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Cognitive processes, such as the generation of language, can be mapped onto the brain using fMRI. These maps
can in turn be used for decoding the respective processes from the brain activation patterns. Given individual
variations in brain anatomy and organization, analyzes on the level of the single person are important to im-
prove our understanding of how cognitive processes correspond to patterns of brain activity. They also allow to
advance clinical applications of fMRI, because in the clinical setting making diagnoses for single cases is imper-
ative. In the present study, we used mental imagery tasks to investigate language production, motor functions,
visuo-spatial memory, face processing, and resting-state activity in a single person. Analysis methods were
based on similarity metrics, including correlations between training and test data, as well as correlations with
maps from the NeuroSynth meta-analysis. The goal was to make accurate predictions regarding the cognitive
domain (e.g. language) and the specific content (e.g. animal names) of single 30-second blocks. Four teams
used the dataset, each blinded regarding the true labels of the test data. Results showed that the similarity met-
rics allowed to reach the highest degrees of accuracy when predicting the cognitive domain of a block. Overall,
23 of the 25 test blocks could be correctly predicted by three of the four teams. Excluding the unspecific rest
condition, up to 10 out of 20 blocks could be successfully decoded regarding their specific content. The study
shows how the information contained in a single fMRI session and in each of its single blocks can allow to draw
inferences about the cognitive processes an individual engaged in. Simple methods like correlations between
blocks of fMRI data can serve as highly reliable approaches for cognitive decoding. We discuss the implications
of our results in the context of clinical fMRI applications, with a focus on how decoding can support functional
localization.

surgery in patients with tumors or epilepsies, as it aids
the understanding of which parts of the brain need to be
spared in order to preserve sensory, motor or cognitive abil-

Introduction

Paul Broca, whose work lay the foundations for the lo-

calization of cognitive functions in the brain, speculated
that “the large regions of the mind correspond to the large
regions of the brain” (“les grandes régions de I'esprit corre-
spondent aux grandes régions du cerveau” in the French
original) (Broca, 1861). Today, it is well established that
broad cognitive domains, such as language, memory or
motor functions, can be reliably mapped onto particular re-
gions of an individual’s brain (Satterthwaite and Davatzikos,
2015). Although there is no one-to-one mapping between
brain region and cognitive process (Cacioppo et al., 2007),
functional localization has proven to be of direct practical
use (Bunzl et al., 2010; Szaflarski et al., 2017). Functional
magnetic resonance imaging (fMRI) is one non-invasive
method allowing to localize brain functions with limited but
nevertheless remarkable detail (Kanwisher, 2017). In the
clinical context, fMRI plays an important role for planning

ities (Stippich, 2015). To be useful for clinical diagnostics
and prognostics, fMRI data must be interpretable on the
level of the individual case (Dubois and Adolphs, 2016).
Because in group studies idiosyncratic activity patterns can
be obscured by averaging, the precise mapping of brain
function in a single person has become a vanguard of fMRI
research (Laumann et al., 2015; Huth et al., 2016; Gor-
don et al., 2017). These studies are important to deepen
our understanding of how the brain works, because the
functional organization of brains becomes more heteroge-
neous on a finer anatomical scale (Laumann et al., 2015;
Poldrack, 2017). Also, when looking at increasingly smaller
‘regions of the mind’, such as the neural correlates of spe-
cific words instead of language in general, averaging on
the group level can obscure the fine spatial information
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which allows to differentiate these contents in the individual
brain (Huth et al., 2016). Single participant studies can
also provide valuable impulses for the use of fMRI as a
clinical tool. This includes the possibility to assess how
stable results are within a single participant, and how much
data should be collected to provide a reliable description
of the individual’s functional brain organization (Laumann
et al., 2015; Gordon et al., 2017). While the group average
is a composite of many individuals, the activity map of the
individual is likewise a composite of an underlying time
course, consisting of many separate observations of brain
activity while performing a task. Variability over the course
of an fMRI session can be expected due to factors such as
head movement, fatigue, increasing familiarity with the task
and changes in cognitive strategies (McGonigle, 2012; Gor-
golewski et al., 2013). The neuroradiologist’s interpretation
of a single patient’s fMRI might therefore be substantially
improved, if she knows how the patient’s cognitive states
changed over time and how this relates to changes in brain
activity patterns. This is particularly important if no overt
behavior is collected during the fMRI task. For example,
in a language production task, patients might be asked to
produce words from categories such as “fruits” or “animals”
in a pre-defined period of time (Woermann et al., 2003).
Because overt articulation of words produces movement
artifacts, the patients might be asked to use only internal
speech. Without behavioral output from the patient, inter-
pretation of fMRI results is limited by the uncertainty about
whether the task was performed in the expected manner.
A possible solution might be the decoding of fMRI data, in
order to learn what the patient was thinking at each point
in time. Decoding refers to an inference from brain activ-
ity patterns to the cognitive processes that accompanied
them (Poldrack, 2006; Haynes and Rees, 2006). In clini-
cal practice, decoding has proven to be highly valuable for
communicating with unresponsive patients (Owen et al.,
2006; Boly et al., 2007; Sorger et al., 2012). However,
decoding methods are usually not being used in presurgi-
cal planning, where fMRI is used to learn how cognitive
processes can be mapped onto the brain (i.e. encoding
instead of decoding; Naselaris et al. (2011)). When inter-
preting an activity map, decoding might nevertheless be
useful to better understand how the patient performed the
task: Comparing different observations within-patient might
allow to assess the stability of task performance during
the fMRI session, while comparisons with healthy controls
allow to assess if the task was performed in a prototypical
way (Dubois and Adolphs, 2016). The present fMRI study
aimed at decoding the domains of language, motor func-
tions, visuo-spatial memory, face processing and task-free
resting in a single individual. Each of these task domains
is relevant for presurgical planning and can be used clini-
cally in the individual patient (language (Woermann et al.,
2003); motor (Haberg et al., 2004); visuo-spatial (Jokeit
et al., 2001); faces (Parvizi et al., 2012)). We used four
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mental imagery tasks and one rest task, where the verbal
instruction to engage one of the above mentioned functions
was the only external input given to the participant, and the
fMRI data was the only output the participant produced. In
order to evaluate how well decoding works at the level of in-
dividual fMRI blocks, we first analyzed a set of training data
to learn how predictions of each cognitive domain could be
optimized using simple similarity metrics. Then, test blocks
were decoded regarding their cognitive domains as well as
their specific contents. The study was carried out as part
of a graduate course in psychology at Bielefeld University,
with four groups of students making predictions for the test
data.

