

1 Predicting the effects of epidural stimulation to improve hand function in patients with spinal
2 cord injury: An active learning-based solution using dynamic sample weighting

3

4 Mohammad Kachuee M.S.¹, Haydn Hoffman M.D.², Lisa D. Moore B.S.², Hamidreza Ghasemi
5 Damavandi Ph.D.², Tali Homsey B.A.², Babak Moatamed Ph.D.¹, Anahita Hosseini B.S.¹, Ruyi
6 Huang B.S.², James C. Leiter M.D.³, Majid Sarrafzadeh Ph.D.¹, Daniel C. Lu M.D., Ph.D.²

7 *¹Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA*

8 *²Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA*

9 *³Department of Molecular and Systems Biology, Geisel School of Medicine, Lebanon, New
10 Hampshire, USA.*

11

12

13

14

15 Short title: Predicting the effects of epidural stimulation

16

17

18

19

20

21

22 *Corresponding author:

23 E-mail: dclu@mednet.ucla.edu

24 Abstract

25 In patients with chronic spinal cord injury (SCI), few therapies are available to improve
26 neurological function. Neuromodulation of the spinal cord with epidural stimulation (EDS) has
27 shown promise enabling the voluntary activation of motor pools caudal to the level of the injury.
28 EDS is performed with multiple electrode arrays in which several stimulation variables such as
29 the frequency, amplitude, and location of the stimulation significantly affect the type and
30 amplitude of motor responses. This paper presents a novel technique to predict the final
31 functionality of a patient with SCI after cervical EDS within a deep learning framework.
32 Additionally, we suggest a committee-based active learning method to reduce the number of
33 clinical experiments required to optimize EDS stimulation variables by exploring the stimulation
34 configuration space more efficiently. We also developed a novel method to dynamically weight
35 the results of different experiments using neural networks to create an optimal estimate of the
36 quantity of interest. The essence of our approach was to use machine learning methods to predict
37 the hand contraction force in a patient with chronic SCI based on different EDS parameters. The
38 accuracy of the prediction of stimulation outcomes was evaluated based on three measurements:
39 mean absolute error, standard deviation, and correlation coefficient. The results show that the
40 proposed method can be used to reliably predict the outcome of cervical EDS on maximum
41 voluntary contraction force of the hand with a prediction error of approximately 15%. This
42 model could allow scientists to establish stimulation parameters more efficiently for SCI patients
43 to produce enhanced motor responses in this novel application.

44 Author Summary

45 Spinal cord injury (SCI) can lead to permanent sensorimotor deficits that have a major
46 impact on quality of life. In patients with a motor complete injury, there is no therapy available

47 to reliably improve motor function. Recently, neuromodulation of the spinal cord with epidural
48 stimulation (EDS) has allowed patients with motor-complete SCI regain voluntary movement
49 below the level of injury in the cervical and thoracic spine. EDS is performed using multi-
50 electrode arrays placed in the dorsal epidural space spanning several spinal segments. There are
51 numerous stimulation parameters that can be modified to produce different effects on motor
52 function. Previously, defining these parameters was based on observation and empiric testing,
53 which are time-consuming and inefficient processes. There is a need for an automated method to
54 predict motor and sensory function based on a given combination of EDS settings. We developed
55 a novel method to predict the gripping function of a patient with SCI undergoing cervical EDS
56 based on a set of stimulation parameters within a deep learning framework. We also addressed a
57 limiting factor in machine learning methods in EDS, which is a general lack of training
58 measurements for the learning model. We proposed a novel active learning method to minimize
59 the number of training measurements required. The model for predicting responses to EDS could
60 be used by scientists and clinicians to efficiently determine a set of stimulation parameters that
61 produce a desired effect on motor function.

62

63 **Introduction**

64 Spinal cord injury (SCI) refers to an acute traumatic injury to the spinal cord that results
65 in varying degrees of sensorimotor deficits below the level of injury [1]. Between 1993 and
66 2012, the total number of cases of SCI increased in the United States as the population increased,
67 and the total number of new SCIs was approximately 17,000 in 2012 [2]. SCI has a major impact
68 on health-related quality of life and is associated with annual costs of \$80,000 per patient after
69 the first year of injury [3]. The acute management of SCI includes surgical decompression and
70 stabilization as well as avoiding secondary injury. The acute management is typically followed
71 by intensive rehabilitation. Despite aggressive intervention for patients with motor complete SCI,
72 which is defined as complete loss of motor function below the level of injury, few patients
73 achieve meaningful neurological recovery with rehabilitation [4].

74 Among novel interventions for chronic SCI, neuromodulation using epidural stimulation
75 (EDS) caudal to the level of injury has shown promise in allowing patients to regain voluntary
76 locomotor activity [5]. Edgerton et al. discovered that EDS enabled patients with motor and
77 sensory complete SCI to regain fine voluntary movement below the level of injury [6, 7]. In the
78 presence of EDS, patients were able to voluntarily control the force generated in specific muscle
79 groups in response to visual and auditory cues. After repeated training, stimulation thresholds to
80 produce voluntary motor activity decreased. Recently, EDS has been applied to the cervical
81 spine to improve hand function, which is less related to central pattern generation than
82 locomotion. These patients demonstrated up to a 300% increase in hand strength [8].

83 The foregoing studies used multi-electrode epidural stimulation arrays spanning 2-3
84 cervical or lumbosacral spinal segments. There are multiple stimulation variables that can be
85 modified to change the effect of EDS, including stimulation amplitude, electrode polarity,

86 stimulation frequency, pulse width, and stimulation location. Optimizing the stimulation
87 configuration and location markedly affects the type and amplitude of efferent motor responses
88 [6, 9, 10]. Identifying the optimal configuration is conventionally performed by empirical
89 methods that systematically explore the array space, which is a time consuming and expensive
90 process. Recently, an active machine learning technique using a structured Gaussian process was
91 used to optimize stimulus variables in four spinally transected rats with implanted multi-
92 electrode epidural arrays [11]. The algorithm was able to select stimuli that produced the best
93 motor response out of a very large set of parameters and independently identify stimulation
94 locations associated with specific tasks. Ultimately, it was able to match the efficacy of human
95 experimenters in identifying the optimal stimulation variables.

