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Abstract

In patients with chronic spinal cord injury (SCI), few therapies are available to improve
neurological function. Neuromodulation of the spinal cord with epidural stimulation (EDS) has
shown promise enabling the voluntary activation of motor pools caudal to the level of the injury.
EDS is performed with multiple electrode arrays in which several stimulation variables such as
the frequency, amplitude, and location of the stimulation significantly affect the type and
amplitude of motor responses. This paper presents a novel technique to predict the final
functionality of a patient with SCI after cervical EDS within a deep learning framework.
Additionally, we suggest a committee-based active learning method to reduce the number of
clinical experiments required to optimize EDS stimulation variables by exploring the stimulation
configuration space more efficiently. We also developed a novel method to dynamically weight
the results of different experiments using neural networks to create an optimal estimate of the
quantity of interest. The essence of our approach was to use machine learning methods to predict
the hand contraction force in a patient with chronic SCI based on different EDS parameters. The
accuracy of the prediction of stimulation outcomes was evaluated based on three measurements:
mean absolute error, standard deviation, and correlation coefficient. The results show that the
proposed method can be used to reliably predict the outcome of cervical EDS on maximum
voluntary contraction force of the hand with a prediction error of approximately 15%. This
model could allow scientists to establish stimulation parameters more efficiently for SCI patients

to produce enhanced motor responses in this novel application.
Author Summary

Spinal cord injury (SCI) can lead to permanent sensorimotor deficits that have a major

impact on quality of life. In patients with a motor complete injury, there is no therapy available
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to reliably improve motor function. Recently, neuromodulation of the spinal cord with epidural
stimulation (EDS) has allowed patients with motor-complete SCI regain voluntary movement
below the level of injury in the cervical and thoracic spine. EDS is performed using multi-
electrode arrays placed in the dorsal epidural space spanning several spinal segments. There are
numerous stimulation parameters that can be modified to produce different effects on motor
function. Previously, defining these parameters was based on observation and empiric testing,
which are time-consuming and inefficient processes. There is a need for an automated method to
predict motor and sensory function based on a given combination of EDS settings. We developed
a novel method to predict the gripping function of a patient with SCI undergoing cervical EDS
based on a set of stimulation parameters within a deep learning framework. We also addressed a
limiting factor in machine learning methods in EDS, which is a general lack of training
measurements for the learning model. We proposed a novel active learning method to minimize
the number of training measurements required. The model for predicting responses to EDS could
be used by scientists and clinicians to efficiently determine a set of stimulation parameters that

produce a desired effect on motor function.
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Introduction

Spinal cord injury (SCI) refers to an acute traumatic injury to the spinal cord that results
in varying degrees of sensorimotor deficits below the level of injury [1]. Between 1993 and
2012, the total number of cases of SCI increased in the United States as the population increased,
and the total number of new SCIs was approximately 17,000 in 2012 [2]. SCI has a major impact
on health-related quality of life and is associated with annual costs of $80,000 per patient after
the first year of injury [3]. The acute management of SCI includes surgical decompression and
stabilization as well as avoiding secondary injury. The acute management is typically followed
by intensive rehabilitation. Despite aggressive intervention for patients with motor complete SCI,
which is defined as complete loss of motor function below the level of injury, few patients
achieve meaningful neurological recovery with rehabilitation [4].

Among novel interventions for chronic SCI, neuromodulation using epidural stimulation
(EDS) caudal to the level of injury has shown promise in allowing patients to regain voluntary
locomotor activity [5]. Edgerton et al. discovered that EDS enabled patients with motor and
sensory complete SCI to regain fine voluntary movement below the level of injury [6, 7]. In the
presence of EDS, patients were able to voluntarily control the force generated in specific muscle
groups in response to visual and auditory cues. After repeated training, stimulation thresholds to
produce voluntary motor activity decreased. Recently, EDS has been applied to the cervical
spine to improve hand function, which is less related to central pattern generation than
locomotion. These patients demonstrated up to a 300% increase in hand strength [8].

The foregoing studies used multi-electrode epidural stimulation arrays spanning 2-3
cervical or lumbosacral spinal segments. There are multiple stimulation variables that can be

modified to change the effect of EDS, including stimulation amplitude, electrode polarity,


https://doi.org/10.1101/341719
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/341719; this version posted June 7, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

86  stimulation frequency, pulse width, and stimulation location. Optimizing the stimulation

87  configuration and location markedly affects the type and amplitude of efferent motor responses

88 [6,9, 10]. Identifying the optimal configuration is conventionally performed by empirical

89  methods that systematically explore the array space, which is a time consuming and expensive

90 process. Recently, an active machine learning technique using a structured Gaussian process was

91  used to optimize stimulus variables in four spinally transected rats with implanted multi-

92  electrode epidural arrays [11]. The algorithm was able to select stimuli that produced the best

93  motor response out of a very large set of parameters and independently identify stimulation

94  locations associated with specific tasks. Ultimately, it was able to match the efficacy of human

95  experimenters in identifying the optimal stimulation variables.