Methods

2.1 Participant

Data was collected from one healthy, 25 years old, male
psychology student. The participant gave written informed
consent, including written informed consent to have his
brain data published online. The study was approved by the
ethics committee of Bielefeld University (ethics statement
2016-171).

2.2 Mental imagery instructions

For the four cognitive domains of language, sensory-motor
skills, visuo-spatial memory and visual processing of faces,
imagery instructions were adapted from the literature: For
language, a semantic verbal fluency task was used, in
which the participant had to generate as many words be-
longing to a certain superordinate class as possible (e.g.
animals, fruits; Woermann et al. (2003)). To engage motor
imagery, the participant was instructed to perform differ-
ent sports (e.g. tennis, soccer; Owen et al. (2006)). To
test visuo-spatial memory, the participant was instructed to
imagine walking to different familiar locations (e.g. school,
church; Jokeit et al. (2001)). To engage face processing
mechanisms, the participant was asked to imagine famous
or familiar faces (e.g. actors, friends; O’Craven and Kan-
wisher (2000)). During time periods of resting, the partici-
pant was told to engage in a state of relaxed wakefulness.
The main instructions given to the participant are outlined
in Supplement S1. For each task, we tried to derive predic-
tions about the brain areas which should be active when
engaging in the respective cognitive process, based on the
literature. The predictions for each task are summarized in
Table 1.

2.3 Study design

We acquired three runs of fMRI data, with 25 blocks per
run, and a block length of 30 seconds. Within each run,
there were five blocks per condition and the order of the five
conditions was counterbalanced, so that they followed each
other equally often. This was achieved using a simplified
version of a serially balanced sequence (Nair, 1967). The
full study design can be found in Supplement S2. During


https://doi.org/10.1101/341594
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/341594; this version posted August 6, 2018. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Thought experiment: Decoding cognitive processes from the fMRI data of one individual — 3/17

Table 1. Overview of tasks used in the paradigm.

cognitive domain

task

content

reference studies

anatomical predictions

language

sensory-motor skills

visuo-spatial memory

visual processing of faces

semantic verbal fluency

sports

hometown walk

famous and familiar faces

animals, tools, cities, coun-
tries, occupations, fruits, cloth-
ing, vegetables, furniture, col-

ors

badminton, tennis, swimming,
soccer, high jump, climbing,

hurdle race, archery, rope
skipping, juggling

city square, market, tram

station, train station, school,
prome-

church, basement,
nade, city of Kiel, university

family, friends, movie actors,
TV actors, athletes, politicians,

Woermann et al. (2003)

Owen et al. (2006)

Jokeit et al. (2001); Owen et al.

(2006)

O'Craven and Kanwisher

Broca’s area, Wernicke’s area,
left SMA, VWFA

SMA

parahippocampal gyrus, pre-
motor cortex, posterior pari-
etal cortex

OFA, FFA, STS

(2000); Haxby et al. (2000)

lecturers, teachers

resting relaxed wakefulness

Fox et al. (2005) precueus, medial prefrontal

cortex, lateral parietal cortex

SMA, supplementary motor area; VWFA, visual word form area; OFA, occipital face area; FFA, fusiform face area; STS, superior temporal sulcus

the experiment, the participant lay in the MRI scanner with
eyes closed. Instructions to start thinking about one of the
four categories and the rest condition were given by short
verbal cues which were agreed upon beforehand (e.g. “lan-
guage - fruits”). Contents of the blocks were customized
in accordance with the participant’s preferences, whenever
necessary (e.g. “spatial - university” will not apply to every
participant’s city). Audibility was ensured by using an acqui-
sition protocol with 1.2 second pauses between volumes,
during which the instructions were given.

