

Diverse lineages of *Candida albicans* live on old oaks.

Douda Bensasson^{†‡}, Jo Dicks*, John M. Ludwig[‡], Christopher J. Bond*, Adam Elliston*,

Ian N. Roberts*, and Stephen A. James*

[†]Department of Plant Biology, University of Georgia, Athens GA 30602, USA.

[‡]Institute of Bioinformatics, University of Georgia, Athens GA 30602, USA.

*Quadram Institute Bioscience, Norwich, Norfolk, UK.

7th June, 2018

Author for correspondence:

Douda Bensasson

Department of Plant Biology

University of Georgia

Athens, GA 30602

USA

dbensasson@uga.edu

Abstract

¹ The human pathogen, *Candida albicans*, is considered an obligate commensal of animals,
² yet it is occasionally isolated from trees, shrubs and grass. We generated deep genome
³ sequence data for three strains of *C. albicans* that we isolated from oak trees in an ancient
⁴ wood-pasture, and compared these to the genomes of the type strain and 21 other clinical
⁵ strains. *C. albicans* strains from oak are similar to clinical *C. albicans* in that they are
⁶ predominantly diploid and can become naturally homozygous at the mating locus through
⁷ whole-chromosome loss of heterozygosity (LOH). LOH regions in all genomes arose re-
⁸ cently suggesting that LOH mutations usually occur transiently in *C. albicans* populations.
⁹ Oak strains differed from clinical strains in showing less LOH, and higher levels of het-
¹⁰ erozygosity genome-wide. Using phylogenomic analyses, *in silico* chromosome painting,
¹¹ and comparisons with thousands more *C. albicans* strains at seven loci, we show that each
¹² oak strain is more closely related to strains from humans and other animals than to strains
¹³ from other oaks. Therefore, the isolation of *C. albicans* from oak is not easily explained as
¹⁴ contamination from a single animal source. The high heterozygosity of oak strains could
¹⁵ arise as a result of reduced mitotic recombination in asexual lineages, recent parasexual
¹⁶ reproduction or because of natural selection. Regardless of mechanism, the diversity of *C.*
¹⁷ *albicans* on oaks implies that they have lived in this environment long enough for genetic
¹⁸ differences from clinical strains to arise.

¹⁹ **Word count:** 239

²⁰ **Keywords:** yeast, environmental reservoir, clonality, genomics

21 Introduction

22 *Candida albicans* is the most common yeast pathogen of humans (Barnett, 2008). Yet, it
23 is also a commensal in most humans and inhabits a broad range of warm-blooded animals
24 (Barnett, 2008). Unlike other *Candida* species, *C. albicans* is only rarely isolated from
25 plants, soil or other environmental substrates (Barnett, 2008; Lachance *et al.*, 2011) and
26 is generally considered an “obligate commensal” (Hall and Noverr, 2017). There were a
27 couple of early discoveries of *C. albicans* on gorse flowers and myrtle leaves on a hillside
28 grazed by sheep and goats in Portugal (van Uden *et al.*, 1956), and on grass in a sheep
29 pasture in New Zealand (Di Menna, 1958). More recently it was isolated from a beetle
30 and an African tulip tree in the Cook Islands (Lachance *et al.*, 2011), and we isolated *C.*
31 *albicans* from oak trees in an ancient wood-pasture in the United Kingdom (Robinson *et al.*,
32 2016).

33 Many species of yeast live on trees, including other *Candida* species (Maganti *et al.*, 2011;
34 Charron *et al.*, 2014; Sylvester *et al.*, 2015) and woodlands represent the ancestral habitat
35 for *Saccharomyces* species (Eberlein *et al.*, 2015). Forests may also be an ancestral habitat
36 and reservoir for fungal pathogens that infect humans such as *Cryptococcus neoformans*
37 and *Cryptococcus gattii* (May *et al.*, 2016; Gerstein and Nielsen, 2017). The isolation of
38 *C. albicans* from plants (van Uden *et al.*, 1956; Di Menna, 1958; Lachance *et al.*, 2011;
39 Robinson *et al.*, 2016) raises the question of whether *C. albicans* is truly an obligate com-
40 mensal of warm-blooded animals. Lab experiments show that *C. albicans* can grow and
41 mate at room temperature (Magee and Magee, 2000; Hull *et al.*, 2000) and it retains an in-
42 tact aquaporin gene whose only known phenotype is freeze tolerance (Tanghe *et al.*, 2005).
43 It is therefore possible that *C. albicans* populations could survive away from warm-blooded
44 animals.

45 Here we generated genome sequences for three strains of *C. albicans* from oak bark in the

46 New Forest in the U.K. (Robinson *et al.*, 2016) and compared them to the genomes of a
47 well-studied panel of clinical strains (Wu *et al.*, 2007; Sahni *et al.*, 2009; Muzzey *et al.*,
48 2013; Hirakawa *et al.*, 2015; Wang *et al.*, 2018). The three oak strains are genetically di-
49 verged from one another, and are more similar to clinical strains than they are to each other.
50 However, genomes from oaks do differ from those of clinical strains in that they show
51 higher levels of genome-wide heterozygosity. The genetic diversity of *C. albicans* in this
52 oak woodland cannot easily be explained as contamination from a human source, and sug-
53 gests that *C. albicans* can live in the oak environment for extended periods of time.

54 Results

55 Phenotypically diverse strains of *C. albicans* from old oaks.

56 We recently discovered *C. albicans* living on the bark of oak trees in a wood-pasture in the
57 New Forest, and the three strains we isolated are available from the U.K. National Collection
58 of Yeast Cultures (NCYC 4144, NCYC 4145, NCYC 4146; Table 1, Robinson *et al.*,
59 2016). For several reasons, the data from Robinson *et al.* (2016) suggest that these three
60 oak strains represent independent isolates and not contaminants from a single human or
61 animal source. Bark samples were collected into tubes using sterile technique from heights
62 of at least 1.5 meters above the ground, thus reducing the chances of direct contamina-
63 tion from animal manure. Negative controls generated in the field at the time of collection
64 gave rise to no colonies after enrichment culturing, and subsequent DNA extraction and
65 PCR amplification from these control plates were all also blank (Robinson *et al.*, 2016).
66 The three trees harboring *C. albicans* were between 73 and 150 meters apart, therefore any
67 migration from animal manure or from humans to tree bark would have to occur in three
68 separate events. Finally, the trees harboring *C. albicans* had larger trunk girths and there-
69 fore were older than most of the 112 uncoppiced trees sampled across Europe (data from
70 Robinson *et al.* 2016, Wilcoxon test, $P = 0.009$) or in the New Forest (Table 1; Wilcoxon
71 test, $P = 0.04$). There is no reason to expect a greater level of contamination from humans
72 on old trees unless *C. albicans* are able to live on oaks for many years.

73 *C. albicans* that were isolated from plants in the past were pathogenic in mammals, but did
74 not differ from each other phenotypically (van Uden *et al.*, 1956; Di Menna, 1958). In order
75 to test whether this is also true for the *C. albicans* strains isolated from oak, we tested the
76 growth of oak strains under the standard conditions described in (Kurtzman *et al.*, 2011).
77 All three oak strains were able to grow at elevated temperatures (37-42°C), suggesting that

78 they would be able to survive in a mammalian host. The oak strains also produced well-
79 formed, irregularly branched pseudohyphae when grown on either corn meal agar or potato
80 dextrose agar, and grew in 60% glucose, showing that they were highly osmotolerant. The
81 phenotypes of the three oak strains differed from each other in that NCYC 4144 and NCYC
82 4146 displayed salt tolerance by growing in the presence of 10% NaCl, but NCYC 4145
83 did not. The results of further growth tests on agar, in broth and under other conditions
84 were as previously described for *C. albicans* (Lachance *et al.*, 2011) with the following
85 exceptions: (i) one oak strain (NCYC 4144) formed pseudohyphae in YM broth and did
86 not grow on soluble starch; (ii) another oak strain (NCYC 4145) was unable to grow on
87 galactose.

88 In addition, the three *C. albicans* strains from oak must be able to survive the cool tem-
89 peratures and other characteristics of the oak environment because they lived there until
90 they were isolated from bark. They also survived enrichment, storage and culturing con-
91 ditions, which include growth at room temperature, 30°C, in a liquid medium containing
92 chloramphenicol (1 mg/l) and 7.6% ethanol, on selective plates with a sole carbon source of
93 methyl- α -D-glucopyranoside (Sniegowski *et al.*, 2002), storage at 4°C and as 15% glycerol
94 stocks at -80°C (Robinson *et al.*, 2016).

