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Abstract

To date, developing a reliable mortality prediction
model remains challenging. Although clinical
predictors like age, gender and laboratory results are
of considerable predictive value, the accuracy often
ranges only between 60-80%. In this study, we
proposed prediction models built on the basis of
clinical covariates with adjustment for additional
variables that was radiographically induced. The
proposed method exhibited a high degree of
prediction accuracy of between 83-92%, as well as
overall improvement of between 6-20% in all other
metrics, such as ROC Area, False Positive Rates,
Recall and Root Mean Square Error. We provide a
proof of concept that there is an added value for
incorporating the additional variables while
predicting 24-month mortality in pulmonary
carcinomas patients with cavitary lesions. It is hoped
that the findings will be clinically useful to the
medical community.

Introduction

The prediction of reduced-life expectancy or
mortality is central to personalized medicine. It is a
complex question since the cause of death varies.
The underlying status of body undeniably influence
mortality, but may not be listed as primary diagnosis.
Traditionally, future mortality predictions have been
studied through patients’ medical records, such as
laboratory test results, vital signs and demographic
information from Electronic Medical Records
(EMR) %1, Recently, radiographic induced markers,
which is commonly known as radiomic markers,
started to show potential in a prognostic model ™.
The latter claimed to be at an advantage due to its
non-invasive nature (no blood sample or biopsy
needed) while improving accuracy prediction of
mortality. In this article, we will investigate the
performance of prognostic models developed using
both markers, hereafter termed as CR for clinical
records and RM for radiomic markers, to prove or
nullify the finding in .. Our hypothesis is that RM

will boost a model performance to that of traditional
model that is based on CR data only.

The models were developed as a risk stratification of
24-month mortality for patients with cavitary lesion
in pulmonary carcinomas. A cavitated lesion, as
shown in Fig. 1, is a relatively common finding in
chest imaging and has been associated with a worse
prognosis ¢ hence the motivation behind this
work. Pathologically, it is defined as “a gas-filled
space within a zone of pulmonary consolidation,
mass, or nodule, produced by the expulsion of a
necrotic part of the lesion via the bronchial tree”.
Radiographically, it is referred to as “a lucent area
within the lung that may or may not contain a fluid-
level that is surrounded by a wall usually of varied
thickness”[”l. Although the mechanism of cavity
formation is often difficult to ascertain, cavitation in
lung cancer most often results from rapid tumor
growth that exceeds the blood supply with resultant
central necrosis. The goal of this study is to classify
patients into two groups: those who survived 24
months (alive) and those who are not (dead),
according to the given variables. This study could
serve as a decision support tool in therapeutic
strategy as well as identifying the increased risk of
short-term mortality.

Figure 1. Cavitary lesions in CT imaging

Materials and Methods
2.1 Clinical materials

Imaging and clinical data of patients diagnosed with
primary non-small cell lung cancer were obtained
from a public repository TCIA [, A total of 47
patients were curated from two cohorts: Radiomics
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and Radio-genomics [, Inclusion criteria
encompassed patients with measurable cavitary
lesion. Those with more than one cavity were
excluded. The acquisition protocol varied slightly
for different patients, depending on each patient’s
size. Exposure settings ranged from 120 to 140 kVp,
with a tube current of 40 to 449 mAs. Pixel spacing
and slice thickness were constant at 0.977 mm and
3.0 mm respectively throughout CMS and Siemens
vendor, while the rest varied from 1.0 to 5.0 mm and
0.6 to 1.5 mm respectively. The images were
reconstructed at 512 x 512 pixel matrices.

2.2 Framework description

[ Tumor delineation ]

4

Clinical Records

Depth [ )

\

1

1

1

1

1

Ry w 1
= = 1
1

1

1

1

1

N e e e e

[ Mortality prediction ]

Figure 2. Block diagram of the proposed predictive model

The first layer in Fig.2 depicts tumor delineation
stage as described in*®l. Target lesions were
volumetrically delineated using this automatic
approach, with an experienced radiologist
overseeing and validating the segmented boundaries.
The middle layer represents candidate variables
included in this study. (A) is a cross sectional view
of CT scans, where N is the total number of slices.,
and (B) is a single slice representation, in which Ry
and Ry denote the outer and inner radius respectively.
W indicates the width or wall thickness (WT) of a
cavitated tumor. Equation (1) demonstrates the
conventional technique of measuring W. In contrast,
Eq. (2) is a novel way of measuring W by taking

depth into consideration, hence termed as wall
deepness (WD). Note that WD is a 3-dimensional
RM compared to WT, which neglected the depth
information.