2.4 Data acquisition

MRI data were collected using a 3T Siemens Verio scan-
ner. A high-resolution MPRAGE structural scan was ac-
quired with 192 sagittal slices (TR=1900 msec, TE=2.5
msec, 0.8mm slice thickness, 0.75x0.75 in-plane resolu-
tion), using a 32-channel head coil. Functional echo-planar
images (EPI) were acquired with 21 axial slices oriented
along the rostrum and splenium of the corpus callosum
(slice thickness of 5 mm, in-plane resolution 2.4x2.4 mm),
using a 12-channel head coil. To allow for audible instruc-
tions during scanning, a sparse temporal sampling strat-
egy was used (TR=3000ms with 1800ms acquisition time
and 1200ms pause between acquisitions). Excluding two
dummy scans, a total of 253 volumes were collected for
each run. The full raw data are available on OpenNeuro (
openneuro.org/datasets/ds001419).

2.5 Data preprocessing

Basic preprocessing was performed using SPM12 (www.fil.
ion.ucl.ac.uk/spm). Functional images were motion cor-
rected using the realign function. The structural image
was co-registered to the mean image of the functional time
series and then used to derive deformation maps using
the segment function (Ashburner and Friston, 2005). The
deformation fields were then applied to all images (struc-
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tural and functional) to transform them into MNI standard
space and up-sample them to 2mm isomorphic voxel size.
The full normalized fMRI time courses are available on-
line (doi.org/10.6084/ m9.figshare.5951563.v1). All further
preprocessing steps were carried out using Nilearn 0.2.5
(Abraham et al., 2014) in Python 2.7. To generate an activ-
ity map for each of the 75 blocks, each voxel’s time course
was z-transformed to have mean zero and standard de-
viation one. Time courses were detrended using a linear
function and movement parameters were added as con-
founds. Then TRs were grouped into blocks using a simple
boxcar design shifted by 2 TR (the expected shift in the
hemodynamic response function) and averaged, to give
one averaged image per block. These images were used
for all further analyses and are available on NeuroVault
(neurovault.org/collections/3467).

2.6 Data analysis

Emulating the “common task framework” (Liberman, 2015;
Donoho, 2017), the study’s data were analyzed with regard
to a clearly defined objective and a metric for evaluating
success. In the “common task framework”, data for training
are shared and used by different parties. The parties try to
learn a prediction rule from the training data, which can be
applied to a set of test data. Only after the predictions have
been submitted, is the prediction of test data evaluated. It
can then be explored how different approaches to prediction
compared to one another, given the same dataset and
objective. Accordingly, the first two fMRI runs (50 blocks
total, 10 blocks per condition) of our study were used as a
training set and the third fMRI run (25 blocks total, 5 blocks
per condition) was used as the held-out test set. To ensure
proper blinding of test data, the block order was randomly
shuffled and the 25 blocks were then assigned letters from
A to Y. The true labels of the blocks were only known by
the first author (MW), who did not participate in making
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predictions for the test data. Fifteen of the authors formed
four groups. Each group had to submit their predictions
regarding the domain (e.g. “motor imagery”) and specific
content (e.g. “tennis”) for each block in written form. The
authors making the predictions were all graduate students
of psychology, enrolled in a project seminar at Bielefeld
University. Only after all predictions were submitted were
the true labels of the test blocks revealed. The groups were
allowed to analyze the training and test data in any way
they deemed fit, but all used a combination of the following
methods: (i) Visual inspection with dynamic varying of
thresholds using a software such as Mricron or FSLView. (ii)
Voxel-wise correlation of brain maps from the training and
the test set, to find the blocks which are most similar to each
other. (iii) Voxel-wise correlations of brain maps with maps
from NeuroSynth (Yarkoni et al., 2011), to find the keywords
from the NeuroSynth database whose posterior probability
maps are most similar to the participant’s activity patterns.
The basic principles of these analyses are presented in the
following sections of the manuscript. Full code is available
online (doi.org/10.5281/zenodo.1323665).

Similarity of blocks

For similarity analyses, Pearson correlations between the
voxels of two brain images were computed. This was done
either by correlating the activity maps of two individual
blocks with each other, or by correlating an individual block
with an average of all independent blocks belonging to the
same condition. During training, a nested cross-validation
approach was established, where the individual blocks from
one run were correlated with the averaged maps of the
five conditions from the other run. Each block was then
assigned to the condition of the other run’s average map it
correlated strongest with. This was done for all blocks to
determine the proportion of correct predictions. To learn
from the training data which features allowed for the highest
accuracy in predicting the domain of a block, the mask
used to extract the data and the amount of smoothing were
varied: Different brain masks were defined by thresholding
the mean z-score maps for each of the five conditions on
different levels of z-values and using only the remaining
above-threshold voxel with highest values for computing
correlations. The size of the smoothing kernel was also
varied in a step-wise manner. The best combination of
features (amount of voxels included and size of smoothing
kernel used) from the cross-validation of the training data
could then be used to decode the test data.