96 Given the extensive input and output information associated with modifying stimuli and
97 characterizing motor responses, respectively, there is a need for efficient machine learning
98 algorithms to explore the wide range of stimulation properties and locations available with EDS.
99 We developed a novel approach for predicting the effect of different stimulation configurations
100 on hand function in a subject with chronic SCI following placement of a cervical epidural spinal
101 cord stimulator. We focused on predicting the outcome of different stimulation configurations in
102 an automated fashion using an active learning method for guiding the experiments. Apart from
103 the prediction of the outcome of stimulation, we also developed a novel method based on
104 artificial neural networks to interpret the outcomes of several experiments and aggregate them as
105 a single target value. This was used to combine EMG signals from different trials into one value.
106 We refer to this process in the following sections as the “dynamic weighting method.”

107 **Results**

108 Our dataset consisted of 237 samples taken from a single patient with chronic SCI in
109 which each sample was a combination of stimulation parameters (i.e., frequency, intensity, and
110 location) and a target outcome score. In order to evaluate the proposed method, a 10-fold cross-
111 validation of test and training data was used (i.e., training on 9 folds, and testing on the
112 remaining 1 fold while cycling the test fold and averaging all test performance results). Using
113 this strategy, the following results were obtained from all 237 samples.

114 **Outcome prediction performance**

115 Table 1 presents a comparison between the performance of the proposed dynamic weight
116 prediction method and other simple, commonly used approaches to characterize the outcome
117 such as mean and median. The comparison is made in terms of mean absolute error (MAE),
118 standard deviation (STD) of prediction errors, and Pearson's correlation coefficient (r) between
119 the actual target and the predicted values. As shown in the table, the dynamically weighted
120 predictions outperform the other methods by a considerable margin; the MAE and STD values
121 for the dynamic weighting method are about 27% and 24% lower than the MAE and STD values
122 for the mean and median estimates, and the correlation coefficient is greater. In addition, Table 1
123 compares the results using i) a neural network predictor trained alongside the dynamic weight
124 predictor, and ii) a support vector regression (SVR) predictor trained on the dynamically
125 weighted targets. From this comparison, training a new SVR predictor instead of using the
126 existing neural predictor yielded more accurate predictions.

127 **Table 1: Comparison between the proposed dynamic weighting score weighting approach**
128 **and mean/median approaches.**

	Mean	Median	Proposed approach (NeuralNet)	Proposed approach (SVR)
MAE (%)	21.07	21.63	20.01	15.23

STD (%)	26.65	27.38	26.12	20.25
r	0.55	0.57	0.60	0.64

129 MAE, mean absolute error; NeuralNet, neural network; STD, standard deviation of error; SVR,
130 support vector regression.

131 Fig 1 shows the histogram of errors between target values and predictions using the
132 proposed dynamic weighting approach combined with SVR and the equally weighted averaging
133 approach combined with SVR. The error histogram corresponding to the dynamic weighting
134 approach is more concentrated around zero (i.e., has a lower variance). Moreover, the range of
135 errors associated with the combined dynamic weighting and SVR is smaller than the range of
136 errors associated with equally weighted averages.

137 **Fig 1. Histogram of errors using dynamic weighting and SVR compared to mean and SVR.**

138 **Increasing the efficiency of learning**

139 Fig 2 compares the learning curves derived from using the committee-based active
140 learning method and the random sample selection approaches for r , MAE, and STD performance
141 measures. The horizontal axis in these figures is the fraction of the patient's data from the entire
142 dataset that was used for training the learning methods. The active learning method was able to
143 reach the same accuracy as the random sampling method, as reflected by the r -values, despite
144 using 30% less of training data (Fig 2a). In other words, the active learning method reduced the
145 number of samples required to train the model by approximately 30% to achieve the same
146 prediction performance as the random sample selection. The performance of the active learning
147 approach was superior to the random sampling method, and this improved performance is
148 reflected in the MAE and STD measures seen in Fig 2b and Fig 2c.

149 **Fig 2. The performance of active learning compared to random sampling in terms of (a) r -**
150 **value, (b) mean absolute error (MAE), and (c) standard deviation (STD).**

151 In this figure, the X-axis represents the fraction of training data used from the entire available
152 data samples, and the Y-axis represents each performance measure.

153 **Discussion**

154 Spinal EDS is emerging as a potential therapy for patients with motor complete cervical
155 and thoracic SCI to achieve previously inaccessible purposeful, voluntary movements in the
156 hands and legs. The mechanism by which this occurs is unclear. EDS may directly activate
157 proprioceptive fibers in the dorsal column and dorsal roots [12] or indirectly affect interneurons
158 [13]. As demonstrated previously, different lower extremity movements such as stepping,
159 standing, and isolated motions are subject to substantial variability based on the configuration
160 and location of the electrode array as well as the stimulation parameters [14-17] and may depend
161 on the individual characteristics of each patient. Similarly, the effect of EDS on upper extremity
162 movements is affected by the stimulation parameters applied in the cervical spine [8].
163 Previously, identifying stimulation parameters has been based on empirical testing and visual
164 observation. Given the inefficiency and time consuming nature of empirically testing every
165 combination of these variables, computational models have been pursued to predict the motor
166 responses produced by EDS based on the intensity and location of the stimulus [18]. We
167 addressed the inefficiency of prior approaches by developing a novel technique using machine
168 learning methods to predict the hand contraction force of a patient with chronic SCI based on
169 different EDS parameters. The accurate prediction of hand contraction force will reduce the
170 lengthy testing sessions needed to obtain stimulation settings empirically. This is the first study
171 to use such an approach in a patient with cervical SCI so far was we know.

172 In this study, the proposed dynamic weighting method was used to derive a target value
173 of hand force generation for the purpose of training a model to predict the outcome of cervical

174 EDS. Dynamic weighting proved to be more accurate than using equally weighted averages. In
175 general, the dynamic weighting method can be applied to derive a single quantity when there are
176 several measurement samples available, which is useful when the traditional filtering and
177 averaging methods are not sufficient. We limited the active learning queries to a pool of samples
178 that were generated during subject testing before – this was not an exhaustive set of all possible
179 stimulation combinations, but did represent the available dataset from this patient. However, the
180 algorithm could be allowed in future applications to query the entire space of stimulation
181 variables that is reasonable to obtain based on hardware limitations and patient comfort. The
182 committee-based active learning method that we described increased learning efficiency, which
183 can reduce the number of clinical experiments necessary to identify optimal stimulation
184 configurations.