95 ***C. albicans* from oak are mostly diploid.**

96 Clinical strains of *C. albicans* are predominantly diploid (Hickman *et al.*, 2013; Hirakawa
97 *et al.*, 2015), yet aneuploidy is often observed and may be an important mechanism for
98 adaptation (Li *et al.*, 2015; Todd *et al.*, 2017). We compared oak and clinical strain ploidy
99 by comparing the short-read genome sequence data generated here to published data for
100 laboratory and clinical strains. More specifically, we applied a standard base calling ap-
101 proach for estimating ploidy from sequences to data for oak strains, the laboratory refer-

ence strain (SC5314), a related mutant (1AA) (Muzzey *et al.*, 2013), and 20 clinical strains (Hirakawa *et al.*, 2015). In addition, we generated short-read genome data for the clinical type strain of *C. albicans* (NCYC 597) for a direct comparison between oak strains and a clinical strain from the same sequencing batch.

The base calling approach we used (the B allele approach; Teo *et al.*, 2012; Yoshida *et al.*, 2013; Zhu *et al.*, 2016) estimates the minimum ploidy of a yeast strain by examining the base calls of short read genome data mapped to a reference genome. In a haploid genome or a homozygous diploid, base calls at the single nucleotide polymorphic (SNP) sites relative to the reference genome will all differ from the reference genome, so the proportion of base calls that differ from the reference will be approximately equal to 1 (e.g. chromosome 5 of the oak strain NCYC4144 in Figure 1). In a diploid, the proportion of base calls differing from the reference will be approximately equal to 1 at homozygous SNP sites or 0.5 at heterozygous SNP sites (e.g. the oak strain NCYC 4146 in Figure 1). In triploids, the proportion of calls differing from the reference will be 0.66 and 0.33 at heterozygous sites (e.g. the type strain in Figure 1) and so on. It is also possible to detect aneuploidy by comparing read depth between chromosomes. However, we use a base calling approach because read depth approaches are sensitive to biases when genomes are fragmented enzymatically as they were in this study (see Methods; Marine *et al.*, 2011; Quail *et al.*, 2012; Teo *et al.*, 2012).

By applying the base calling approach to the laboratory and clinical strains analyzed by Muzzey *et al.* (2013) and Hirakawa *et al.* (2015), we confirm their conclusion that these strains are all predominantly diploid (Figure S1). However, this approach does not allow determination of ploidy state for whole chromosomes that have recently become homozygous. We were able to detect six out of the seven cases of trisomy identified by Hirakawa *et al.* (2015), but missed tetrasomy for chromosome 5 in strain P75010 which was was fully homozygous (File S1). Therefore we could miss aneuploidy for homozygous chro-

¹²⁸ mosomes, but there are few cases of this for the oak strains (only chromosomes 5 and 7 of
¹²⁹ strain NCYC 4144 from oak, Figure 1).

¹³⁰ In contrast to the clinical strains studied by Hirakawa *et al.* (2015), the type strain of *C.*
¹³¹ *albicans* is predominantly triploid (Figure 1). Therefore, we could have detected ploidy
¹³² variation in the oak strains had it been present. Indeed, our data suggest that the type
¹³³ strain has probably undergone large scale chromosomal rearrangements because most of
¹³⁴ its chromosomes show a mixture of ploidy states along their sequence (chromosomes 1, 4,
¹³⁵ 5, 6 and R, Figure 1).

¹³⁶ Our analysis of base calls in oak strains suggests that all three strains are predominantly
¹³⁷ diploid (Figure 1). NCYC 4146 appears to be euploid, but NCYC 4144 and NCYC 4145
¹³⁸ show evidence of trisomy on chromosome R. The type strain and one clinical strain (P60002)
¹³⁹ also have three copies of the right arm of chromosome R (Hirakawa *et al.*, 2015; Figures 1
¹⁴⁰ and S1). The right arm of chromosome R may therefore exist in three copies with appre-
¹⁴¹ ciable frequency in natural strains of *C. albicans*. Although trisomy of chromosome R can
¹⁴² result in slow growth in the laboratory (Hickman *et al.*, 2015), it has been associated with
¹⁴³ resistance to triazoles (Li *et al.*, 2015).

¹⁴⁴ **Recent loss of heterozygosity in oak and clinical strains.**

¹⁴⁵ The base calling approach we used to determine overall ploidy also shows that *C. albi-*
¹⁴⁶ *cans* are mostly highly heterozygous diploids with interspersed regions that have recently
¹⁴⁷ undergone loss of heterozygosity (LOH; Figures 1 and S1). LOH events often occur in
¹⁴⁸ *C. albicans* genomes by mitotic recombination or loss of whole chromosomes, they affect
¹⁴⁹ mating type and could have important effects on other phenotypes (Bougnoux *et al.*, 2006,
¹⁵⁰ 2008; Forche *et al.*, 2011; Hirakawa *et al.*, 2015; Ford *et al.*, 2015). We therefore tested
¹⁵¹ whether oak strains are similar to clinical strains in showing evidence of LOH in their

152 genomes.

153 Using our methods, we detected multiple LOH events in every oak strain in addition to
154 the previously known LOH events for clinical strains reported by (Hirakawa *et al.*, 2015)
155 (Figure S1), and to the artificially induced whole-chromosome LOH of chromosome 1 for
156 the mutant strain 1AA (Figure 1). Read depth in regions with low heterozygosity (Figures
157 1 and S1) is similar to that in the rest of the genome (Figure S2), therefore these regions
158 probably do not represent deletions or the loss of a chromosome. Consistent with the
159 proposal that aneuploidy persists for less time in *C. albicans* populations than LOH regions
160 (Ford *et al.*, 2015), we observe a greater number of LOH regions than aneuploidy events
161 for every clinical or oak strain (Figures 1 and S1).

162 For both oak and clinical strains, the length of LOH regions vary from short chromosomal
163 segments to whole chromosomes (Figures 1 and S1). Indeed, one oak strain (NCYC4144)
164 is homozygous across the whole of chromosome 5 on which the MTL locus is situated.
165 Analysis of whole-genome data, and confirmation by independent PCR and sequencing
166 shows that this strain is homozygous for the *a* allele at the *C. albicans* mating locus (*a/a*)
167 and therefore could potentially mate with strains that are homozygous for the opposite
168 mating type (α/α). Whole-chromosome homozygosis is not an unusual mechanism by
169 which natural strains of *C. albicans* become homozygous at the MTL locus (Hirakawa
170 *et al.*, 2015). Two out of the 10 naturally occurring MTL-homozygous clinical strains
171 included in this study are also homozygous across the whole of chromosome 5 (Figure S1;
172 Sahni *et al.*, 2009; Hirakawa *et al.*, 2015).

173 After an LOH event occurs, the resulting homozygous region gradually accumulates new
174 mutations, therefore levels of heterozygosity within an LOH region are an indication of the
175 age of an LOH event. If LOH is an ongoing mechanism in *C. albicans* genome evolution
176 (Bougnoux *et al.*, 2008), then we would expect *C. albicans* genomes to vary continuously
177 in their levels of heterozygosity. However, for both oak and clinical strains, most of the

178 genome shows high heterozygosity (over 0.4% of nucleotide sites are heterozygous), or low
179 heterozygosity (below 0.1%), but relatively few regions have intermediate heterozygosity
180 levels (Figures 2 and S3). This bimodal distribution (Figures 2 and S3) therefore implies
181 that most LOH regions in *C. albicans* genomes arose recently. Even if LOH is an important
182 mechanism for rapid adaptation to environmental stress (Forche *et al.*, 2011; Gerstein *et al.*,
183 2014), its recent origins in all the strains studied here suggest that most LOH regions only
184 exist transiently in populations.

185 **High heterozygosity on oaks.**

186 High levels of genome-wide heterozygosity can be an indicator of prolonged asexuality
187 (Birky, 1996; Halkett *et al.*, 2005). Therefore clonal divergence could explain why levels
188 of heterozygosity are high in clinical *C. albicans* strains (Bougnoux *et al.*, 2008). This is
189 because after loss of sex and in the absence of mitotic recombination, the haplotypes within
190 a lineage will diverge as they accumulate mutations. In contrast, in sexual species, meiotic
191 recombination can lead to increased similarity between alleles (Birky, 1996; Halkett *et al.*,
192 2005). Because differences in levels of heterozygosity could reveal differences in the fre-
193 quency of asexual or parasexual life cycles, we compared levels of heterozygosity between
194 oak and clinical strains. For every *C. albicans* strain, we obtained high quality sequence for
195 approximately 14 million sites in the genome and estimated the proportion of these sites
196 that were heterozygous (Tables 2 and S1).