Similarity with NeuroSynth maps

In addition to these within-participant correlations, each
block was also correlated with 602 posterior probability
maps derived from the NeuroSynth database (Yarkoni et al.,
2011). From the 3169 maps provided with NeuroSynth
0.3.5, we first selected the 2000 maps with the most non-
zero voxel. This allowed to exclude many maps for unspe-
cific keywords such as “design” or “neuronal”, with which

Wegrzyn et al. 6 August 2018

no specific activation patterns are associated. The selected
maps were then clustered using K-Means, as implemented
in Scikit-learn 0.17 (Pedregosa et al., 2011). K-Means
clustering was performed starting with two clusters and
then successively increasing the number of clusters to be
identified. For solutions of nine or more clusters, groups
of keywords representing language, auditory, spatial, mo-
tor, reward, emotion, default mode and visual processing
emerged, plus additional large clusters of further unspe-
cific keywords which were still present in the dataset (e.g.
“normalization”, “anatomy”). To exclude these unspecific
keywords, we eliminated the largest cluster of the nine
cluster solution and re-ran the K-Means clustering on the
remaining 602 maps. This clustering resulted in the same
eight interpretable clusters found previously (Fig 1). To
visualize the similarity between the clusters and the rela-
tionship of keywords within each cluster, we computed the
Euclidean distances between all maps and projected the
distances into two dimensions using multi-dimensional scal-
ing (MDS; cf. Kriegeskorte et al. (2008)) as implemented
in Scikit-learn. The resulting '’keyword space’ showed a
strong agreement between the clustering and MDS, with
keywords from the same cluster being close together in
space (Fig 1). This 'keyword space’ was then used for
decoding, by correlating our fMRI data with all NeuroSynth
maps. The resulting correlations were then visualized in
the 2D space, allowing to inspect not only which keywords
correlated the strongest, but also if there were consistent
correlations within each cluster. To be computationally fea-
sible, a gray matter mask with 4x4x4mm resolution was
used for computing correlations, reducing the number of
voxel to be correlated from ~230,000 to ~19,000.

Results

3.1 Results for the training data

Mean activity maps

A visualization of the average activity map for each con-
dition is shown in Fig 2. For the language task, a clear
left-lateralized network of regions, including inferior frontal
gyrus, superior temporal sulcus, left supplementary motor
area (SMA) and left fusiform gyrus, emerged. For the motor
imagination task, SMA and premotor areas, as well as supe-
rior parietal cortex were active. The visuo-spatial memory
task gave rise to activity in parahippocampal gyrus, premo-
tor cortex and posterior parietal cortex. The face imagery
condition showed activity around the mid-fusiform sulcus in
both hemispheres, but mainly activity in the precuneus and
medial frontal areas. For the rest condition, there was only
weak activity in the precuneus, as compared to the other
four conditions. Deactivations for resting were strongest in
dorsolateral frontal and superior parietal regions.

Feature selection for correlation analyses
For computation of similarity metrics, correlations of individ-
ual blocks from one run with the mean activity maps from
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Figure 1. Keyword Space derived from the NeuroSynth database. Colors were assigned based on K-means clustering and distances in space were derived using multi-
dimensional scaling (MDS). Note how both approaches give very similar results, in terms of similar colors being close together in space. There are some exceptions, i.e. BA
47 being in the default mode cluster but closer to the auditory-related keywords in MDS-space. There are clear gaps between many of the clusters, indicating that they might
be categorically distinct. Regarding the arrangement of clusters, the emotion and reward clusters are close together, as well as the motor and spatial, and the language and
auditory clusters. The keywords on the borders of the clusters often represent concepts shared by multiple domains, for example “characters” bridging the clusters of vision
and language, “visual motion” close to vision and spatial processing, or “avoidance” related to emotion and reward processing. To allow for good readability, keywords in
the figure had to be a certain distance from each other in the space to be plotted.
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Figure 2. Activity maps for the five conditions of the training data. For visualization purposes, t-maps for the comparison of each condition against the remaining four
were generated (smoothed with an 8mm kernel and thresholded at t=3.31, corresponding to p<0.001). Results were projected on an inflated surface of the participant’s
normalized structural scan, using PySurfer. Interactive unthresholded versions of these maps are available on NeuroVault (neurovault.org/collections/3467/).

Wegrzyn et al. 6 August 2018


https://neurovault.org/collections/3467/
https://doi.org/10.1101/341594
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/341594; this version posted August 6, 2018. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Thought experiment: Decoding cognitive processes from the fMRI data of one individual — 7/17

the respective other run were used (i.e. blocks of run 1
correlated with the five mean activity maps from run 2, or
the other way around). The decision to which domain a
block belonged was then made by assigning the block to
the domain it had the highest correlation with. Using this
approach without voxel selection or smoothing, an accu-
racy of 72% was reached (p<107'#; for a binomial test with
chance at 20%). Using feature selection (varying the voxels
included and the smoothing kernel used), accuracies of up
t0 92% (p<1027) could be reached, using only the top 1-3%
of voxel from each domain and moderate or no smoothing
(Fig 3).
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accuracy in %
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01 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19
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Figure 3. Accuracies for the predictions of training data, as a function of voxel se-
lection and smoothing kernel. Highest accuracies (in dark red) were reached using
only the top 1-3% of voxel active for each condition (i.e. using the 99-97th per-
centile to threshold the data). The percentile cutoff was applied to each map of the
five conditions individually and the maps were then combined (conjunction of maps).
Therefore, given that overlap between maps was low, percentile 80 contained 71%
of whole-brain voxel and percentile 99 contained 5% of the whole-brain voxel.