185 The SVR model produced more accurate predictions of motor function than a neural
186 network. However, it should be mentioned that in other possible applications of the proposed
187 dynamic weighting method, using the jointly trained neural predictor with enough training data
188 might be a reasonable option. In order to limit the number of experiments required to obtain
189 training data, an active learning method similar to the one that we described can be used. This
190 approach used 30% less data than the random sampling method and yielded similar accuracy,
191 which may translate into a genuine saving of time and discomfort for each patient.

192 The current study has some limitations. Training the model was limited to 237 samples
193 from the subject. Using a larger number of samples would have improved the training of our
194 deep learning model and made it more generalizable. However, given that this is a novel
195 application and with only two cervical SCI patients implanted to date that we are aware of, this
196 study may be timely for future implantations. In this study, we only addressed hand contraction

197 because we had a reliable method for quantifying this. There are a variety of other movements
198 necessary to achieve meaningful hand function, however, and simultaneously optimizing these
199 and other outcome variables during EDS treatment may require modification of our technique.
200 Our approach can likely be applied in a similar manner to the lumbosacral spine as well in order
201 to predict walking ability in response to EDS.

202 **Materials and methods**

203 **Ethics statement**

204 The study and the experimental protocols were approved by the UCLA Institutional
205 Review Board (IRB#12-001416) and FDA IDE (G140103).

206 **Experimental setup and data collection**

207 **Data collection procedures.** A 28-year-old male with chronic SCI was enrolled in the
208 current study. The patient sustained an injury at C5 from a motorcycle accident and the severity
209 of his injury was assessed using the International Standards for Neurological Classification of
210 Spinal Cord Injury (ISNCSCI) as an American Spinal Injury Association (ASIA) Impairment
211 Scale (AIS) C.

212 A 32-contact paddle (Coverage X32, Boston Scientific Corporation) was implanted in the
213 dorsal aspect of the cervical spine (Fig 3). In this study, the paddle contacts in each row were
214 stimulated together. We explored stimulation frequencies of 5, 30, 60 and 90 Hz and intensities
215 between 1 mA to 6 mA.

216 **Fig 3. X-ray showing the epidural stimulation paddle contacts and their placement 217 implanted in the cervical spine.**

218 The data used in this study consisted of 29 different experimental sessions (each session
219 on a separate day) that were conducted over a 15-week period. Prior to each session,

220 experimental configurations (i.e., frequency, intensity, and location) were selected based on
221 decisions by a human expert.

222 **Hardware setup.** A custom designed hand-grip device with adjustable tension control
223 was used for the maximum voluntary contraction (MVC) hand-grip task. The application of this
224 device for quantifying voluntary upper extremity motor function in patients with SCI has been
225 described previously [19]. The tension of the hand-grip device was adjusted to accommodate the
226 patient's range of potential generated force. A data acquisition device (RZ5D BioAmp Processor,
227 TDT Corporation) was used to record 16 EMG channels as well as a manual synchronization
228 pulse at a sampling frequency of 24.4 KHz. The brachioradialis EMG channel was included in
229 the analysis. Apart from the EMG signal a manual pulse signal, which is henceforth called the
230 synchronization signal, was created manually during the experiments. This was used to mark the
231 beginning and the end of each hand-grip MVC task.

232 **Study design**

233 This study consisted of 29 different sessions. In each session, the subject was asked to
234 perform multiple MVC experiments, which included baseline (without any stimulation) and
235 during epidural stimulation (using different stimulation configurations). In each experiment, the
236 subject performed three MVC hand-grip trials sequentially (all with the same stimulation
237 configuration). Each trial was initiated with a verbal cue indicating that the subject should grip
238 the device handle as strongly as he could. Each EMG signal interval that corresponded to a
239 single trial within an experiment was called a signal portion. Raw signal portions were used to
240 measure the score of each trial. The score was defined as the median of the top 5% of the highest
241 EMG amplitudes (Fig 4), which was normalized by the baseline score using equation 1. The
242 target score was derived by aggregating the scores of the three trials using mean, median, or the

243 proposed weighting method. A feature vector, a combination of location, intensity, and
244 frequency, defined the stimulation configuration during each particular experiment.

245 **Fig 4. Score calculation in a single EMG portion.**

246 The markers show that it is unreliable simply to use the peak value, and the results are improved
247 using the proposed method.

248 **Preprocessing**

249 Fig 5 shows the proposed preprocessing steps. Preprocessing started with a 10x
250 decimation (down-sampling by a factor of ten) and full-wave rectification of the EMG and
251 synchronization signals (the original signal had a sampling frequency of 24.4 KHz). The rectified
252 signals were filtered using median filtering with a window size of 200 ms for the synchronization
253 signal and mean filtering with the same window size for the EMG signal to eliminate noise and
254 spike-like values due to analog to digital conversion errors. Next, the EMG and synchronization
255 signals were normalized using unity-based normalization (i.e., scaling values to the range of zero
256 and one). The synchronization signal was used to split the EMG signal to three portions, each
257 corresponding to the EMG signal during a single trial (Fig 6). For each portion, the median
258 amplitude among the 5% of maximum amplitudes was calculated as the score of that trial. The
259 logic behind selecting the median amplitude among the 5% of maximum amplitudes, instead of
260 simply using the peak value, is that the median value significantly increases the robustness of
261 score calculation in the presence of noise and unwanted effects on the EMG signal. The
262 maximum value may be an outlier and not be a good representative of the ‘true’ maximum value
263 of the signal. As shown in Fig 4, simply using the peak value results in inaccurate score
264 measurements due to the noise and artifacts affecting the EMG signal.

265 **Fig 5. The proposed preprocessing pipeline.**

266 **Fig 6. The synchronization signal was used to divide the EMG signal to three portions and**
267 **each corresponded to a trial within the experiment.**

268 After calculating the scores associated with each experiment within a session, the final
269 scores for each stimulation experiment were calculated using the following formula.

