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Abstract 

To date, developing a reliable mortality prediction 

model remains challenging. Although clinical 

predictors like age, gender and laboratory results are 

of considerable predictive value, the accuracy often 

ranges only between 60-80%. In this study, we 

proposed prediction models built on the basis of 

clinical covariates with adjustment for additional 

variables that was radiographically induced. The 

proposed method exhibited a high degree of 

prediction accuracy of between 83-92%, as well as 

overall improvement of between 6-20% in all other 

metrics, such as ROC Area, False Positive Rates, 

Recall and Root Mean Square Error. We provide a 

proof of concept that there is an added value for 

incorporating the additional variables while 

predicting 24-month mortality in pulmonary 

carcinomas patients with cavitary lesions. It is hoped 

that the findings will be clinically useful to the 

medical community. 

Introduction 

The prediction of reduced-life expectancy or 

mortality is central to personalized medicine. It is a 

complex question since the cause of death varies. 

The underlying status of body undeniably influence 

mortality, but may not be listed as primary diagnosis. 

Traditionally, future mortality predictions have been 

studied through patients’ medical records, such as 

laboratory test results, vital signs and demographic 

information from Electronic Medical Records 

(EMR) [1-3]. Recently, radiographic induced markers, 

which is commonly known as radiomic markers, 

started to show potential in a prognostic model [4]. 

The latter claimed to be at an advantage due to its 

non-invasive nature (no blood sample or biopsy 

needed) while improving accuracy prediction of 

mortality. In this article, we will investigate the 

performance of prognostic models developed using 

both markers, hereafter termed as CR for clinical 

records and RM for radiomic markers, to prove or 

nullify the finding in [4]. Our hypothesis is that RM 

will boost a model performance to that of traditional 

model that is based on CR data only. 

The models were developed as a risk stratification of 

24-month mortality for patients with cavitary lesion 

in pulmonary carcinomas. A cavitated lesion, as 

shown in Fig. 1, is a relatively common finding in 

chest imaging and has been associated with a worse 

prognosis [5-6], hence the motivation behind this 

work. Pathologically, it is defined as “a gas-filled 

space within a zone of pulmonary consolidation, 

mass, or nodule, produced by the expulsion of a 

necrotic part of the lesion via the bronchial tree”. 

Radiographically, it is referred to as “a lucent area 

within the lung that may or may not contain a fluid-

level that is surrounded by a wall usually of varied 

thickness”[7].Although the mechanism of cavity 

formation is often difficult to ascertain, cavitation in 

lung cancer most often results from rapid tumor 

growth that exceeds the blood supply with resultant 

central necrosis. The goal of this study is to classify 

patients into two groups: those who survived 24 

months (alive) and those who are not (dead), 

according to the given variables. This study could 

serve as a decision support tool in therapeutic 

strategy as well as identifying the increased risk of 

short-term mortality. 

 

 

 

 

 

Materials and Methods 

2.1 Clinical materials 

Imaging and clinical data of patients diagnosed with 

primary non-small cell lung cancer were obtained 

from a public repository  TCIA [8]. A total of 47 

patients were curated from two cohorts: Radiomics 

Figure 1. Cavitary lesions in CT imaging 
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[9-11]and Radio-genomics [12]. Inclusion criteria 

encompassed patients with measurable cavitary 

lesion. Those with more than one cavity were 

excluded. The acquisition protocol varied slightly 

for different patients, depending on each patient’s 

size. Exposure settings ranged from 120 to 140 kVp, 

with a tube current of 40 to 449 mAs. Pixel spacing 

and slice thickness were constant at 0.977 mm and 

3.0 mm respectively throughout CMS and Siemens 

vendor, while the rest varied from 1.0 to 5.0 mm and 

0.6 to 1.5 mm respectively. The images were 

reconstructed at 512 x 512 pixel matrices. 