197 Levels of heterozygosity are higher in the 3 oak strains (0.61-0.77%) than they are for
198 clinical strains (0.35-0.60%, Table 2; Wilcoxon test, $P = 0.0009$). In contrast, the clinical
199 strain of *C. albicans* (NCYC 597) that we studied in the same sequencing batch as the oak
200 strains showed a level of heterozygosity (0.48%) that was similar to other clinical strains,
201 suggesting that high heterozygosity is not an artifact of the sequencing methods used in

202 this study (Table 2). Furthermore, we excluded all sites with low quality sequence (with
203 an expected error rate over 1 in 10,000). We generated more high quality sequence for
204 all three oak strains (14,072,669 - 14,235,230 bp) compared to this control clinical strain
205 (13,948,647 bp), and the oak strains did not differ from clinical strains in the amount of
206 high quality sequence analyzed (14,184,615 - 14,259,261 bp; Wilcoxon test, $P = 0.1$; Table
207 S1).

208 The high heterozygosity of oak strains compared with clinical strains could be caused by a
209 difference in the amount of the genome that shows recent LOH. Even though the oak strain
210 with the *a/a* mating type (NCYC4144) has undergone recent LOH for multiple chromo-
211 somes, oak strain genomes show less LOH than those of clinical strains (Wilcoxon test,
212 $P = 0.03$; Table 2, Figures 1 and S1).

213 Levels of heterozygosity could differ in centromeres which evolve faster than other ge-
214 nomic regions in *C. albicans* (Padmanabhan *et al.*, 2008) and in other yeast species (Ben-
215 sasson *et al.*, 2008). The number of heterozygous sites could also be overestimated in
216 repetitive regions as a result of the mismapping of short reads to the reference genome. We
217 therefore estimated levels of heterozygosity after filtering out centromeres, known repeats
218 (using the reference genome annotation), and sites with over double the mean genome-wide
219 read depth that could represent unannotated repeats. Even after excluding LOH regions,
220 centromeres and repeats, levels of heterozygosity are higher for oak strains (mean 0.70%)
221 than they are for clinical strains (mean 0.60%; Wilcoxon test, $P = 0.003$, Table 2). This
222 difference in heterozygosity results from heterozygosity at thousands of sites across the
223 genome (Table S1). For example, the strain NCYC 4145 is heterozygous at 0.78% of the
224 11.4 million sites we studied after filtering, and therefore has over 20,000 more heterozy-
225 gous sites than expected for a clinical strain, and over 12,000 more heterozygous sites than
226 expected for the most heterozygous clinical strains (0.67% for GC75 and P75010). Once
227 more, this is not explained by a difference in sequence quality, because there is no cor-

228 relation between the total length of high quality sequence generated and levels of filtered
229 heterozygosity (Pearson's correlation; $\rho = -0.04$; $P = 0.8$).

230 After filtering LOH regions, centromeres and repeats, heterozygosity was estimated from a
231 larger component of the genome for oak (9.7-11.4 Mbp) compared to clinical strains (6.8-
232 10.5 Mbp). Could the longer component analyzed for oak strains include faster evolving
233 regions that explain the higher heterozygosity seen for oak strains? To address this question,
234 we identified 948,860 nucleotide sites that had not undergone LOH in any strain except
235 1AA, had high quality sequence for all 25 study strains, did not occur in centromeres and
236 were not repetitive. We excluded the laboratory strain 1AA from all summary analyses of
237 heterozygosity because this is an SC5314 derivative that had undergone artificially induced
238 LOH. The resultant 948,860 nucleotide sites that were common to all 25 study strains were
239 mostly on chromosomes 1, 2, 4 and 6. At these sites, oak strains were more heterozygous
240 (mean 0.72%) than clinical strains (mean 0.61%; Wilcoxon test, $P = 0.01$; Table 2). This
241 suggests that oak strains (especially NCYC 4144 and NCYC 4145; Table 2) show higher
242 levels of heterozygosity than clinical strains throughout their genomes.

243 An unusually large proportion of the clinical strains are homozygous at the MTL locus (12
244 out of 22 strains). Could the low level of genome-wide heterozygosity in clinical strains
245 result because this is a biased, unusually homozygous sample? After excluding LOH re-
246 gions, centromeres and repeats from our analysis, we were unable to detect a difference in
247 levels of genome-wide heterozygosity between MTL heterozygous clinical strains (mean
248 0.60%) and MTL homozygous clinical strains (mean 0.60%; Wilcoxon test, $P = 0.8$). Fur-
249 thermore, the two *a/α* oak strains (NCYC 4145 and NCYC 4146) show higher levels of
250 genome-wide heterozygosity (0.78% and 0.66%) than the ten *a/α* clinical strains (0.52%-
251 0.65%; Wilcoxon test, $P = 0.03$; Table 2). Therefore biased sampling of clinical strains for
252 mating locus genotype does not explain the differences we see between clinical strains and
253 oak strains.

254 In order to test whether the clinical genomes sampled here represent a biased sample of
255 strains with respect to heterozygosity, we also compared levels of heterozygosity for the 22
256 clinical strains in our genome-wide sample to estimates for 1,391 clinical strains studied
257 by Odds *et al.* (2007). The multilocus sequence typing (MLST) data of Odds *et al.* (2007)
258 includes diploid sequence for a large global sample of *C. albicans* strains. After filtering
259 out repeats, centromeres and LOH regions, our genome-wide estimates of heterozygosity
260 (mean 0.60%) are similar to the heterozygosity estimates for these same clinical strains at
261 MLST loci (mean 0.62%), and the same as the average level of heterozygosity at MLST
262 loci estimated from 1,391 more clinical strains (mean 0.60%). Therefore the high levels of
263 heterozygosity reported here are unlikely to be the result of the biased sampling of clinical
264 strains for genome analysis.

265 **Oak strains are phylogenetically diverse.**

266 Most clinical strains of *C. albicans* belong to a small number of genetically diverged clades
267 (Odds *et al.*, 2007). Strains belonging to the four most common clades (MLST clades 1-4
268 in Table 2 and Figure 3a) have a global distribution and live alongside each other in the
269 same human populations (Bougnoux *et al.*, 2006; Odds *et al.*, 2007). Phylogenetic com-
270 parisons between oak and clinical strains can be used to determine whether oak strains form
271 distinct populations that differ genetically from clinical strains; as they do in *S. cerevisiae*
272 (Almeida *et al.*, 2015; Peter *et al.*, 2018). We therefore compared oak strains to clinical
273 strains from seven of the most abundant *C. albicans* clades by whole-genome phylogenetic
274 analysis.

275 As expected under clonality (Birky, 1996; Halkett *et al.*, 2005), phylogenies are congru-
276 ent for most clinical strains whether we consider whole genomes, individual chromosomes
277 or other genomic regions (Figure 3, S4, S5, and S6). We also painted the chromosomes

278 of each clinical strain *in silico* according to the clade assignment of similar strains (Fig-
279 ures 3b and S7). This fine-scale analysis shows that clade assignments for clinical strains
280 are consistent across almost all parts of the genomes we have studied (Figure S7). Our
281 genome-wide analyses therefore support the conclusion that reproduction in clinical strains
282 is predominantly asexual, or at least that there has been little recent gene flow between *C.*
283 *albicans* clades in the case of the 18 clinical strains that Hirakawa *et al.* (2015) assigned to
284 well-sampled clades.

285 All three oak strains are phylogenetically distinct from each other and more similar to
286 clinical strains than they are to each other (Figure 3). Phylogenetic analyses of whole-
287 genome data, separate chromosomes and subregions (Figures 3, S4, S5 and S6) all show
288 that one strain from oak (NCYC 4146) belongs to MLST clade 4. This strain is also most
289 similar to clade 4 strains throughout its genome (Figure 3b). In contrast, the other two
290 strains from oak (NCYC4144 and NCYC4145) are diverged from each other and cannot be
291 unambiguously assigned to any of the seven common *C. albicans* clades (Figures 3).

292 Moreover, these two oak strains (NCYC4144 and NCYC4145) showed different phyloge-
293 netic relationships with clinical strains in different parts of the genome (Figures 3b, S5,
294 and S6). Analysis of one oak strain (NCYC4145) in short (100 kb) blocks across the whole
295 genome suggests that it is diverged from the seven sampled clades (Figure 3b). Compared
296 with other oak strains (Figure 3b) or with clinical strains from known clades (Figure S7a-
297 d), NCYC4145 had more regions that were diverged from other sampled strains. In this,
298 NCYC4145 is similar to clinical strains that are from clades only represented by a single
299 strain (Figure S7e).

300 In contrast, the oak strain with the *a/a* mating type (NCYC4144) is mostly similar to clade
301 3, but shows some evidence of recent genetic admixture from other unidentified clades
302 (Figure 3b). If a strain shows admixture between multiple clades, then heterozygosity at
303 sites differing between the parental haplotypes will prevent recognition of their phyloge-

304 netic relationships. We therefore ran phylogenetic analyses in genomic regions where this
305 strain is homozygous: chromosome 5, chromosome 7 and the right arm of chromosome R
306 (Figure 1). These analyses suggest that NCYC4144 is more similar to other clades than it
307 is to clade 3 strains in some homozygous parts of the genome (see example in Figure S6).
308 However, NCYC4144 is also somewhat diverged from clade 3 and other known clades in all
309 regions investigated (Figures 3b and S6) so it may represent a distinct clade with ancestral
310 similarity to the other clades in this study. Without more extensive sampling of *C. albicans*
311 strains and phased haplotype sequences, we cannot determine with certainty whether there
312 has been genetic exchange between clades in the recent ancestry of this strain.