The correlations of individual blocks from one run with
the mean activity blocks from the respective other run, us-
ing the best feature combination, are shown in Fig 4. Of
the 50 blocks, one motor block was mistaken for rest, an-
other motor block was mistaken for a visuo-spatial memory
block, and two visuo-spatial blocks were mistaken for mo-
tor blocks, corresponding to 46 out of 50, or 92%, correct
predictions.

Decoding using NeuroSynth data

To evaluate how completely independent data can be used
to decode the five conditions, each mean activity map (av-
eraged over both training runs) was correlated with the
NeuroSynth data and the strength of the correlation visu-
alized in MDS space (Fig 5). Four of the five conditions
showed strongest correlations with keywords from the re-
spective related cluster (language-"reading”, motor-"motor”,
visuo-spatial - “spatial”, rest - “theory [0f] mind”). The cor-
relations of the face condition indicated that the cognitive
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processes our participant engaged in during this task had
more to do with episodic and working memory than with
object and face processing (cf. Fig 5).

3.2 Results for the test set

Activity maps for individual blocks

Fig 6 shows the activity maps for all 25 individual blocks of
the held-out test data. Here, robust activity in the networks
already identified in the average training data (Fig 2) can
be seen on a block-by-block basis. With the exception of
block #60 for the motor imagery task, block #57 for the
rest condition and block #64 for faces, specific activity in at
least one of the most important regions for each domain
could be found (language: superior temporal areas; motor:
superior parietal areas; visuo-spatial: parahippocampal
gyrus; faces: mid-fusiform sulcus; rest: precuneus).

Correlation analysis with winner-take-all decision rule
A correlation approach using the same parameters as for
the training data (top 1% of voxel, no smoothing), allowed
to correctly label 24 of the 25 test blocks (96% correct;
p<107'®; cf. Fig 7). The only misclassification occurs for
block #60, where the “swimming” block from the movements
condition is misclassified as belonging to the rest condition.
In addition to the correlation with mean training data,
each of the 25 test blocks was also correlated with each of
the 50 individual training blocks (Fig 8). Here, an optimal
outcome would be if each test block had its ten highest
correlations with the corresponding ten training blocks of
the same condition. The results showed that for 20 of the
25 test blocks, at least eight of the highest correlations
were with the correct corresponding training blocks. Only
the “swimming” block had less than half of the ten highest
correlations with training blocks from its correct domain.

Decoding using NeuroSynth data

When using the NeuroSynth data to decode each test block,
15 of the 25 of blocks (60%) were correctly decoded us-
ing the cluster of the keyword with the highest correlation
(p<0.0001). The best predictions were possible for the mo-
tor, spatial and rest domains, while language and faces
showed more ambiguous correlation patterns (Fig 9).

Predictions made by the four teams

Based on these sources of information (visual inspection;
correlation with mean training data; correlation with indi-
vidual training blocks; correlation with NeuroSynth maps)
the four teams submitted their predictions (Table 2). Three
of the four teams made 23 correct predictions (p<107'3),
all making the same mistake of classifying the swimming
block as rest. In addition, the teams made at least one
additional mistake, and therefore one mistake more than
the correlation analysis in Fig 7. One team which weighted
the results of visual inspection more strongly in their results
reached an accuracy of only 76% (p<1078).
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Figure 4. Correlation of single blocks (rows) of one run with the mean activity maps (columns) of the respective other run. Results are based on unsmoothed data using a
99th percentile cutoff to threshold the mean activity maps with which the individual blocks are correlated. For each block, the name of the condition (i.e. “language”), the
number of the block in the experiment (i.e. “002” for the second block of the experiment) and the content (i.e. “animals”) are indicated in the row labels.
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Figure 5. NeuroSynth decoding of average activity map for each training condition (averaged over both training runs). Stronger correlations with a keyword are indicated
by a bigger circle, bigger font size and less transparency of font. To improve readability, the correlations are min-max scaled, so that the largest correlation is always of
the same pre-defined size. Furthermore, the sizes of the scaled correlations have been multiplied with an exponential function, so that large correlations appear larger and
small correlations smaller than they actually are (sizes are more extreme that the underlying data). To further enhance readability, if two keywords were too close in space
so they would overlap, only the higher correlating keyword was printed. Color assignment is based on K-means clustering of the NeuroSynth data.
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language language language language language
052 countries 056 animals 062 animals 066 tools 073 fruit

motor motor motor motor motor
065 badminton 070 tennis 075 climbing

A

055 badminton

spatial spatial spatial spatial spatial
054 market 059 school 063 citysquare 068 market 071 church