Table 1. Candidates’ variables under CR group are based on
demographics, staging and last day to follow-up data. 2D and
3D wall thickness measurements are included under RM group.

Variables Code Type Range
Clinical Records (CR)
Gender Sex Nominal {M, F}
Age Age Real [43,85]
Tumor Size Size Real [5.56,26.5]
Survival Days Real [14,2165]
Primary Tumor T Integer {1,2,34}
Lymph Node N Integer {0,1,2,3}
Metastasis M Integer {0,1}
Radiomic Marker (RM)

Wall Thickness 2D Real [5.11,41.57]
Wall Deepness 3D Real [3.97,37.17 ]
Wall Thickness (2D RM) = R, — R, (D)

N Rx,~Ry,
Wall Deepness (3D RM) = TLL 2

The candidates’ variables X={Xi, X,....Xn} were
designed as shown in Table 1. The final layer is
designated for the prediction of vital status (alive or
dead) based on the given variables. We designed
three test cases based on the input variables to
validate our hypothesis as follows:

e CRonly
e CR+WT (2D_CR)
e CR+WD (3D_CR)

Data partitioning was performed through a 10-fold
cross validation [*“l. Six off-the-shelf classifiers were
carefully selected to run those test cases. Each one
of them is detailed as below:

Bayesian classifier (Naive Bayes)

Supposed there are ‘m’ classes {C1, Cz...Cn} and let
X be the predictors {Xi, Xz...Xn}. The classification
is done to derive maximal p (Ci|X) as shown in Eq.
(3) [15]

P(GIX)==="5

@)
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Logistic regression

Equation (4) explains how a logistic regression
modeled dichotomous dependent variables to
describe the relationship with the explanatory
variables ¢

Nt = By + BuXyt ByXot o BuXy @

where beta parameters By, B;...B, are modeled by
means of maximum likelihood (MAL) and p is the
probability of presence of the characteristic of
interest.

Adaptive boosting (Adaboost)

Adaboost combines the output of weak learners into
a weighted sum that represents the final output of the
boosted classifier, hence also known as ensemble
classifier " as shown in Eq. (5)-(6).

H(x) = sign(Xi=; % he(x)) )

h;(x) is the output of weak learner t for input x, and
o is the weight assigned to learner t (0.5*In(1-
E)/E), where E is an error rate. Once the weak learner
trained, the weight of each training sample will be
update as in Eg. (6), where D; denotes weight at
previous level, Z; represents the sum of all weights
and (xi, i) is a training sample.

De(i)expe"%tYihe(xD)

Dpyr (D) = 7 ' (6)

Bagaing

Another type of ensemble classifier uses the
bootstrap aggregating method *®that will reduce the
variance of an estimation by averaging together
multiple estimates, or in this case the weak learners.
Eq. (7) describes this work.

H(x) = 30 Hy () @

where Hn (m=1...M) is a sequence of classifiers
created by modifying the training samples with a
replacement approach.

Support Vector Machines

A discriminative classifier that defines an optimal
separating hyperplane *°. Consider training sample
(X, Y }¥, : whereX; is the input pattern for i

instance and Y;is the corresponding target output
{-1, 1}. The hyperplane equation is given by

WIX+b=0 |, (8)

Where X denotes an input vector, W an adjustable
weight vector and b is a bias. Thus, the decision rule
is defined as

1, WX, +b >0

9
-1, WI'X;+b <0 ©

gix) = {
Neural Network
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Figure 3. The number of neurons are p=8, =5 and r=2 for input,
hidden, and output layer respectively

A neural network as demonstrated in Fig. 3 was
developed. Eight clinical attributes were accepted as
the inputs and the training of the network was done
with the back propagation algorithm. Eq. (10)
explains how neural networks process inputs
mathematically

0=fb+XL W (a):) , (10)

where O is the output, (a);are n inputs, W;are
summation of weights, b is the bias and f is the
activation function 2%,

Results
3.1 Performance Evaluation

Eighteen models were tested from the combination
of six classifiers and three test cases as previously
described in section 2.2. The metrics of interest are
listed in Eq. (11)-(15).