313 Discussion

314 High diversity of *C. albicans* from oaks.

315 Phylogenetic analyses and fine-scale genome-wide DNA sequence comparisons show that
316 all three strains from oaks from a single woodland site belong to distinct clades and there-
317 fore differ genetically as much as possible (Figures 3, S5, and S7). Consistent with genome-
318 wide analyses, comparison of the MLST sequences of oak strains to over 3,000 sequences
319 available for clinical strains (<https://pubmlst.org/calbicans/>) shows that each oak strain is
320 similar at MLST loci to clinical strains from a different continent (U.K., U.S.A, China and
321 South Korea; Supplemental Results). In this, oak strains are similar to *C. albicans* strains
322 from wild and domestic animals. Three independent studies of *C. albicans* from Germany
323 (Edelmann *et al.*, 2005), northwestern Europe (Jacobsen *et al.*, 2008) and central Illinois
324 (Wrobel *et al.*, 2008) found that many *C. albicans* strains from animals were no more simi-
325 lar to each other than they were to clinical strains from different continents, and concluded
326 that there could be migration of *C. albicans* strains between humans and other animals.
327 Phylogenetic analysis at MLST loci shows that the oak strains are no more similar to ani-
328 mal strains than they are to strains from humans (Supplemental Results and Figure S4; data
329 from Wrobel *et al.*, 2008). Our findings therefore suggest that migration between humans
330 and woodland environments is also possible.

331 Consistent with this conclusion, the strains isolated from oak in this study were able to grow
332 at high temperatures (37-42°C), suggesting that they could live as mammalian commensals.
333 Furthermore, past studies of *C. albicans* from grass and shrubs showed that environmental
334 isolates were able to grow in rabbits and kill them within days (van Uden *et al.*, 1956;
335 Di Menna, 1958). We do however observe more phenotypic differences among oak strains
336 than in these early studies (van Uden *et al.*, 1956; Di Menna, 1958). More specifically, the

337 three oak strains differ in their ability to assimilate galactose or soluble starch, to survive
338 in 10% NaCl, or to form pseudohyphae in YM broth.

339 As well as divergence between strains, *C. albicans* strains from oak show high within-strain
340 heterozygosity even after excluding LOH regions (mean 0.7%) compared to clinical strains
341 (mean 0.6%, Table 2; Wilcoxon test, $P = 0.003$). In sexually reproducing *Saccharomyces*
342 yeast, levels of heterozygosity also appear to differ among habitats, but in *Saccharomyces*
343 *cerevisiae*, most oak strains are fully homozygous, and most non-woodland strains show
344 average heterozygosity levels around 0.1%. Even the average heterozygosity for *S. cere-*
345 *visiae* strains that were hybrids between diverged populations was lower than we see for *C.*
346 *albicans* (0.4%, Table 2; Peter *et al.*, 2018). *Saccharomyces paradoxus* is similar to *S. cere-*
347 *visiae* and also unlike *C. albicans* in that *S. paradoxus* oak strains are almost completely
348 homozygous (Johnson *et al.*, 2004).

349 The higher heterozygosity of *C. albicans* oak strains compared to clinical *C. albicans* could
350 arise (i) through recent mating between diverged lineages, (ii) if they represent asexual lin-
351 eages that have experienced less long-term mitotic recombination than those of the average
352 clinical strain, or (iii) because of increased natural selection for heterozygosity in the oak
353 environment.

354 One of the three oak strains (NCYC 4146) belongs to clade 4 and shows no evidence
355 for mating with another diverged clade (Figure 3). However levels of genome-wide het-
356 erozygosity for this strain were similar to those of clinical strains (Table 2) and we cannot
357 exclude genetic exchange for the two most heterozygous strains (NCYC 4144 and NCYC
358 4145; Figures 3, S5 and S6). Strains from multiple clades were living within 150 meters of
359 each other and one strain had homozygosed at the mating locus, therefore encounters be-
360 tween mating-capable strains from different clades are possible at cool temperatures where
361 a parasexual cycle is most likely.

362 Regardless of whether higher levels of oak heterozygosity arise through parasexual or
363 asexual cycles, there could be natural selection against deleterious alleles in homozygotes
364 (Bougnoux *et al.*, 2008), and this selection pressure could be stronger in an open or stressful
365 environment. The clinical strains studied here show increasing growth rates and laboratory
366 fitness with increasing genome-wide heterozygosity but no correlated effects on virulence
367 (Hirakawa *et al.*, 2015). Homozygous diploid strains grow poorly compared to heterozy-
368 gous strains (Hickman *et al.*, 2013) and loss of heterozygosity across even small genomic
369 regions can lead to negative fitness consequences under stress (Ciudad *et al.*, 2016). Con-
370 sistent with a potential effect of increased natural selection against homozygosity, a lower
371 proportion of *C. albicans* genomes from oak recently underwent LOH compared with clin-
372 ical strains, and levels of heterozygosity were higher genome-wide in oak strains (Table
373 2).

374 ***C. albicans* lives on old oaks in an ancient wood-pasture.**

375 *C. albicans* from oak differ from clinical strains in that they are unusually heterozygous.
376 Oak strains are highly heterozygous both because they have less DNA that recently ho-
377 mozygosed and because of showing heterozygosity at thousands of sites more than ex-
378 pected for clinical strains (Tables 2 and S1). Furthermore, the three oak strains were ge-
379 netically diverged from each other (Figure 3) which implies that they do not represent
380 laboratory contaminants from a human. Humans only rarely carry more than one distinct
381 strain of *C. albicans*, and strains from multiple clades are especially rare (Bougnoux *et al.*,
382 2006). In addition, these strains were isolated from three different unusually old trees and
383 in all cases from bark over 1.5 meters above the ground and alongside negative controls
384 that were clear (Robinson *et al.*, 2016). The genetic divergence between oak strains also
385 implies that these oak trees were not colonised as a result of contamination from a single
386 animal in the woods. It is rare for domestic or wild animals to carry multiple strains of

387 *C. albicans* and it is especially rare for these to belong to different clades (Wrobel *et al.*,
388 2008). These results suggest that *C. albicans* is able to live on oaks for appreciable lengths
389 of time and therefore that it is not an obligate commensal of warm-blooded animals.

390 If *C. albicans* can stably inhabit a woodland environment, then why have they only been
391 isolated from trees on a couple of occasions (Lachance *et al.*, 2011; Robinson *et al.*, 2016)?
392 For example, three recent surveys of trees for yeast did not discover *C. albicans* but report
393 the isolation of other *Candida* species and therefore could have detected *C. albicans* if
394 it were present (Maganti *et al.*, 2011; Charron *et al.*, 2014; Sylvester *et al.*, 2015). All
395 three of these surveys focused on northern North America, and it may be too cold for *C.*
396 *albicans* in this region. The trees harboring *C. albicans* in the Robinson *et al.* (2016) study
397 had larger trunk girths and were probably older than most other trees sampled in the New
398 Forest (Table 1) and the rest of Europe. If past surveys for woodland yeast did not target
399 old trees, it is therefore possible that *C. albicans* could have been missed.

400 The comparison between other human pathogenic fungi and their wild relatives on trees is
401 proving to be important for an understanding of their pathogenicity (Gerstein and Nielsen,
402 2017). Furthermore, study of the natural enemies of *Cryptococcus gatii* from *C. gatii*-
403 positive plant and soil samples could lead to the development of new antifungals (Mayer
404 and Kronstad, 2017). If *C. albicans* is not an obligate commensal of warm-blooded ani-
405 mals, then comparisons between clinical and free-living strains of *C. albicans* will also be
406 important for understanding its commensalism and pathogenicity. A major limitation in
407 this endeavor is that very few *C. albicans* strains are available for study from non-animal
408 sources. The few isolates that have been obtained were from a broad range of sources
409 (van Uden *et al.*, 1956; Di Menna, 1958; Lachance *et al.*, 2011; Robinson *et al.*, 2016),
410 and general environmental sampling for fungal pathogens can be challenging (Gerstein and
411 Nielsen, 2017). In the future, the targeting of old trees could lead to improved environmen-
412 tal sampling success.