96 Given the extensive input and output information associated with modifying stimuli and

97  characterizing motor responses, respectively, there is a need for efficient machine learning

98  algorithms to explore the wide range of stimulation properties and locations available with EDS.

99  We developed a novel approach for predicting the effect of different stimulation configurations
100  on hand function in a subject with chronic SCI following placement of a cervical epidural spinal
101  cord stimulator. We focused on predicting the outcome of different stimulation configurations in
102  an automated fashion using an active learning method for guiding the experiments. Apart from
103  the prediction of the outcome of stimulation, we also developed a novel method based on
104 artificial neural networks to interpret the outcomes of several experiments and aggregate them as
105 asingle target value. This was used to combine EMG signals from different trials into one value.

106  We refer to this process in the following sections as the “dynamic weighting method.”

107 Results
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108 Our dataset consisted of 237 samples taken from a single patient with chronic SCI in
109  which each sample was a combination of stimulation parameters (i.e., frequency, intensity, and
110  location) and a target outcome score. In order to evaluate the proposed method, a 10-fold cross-
111  validation of test and training data was used (i.e., training on 9 folds, and testing on the

112  remaining 1 fold while cycling the test fold and averaging all test performance results). Using
113 this strategy, the following results were obtained from all 237 samples.

114  Owutcome prediction performance

115 Table 1 presents a comparison between the performance of the proposed dynamic weight
116  prediction method and other simple, commonly used approaches to characterize the outcome
117  such as mean and median. The comparison is made in terms of mean absolute error (MAE),

118  standard deviation (STD) of prediction errors, and Pearson's correlation coefficient (r) between
119  the actual target and the predicted values. As shown in the table, the dynamically weighted

120  predictions outperform the other methods by a considerable margin; the MAE and STD values
121  for the dynamic weighting method are about 27% and 24% lower than the MAE and STD values
122 for the mean and median estimates, and the correlation coefficient is greater. In addition, Table 1
123  compares the results using i) a neural network predictor trained alongside the dynamic weight
124  predictor, and ii) a support vector regression (SVR) predictor trained on the dynamically

125  weighted targets. From this comparison, training a new SVR predictor instead of using the

126  existing neural predictor yielded more accurate predictions.

127  Table 1: Comparison between the proposed dynamic weighting score weighting approach

128 and mean/median approaches.

Mean Median Proposed Proposed
approach approach
(NeuralNet) (SVR)
MAE (%) 21.07 21.63 20.01 15.23
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STD (%) 26.65 27.38 26.12 20.25

r 0.55 0.57 0.60 0.64
129 MAE, mean absolute error; NeuralNet, neural network; STD, standard deviation of error; SVR,
130  support vector regression.
131 Fig 1 shows the histogram of errors between target values and predictions using the
132 proposed dynamic weighting approach combined with SVR and the equally weighted averaging
133  approach combined with SVR. The error histogram corresponding to the dynamic weighting
134  approach is more concentrated around zero (i.e., has a lower variance). Moreover, the range of
135  errors associated with the combined dynamic weighting and SVR is smaller than the range of
136  errors associated with equally weighted averages.
137  Fig 1. Histogram of errors using dynamic weighting and SVR compared to mean and SVR.
138 Increasing the efficiency of learning
139 Fig 2 compares the learning curves derived from using the committee-based active
140  learning method and the random sample selection approaches for r, MAE, and STD performance
141  measures. The horizontal axis in these figures is the fraction of the patient’s data from the entire
142  dataset that was used for training the learning methods. The active learning method was able to
143  reach the same accuracy as the random sampling method, as reflected by the r-values, despite
144  using 30% less of training data (Fig 2a). In other words, the active learning method reduced the
145  number of samples required to train the model by approximately 30% to achieve the same
146  prediction performance as the random sample selection. The performance of the active learning
147  approach was superior to the random sampling method, and this improved performance is
148  reflected in the MAE and STD measures seen in Fig 2b and Fig 2c.
149  Fig 2. The performance of active learning compared to random sampling in terms of (a) r-