270
$$Score = \frac{Score_{stim} - Score_{baseline}}{Score_{baseline}} \quad (1)$$

271 Where $Score_{baseline}$ is the score before applying any stimulation, and $Score_{stim}$ is the score during
272 stimulation. The final score is the percentage of variation between the stimulation score and the
273 baseline score obtained during each test session.

274 **Calculation of target values**

275 Three scores were available for each experiment corresponding to each trial. We
276 calculated a single target score (the aggregated value using a weighted average of the scores for
277 each signal portion where a score for each signal portion is the median of the top 5% of the
278 highest EMG amplitudes) from these scores as the outcome of each experiment. The simplest
279 approach would have been to average these values [20]; however, many scores were
280 contaminated by noise and some could have been limited by subject effort. Accordingly, using a
281 simple average or median of scores may not be an accurate measure of the real expected target
282 values. The problem becomes more complicated considering that, within each experiment, the
283 subject was less fatigued in the first trial compared to the following two. Therefore, we used a
284 weighted average to calculate the target values, and the weights were determined using a
285 predictor model that dynamically predicted the appropriate weights for each trial score. We
286 created two neural networks in which one network was used as an outcome predictor, and the
287 other one was used as a weight predictor, and we trained them jointly. The first neural network
288 was responsible for predicting the stimulation outcome, and the second one was responsible for

289 predicting the weights that were applied to each trial score in the calculation of the target value.
290 Fig 7 demonstrates the proposed network architecture. The dotted areas (a) and (b) in Fig 7 show
291 the outcome predictor and the dynamic weight predictor, respectively.

292 **Fig 7. The proposed neural network architecture.**

293 The network can be separated into (a) the outcome predictor, (b) the dynamic weight predictor,
294 and (c) the weighted average calculator. In this figure, F, I, and L correspond to the stimulation
295 parameters frequency, intensity, and location, respectively. NS1, NS2 and NS3 are the three
296 recorded scores (the median of the top 5% of the highest of EMG amplitudes) normalized by
297 their mean value for a given stimulation configuration. Target value is an aggregated value of
298 these scores (not normalized) using the proposed dynamic weighted average of the scores.

299 In order to direct the network to learn from relative sample values rather than absolute
300 values, the score values normalized by their median values (NS1, NS2, and NS3 in Fig 7) were
301 used as inputs for the weight predictor. The last layer of the weight predictor is a softmax layer,
302 which guarantees that the predicted weights are always positive and sum to one.

303 After multiplying the score values (the median of the top 5% of the highest EMG
304 amplitudes) with these predicted weights, we estimated the target value, which is the weighted
305 average of the scores (see the dotted part (c) of Fig 7). The softmax layer played a significant
306 role in the training of the whole network and ensured that the weights are positive and sum to
307 one. In the absence of this softmax layer, the network would have chosen an arbitrary set of
308 weights leading to an incorrect target value not indicating the weighted average of the scores. To
309 train the network we used TensorFlow, an open-source numerical computation library developed
310 for dataflow programming that is commonly used to train neural networks [21]. The proposed
311 dynamic weight predictor can theoretically work for any kind of neural network including deep

312 learning methods [22]. However, due to the limited number of training samples available to us,
313 we used networks with a single hidden layer consisting of 32 neurons. The optimization cost
314 function was defined as the mean squared error (MSE) between predictions and targets of the
315 complete network (Fig 5). Finally, stochastic gradient descent (SGD) was used to train the
316 network [23].

317 **Prediction of target values**

318 The trained outcome predictor in the previous section can be used directly to predict the
319 expected target value of each stimulation configuration. However, from the trained network, we
320 only used the dynamic weight predictor for the estimation of the expected target values. Based
321 on these target values, a Radial basis function (RBF)-kernel support vector regression (SVR) was
322 trained as the final stimulation outcome predictor. We used Scikit-Learn library [24] to train the
323 RBF-kernel ϵ SVR model. Model hyper-parameters including the error term penalty (C), error
324 insensitive zone width (ϵ), and kernel smoothness parameter (γ) were selected based on a 10-fold
325 exhaustive grid search cross validation ($C = 15$; $\epsilon = 0.01$; $\gamma = 0.001$).

326 **Increasing the Learning Efficiency**

327 Active learning methods attempt to decrease the number of labeled training data required
328 by requesting samples that are considered to be more informative. There are a variety of
329 strategies to optimize the selection of informative samples, such as maximum uncertainty
330 sampling, query by committee, expected model change, and expected error reduction [25].
331 Active learning classification and clustering methods have been widely studied [25-27], but only
332 a limited number of these methods address regression problems [28, 29].

333 Due to the considerable time, cost, and effort required to collect clinical data, an active
334 learning method may guide data collection and the exploration of stimulation space efficiently

335 and at less cost. In the current study, however, we had already collected a reasonable number of
336 samples, so we simulated the active learning by starting with a small, randomly selected portion
337 from all training samples and considered the remaining samples unlabeled. In other words, we
338 created an unlabeled pool (while we actually knew the true labels), and only included these
339 samples in the training once queried by the active learner. A committee of eight SVR models
340 was trained using bootstrap aggregating, each time selecting 90% of training data randomly with
341 replacement. Afterwards, the variance of committee member predictions was used to find
342 samples (or, configurations) with the highest disagreement or equivalently highest variance
343 values. Finally, the sample with the highest disagreement was selected as the next sample to be
344 explored.

345 **Acknowledgements**

346 This research was made possible by generous support from the H&H Evergreen
347 Foundation and the NIH: EB15521 funded by NIBIB, NINDS, and NICHD. The research
348 described was conducted in the UCLA Clinical and Translational Research Center (CTRC)
349 which was supported by NIH/National Center for Advancing Translational Science (NCATS)
350 UCLA CTSI Grant Number UL1TR000124. D.C.L. is a 1999 Paul Daisy Soros New American
351 Fellow.

352 **References**

- 353 1. Kraus JF, Franti CE, Riggins RS, Richards D, Borhani NO. Incidence of traumatic spinal
354 cord lesions. *J Chronic Dis.* 1975;28:471-92.
- 355 2. Jain NB, Ayers GD, Peterson EN, Harris MB, Morse L, O'Connor KC, et al. Traumatic
356 spinal cord injury in the United States, 1993-2012. *JAMA.* 2015;313:2236-43.