(TP+TN)

Accuracy ~ (TP+TN+FP+FN) (11)
_ TP

Recall = T (12)

FPR = (13)
(FP+TN)
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ROC Area = [* TPR(T)FPR'(T)dT 149 svse _ J " (actual—p]\:edicted)z (15)
where; e FN: Number of patients predicted alive that are

] . actually dead
e TP : Number of patients predicted dead that are

wallv dead e TPR: True positive rate or recall
Izi(;uaNy Ea £ vatient dicted dead that e FPR: False positive rate
[ ) . - . -
- fnumber ot patients predicted dead that are e T: The integral boundaries of trapezoidal area
actually alive ) . .
. . . e N: Total number of testing subjects
e TN : Number of patients predicted alive that are .
. e RMSE: Root mean squared error
actually alive
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Figure 4. Performance metrics reported by 18 models in terms of A) Accuracy, B) Recall, C) FPR, D) ROC Area and E) RMSE. Note
that CR, 2D_CR and 3D_CR represent the three test cases (CR only), (CR+WT) and (CR+WD) respectively.
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3.2 Mortality prediction

The performance is evaluated through different
version of data fusion: the non-hybrid model (CR
only) and two hybrid models (2D_CR and 3D_CR).
2D and 3D refer to the radiomic marker of wall
thickness, WT and WD, respectively. All five
metrics demonstrated improvements in both hybrid
models, with the 3D version to some extent and also
outperformed its 2D counterpart. Fig. 4 (a) showed
that both hybrid models scored higher Accuracy
compared to the CR model. The novel 3D marker
seemed to improve the prediction slightly higher
than the conventional one in all classifiers, except
for logistic regression. Similar boosting pattern was
recorded by Recall, where the sensitivity improved
across all the classifiers tested, with considerable
differences noticed particularly in the 3D model as
depicted by Fig. 4 (b). In contrast, FPR in Fig 4. (¢)
showed significant reduction in all classifiers tested
for both hybrid models compared to the CR model.
Area under the ROC curve or ROC Area reported
increasing values in four of the classifiers: Naive
Bayes, Support Vector Machines, Adaboost and
Bagging, while remaining basically unchanged in
the Neural Network. Interestingly, logistic
regression showed mixed performance, where the
CR model scored higher than the 3D model but
remained lower than the 2D model as demonstrated
in Fig. 4 (d). Lastly, the final metrics, RMSE,
showed substantial reduction in both hybrid models
in all classifiers, except logistic regression. The 3D
model scored the worst RMSE value as shown in
Fig. 4 (e). Table 2 summarized the average boosting
performance of the hybrid models to that of the
traditional CR model. It is noticeable that the 3D
model outperformed the 2D model in all cases,
except the ROC Area.

Table 2. Overall performance improvement over the
traditional CR model.

Metrics 2D_CR (%) 3D_CR (%)

Accuracy 6.6 9.6
Recall 6.6 9.5
FPR 28.2 43

ROC Area 6.5 5.9
RMSE 12.2 19.9

Discussion

The experiments demonstrated promising results
despite the small dataset and our exclusion criteria
that eliminate patients with more than one cavity for
the sake of simplicity. We have compared six
classifiers on different version of data fusion and
noticed that the best results were achieved mostly
with the 3D model (3D_CR). Although fusing the
2D marker with the traditional model already
improved the prediction ability, we were able to
enhance the performance further with the novel 3D
marker introduced in this study. These observations
confirmed the findings by Carneiro et. al'.
Primitive classifiers such as Bayesian and Support
Vector Machine generally demonstrated major
improvement over the traditional model compared
to more sophisticated classifier like the neural
network, which seemed to be more stable (less
significant jump) in terms of performance. We
believe this is because of the limited testing subjects
that we had. Deep learning classifier is known to be
demanding in term of the size of the testing
dataset’?l. It is noteworthy to mention that meta-
algorithm or ensemble classifiers - Adaboost and
Bagging - showed considerable improvement as
well. Although they are less significant than the
primitive classifiers, they are better than the neural
network. Meanwhile, , the mixed behaviors of
logistic regression merit further investigation. At
least two metrics - ROC Area and RMSE - recorded
better output in the traditional CR model. We
suspected the types of CR variables that mostly fall
under nominal or integer as the culprit. This should
be an interesting study for the future, provided we
have more subjects and more radiomic markers
invented.

Conclusion

In this paper, we showed proof of concept
experiments that recommend radiomic markers as
potential future prognostic indicator. The findings
suggested that radiographically induced marker, if
utilized properly, can enhance medical outcomes to
some extent. While the experiments were
demonstrated using Chest CT imaging, the
proposed models could be easily extended to other
imaging modalities and patients’ outcomes
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