150  value, (b) mean absolute error (MAE), and (c) standard deviation (STD).
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151  In this figure, the X-axis represents the fraction of training data used from the entire available

152  data samples, and the Y-axis represents each performance measure.
153  Discussion

154 Spinal EDS is emerging as a potential therapy for patients with motor complete cervical
155  and thoracic SCI to achieve previously inaccessible purposeful, voluntary movements in the
156  hands and legs. The mechanism by which this occurs is unclear. EDS may directly activate

157  proprioceptive fibers in the dorsal column and dorsal roots [12] or indirectly affect interneurons
158  [13]. As demonstrated previously, different lower extremity movements such as stepping,

159  standing, and isolated motions are subject to substantial variability based on the configuration
160  and location of the electrode array as well as the stimulation parameters [14-17] and may depend
161  on the individual characteristics of each patient. Similarly, the effect of EDS on upper extremity
162  movements is affected by the stimulation parameters applied in the cervical spine [8].

163  Previously, identifying stimulation parameters has been based on empirical testing and visual
164  observation. Given the inefficiency and time consuming nature of empirically testing every

165 combination of these variables, computational models have been pursued to predict the motor
166  responses produced by EDS based on the intensity and location of the stimulus [18]. We

167  addressed the inefficiency of prior approaches by developing a novel technique using machine
168  learning methods to predict the hand contraction force of a patient with chronic SCI based on
169  different EDS parameters. The accurate prediction of hand contraction force will reduce the
170  lengthy testing sessions needed to obtain stimulation settings empirically. This is the first study
171  to use such an approach in a patient with cervical SCI so far was we know.

172 In this study, the proposed dynamic weighting method was used to derive a target value

173  of hand force generation for the purpose of training a model to predict the outcome of cervical
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174  EDS. Dynamic weighting proved to be more accurate than using equally weighted averages. In
175  general, the dynamic weighting method can be applied to derive a single quantity when there are
176  several measurement samples available, which is useful when the traditional filtering and

177  averaging methods are not sufficient. We limited the active learning queries to a pool of samples
178  that were generated during subject testing before — this was not an exhaustive set of all possible
179  stimulation combinations, but did represent the available dataset from this patient. However, the
180  algorithm could be allowed in future applications to query the entire space of stimulation

181  variables that is reasonable to obtain based on hardware limitations and patient comfort. The
182  committee-based active learning method that we described increased learning efficiency, which
183  can reduce the number of clinical experiments necessary to identify optimal stimulation

184  configurations.

185 The SVR model produced more accurate predictions of motor function than a neural
186  network. However, it should be mentioned that in other possible applications of the proposed
187  dynamic weighting method, using the jointly trained neural predictor with enough training data
188  might be a reasonable option. In order to limit the number of experiments required to obtain
189 training data, an active learning method similar to the one that we described can be used. This
190  approach used 30% less data than the random sampling method and yielded similar accuracy,
191  which may translate into a genuine saving of time and discomfort for each patient.

192 The current study has some limitations. Training the model was limited to 237 samples
193  from the subject. Using a larger number of samples would have improved the training of our
194  deep learning model and made it more generalizable. However, given that this is a novel

195  application and with only two cervical SCI patients implanted to date that we are aware of, this

196  study may be timely for future implantations. In this study, we only addressed hand contraction
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197  because we had a reliable method for quantifying this. There are a variety of other movements
198 necessary to achieve meaningful hand function, however, and simultaneously optimizing these
199  and other outcome variables during EDS treatment may require modification of our technique.
200  Our approach can likely be applied in a similar manner to the lumbosacral spine as well in order
201  to predict walking ability in response to EDS.

202 Materials and methods

203  Ethics statement

204 The study and the experimental protocols were approved by the UCLA Institutional
205 Review Board (IRB#12-001416) and FDA IDE (G140103).

206  Experimental setup and data collection

207 Data collection procedures. A 28-year-old male with chronic SCI was enrolled in the
208  current study. The patient sustained an injury at C5 from a motorcycle accident and the severity
209  of his injury was assessed using the International Standards for Neurological Classification of
210  Spinal Cord Injury (ISNCSCI) as an American Spinal Injury Association (ASIA) Impairment
211  Scale (AIS) C.

212 A 32-contact paddle (Coverage X32, Boston Scientific Corporation) was implanted in the
213  dorsal aspect of the cervical spine (Fig 3). In this study, the paddle contacts in each row were
214  stimulated together. We explored stimulation frequencies of 5, 30, 60 and 90 Hz and intensities
215  Dbetween 1 mA to 6 mA.