357 3. DeVivo M, Chen Y, Mennemeyer S, Deutsch A. Costs of care following spinal cord
358 injury. *Top Spinal Cord Inj Rehabil.* 2011;16:1-9.

359 4. El Tecle NE, Dahdaleh NS, Bydon M, Ray WZ, Torner JC, Hitchon PW. The natural
360 history of complete spinal cord injury: a pooled analysis of 1162 patients and a meta-analysis of
361 modern data. *J Neurosurg Spine.* 2018;28:436-43.

362 5. AuYong N LD. Neuromodulation of the lumbar spinal locomotor circuit. *Neurosurg Clin
363 N Am.* 2014;25:15-23.

364 6. Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ. Altering spinal cord
365 excitability enables voluntary movements after chronic complete paralysis in humans. *Brain.*
366 2014;137:1394-409.

367 7. Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, et al. Effect of
368 epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and
369 assisted stepping after motor complete paraplegia: a case study. *Lancet.* 2011;377:1938-47.

370 8. Lu DC, Edgerton VR, Modaber M, AuYong N, Morikawa E, Zdunowski S, et al.
371 Engaging cervical spinal cord networks to reenable volitional control of hand function in
372 tetraplegic patients. *Neurorehabil Neural Repair.* 2016;30:951-62.

373 9. Alam M, Garcia-Alias G, Shah PK, Gerasimenko Y, Zhong H, Roy RR, et al. Evaluation
374 of optimal electrode configurations for epidural spinal cord stimulation in cervical spinal cord
375 injured rats. *J Neurosci Methods.* 2015;247:50-7.

376 10. Gad P, Choe J, Nandra MS, Zhong H, Roy RR, Tai YC, et al. Development of a multi-
377 electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a
378 complete spinal cord injury in adult rats. *J Neuroeng Rehabil.* 2013;10:2.

379 11. Desautels TA, Choe J, Gad P, Nandra MS, Roy RR, Zhong H, et al. An active learning
380 algorithm for control of epidural electrostimulation. *IEEE Trans Biomed Eng.* 2015;62:2443-55.

381 12. Gerasimenko YP, Lavrov IA, Courtine G, Ichiyama RM, Dy CJ, Zhong H, et al. Spinal
382 cord reflexes induced by epidural spinal cord stimulation in normal awake rats. *J Neurosci*
383 *Methods.* 2006;157:253-63.

384 13. Edgerton VR, Harkema S. Epidural stimulation of the spinal cord in spinal cord injury:
385 current status and future challenges. *Expert Rev Neurother.* 2011;11:1351-3.

386 14. Wongsampigoon A, Grill WM. Computational modeling of epidural cortical stimulation.
387 *J Neural Eng.* 2008;5:443-54.

388 15. Wongsampigoon A, Grill WM. Effects of stimulation parameters and electrode location
389 on thresholds for epidural stimulation of cat motor cortex. *J Neural Eng.* 2011;8:066016.

390 16. Minassian K, Jilge B, Rattay F, Pinter MM, Binder H, Gerstenbrand F, et al. Stepping-
391 like movements in humans with complete spinal cord injury induced by epidural stimulation of
392 the lumbar cord: electromyographic study of compound muscle action potentials. *Spinal Cord.*
393 2004;42:401-16.

394 17. Rattay F, Minassian K, Dimitrijevic MR. Epidural electrical stimulation of posterior
395 structures of the human lumbosacral cord: 2. quantitative analysis by computer modeling. *Spinal*
396 *Cord.* 2000;38:473-89.

397 18. Capogrosso M, Wenger N, Raspovic S, Musienko P, Beauparlant J, Bassi Luciani L, et
398 al. A computational model for epidural electrical stimulation of spinal sensorimotor circuits. *J*
399 *Neurosci.* 2013;33:19326-40.

400 19. Hoffman H, Sierro T, Niu T, Sarino ME, Sarrafzadeh M, McArthur D, et al.

401 Rehabilitation of hand function after spinal cord injury using a novel handgrip device: a pilot

402 study. *J Neuroeng Rehabil.* 2017;14:22.

403 20. Kachuee M, Kiani MM, Mohammadzade H, Shabany M. Cuffless blood pressure

404 estimation algorithms for continuous health-care monitoring. *IEEE Trans Biomed Eng.*

405 2017;64:859-69.

406 21. TensorFlow: Large-scale machine learning on heterogeneous distributed systems

407 [Internet]. 2016.

408 22. LeCun Y, Bengio Y, Hinton G3. Deep learning. *Nature.* 2015;521:436-44.

409 23. LeCun YA, Bottou L, Orr GB, Müller KR. Efficient backprop. *Neural networks:*

410 *Tricks of the trade*: Springer; 2012. p. 9-48.

411 24. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. *Scikit-*

412 *learn: Machine learning in Python*. *J Mach Learn Res.* 2011;12:2825-30.

413 25. Settles B. Active learning literature survey2010; 52:[11 p.].

414 26. Dasgupta S. Two faces of active learning. *Theor Comput Sci.* 2011;412:1767-81.

415 27. Tong S, Chang E, editors. *Support vector machine active learning for image retrieval*.