413 Materials and Methods

414 Yeast strains

415 We generated short-read genome data for the type strain of *C. albicans* (NCYC 597) and
416 three strains of *C. albicans* from the bark of oak trees in the New Forest in the U.K (Robin-
417 son *et al.*, 2016, Table 1). Robinson *et al.* (2016) describe the methods used to isolate
418 the oak strains. Briefly, every tree that was sampled was photographed, its trunk girth
419 was measured in order to estimate tree age, and its longitude and latitude were recorded
420 (Robinson *et al.*, 2016). Negative controls were generated at every field site, and these
421 were subjected to the same procedures and handling as other samples except that no bark
422 was inserted into negative controls after opening tubes in the field. Two of the three trees
423 with *C. albicans* (FRI5 and FRI10) were directly associated with negative controls and
424 there were negative controls at six of the thirty trees sampled in the New Forest (FRI5,
425 FRI10, FRI15, OCK5, OCK10, OCK15). In total, 6 out of the 125 sample tubes col-
426 lected in the New Forest (Robinson *et al.*, 2016) were negative controls. We used the
427 reference genome sequence for *C. albicans* strain SC5314_A22 (haplotype A, version 22;
428 GCF_000182965.3) from the NCBI reference sequence database. For comparisons of oak
429 strain to clinical strain genomes, we used short-read genome data from the European Nu-
430 cleotide Archive for 20 clinical strains (PRJNA193498; Hirakawa *et al.*, 2015), for wild-
431 type SC5314 (SRR850113) and the related 1AA mutant (strain AF9318-1, SRR850115;
432 Legrand *et al.*, 2008; Muzzey *et al.*, 2013). Twelve of the 20 clinical strains in the dataset
433 from Hirakawa *et al.* (2015) were homozygous at the MTL locus, and two of these (P78042
434 and P75010) were homozygosed at this locus in the lab (Sahni *et al.*, 2009).

435 **Phenotypic profiling of the type strain and strains from oak**

436 The type strain of *C. albicans* (NCYC 597) and the three oak strain strains were char-
437 acterised biochemically, morphologically and physiologically according to the standard
438 methods described by (Kurtzman *et al.*, 2011). The temperature for growth was deter-
439 mined by cultivation on YM (yeast extract-malt extract) agar. In addition, the three oak
440 strains were subjected to the culturing and storage conditions described in (Robinson *et al.*,
441 2016).

442 **Whole-genome sequencing and base calling**

443 Purified genomic DNA was extracted from saturated 1.5 ml cultures using a MasterPure
444 yeast DNA purification kit (Epicentre) and following the manufacturer's instructions. Whole
445 genome sequencing of the four *C. albicans* genomic DNA samples was carried out at the
446 Earlham Institute, Norwich, UK. Libraries were constructed using their LITE (Low Input
447 Transposase Enabled) methodology for library construction of small eukaryotic genomes
448 based on the Illumina Nextera kits. Each library pool was sequenced with a 2 × 250 bp
449 read metric over six lanes of an Illumina HiSeq2500 sequencer. Adapters were trimmed
450 using Trimmomatic (version 0.33, Bolger *et al.*, 2014) with default settings for paired
451 end data and the ILLUMINACLIP tool (2:30:10). We used FastQC (version 0.11.4, <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) to check read quality and the pres-
452 ence of adapters before and after trimming, and used trimmed, paired read data in subse-
453 quent analyses.

455 Short read data for all strains (3 oak strains, the type strain, 21 clinical strains and the
456 1AA mutant) were mapped to the SC5314_A22 reference genome using Burrows-Wheeler
457 Aligner (bwa mem, version 0.7.10; Li and Durbin, 2009). We used SAMtools (version

458 1.2; Li *et al.*, 2009) to generate sorted bam files that were merged in cases where there
459 were multiple sets of read-pair data files per strain. To generate a consensus (in genomic
460 variant call format, gVCF) we used mpileup from SAMtools and then bcftools call (with
461 the -c option). SAMtools mpileup was used with default settings except that maximum read
462 depth was increased to 10,000 reads and we used the -I option so insertions and deletions
463 were excluded.

464 **Verification of DNA sequence at MLST, MTL and rDNA loci**

465 We inferred the standard genotype calls for the type strain and the three oak strains using
466 the genomic data generated above and also verified these by independent DNA extraction,
467 PCR and sequencing. Purified genomic DNA was extracted as above, except that 100 units
468 of lyticase was used to degrade the fungal cell wall for each prep, prior to DNA extraction.
469 The DNA yield from each prep was determined by fluorimetry using a Qubit 3.0 fluorome-
470 ter (ThermoFisher). The seven housekeeping genes (*AAT1 α* , *ACCI*, *ADP1*, *MPI1b*, *SYA1*,
471 *VPS13* and *ZWF1b*) used routinely for *C. albicans* strain typing were PCR-amplified and
472 sequenced following the standard protocol (Bougnoux *et al.*, 2003; Tavanti *et al.*, 2003).
473 The *Candida albicans* MLST database (<https://pubmlst.org/calbicans/>) was used to deter-
474 mine allele identity (sequence type, ST). The mating type (*a*/ α , *a/a* or α/α) was determined
475 by PCR using the method described by Tavanti *et al.* (2003). The complete ITS region, en-
476 compassing ITS1, the 5.8S rRNA gene and ITS2, was PCR-amplified directly from whole
477 yeast cell suspensions following the procedure and PCR parameters as described by James
478 *et al.* (1996). The ITS region was amplified and sequenced using the conserved fungal
479 primers ITS5 and ITS4 (White *et al.*, 1990).

480 **Estimation of ploidy and identification of loss of heterozygosity regions**

481 We developed a perl script, vcf2allelePlot.pl (available from <https://github.com/bensassonlab/scripts/>) that uses R (version 3.2.3) to visualize all the base calls that differ between a strain
482 and the reference genome (SC5314_A22). The script plots the proportion of reads that
483 differ from the reference (the “allele ratio”, Zhu *et al.*, 2016; Todd *et al.*, 2017) at every
484 site that has a point substitution along each chromosome (Figures 1 and S1). Following
485 a standard approach (the B allele approach; Teo *et al.*, 2012; Yoshida *et al.*, 2013; Zhu
486 *et al.*, 2016), we visually decided ploidy state from plots as follows. Heterozygous diploids
487 were called where chromosomes had allele ratios of 1 and 0.5. Heterozygous triploids were
488 called where chromosomes had allele ratios of 0.33, 0.66, and 1.

490 The same script used to visualize allele ratios (vcf2allelePlot.pl) was used to identify LOH
491 regions as follows. The genome was divided into 100 kb non-overlapping windows and
492 LOH was called for windows where the proportion of heterozygous sites was below 0.1%.
493 We estimated the proportion of heterozygous sites after excluding low quality sites (phred-
494 scaled consensus quality below 40), centromeres, annotated repeats and sites in each win-
495 dow with over double the average genome-wide read depth for a strain. Sites were consid-
496 ered heterozygous if their allele ratio was between 0.2 and 0.8. In a separate analysis, we
497 used histograms generated in R to decide the 0.1% threshold for the identification of LOH
498 regions (Figures 2 and S3).

499 There were cases where strains were predominantly diploid, but had allele ratios of 1 all
500 along one or more chromosomes, and this could result from monosomy or from whole-
501 chromosome LOH. In order to distinguish between these two possibilities, a second ap-
502 proach is often used to test for aneuploidy (Teo *et al.*, 2012; Zhu *et al.*, 2016), and we also
503 tested that approach here. In cases of aneuploidy, read depths will differ between chro-
504 mosomes. We used SAMtools depth (version 1.3.1; Li *et al.*, 2009) with maximum read

505 depth (the -d option) set to 10,000 to estimate read depth for each position, then R was
506 used for sliding window statistical analyses and visualization. We estimated average read
507 depth for non-overlapping 1 kb windows across each chromosome, and then estimated a
508 median from these for each chromosome. Chromosomes were then considered aneuploid if
509 median read depths in pairwise comparisons between chromosomes differed by over 35%
510 (Zhu *et al.*, 2016). However, this approach assumes random fragmentation of DNA prior
511 to sequencing and therefore even read depth across genomic regions. While this assumption
512 holds relatively well when DNA is mechanically sheared, enzymatic approaches for
513 DNA fragmentation are more likely to result in uneven read depth that correlates with base
514 composition (Marine *et al.*, 2011; Quail *et al.*, 2012; Teo *et al.*, 2012). The genome data
515 that was generated as part of this study for the type and oak strains was generated using
516 an enzymatic fragmentation protocol and showed continuously uneven read depth within
517 and between chromosomes (Figure S2). Therefore, we were unable to use the read depth
518 approach to test for aneuploidy. As a result, we rely on the base calling approach which is
519 best for determining overall ploidy, but cannot detect aneuploidy for chromosomes that are
520 homozygous (chromosomes 5 and 7 of strain NCYC 4144 from oak, Figure 1).