)

faces faces faces faces faces
051 movieactors 058 athletes 067 friends 074 politicians

rest rest rest rest rest
053 rest 061 rest 069 rest 072 rest
-

Figure 6. Example views of the individual activity maps of the test set. Only one view per block is shown. Maps depict the average z-values of each block, smoothed
with an 8mm kernel and individually thresholded at different levels to best visualize the typical activity patterns. Red-yellow colors indicate activations and blue-lightblue
colors indicate deactivations, in relation to the voxel's grand mean over the whole timecourse. Unthresholded and interactively explorable maps of each block are available
on NeuroVault (neurovault.org/collections/3467/). For each block, the name of the condition (i.e. “language”), the number of the block in the experiment (i.e. “052” for the
second block of the test run, which comprises blocks 51-75) and the content (i.e. “countries”) is indicated above the brain map.
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Figure 7. Correlation of single blocks (rows) of the test run with the mean activity maps (columns) of the two training runs. Results are based on unsmoothed data using a
99th percentile cutoff to threshold the mean activity maps with which the individual blocks are correlated. For each block, the name of the condition (i.e. “language”), the
number of the block in the experiment (i.e. “052” for the second block of the test run, which comprises blocks 51-75) and the content (i.e. “countries”) is indicated in the row
labels.
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Figure 8. Correlation of the 25 blocks of the test run (051-075, rows) with the single blocks of the two training runs (001-050, columns).
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Figure 9. NeuroSynth decoding of individual blocks of the test run. For each block, the name of the condition, the number of the block and its content are indicated above
the respective image of the space. An asterisk in the title indicates that the block was correctly decoded by assigning it to the cluster of the NeuroSynth keyword it correlated
strongest with. For visualization, stronger correlations with a keyword are indicated by a bigger circle, bigger font size and less transparency of font. To improve readability,
only the keywords with the highest correlations are labeled. Color assignment is based on K-means clustering of the NeuroSynth data.
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Table 2. Results of the predictions made for the held-out test data.

cognitive domain correlations NeuroSynth group
MH,MG,DN SH,FH,LB,AH,SH RV,AK,JS DP,MS,JA,SZ
language 5(0) 2(-) 5(1) 5(3) 5(3) 5(3)
fruits animals, tools, fruits animals, tools, fruits animals, tools, fruits
sensory-motor skills 5 (2) 5(-) 4 (1) 4(3) 3(2) 4(3)
tennis, climbing climbing badminton, tennis,  tennis, climbing badminton, tennis,
climbing climbing
visuo-spatial mem- 5 (0) 3() 5(0) 5(1) 5(0) 5(1)
ory market market
visual processing of 5 (2) 1(-) 5(1) 4(3) 3(1) 5(2)
faces athletes, friends movie actors movie actors, ath-  athletes athletes, friends
letes, friends
resting 4() 4() 4() 5() 3() 4()
total 24 (4) 15 (-) 23 (3) 23 (10) 19 (6) 23(9)

Number of correct predictions for each domain, for the 5 blocks of the test data per condition. Predictions are based on the correlation approach (top 1% of voxel, no
smoothing), the NeuroSynth analysis, and based on the submissions made by the four teams of human raters. Numbers in brackets indicate the number of correct
predictions regarding content. (-) indicates that content predictions were not preformed. Content predictions were made for all cognitive domains except rest. Abbreviations

indicate author names.

Regarding the prediction of content, the rest blocks had
to be excluded, as they had no content, leaving 20 blocks
from four conditions. Making the conservative assumptions
that one can predict all categories perfectly and that there
are only 5 possible contents within each condition, guessing
would be at 20% and at least 40% correct would be needed
to reach above-chance (p<0.05) accuracies. Only two of
the four teams scored better than chance, with one team
making 10 correct predictions out of 20 (p=0.003) and the
other team 9 out of 20 (p=0.01; cf. Table 2). As all teams
used a combination of all methods to guess the content, the
results do not allow to infer the role each individual method
played for reaching these accuracies. However, using only
the automated procedure of selecting the content of the
training block with the highest correlation (cf. Fig 8), only
chance performance (4 out of 20) could be reached.