216  Fig 3. X-ray showing the epidural stimulation paddle contacts and their placement

217 implanted in the cervical spine.

218 The data used in this study consisted of 29 different experimental sessions (each session

219  on aseparate day) that were conducted over a 15-week period. Prior to each session,

10
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220  experimental configurations (i.e., frequency, intensity, and location) were selected based on

221  decisions by a human expert.

222 Hardware setup. A custom designed hand-grip device with adjustable tension control
223 was used for the maximum voluntary contraction (MVC) hand-grip task. The application of this
224  device for quantifying voluntary upper extremity motor function in patients with SCI has been
225  described previously [19]. The tension of the hand-grip device was adjusted to accommodate the
226  patient’s range of potential generated force. A data acquisition device (RZ5D BioAmp Processor,
227  TDT Corporation) was used to record 16 EMG channels as well as a manual synchronization
228  pulse at a sampling frequency of 24.4 KHz. The brachioradialis EMG channel was included in
229  the analysis. Apart from the EMG signal a manual pulse signal, which is henceforth called the
230  synchronization signal, was created manually during the experiments. This was used to mark the
231  beginning and the end of each hand-grip MVC task.

232  Study design

233 This study consisted of 29 different sessions. In each session, the subject was asked to
234  perform multiple MVC experiments, which included baseline (without any stimulation) and

235  during epidural stimulation (using different stimulation configurations). In each experiment, the
236  subject performed three MVC hand-grip trials sequentially (all with the same stimulation

237  configuration). Each trial was initiated with a verbal cue indicating that the subject should grip
238  the device handle as strongly as he could. Each EMG signal interval that corresponded to a

239  single trial within an experiment was called a signal portion. Raw signal portions were used to
240  measure the score of each trial. The score was defined as the median of the top 5% of the highest
241  EMG amplitudes (Fig 4), which was normalized by the baseline score using equation 1. The

242  target score was derived by aggregating the scores of the three trials using mean, median, or the

11
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243  proposed weighting method. A feature vector, a combination of location, intensity, and

244  frequency, defined the stimulation configuration during each particular experiment.

245  Fig 4. Score calculation in a single EMG portion.

246  The markers show that it is unreliable simply to use the peak value, and the results are improved
247  using the proposed method.

248  Preprocessing

249 Fig 5 shows the proposed preprocessing steps. Preprocessing started with a 10x

250  decimation (down-sampling by a factor of ten) and full-wave rectification of the EMG and

251  synchronization signals (the original signal had a sampling frequency of 24.4 KHz). The rectified
252  signals were filtered using median filtering with a window size of 200 ms for the synchronization
253  signal and mean filtering with the same window size for the EMG signal to eliminate noise and
254  spike-like values due to analog to digital conversion errors. Next, the EMG and synchronization
255  signals were normalized using unity-based normalization (i.e., scaling values to the range of zero
256  and one). The synchronization signal was used to split the EMG signal to three portions, each
257  corresponding to the EMG signal during a single trial (Fig 6). For each portion, the median

258  amplitude among the 5% of maximum amplitudes was calculated as the score of that trial. The
259  logic behind selecting the median amplitude among the 5% of maximum amplitudes, instead of
260  simply using the peak value, is that the median value significantly increases the robustness of
261  score calculation in the presence of noise and unwanted effects on the EMG signal. The

262  maximum value may be an outlier and not be a good representative of the ‘true’ maximum value
263  of the signal. As shown in Fig 4, simply using the peak value results in inaccurate score

264  measurements due to the noise and artifacts affecting the EMG signal.

265  Fig 5. The proposed preprocessing pipeline.

12
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266  Fig 6. The synchronization signal was used to divide the EMG signal to three portions and
267  each corresponded to a trial within the experiment.
268 After calculating the scores associated with each experiment within a session, the final

269  scores for each stimulation experiment were calculated using the following formula.

Scorestim = SCOT€paseline

270 Score = —— 1)

271  Where Scorepqseine 1 the score before applying any stimulation, and Score;,, is the score during
272  stimulation. The final score is the percentage of variation between the stimulation score and the
273  Dbaseline score obtained during each test session.