2.2 Framework description 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first layer in Fig.2 depicts tumor delineation 

stage as described in[13]. Target lesions were 

volumetrically delineated using this automatic 

approach, with an experienced radiologist 

overseeing and validating the segmented boundaries. 

The middle layer represents candidate variables 

included in this study. (A) is a cross sectional view 

of CT scans, where N is the total number of slices., 

and (B) is a single slice representation, in which Rx 

and Ry denote the outer and inner radius respectively. 

W indicates the width or wall thickness (WT) of a 

cavitated tumor. Equation (1) demonstrates the 

conventional technique of measuring W. In contrast, 

Eq. (2) is a novel way of measuring W by taking 

depth into consideration, hence termed as wall 

deepness (WD). Note that WD is a 3-dimensional 

RM compared to WT, which neglected the depth 

information. 

Table 1.  Candidates’ variables under CR group are based on 
demographics, staging and last day to follow-up data. 2D and 
3D wall thickness measurements are included under RM group.  

 

Wall Thickness (2D RM) = 𝑅𝑥 − 𝑅𝑦  (1) 

Wall Deepness (3D RM) =
∑ 𝑅𝑥𝑖

−𝑅𝑦𝑖
𝑁
𝑖=1

𝑁
  (2) 

The candidates’ variables X={X1, X2,….Xn} were 

designed as shown in Table 1. The final layer is 

designated for the prediction of vital status (alive or 

dead) based on the given variables. We designed 

three test cases based on the input variables to 

validate our hypothesis as follows: 

 CR only  

 CR + WT (2D_CR) 

 CR + WD (3D_CR) 

Data partitioning was performed through a 10-fold 

cross validation [14]. Six off-the-shelf classifiers were 

carefully selected to run those test cases. Each one 

of them is detailed as below: 

Bayesian classifier (Naïve Bayes) 

Supposed there are ‘m’ classes {C1, C2…Cm} and let 

X be the predictors {X1, X2…Xn}. The classification 

is done to derive maximal p (Ci|X) as shown in Eq. 

(3) [15] 

𝑃(𝐶𝑖|𝑋)= 
p (X|𝐶𝑖)p(𝐶𝑖) 

𝑝(𝑋)
    (3) 

Variables Code Type Range  

Clinical Records (CR) 

Gender Sex Nominal {M, F} 

Age Age Real [43,85 ] 

Tumor Size Size  Real [5.56,26.5] 

Survival  Days Real [14,2165] 

Primary Tumor T Integer {1,2,34} 

Lymph Node N Integer {0,1,2,3} 

Metastasis M Integer {0,1} 

Radiomic Marker (RM) 

Wall Thickness 2D Real [5.11,41.57 ] 

Wall Deepness 3D Real [3.97,37.17 ] 

Tumor delineation 

Clinical Records 

Radiomic Markers 

Mortality prediction 

(B) (A) 

Figure 2. Block diagram of the proposed predictive model 
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Logistic regression 

Equation (4) explains how a logistic regression 

modeled dichotomous dependent variables to 

describe the relationship with the explanatory 

variables [16] 

𝑙𝑛
𝑝

1−𝑝
= 𝐵0 + 𝐵1𝑋1+ 𝐵2𝑋2+ … … 𝐵𝑛𝑋𝑛 ,  (4)

  

where beta parameters 𝐵0 , 𝐵1…𝐵𝑛 are modeled by 

means of maximum likelihood (MAL) and p is the 

probability of presence of the characteristic of 

interest. 

Adaptive boosting (Adaboost) 

Adaboost combines the output of weak learners into 

a weighted sum that represents the final output of the 

boosted classifier, hence also known as ensemble 

classifier [17] as shown in Eq. (5)-(6). 

𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ ∝𝑡
𝑇
𝑡=1 ℎ𝑡(𝑥)) ,   (5) 

ℎ𝑡(𝑥) is the output of weak learner t for input x, and 

∝𝑡 is the weight assigned to learner t (0.5*ln(1-

E)/E), where E is an error rate. Once the weak learner 

trained, the weight of each training sample will be 

update as in Eq. (6), where Dt denotes weight at 

previous level, Zt represents the sum of all weights 

and (xi, yi) is a training sample. 