416 *Proceedings of the ninth ACM international conference on Multimedia*; 2001; Ottawa, Ontario,

417 Canada.

418 28. Douak F, Melgani F, Pasolli E, Benoudjit N, editors. *SVR active learning for product*

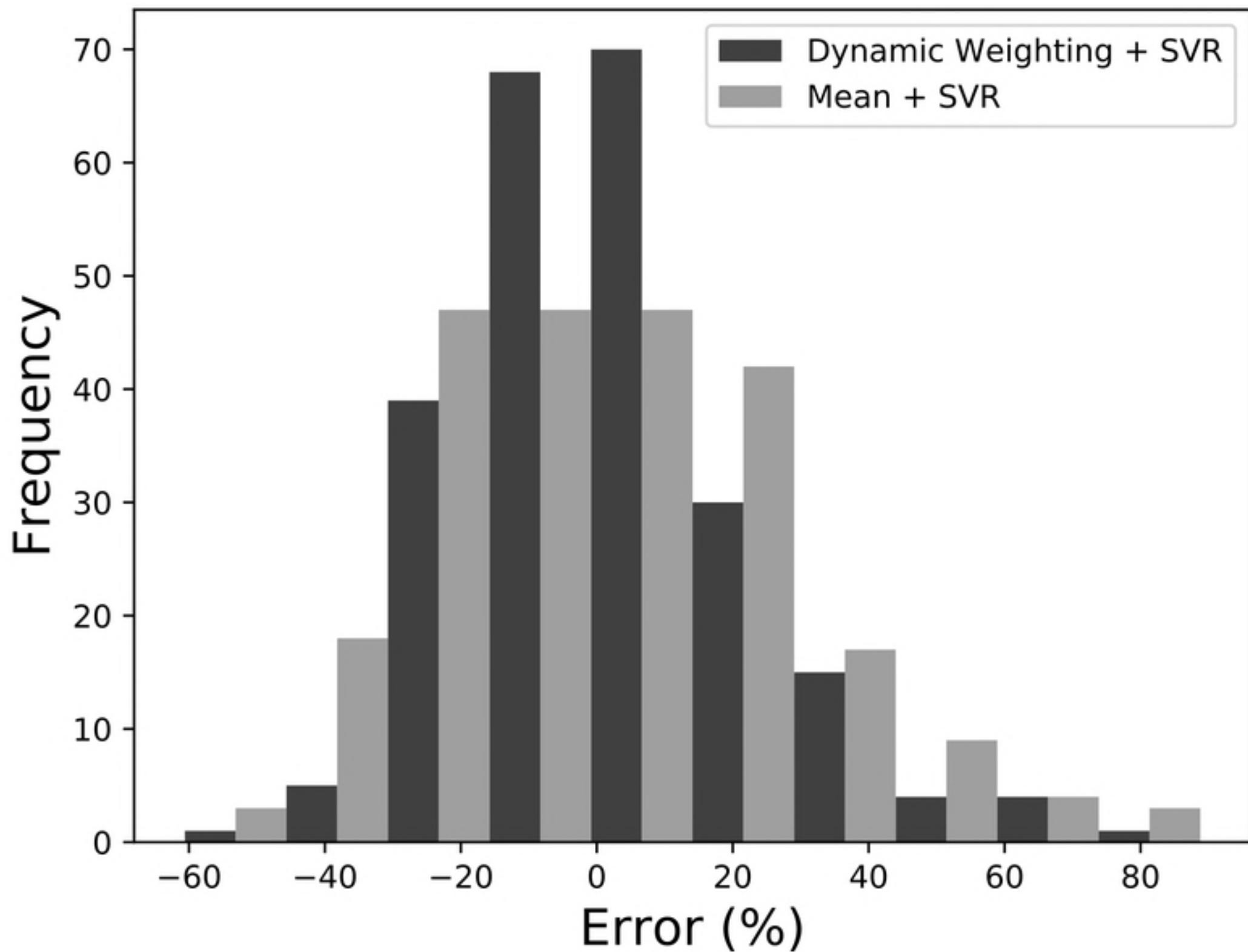
419 *quality control*. 11th International Conference on Information Science, Signal Processing and

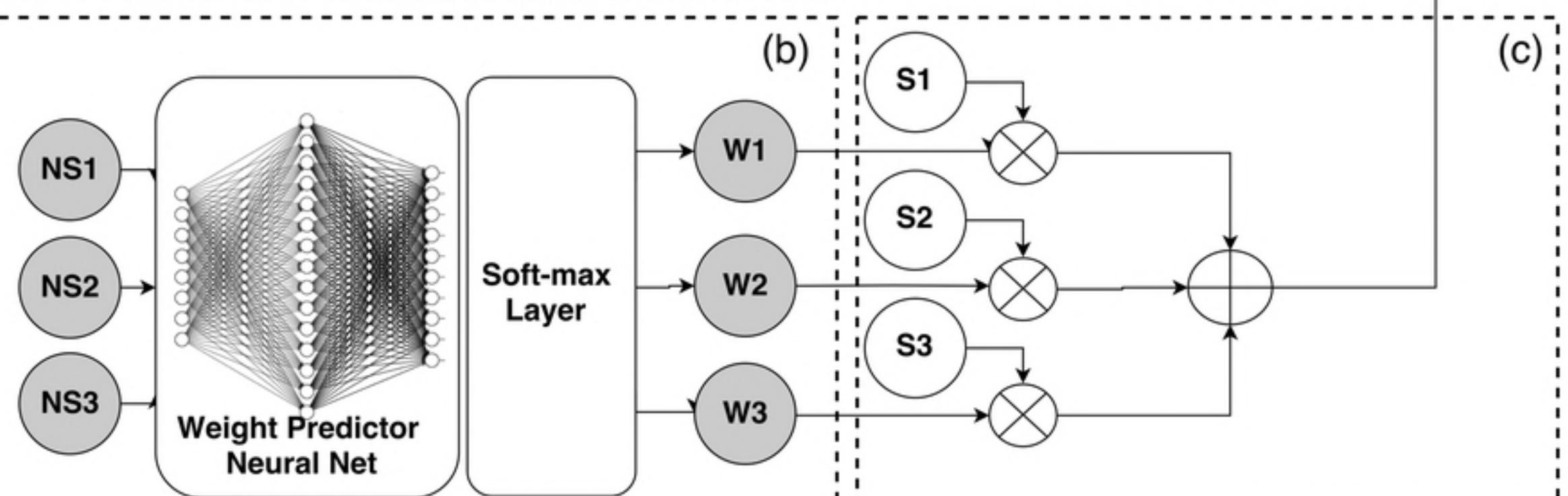
420 *their Applications*; 2012; Montreal, Quebec, Canada.