274  Calculation of target values

275 Three scores were available for each experiment corresponding to each trial. We

276  calculated a single target score (the aggregated value using a weighted average of the scores for
277  each signal portion where a score for each signal portion is the median of the top 5% of the

278  highest EMG amplitudes) from these scores as the outcome of each experiment. The simplest
279  approach would have been to average these values [20]; however, many scores were

280  contaminated by noise and some could have been limited by subject effort. Accordingly, using a
281  simple average or median of scores may not be an accurate measure of the real expected target
282  values. The problem becomes more complicated considering that, within each experiment, the
283  subject was less fatigued in the first trial compared to the following two. Therefore, we used a
284  weighted average to calculate the target values, and the weights were determined using a

285  predictor model that dynamically predicted the appropriate weights for each trial score. We

286  created two neural networks in which one network was used as an outcome predictor, and the

287  other one was used as a weight predictor, and we trained them jointly. The first neural network

288  was responsible for predicting the stimulation outcome, and the second one was responsible for

13
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289  predicting the weights that were applied to each trial score in the calculation of the target value.
290  Fig 7 demonstrates the proposed network architecture. The dotted areas (a) and (b) in Fig 7 show
291  the outcome predictor and the dynamic weight predictor, respectively.

292  Fig 7. The proposed neural network architecture.

293  The network can be separated into (a) the outcome predictor, (b) the dynamic weight predictor,
294  and (c) the weighted average calculator. In this figure, F, I, and L correspond to the stimulation
295  parameters frequency, intensity, and location, respectively. NS1, NS2 and NS3 are the three

296  recorded scores (the median of the top 5% of the highest of EMG amplitudes) normalized by
297  their mean value for a given stimulation configuration. Target value is an aggregated value of
298  these scores (not normalized) using the proposed dynamic weighted average of the scores.

299 In order to direct the network to learn from relative sample values rather than absolute
300  values, the score values normalized by their median values (NS1, NS2, and NS3 in Fig 7) were
301 used as inputs for the weight predictor. The last layer of the weight predictor is a softmax layer,
302  which guarantees that the predicted weights are always positive and sum to one.

303 After multiplying the score values (the median of the top 5% of the highest EMG

304 amplitudes) with these predicted weights, we estimated the target value, which is the weighted
305 average of the scores (see the dotted part (¢) of Fig 7). The softmax layer played a significant
306 role in the training of the whole network and ensured that the weights are positive and sum to
307  one. In the absence of this softmax layer, the network would have chosen an arbitrary set of

308  weights leading to an incorrect target value not indicating the weighted average of the scores. To
309 train the network we used TensorFlow, an open-source numerical computation library developed
310 for dataflow programming that is commonly used to train neural networks [21]. The proposed

311  dynamic weight predictor can theoretically work for any kind of neural network including deep

14
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312  learning methods [22]. However, due to the limited number of training samples available to us,
313  we used networks with a single hidden layer consisting of 32 neurons. The optimization cost
314  function was defined as the mean squared error (MSE) between predictions and targets of the
315  complete network (Fig 5). Finally, stochastic gradient descent (SGD) was used to train the

316  network [23].

317  Prediction of target values

318 The trained outcome predictor in the previous section can be used directly to predict the
319  expected target value of each stimulation configuration. However, from the trained network, we
320  only used the dynamic weight predictor for the estimation of the expected target values. Based
321  on these target values, a Radial basis function (RBF)-kernel support vector regression (SVR) was
322  trained as the final stimulation outcome predictor. We used Scikit-Learn library [24] to train the
323  RBF-kernel eSVR model. Model hyper-parameters including the error term penalty (C), error
324  insensitive zone width (€), and kernel smoothness parameter (y) were selected based on a 10-fold
325  exhaustive grid search cross validation (C =15; € =0.01; y=0.001).

326 Increasing the Learning Efficiency

327 Active learning methods attempt to decrease the number of labeled training data required
328 by requesting samples that are considered to be more informative. There are a variety of

329  strategies to optimize the selection of informative samples, such as maximum uncertainty

330 sampling, query by committee, expected model change, and expected error reduction [25].

331  Active learning classification and clustering methods have been widely studied [25-27], but only
332  alimited number of these methods address regression problems [28, 29].

333 Due to the considerable time, cost, and effort required to collect clinical data, an active

334 learning method may guide data collection and the exploration of stimulation space efficiently
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335 and at less cost. In the current study, however, we had already collected a reasonable number of
336  samples, so we simulated the active learning by starting with a small, randomly selected portion
337  from all training samples and considered the remaining samples unlabeled. In other words, we
338 created an unlabeled pool (while we actually knew the true labels), and only included these

339  samples in the training once queried by the active learner. A committee of eight SVR models
340  was trained using bootstrap aggregating, each time selecting 90% of training data randomly with
341  replacement. Afterwards, the variance of committee member predictions was used to find

342  samples (or, configurations) with the highest disagreement or equivalently highest variance

343  values. Finally, the sample with the highest disagreement was selected as the next sample to be
344  explored.
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