Discussion

We showed that decoding “large regions of the mind” (Broca,
1861), namely language, motor functions, visuo-spatial
memory, face processing, and task-free resting is possible
using individual 30-second blocks of fMRI data. As in pre-
vious studies (Boly et al., 2007; Sorger et al., 2012), we
were able to reach almost perfect accuracies when decid-
ing between these cognitive domains using training data
from the same participant. This was confirmed by visual
inspection of the data (Fig 6), which showed that activity
patterns on single block level were highly robust. We were
also able to show how single blocks of a person’s fMRI
data can be decoded, regarding their cognitive domains,
using an independent database which maps activations of
hundreds of keywords onto the brain (Yarkoni et al., 2011).
This demonstrated the potential to decode a completely
new observation of brain activity in a person, even when no
training data were available and no feature selection had
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been performed. Our results also showed that it is possible
to predict the contents within some of the domains with
moderate accuracy. Predictions worked best for the lan-
guage and motor domains, in line with previous work: The
contents of our language task can be considered superordi-
nate categories in their own right (i.e. animals and tools as
animate and inanimate objects), and thus their differential
activity patterns can be expected to differ on a relatively
large anatomical scale (Mummery et al., 1998). The differ-
ent sports used in the motor task activated different parts
of the body, and could potentially be identified based on
the somatotopic organization of SMA and superior parietal
cortex (Fontaine et al., 2002; Aflalo et al., 2015). Because
predictions of content were not explicitly trained and were
only at chance using the automatic methods, the interpreta-
tion of this part of the results is limited. On the level of the
five cognitive domains, the activity patterns were broadly
in line with our a priori predictions (cf. Table 1). However,
the motor imagery task recruited predominantly superior
parietal areas, which have previously been shown to be im-
portant for movement planning (Aflalo et al., 2015), but are
not always active in imagery tasks (for example Owen et al.
(2006)). This also reflects the issue that while mental im-
agery tasks are easy to setup and integrate into the clinical
routine, they have some natural limits regarding the local-
ization of functions. In the case of the motor imagery task,
one cannot reliably map the primary motor cortex (Dechent
et al., 2004), where the execution of actual movements
would be represented. While SMA and superior parietal ar-
eas are certainly also important for carrying out movements
(Fontaine et al., 2002; Aflalo et al., 2015), it would thus be
a mistake to use motor imagery as the only functional local-
izer in this domain. Despite this limitation of our paradigm,
it is also conceivable that activity maps based on imagin-
ing complex movements could be a useful complement to
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simple real movement tasks, such as finger tapping. This
is especially true since the organization of primary motor
areas can be well approximated from brain structure alone,
while this is not the case for movement planning (Aflalo
et al., 2015). In contrast to our prediction, the face imagery
task predominantly recruited the precuneus instead of the
core face processing areas (Haxby et al., 2000). This might
reflect a strong involvement of autobiographical memory
recall when thinking of known faces (Gobbini and Haxby,
2007). Although unexpected, these patterns were very
stable across blocks and sufficiently different from the rest-
ing activity to allow for perfect accuracies when predicting
the face blocks. The resting condition produced only weak
activity in the precuneus, but strong deactivations in the
task-positive network, which is anti-correlated with the de-
fault mode network (Fox et al., 2005). This information was
probably most important for allowing successful prediction
of the rest blocks. Finally, while the activity in the superior
temporal sulcus in the verbal fluency task might correspond
to part of Wernicke’s area (Price, 2011), a more prototypi-
cal activity pattern would have included posterior parts of
the superior temporal gyrus as well (Tremblay and Dick,
2016). It is also rather atypical that the peak of activity in a
language production task is in temporal and not in inferior
frontal areas (Woermann et al., 2003). Apart from that,
the language and visuo-spatial conditions produced activity
patterns that were very close to what would be expected if
the tasks would be actually carried out, which makes these
paradigms especially useful for clinical applications (Woer-
mann et al., 2003; Jokeit et al., 2001). Another limitation
of the present mental imagery task concerns the question
how well activity patterns are comparable between individ-
uals. When using external stimulation, every participant
receives the same low-level inputs, but between-participant
variance is still sizable (Haxby et al., 2011). Therefore,
when using potentially idiosyncratic mental imagery, even
larger variation between individuals should be expected.
Given that we collected data from only one person, the
generalization of our results is particularly limited. However,
we were able to make reasonable predictions about our
participant’s cognitive processes using independent data
from NeuroSynth. The NeuroSynth data represents a differ-
ent metric (posterior probabilities; cf. Yarkoni et al. (2011)),
from different participants who performed different tasks on
different scanners and were analyzed using different soft-
ware and statistical methods. That our data still converged
rather well with this meta-analytical information provides
tentative support that the activity patterns we found were
not merely idiosyncratic but to a substantial degree proto-
typical for the cognitive domains of interest. Furthermore,
because no kind of training was performed to optimize the
performance of the NeuroSynth approach, it might serve as
a demonstration of ‘ad hoc’ decoding. This immediacy of
application might make it especially appealing in the clinical
context, where there might be no time to collect and analyze
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training data for each patient. However, more sophisticated
methods which use the NeuroSynth database for decoding
also exist (Rubin et al., 2017), and should be compared to
the current approach in future studies. A crucial question
regarding how the present results can inform clinical appli-
cations, is how well the present results can generalize from
healthy participants to patients: While the block-wise anal-
yses worked very well with a cognitively unimpaired and
highly motivated participant, cognitive deficits, medication
and a general tendency for increased movement artifacts
(Van Dijk et al., 2012) will all contribute to altered or weaker
signal in patient populations. Being able to collect healthy
normative samples (Dubois and Adolphs, 2016) is one of
the major advantages of fMRI over other methods used in
presurgical planning (i.e. intracrianal EEG, Wada-testing).
However, this is moot if the clinical data of actual patients
cannot be reasonably collected and analyzed in the first
place. Therefore, future studies are needed to show if the
signal yield necessary for block-wise analyses is attainable
when examining presurgical patients. It is also important
to note that the four teams making predictions were very
homogeneous regarding their background and approach.
This leaves open the question how well the current ap-
proach would have fared against the visual inspection done
by trained neuroradiologists. Also, the way in which the
teams combined information from the different analyses
was not made explicit. Ideally, each team would have sub-
mitted clearly formalized algorithms, which could have been
compared against each other in more detail. While we out-
lined some important limitations above, we believe that the
current study provides some valuable impulses for the clini-
cal application of task-fMRI, including its use in presurgical
planning:

Analysis of fMRI data can benefit from splitting a data-
set into smaller subsets. If the patient has consistently
preformed the task as required, splitting the fMRI run into
smaller parts (ideally blocks) can increase the neuroradiolo-
gist’s confidence in the resulting activity map. If the activity
patterns of the patient are highly inconsistent across the
run, the neuroradiologist might be able to retain some diag-
nostic information by re-analyzing those subsets of the data
which are most indicative of task compliance. Splitting the
data can also reveal if a patient’s activity pattern is atypical
but stable, as was the case for our face condition. Here, we
saw that although the patterns were not as expected, they
were highly similar across blocks. Such analyses might
allow to better decide if an inconclusive looking activity pat-
tern is due to noise or is a veridical representation of an
unexpected cognitive strategy the patient engaged in.
Pattern analysis methods do not have to be ‘black-
box’. The pattern analyses in the present study were all
based on the notion of minimizing the sums of squared
differences between two observations. While these meth-
ods certainly do not take advantage of all the information
contained in the data, they are highly versatile and robust
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(Hilborn and Mangel, 1997), and work well for fMRI data
(Haxby, 2001). With the rise of artificial intelligence meth-
ods in medical imaging (Esteva et al., 2017), there is grow-
ing concern that the decisions made by algorithms might
be excellent but the reasoning behind them will remain
impenetrable to a human (Castelvecchi, 2016). Therefore,
it could prove beneficial to accompany methods of high
sophistication with more transparent (‘glass box’) analyses
like the present ones.

Localization and decoding of functions is complemen-
tary. While presurgical diagnostics are usually only con-
cerned with brain mapping, the main benefit of decoding
might be to better understand what exactly is being mapped.
Even for a well-defined language task, the way the task is
performed will not be identical for two different individuals.
One patient might produce an activity pattern encompass-
ing Broca’s area, SMA,Wernicke’s area and visual word-
form area (VWFA). This patient’s activity would allow for
a relatively safe interpretation of lateralization, depending
on whether this network of activation is localized in the
left or right hemisphere. If, on the other hand, another
patient’s activity pattern for the language task resembled
a default mode network, one would conclude that the task
was not performed at all and not use the map to determine
the degree of lateralization. Between these two extreme
cases, a whole continuum of prototypical vs. improper task
performance will occur in clinical practice. For example, a
language production task will pose different demands on
working memory or executive functions, depending on how
difficult a patient finds the task overall, or for a specific cat-
egory. The same frontal activity could be part of a strongly
lateralized language network, or of a bilateral task-positive
network, which typically includes frontal and parietal areas.
Whether one is willing to use the frontal activity to draw
conclusions about the language lateralization of a patient,
could thus depend on how strongly each of those patterns
is expressed in the whole-brain activity map. Therefore, the
localization of functions (knowing where things are) could
be aided by quantifying what cognitive demands the task
poses for each patient (knowing what is being mapped).
However, for such an approach to make sense, one has
to derive maximally independent information for both lo-
calization and decoding. One possibility might be to use
information at different spatial scales: Confidence in deter-
mining the dominant hemisphere would be conditional on
how plausible the activity patterns within the hemispheres
looked like. Another possibility might be to use different
regions for localization and decoding: The confidence in a
frontal activity corresponding to Broca’s area would depend
on whether the region co-activates with other language-
related areas in the rest of the brain. Finally, one could
use different contrasts. For example, decoding would be
performed only during rest, to check for prototypical activ-
ity in the default mode network. If this is established, an
unconstrained analysis of activity during task performance
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would be performed. In the case of processing language,
semantic maps of word meaning have been shown to be
represented as very fine-grained and globally distributed
activity patterns, comprising regions which are not part of
the core language network (Huth et al., 2016). If it would
be possible to decode the content of each block (e.g. pro-
ducing names of animals vs. names of tools in a verbal
fluency task), this would allow for a very close monitoring of
the patient’s covert behavior, independent of the patient’s
lateralization. Therefore, such types of decoding could be
a valuable substitute for the lack of behavioral output which
currently limits the applicability of mental imagery tasks.

Conclusion

The present study showed how brief periods of covert
thought can be decoded regarding the cognitive domains
involved. The categories of language production, motor
imagination, visuo-spatial navigation, face processing, and
task-free resting were reliably differentiated using basic
similarity metrics. This was possible using both training
data from the same participant as well as independent
meta-analytical data from other studies, which allow for im-
mediate decoding without prior training. Capitalizing on the
non-invasive nature of fMRI, we showed how exploratory
approaches towards collecting and analyzing fMRI data
can provide new impulses regarding its application in the
individual case.
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