𝐷𝑡+1(𝑖) =
𝐷𝑡(𝑖)𝑒𝑥𝑝𝑒(−∝𝑡𝑦𝑖ℎ𝑡(𝑥𝑖))

𝑍𝑡
  ,   (6) 

Bagging 

Another type of ensemble classifier uses the 

bootstrap aggregating method [18]that will reduce the 

variance of an estimation by averaging together 

multiple estimates, or in this case the weak learners. 

Eq. (7) describes this work. 

𝐻(𝑥) =
1

𝑀
∑ 𝐻𝑚

𝑀
𝑚=1 (𝑥) ,   (7) 

where Hm (m=1…M) is a sequence of classifiers 

created by modifying the training samples with a 

replacement approach.  

Support Vector Machines 

A discriminative classifier that defines an optimal 

separating hyperplane [19]. Consider training sample 

{𝑋𝑖, 𝑌𝑖}𝑖=1
𝑁  : 𝑤ℎ𝑒𝑟𝑒 𝑋𝑖 is the input pattern for ith 

instance and 𝑌𝑖 is the corresponding target output  

{-1, 1}. The hyperplane equation is given by  

𝑊𝑇 𝑋 + 𝑏 = 0 ,    (8) 

Where X denotes an input vector, W an adjustable 

weight vector and b is a bias. Thus, the decision rule 

is defined as 

𝑔(𝑥) = {
1, 𝑊𝑇 𝑋𝑖 + 𝑏 ≥ 0

−1, 𝑊𝑇 𝑋𝑖 + 𝑏 < 0
   (9) 

Neural Network 

 

 
 

  

 

 

 

A neural network as demonstrated in Fig. 3 was 

developed. Eight clinical attributes were accepted as 

the inputs and the training of the network was done 

with the back propagation algorithm. Eq. (10) 

explains how neural networks process inputs 

mathematically 

𝑂 = 𝑓(𝑏 + ∑ 𝑊𝑖 
𝑛
𝑖=1 (𝑎)𝑖 )  ,              (10) 

where 𝑂 is the output, (𝑎)𝑖 are n inputs, 𝑊𝑖 are 

summation of weights, 𝑏 is the bias and f is the 

activation function [20]. 

Results 

3.1 Performance Evaluation 

Eighteen models were tested from the combination 

of six classifiers and three test cases as previously 

described in section 2.2. The metrics of interest are 

listed in Eq. (11)-(15). 

Accuracy = 
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
              (11) 

Recall  = 
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
              (12) 

FPR  = 
𝐹𝑃

(𝐹𝑃+𝑇𝑁)
              (13) 

Figure 3. The number of neurons are p=8, q=5 and r=2 for input, 

hidden, and output layer respectively 
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ROC Area = ∫ 𝑇𝑃𝑅(𝑇)𝐹𝑃𝑅′(𝑇)𝑑𝑇
∞

−∞
             (14) 

RMSE  = √∑
(𝑎𝑐𝑡𝑢𝑎𝑙−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2

𝑁

𝑁
𝑖=1              (15)

where; 

 TP : Number of patients predicted dead that are 

actually dead 

 FP : Number of patients predicted dead that are 

actually alive 

 TN : Number of patients predicted alive that are 

actually alive 

 FN : Number of patients predicted alive that are 

actually dead 

 TPR: True positive rate or recall 

 FPR: False positive rate 

 T: The integral boundaries of trapezoidal area 

 N: Total number of testing subjects 

 RMSE: Root mean squared error 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CR  

2D_CR 

3D_CR 

Figure 4. Performance metrics reported by 18 models in terms of A) Accuracy, B) Recall, C) FPR, D) ROC Area and E) RMSE. Note 
that CR, 2D_CR and 3D_CR represent the three test cases (CR only), (CR+WT) and (CR+WD) respectively. 
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3.2 Mortality prediction 

The performance is evaluated through different 

version of data fusion: the non-hybrid model (CR 

only) and two hybrid models (2D_CR and 3D_CR). 