521 **Phylogenetic analysis and *in silico* chromosome painting**

522 In order to determine the relationships between strains, we used a maximum likelihood
523 phylogenetic approach implemented in RAxML (version 8.1.20, Stamatakis, 2014). Using
524 seqtk from SAMtools, we converted base calls in gVCF format to fasta format sequence
525 and filtered bases that had quality scores below a phred-scaled quality score of 40 (equiva-
526 lent to an error rate of 1 in 10,000). All genome sequences were mapped against the
527 reference genome, and were therefore already aligned against it because insertions and
528 deletions were excluded. Fasta format alignment files were converted to phylip format us-
529 ing fa2phylip.pl (<https://github.com/bensassonlab/scripts/>). For all phylogenetic analyses,

530 we used RAxML with a general time reversible evolutionary model and a γ distribution to
531 estimate heterogeneity in base substitution rates among sites (GTRGAMMA), and 1,000
532 bootstrap replicates. For genome-wide phylogenetic analysis, we included genome data
533 for all strains including the reference genome, and concatenated the alignments for ev-
534 ery chromosome into a single genome-wide alignment. For phylogenetic analysis of short
535 genomic regions within chromosomes, we extracted alignments for phylogenetic analysis
536 using faChooseSubseq.pl (<https://github.com/bensassonlab/scripts/>).

537 In order to test whether a strain is similar to a single clade in all parts of its genome,
538 we developed faChrompaint.pl (<https://github.com/bensassonlab/scripts/>) to “paint” chro-
539 mosomes according to similarity to known clades. Several other tools already exist for
540 painting chromosomes *in silico* in order to identify admixture between populations (re-
541 viewed in Schraiber and Akey 2015), however these require phased haplotype data which
542 are not available for *C. albicans*. The faChrompaint.pl script takes fasta formatted whole-
543 chromosome alignments as input, and divides the genome of a study strain into non-
544 overlapping windows (we set the window size to 100 kb). The script uses R to generate a
545 plot with every window colored according to the clade assignment of the most similar strain
546 in that window. The most similar DNA sequence was the one with the lowest proportion
547 of differing sites. We used the clade assignments made by Hirakawa *et al.* (2015) for their
548 21 clinical strain genomes to define clades, and colored windows green if their greatest
549 similarity was to an oak strain sequence. If a strain is genetically diverged from the seven
550 clades studied by Hirakawa *et al.* (2015), then similarity to a known clade does not nec-
551 essarily imply recent common ancestry. We therefore filtered diverged regions by leaving
552 those windows blank. More specifically, we did not color windows with over 0.066% di-
553 vergence from known clades because most within-clade pairwise comparisons (90%) show
554 divergence levels below 0.066%, while most between-clade comparisons show divergence
555 above 0.066% (Figure S8).

556 We also tested whether similarities to different clades resulted in statistically supported
557 phylogenetic incongruence in homozygous regions. For two oak strains (NCYC 4144 and
558 NCYC 4145), most homozygous regions showed high divergence from known clades. We
559 therefore ran faChrompaint.pl without applying a divergence filter, and identified regions
560 likely to show incongruent phylogenies, then compared phylogenetic analyses between
561 these regions. This chromosome painting approach was successful in identifying regions
562 with phylogenetic incongruence (see examples in Figures S5 and S6).

563 **Estimation of levels of heterozygosity**

564 In order to estimate levels of heterozygosity either genome-wide (Table 2) or in 100 kb non-
565 overlapping windows (Figure 2), we estimated the proportion of sites that were heterozy-
566 gous. For all estimates of levels of heterozygosity, only high quality sites (phred-scaled
567 quality over 40) were considered. Sites were considered heterozygous if the proportion of
568 sites differing from the reference sequence (the allele ratio) was between 0.2 and 0.8. In
569 a diploid, it is also possible for sites to be heterozygous with an allele ratio of 1 in cases
570 where 3 alleles exist for a site because both alleles could differ from that of the reference
571 genome. For example, the reference genome may have an A at a site, and a study strain
572 could show an allele ratio of 1 while being heterozygous for C and T alleles. However,
573 levels of intraspecific genetic diversity are sufficiently low that we expect triallelic sites to
574 represent a small proportion of all heterozygous sites, and therefore not to affect our con-
575 clusions. For example, if the true proportion of heterozygous sites is 0.007 (close to the
576 levels we observe in Table 2), then the expected proportion of sites with a second point sub-
577 stitution would be 4.9×10^{-5} (i.e. 0.007^2). The observed number of high quality triallelic
578 sites in each (14 Mbp) genome sequence are slightly lower than expected: up to 1×10^{-5}
579 (144 sites) for the oak strains and all clinical strains except the type strain. The type strain
580 (NCYC 597), which is mostly triploid, has the largest number of triallelic sites (173 sites).

581 Differences between oak and clinical strains in the exclusion of these few sites cannot ex-
582 plain the higher levels of heterozygosity seen for oak strains which exceed that of clinical
583 strains by thousands of sites (Table 2).

584 Data Accessibility

585 DNA sequences determined for this study are available in EBI's ENA as PRxxx. Perl scripts
586 are available at <https://github.com/bensassonlab/scripts>. The type strain and *C. albicans*
587 strains isolated from oak are available from the National Collection of Yeast Cultures in the
588 U.K..

589 Acknowledgements

590 We thank Darren Heavens of the Earlham Institute, Norwich, UK for the LITE-based
591 whole genome sequencing of the oak and type strains of *C. albicans*. We also thank Casey
592 Bergman, Dave Hall and Jenna Hamlin for helpful comments on the manuscript. The work
593 of J.D., C.J.B., A.E. and I.N.R was supported by the Biotechnology and Biological Sci-
594 ences Research Council, through a National Capability award to the National Collection
595 of Yeast Cultures (grant number BBS/E/F/00044440 to I.N.R.) and an Institute Strategic
596 Programme award to the Institute of Food Research (grant number BBS/E/F/00044471 to
597 I.N.R.).

598 References

599 Almeida, P., Barbosa, R., Zalar, P., Imanishi, Y., Shimizu, K., Turchetti, B., Legras, J.L., Serra, M., Dequin,
600 S., Couloux, A., Guy, J., Bensasson, D., Gonçalves, P., and Sampaio, J.P. (2015). "A population genomics
601 insight into the Mediterranean origins of wine yeast domestication." *Molecular Ecology*, **24**(21): 5412–
602 5427.

603 Barnett, J.A. (2008). "A history of research on yeasts 12: medical yeasts part 1, *Candida albicans*." *Yeast*,
604 **25**(6): 385–417.

605 Bensasson, D., Zarowiecki, M., Burt, A., and Koufopanou, V. (2008). “Rapid evolution of yeast centromeres
606 in the absence of drive.” *Genetics*, **178**(4): 2161–2167.

607 Birk, C.W. (1996). “Heterozygosity, Heteromorphy, and Phylogenetic Trees in Asexual Eukaryotes.” *Ge-
608 netics*, **144**(1): 427–437.

609 Bolger, A.M., Lohse, M., and Usadel, B. (2014). “Trimmomatic: a flexible trimmer for Illumina sequence
610 data.” *Bioinformatics*, **30**(15): 2114–2120.

611 Bougnoux, M.E., Diogo, D., François, N., Sendid, B., Veirmeire, S., Colombel, J.F., Bouchier, C., Van Kru-
612 iningen, H., d’Enfert, C., and Poulain, D. (2006). “Multilocus sequence typing reveals intrafamilial trans-
613 mission and microevolutions of *Candida albicans* isolates from the human digestive tract.” *Journal of
614 Clinical Microbiology*, **44**(5): 1810–1820.

615 Bougnoux, M.E., Tavanti, A., Bouchier, C., Gow, N.a.R., Magnier, A., Davidson, A.D., Maiden, M.C.J.,
616 d’Enfert, C., and Odds, F.C. (2003). “Collaborative Consensus for Optimized Multilocus Sequence Typing
617 of *Candida albicans*.” *Journal of Clinical Microbiology*, **41**(11): 5265–5266.

618 Bougnoux, M.E., Pujol, C., Diogo, D., Bouchier, C., Soll, D.R., and d’Enfert, C. (2008). “Mating is rare
619 within as well as between clades of the human pathogen *Candida albicans*.” *Fungal Genetics and Biology*,
620 **45**(3): 221–231.

621 Charron, G., Leducq, J.B., Bertin, C., Dubé, A.K., and Landry, C.R. (2014). “Exploring the northern limit
622 of the distribution of *Saccharomyces cerevisiae* and *Saccharomyces paradoxus* in North America.” *FEMS
623 yeast research*, **14**(2): 281–288.

624 Ciudad, T., Hickman, M., Bellido, A., Berman, J., and Larriba, G. (2016). “Phenotypic Consequences of
625 a Spontaneous Loss of Heterozygosity in a Common Laboratory Strain of *Candida albicans*.” *Genetics*,
626 **203**(3): 1161–1176.