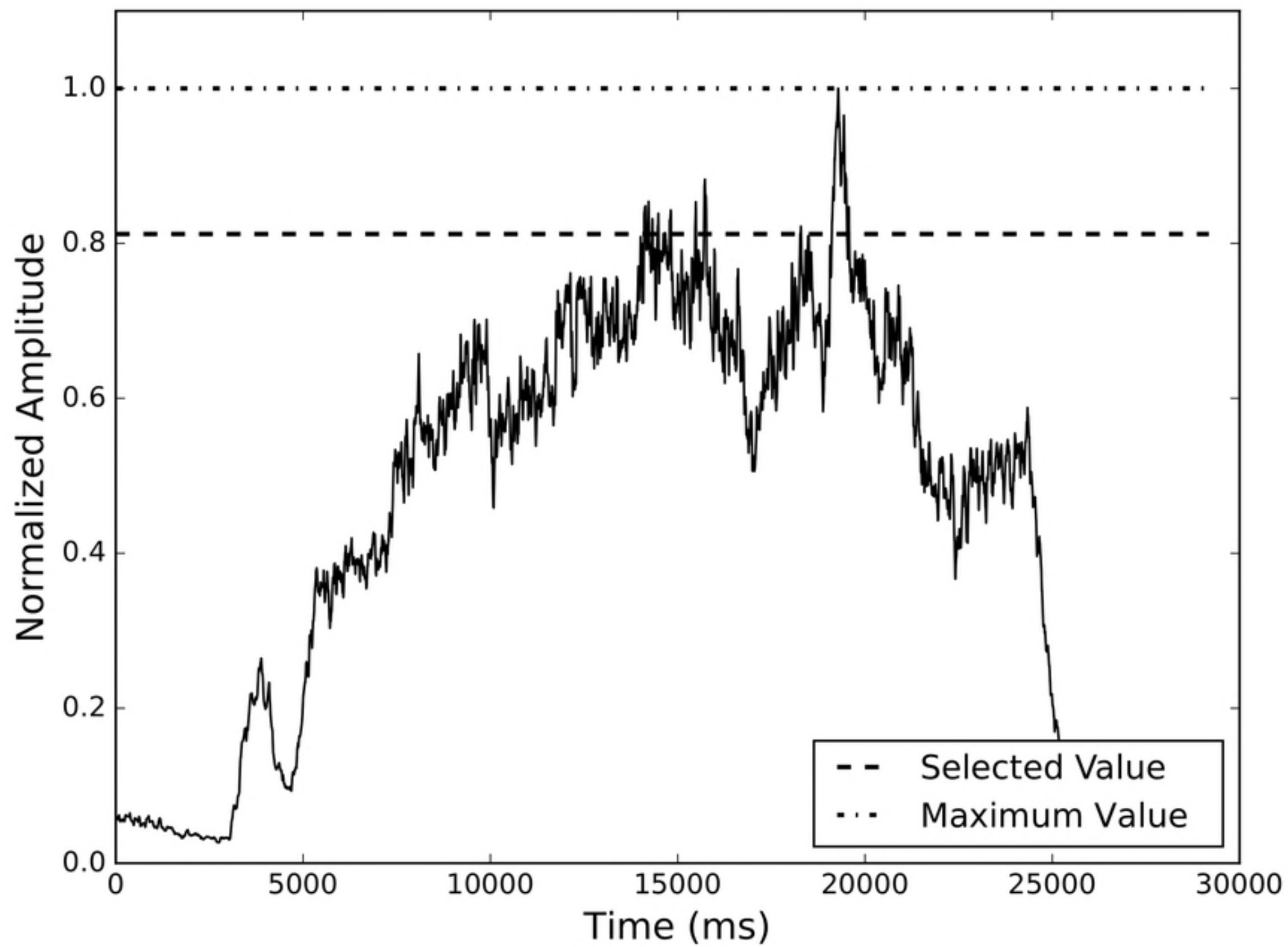
421 29. Demir B, Bruzzone L. A multiple criteria active learning method for support vector

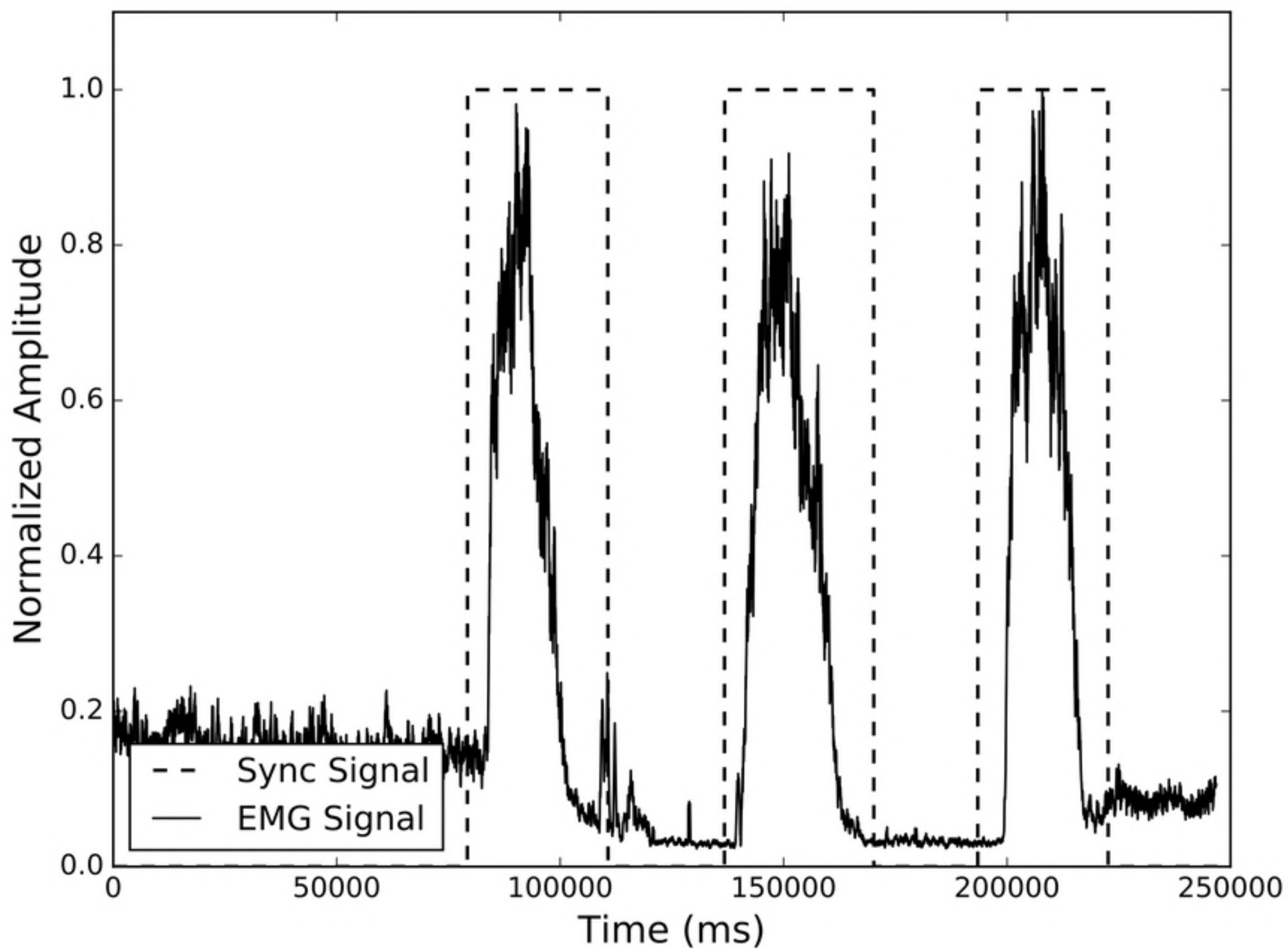
422 *regression*. *Pattern Recognit.* 2014;47:2558-67.