2D and 3D refer to the radiomic marker of wall 

thickness, WT and WD, respectively. All five 

metrics demonstrated improvements in both hybrid 

models, with the 3D version to some extent and also 

outperformed its 2D counterpart. Fig. 4 (a) showed 

that both hybrid models scored higher Accuracy 

compared to the CR model. The novel 3D marker 

seemed to improve the prediction slightly higher 

than the conventional one in all classifiers, except 

for logistic regression. Similar boosting pattern was 

recorded by Recall, where the sensitivity improved 

across all the classifiers tested, with considerable 

differences noticed particularly in the 3D model as 

depicted by Fig. 4 (b). In contrast, FPR in Fig 4. (c) 

showed significant reduction in all classifiers tested 

for both hybrid models compared to the CR model. 

Area under the ROC curve or ROC Area reported 

increasing values in four of the classifiers: Naïve 

Bayes, Support Vector Machines, Adaboost and 

Bagging, while remaining basically unchanged in 

the Neural Network. Interestingly, logistic 

regression showed mixed performance, where the 

CR model scored higher than the 3D model but 

remained lower than the 2D model as demonstrated 

in Fig. 4 (d). Lastly, the final metrics, RMSE, 

showed substantial reduction in both hybrid models 

in all classifiers, except logistic regression. The 3D 

model scored the worst RMSE value as shown in 

Fig. 4 (e). Table 2 summarized the average boosting 

performance of the hybrid models to that of the 

traditional CR model. It is noticeable that the 3D 

model outperformed the 2D model in all cases, 

except the ROC Area.  

 

Table 2. Overall performance improvement over the 
traditional CR model. 

Metrics 2D_CR (%) 3D_CR (%) 

Accuracy 6.6 9.6 
Recall 6.6 9.5 
FPR 28.2 43 

ROC Area 6.5 5.9 
RMSE 12.2 19.9 

 

Discussion 

The experiments demonstrated promising results 

despite the small dataset and our exclusion criteria 

that eliminate patients with more than one cavity for 

the sake of simplicity. We have compared six 

classifiers on different version of data fusion and 

noticed that the best results were achieved mostly 

with the 3D model (3D_CR). Although fusing the 

2D marker with the traditional model already 

improved the prediction ability, we were able to 

enhance the performance further with the novel 3D 

marker introduced in this study. These observations 

confirmed the findings by Carneiro et. al[4]. 

Primitive classifiers such as Bayesian and Support 

Vector Machine generally demonstrated major 

improvement over the traditional model compared 

to more sophisticated classifier like the neural 

network, which seemed to be more stable (less 

significant jump) in terms of performance. We 

believe this is because of the limited testing subjects 

that we had. Deep learning classifier is known to be 

demanding in term of the size of the testing 

dataset[21]. It is noteworthy to mention that meta-

algorithm or ensemble classifiers - Adaboost and 

Bagging - showed considerable improvement as 

well. Although they are less significant than the 

primitive classifiers, they are better than the neural 

network. Meanwhile, , the mixed behaviors of 

logistic regression merit further investigation. At 

least two metrics - ROC Area and RMSE - recorded 

better output in the traditional CR model. We 

suspected the types of CR variables that mostly fall 

under nominal or integer as the culprit. This should 

be an interesting study for the future, provided we 

have more subjects and more radiomic markers 

invented.   

Conclusion 

In this paper, we showed proof of concept 

experiments that recommend radiomic markers as 

potential future prognostic indicator. The findings 

suggested that radiographically induced marker, if 

utilized properly, can enhance medical outcomes to 

some extent. While the experiments were 

demonstrated using Chest CT imaging, the 

proposed models could be easily extended to other 

imaging modalities and patients’ outcomes
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