627 Di Menna, M.E. (1958). “*Candida albicans* from grass leaves.” *Nature*, **181**(4618): 1287–1288.

628 Eberlein, C., Leducq, J.B., and Landry, C.R. (2015). “The genomics of wild yeast populations sheds light on
629 the domestication of man’s best (micro) friend.” *Molecular Ecology*, **24**(21): 5309–5311.

630 Edelmann, A., Krüger, M., and Schmid, J. (2005). “Genetic Relationship between Human and Animal
631 Isolates of *Candida albicans*.” *Journal of Clinical Microbiology*, **43**(12): 6164–6166.

632 Forche, A., Abbey, D., Pisithkul, T., Weinzierl, M.A., Ringstrom, T., Bruck, D., Petersen, K., and Berman,
633 J. (2011). “Stress Alters Rates and Types of Loss of Heterozygosity in *Candida albicans*.” *mBio*, **2**(4):
634 e00129–11.

635 Ford, C.B., Funt, J.M., Abbey, D., Issi, L., Guiducci, C., Martinez, D.A., Delorey, T., Li, B.y., White, T.C.,
636 Cuomo, C., Rao, R.P., Berman, J., Thompson, D.A., and Regev, A. (2015). “The evolution of drug
637 resistance in clinical isolates of *Candida albicans*.” *eLife*, **4**: e00662.

638 Gerstein, A.C., Kuzmin, A., and Otto, S.P. (2014). “Loss-of-heterozygosity facilitates passage through Hal-
639 dane’s sieve for *Saccharomyces cerevisiae* undergoing adaptation.” *Nature Communications*, **5**: 3819.

640 Gerstein, A.C. and Nielsen, K. (2017). “It’s not all about us: evolution and maintenance of *Cryptococcus*
641 virulence requires selection outside the human host.” *Yeast*, **34**(4): 143–154.

642 Halkett, F., Simon, J.C., and Balloux, F. (2005). “Tackling the population genetics of clonal and partially
643 clonal organisms.” *Trends in Ecology & Evolution*, **20**(4): 194–201.

644 Hall, R.A. and Noverr, M.C. (2017). “Fungal interactions with the human host: exploring the spectrum of
645 symbiosis.” *Current Opinion in Microbiology*, **40**: 58–64.

646 Hickman, M.A., Paulson, C., Dudley, A., and Berman, J. (2015). “Parasexual Ploidy Reduction Drives
647 Population Heterogeneity Through Random and Transient Aneuploidy in *Candida albicans*.” *Genetics*,
648 **200**(3): 781–794.

649 Hickman, M.A., Zeng, G., Forche, A., Hirakawa, M.P., Abbey, D., Harrison, B.D., Wang, Y.M., Su, C.h.,
650 Bennett, R.J., Wang, Y., and Berman, J. (2013). “The ‘obligate diploid’ *Candida albicans* forms mating-
651 competent haploids.” *Nature*, **494**(7435): 55.

652 Hirakawa, M.P., Martinez, D.A., Sakthikumar, S., Anderson, M.Z., Berlin, A., Gujja, S., Zeng, Q., Zisson,
653 E., Wang, J.M., Greenberg, J.M., Berman, J., Bennett, R.J., and Cuomo, C.A. (2015). “Genetic and
654 phenotypic intra-species variation in *Candida albicans*.” *Genome Research*, **25**(3): 413–425.

655 Hull, C.M., Raisner, R.M., and Johnson, A.D. (2000). “Evidence for mating of the ‘asexual’ yeast *Candida*
656 *albicans* in a mammalian host.” *Science (New York, N.Y.)*, **289**(5477): 307–310.

657 Jacobsen, M.D., Bougnoux, M.E., d’Enfert, C., and Odds, F.C. (2008). “Multilocus sequence typing of
658 *Candida albicans* isolates from animals.” *Research in Microbiology*, **159**(6): 436–440.

659 James, S.A., Collins, M.D., and Roberts, I.N. (1996). “Use of an rRNA Internal Transcribed Spacer Region
660 To Distinguish Phylogenetically Closely Related Species of the Genera *Zygosaccharomyces* and *Torulas-*
661 *pore*.” *International Journal of Systematic and Evolutionary Microbiology*, **46**(1): 189–194.

662 Johnson, L.J., Koufopanou, V., Goddard, M.R., Hetherington, R., Schafer, S.M., and Burt, A. (2004). “Pop-
663 ulation Genetics of the Wild Yeast *Saccharomyces paradoxus*.” *Genetics*, **166**(1): 43–52.

664 Kurtzman, C.P., Fell, J.W., Boekhout, T., and Robert, V. (2011). “Chapter 7 - Methods for Isolation, Phe-
665 notypic Characterization and Maintenance of Yeasts.” In C.P.K.W.F. Boekhout, editor, “The Yeasts (Fifth
666 Edition),” pages 87–110. Elsevier, London. ISBN 978-0-444-52149-1.

667 Lachance, M.A., Boekhout, T., Scorzetti, G., Fell, J.W., and Kurtzman, C.P. (2011). “Chapter 90 - *Candida*
668 *Berkhout* (1923).” In Kutzman, Fell and Boekhout, editor, “The Yeasts (Fifth Edition),” pages 987–1278.
669 Elsevier, London. ISBN 978-0-444-52149-1.

670 Legrand, M., Forche, A., Selmecki, A., Chan, C., Kirkpatrick, D.T., and Berman, J. (2008). “Haplotype

671 Mapping of a Diploid Non-Meiotic Organism Using Existing and Induced Aneuploidies.” *PLOS Genetics*,
672 **4**(1): e1.

673 Li, H. and Durbin, R. (2009). “Fast and accurate short read alignment with Burrows-Wheeler transform.”
674 *Bioinformatics*, **25**(14): 1754–60.

675 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin,
676 R. (2009). “The Sequence Alignment/Map format and SAMtools.” *Bioinformatics*, **25**(16): 2078–9.

677 Li, X., Yang, F., Li, D., Zhou, M., Wang, X., Xu, Q., Zhang, Y., Yan, L., and Jiang, Y. (2015). “Trisomy of
678 chromosome R confers resistance to triazoles in *Candida albicans*.” *Medical Mycology*, **53**(3): 302–309.

679 Maganti, H., Bartfai, D., and Xu, J. (2011). “Ecological structuring of yeasts associated with trees around
680 Hamilton, Ontario, Canada.” *FEMS yeast research*, **12**: 9–19.

681 Magee, B.B. and Magee, P.T. (2000). “Induction of mating in *Candida albicans* by construction of MTLα
682 and MTLα strains.” *Science (New York, N.Y.)*, **289**(5477): 310–313.

683 Marine, R., Polson, S.W., Ravel, J., Hatfull, G., Russell, D., Sullivan, M., Syed, F., Dumas, M., and
684 Wommack, K.E. (2011). “Evaluation of a Transposase Protocol for Rapid Generation of Shotgun High-
685 Throughput Sequencing Libraries from Nanogram Quantities of DNA.” *Applied and Environmental Mi-
686 crobiology*, **77**(22): 8071–8079.

687 May, R.C., Stone, N.R.H., Wiesner, D.L., Bicanic, T., and Nielsen, K. (2016). “*Cryptococcus*: from environ-
688 mental saprophyte to global pathogen.” *Nature Reviews. Microbiology*, **14**(2): 106–117.

689 Mayer, F.L. and Kronstad, J.W. (2017). “Disarming Fungal Pathogens: *Bacillus safensis* Inhibits Virulence
690 Factor Production and Biofilm Formation by *Cryptococcus neoformans* and *Candida albicans*.” *mBio*,
691 **8**(5): e01537–17.

692 Muzzey, D., Schwartz, K., Weissman, J.S., and Sherlock, G. (2013). “Assembly of a phased diploid *Candida*
693 *albicans* genome facilitates allele-specific measurements and provides a simple model for repeat and indel
694 structure.” *Genome Biology*, **14**(9): R97.

695 Odds, F.C., Bougnoux, M.E., Shaw, D.J., Bain, J.M., Davidson, A.D., Diogo, D., Jacobsen, M.D., Lecomte,
696 M., Li, S.Y., Tavanti, A., Maiden, M.C.J., Gow, N.A.R., and d’Enfert, C. (2007). “Molecular Phylogenetics
697 of *Candida albicans*.” *Eukaryotic Cell*, **6**(6): 1041–1052.

698 Padmanabhan, S., Thakur, J., Siddharthan, R., and Sanyal, K. (2008). “Rapid evolution of Cse4p-rich cen-
699 tromeric DNA sequences in closely related pathogenic yeasts, *Candida albicans* and *Candida dubliniensis*.”
700 *Proceedings of the National Academy of Sciences*, **105**(50): 19797–19802.