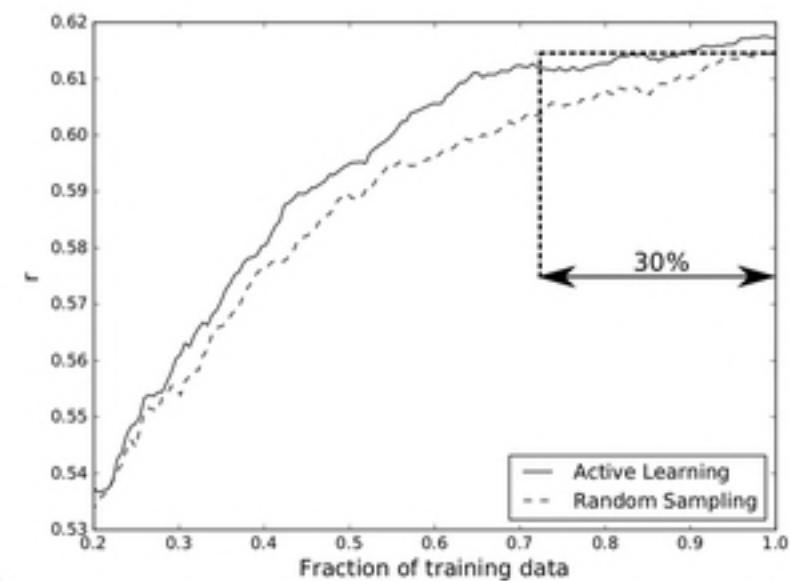
423





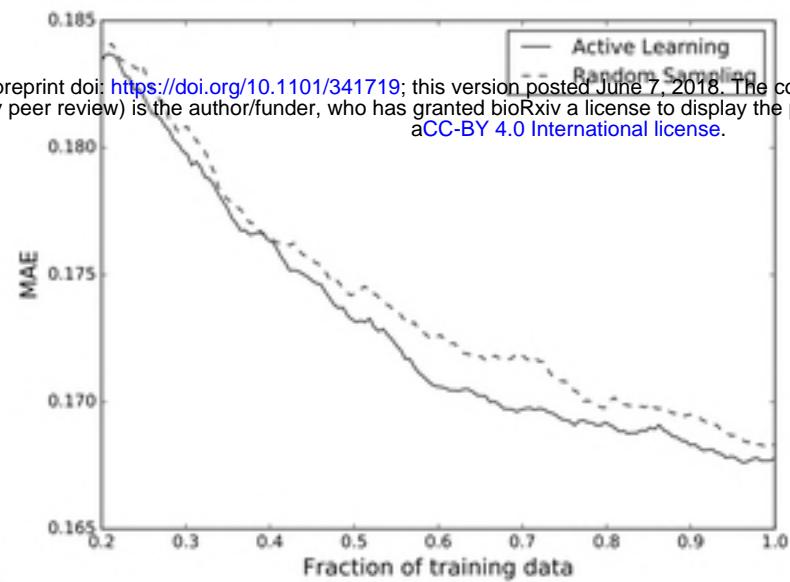




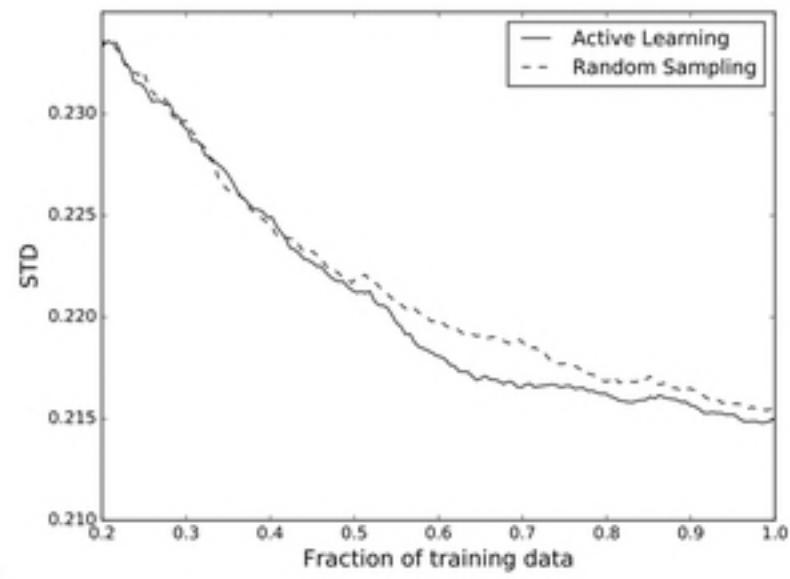


A)

bioRxiv preprint doi: <https://doi.org/10.1101/341719>; this version posted June 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.



B)



C)

