectively.  

292 Fig 7. The proposed neural network architecture. 

293 The network can be separated into (a) the outcome predictor, (b) the dynamic weight predictor, 

294 and (c) the weighted average calculator. In this figure, F, I, and L correspond to the stimulation 

295 parameters frequency, intensity, and location, respectively. NS1, NS2 and NS3 are the three 

296 recorded scores (the median of the top 5% of the highest of EMG amplitudes) normalized by 

297 their mean value for a given stimulation configuration. Target value is an aggregated value of 

298 these scores (not normalized) using the proposed dynamic weighted average of the scores.

299 In order to direct the network to learn from relative sample values rather than absolute 

300 values, the score values normalized by their median values (NS1, NS2, and NS3 in Fig 7) were 

301 used as inputs for the weight predictor. The last layer of the weight predictor is a softmax layer, 

302 which guarantees that the predicted weights are always positive and sum to one. 

303 After multiplying the score values (the median of the top 5% of the highest EMG 

304 amplitudes) with these predicted weights, we estimated the target value, which is the weighted 

305 average of the scores (see the dotted part (c) of Fig 7). The softmax layer played a significant 

306 role in the training of the whole network and ensured that the weights are positive and sum to 

307 one. In the absence of this softmax layer, the network would have chosen an arbitrary set of 

308 weights leading to an incorrect target value not indicating the weighted average of the scores. To 

309 train the network we used TensorFlow, an open-source numerical computation library developed 

310 for dataflow programming that is commonly used to train neural networks [21]. The proposed 

311 dynamic weight predictor can theoretically work for any kind of neural network including deep 
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312 learning methods [22]. However, due to the limited number of training samples available to us, 

313 we used networks with a single hidden layer consisting of 32 neurons. The optimization cost 

314 function was defined as the mean squared error (MSE) between predictions and targets of the 

315 complete network (Fig 5). Finally, stochastic gradient descent (SGD) was used to train the 

316 network [23].

317 Prediction of target values 

318 The trained outcome predictor in the previous section can be used directly to predict the 

319 expected target value of each stimulation configuration. However, from the trained network, we 

320 only used the dynamic weight predictor for the estimation of the expected target values. Based 

321 on these target values, a Radial basis function (RBF)-kernel support vector regression (SVR) was 

322 trained as the final stimulation outcome predictor. We used Scikit-Learn library [24] to train the 

323 RBF-kernel ϵSVR model. Model hyper-parameters including the error term penalty (C), error 

324 insensitive zone width (ϵ), and kernel smoothness parameter (γ) were selected based on a 10-fold 

325 exhaustive grid search cross validation (C = 15; ϵ  = 0.01; γ = 0.001). 

326 Increasing the Learning Efficiency 

327 Active learning methods attempt to decrease the number of labeled training data required 

328 by requesting samples that are considered to be more informative. There are a variety of 

329 strategies to optimize the selection of informative samples, such as maximum uncertainty 

330 sampling, query by committee, expected model change, and expected error reduction [25]. 

331 Active learning classification and clustering methods have been widely studied [25-27], but only 

332 a limited number of these methods address regression problems [28, 29].

333 Due to the considerable time, cost, and effort required to collect clinical data, an active 

334 learning method may guide data collection and the exploration of stimulation space efficiently 
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335 and at less cost. In the current study, however, we had already collected a reasonable number of 

336 samples, so we simulated the active learning by starting with a small, randomly selected portion 

337 from all training samples and considered the remaining samples unlabeled. In other words, we 

338 created an unlabeled pool (while we actually knew the true labels), and only included these 

339 samples in the training once queried by the active learner. A committee of eight SVR models 

340 was trained using bootstrap aggregating, each time selecting 90% of training data randomly with 

341 replacement. Afterwards, the variance of committee member predictions was used to find 

342 samples (or, configurations) with the highest disagreement or equivalently highest variance 

343 values. Finally, the sample with the highest disagreement was selected as the next sample to be 

344 explored.
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