701 Peter, J., Chiara, M.D., Friedrich, A., Yue, J.X., Pflieger, D., Bergström, A., Sigwalt, A., Barre, B., Freel,
702 K., Llored, A., Cruaud, C., Labadie, K., Aury, J.M., Istace, B., Lebrigand, K., Barbry, P., Engelen, S.,
703 Lemainque, A., Wincker, P., Liti, G., *et al.* (2018). “Genome evolution across 1,011 Saccharomyces

704 cerevisiae isolates.” *Nature*, **556**(7701): 339–344.

705 Quail, M.A., Smith, M., Coupland, P., Otto, T.D., Harris, S.R., Connor, T.R., Bertoni, A., Swerdlow, H.P.,
706 and Gu, Y. (2012). “A tale of three next generation sequencing platforms: comparison of Ion Torrent,
707 Pacific Biosciences and Illumina MiSeq sequencers.” *BMC Genomics*, **13**: 341.

708 Robinson, H.A., Pinharanda, A., and Bensasson, D. (2016). “Summer temperature can predict the distribution
709 of wild yeast populations.” *Ecology and Evolution*, **6**(4): 1236–1250.

710 Sahni, N., Yi, S., Pujol, C., and Soll, D.R. (2009). “The White Cell Response to Pheromone Is a General
711 Characteristic of *Candida albicans* Strains.” *Eukaryotic Cell*, **8**(2): 251–256.

712 Schraiber, J.G. and Akey, J.M. (2015). “Methods and models for unravelling human evolutionary history.”
713 *Nature Reviews Genetics*, **16**(12): 727.

714 Sniegowski, P.D., Dombrowski, P.G., and Fingerman, E. (2002). “*Saccharomyces cerevisiae* and *Saccha-*
715 *romyces paradoxus* coexist in a natural woodland site in North America and display different levels of
716 reproductive isolation from European conspecifics.” *FEMS Yeast Research*, **1**(4): 299–306.

717 Stamatakis, A. (2014). “RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large
718 Phylogenies.” *Bioinformatics*, page btu033.

719 Sylvester, K., Wang, Q.M., James, B., Mendez, R., Hulfachor, A.B., and Hittinger, C.T. (2015). “Temper-
720 ature and host preferences drive the diversification of *Saccharomyces* and other yeasts: a survey and the
721 discovery of eight new yeast species.” *FEMS yeast research*, **15**(3): fov002.

722 Tanghe, A., Carbrey, J.M., Agre, P., Thevelein, J.M., and Van Dijck, P. (2005). “Aquaporin expression and
723 freeze tolerance in *Candida albicans*.” *Applied and Environmental Microbiology*, **71**(10): 6434–6437.

724 Tavanti, A., Gow, N.A.R., Senesi, S., Maiden, M.C.J., and Odds, F.C. (2003). “Optimization and validation of
725 multilocus sequence typing for *Candida albicans*.” *Journal of Clinical Microbiology*, **41**(8): 3765–3776.

726 Teo, S.M., Pawitan, Y., Ku, C.S., Chia, K.S., and Salim, A. (2012). “Statistical challenges associated with
727 detecting copy number variations with next-generation sequencing.” *Bioinformatics*, **28**(21): 2711–2718.

728 Todd, R.T., Forche, A., and Selmecki, A. (2017). “Ploidy Variation in Fungi: Polyploidy, Aneuploidy, and
729 Genome Evolution.” *Microbiology Spectrum*, **5**(4).

730 van Uden, N., de Matos Faia, M., and Assis-Lopes, L. (1956). “Isolation of *Candida albicans* from Vegetable
731 Sources.” *Microbiology*, **15**(1): 151–153.

732 Wang, J.M., Bennett, R.J., and Anderson, M.Z. (2018). “The Genome of the Human Pathogen *Candida*
733 *albicans* is Shaped by Mutation and Cryptic Sexual Recombination.” *bioRxiv*, page 310201.

734 White, T.J., Bruns, T.D., Lee, S.B., and Taylor, J.W. (1990). “PCR-protocols and applications: a laboratory
735 manual.” *Academic Press, New York) p*, **315**.

736 Wrobel, L., Whittington, J.K., Pujol, C., Oh, S.H., Ruiz, M.O., Pfaller, M.A., Diekema, D.J., Soll, D.R., and

737 Hoyer, L.L. (2008). “Molecular Phylogenetic Analysis of a Geographically and Temporally Matched Set
738 of *Candida albicans* Isolates from Humans and Nonmigratory Wildlife in Central Illinois.” *Eukaryotic*
739 *Cell*, **7**(9): 1475–1486.

740 Wu, W., Lockhart, S.R., Pujol, C., Srikantha, T., and Soll, D.R. (2007). “Heterozygosity of genes on the sex
741 chromosome regulates *Candida albicans* virulence.” *Molecular Microbiology*, **64**(6): 1587–1604.

742 Yoshida, K., Schuenemann, V.J., Cano, L.M., Pais, M., Mishra, B., Sharma, R., Lanz, C., Martin, F.N.,
743 Kamoun, S., Krause, J., Thines, M., Weigel, D., and Burbano, H.A. (2013). “The rise and fall of the
744 Phytophthora infestans lineage that triggered the Irish potato famine.” *eLife*, **2**: e00731.

745 Zhu, Y.O., Sherlock, G., and Petrov, D.A. (2016). “Whole Genome Analysis of 132 Clinical *Saccharomyces*
746 *cerevisiae* Strains Reveals Extensive Ploidy Variation.” *G3*, **6**(8): 2421–2434.

Authors' Contributions

D.B., J.D. I.N.R. and S.A.J. conceived and designed the research; S.A.J., C.J.B. and A.E. generated the data; D.B., J.D., J.M.L. and S.A.J. analyzed the data; and D.B. wrote the manuscript with contributions from J.D., S.A.J. and I.N.R.

Tables and Figures

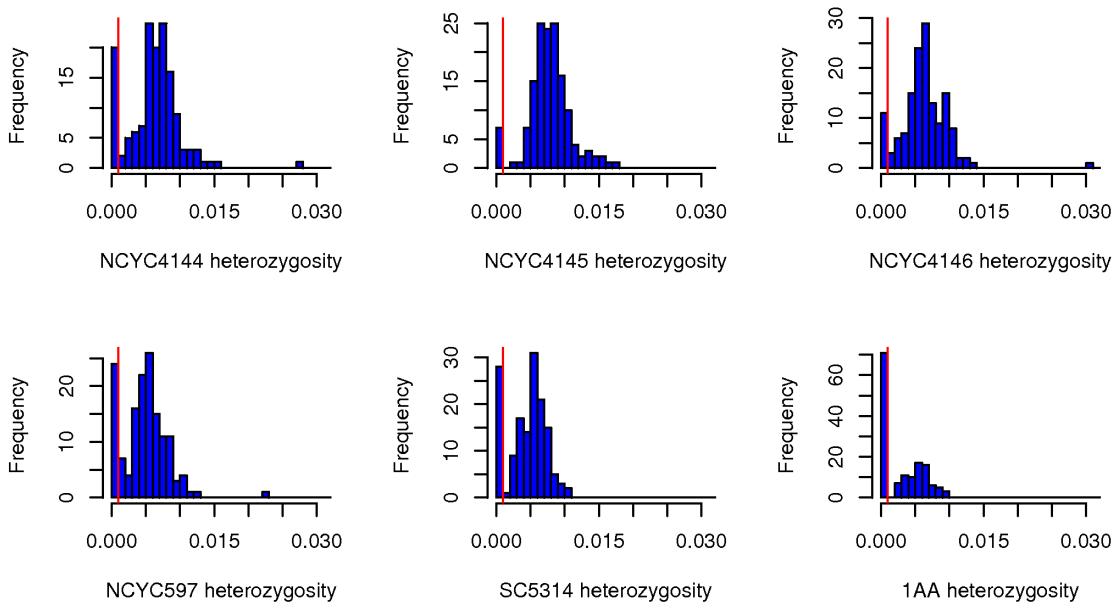
Table 1: Three *C. albicans* isolates from English and sessile oaks in the New Forest in the United Kingdom*.

Strain	Alternate name	Latitude & Longitude	Trunk girth (m) ¹	Other yeast species from the same tree
NCYC 4144	FRI10b.1	50.92785 -1.657083	4.12	<i>Lachancea thermotolerans</i>
NCYC 4145	FR11a.1	50.928483 -1.655183	3.88	<i>Saccharomyces paradoxus</i> and <i>Kazachstania servazzii</i>
NCYC 4146	FRI5d.SM.1	50.928067 -1.656	2.83	None
	FRI and OCK sites	27 oaks, New Forest*	0.65-3.79 ²	<i>Saccharomyces paradoxus</i> (11 isolates), <i>Lachancea thermotolerans</i> (4 isolates), <i>Wickerhamomyces anomalus</i> (2 isolates), <i>Saccharomyces ludwigii</i> (2 isolates), <i>Debaryomyces hansenii</i> , <i>Hyphopichia burtonii</i> , <i>Kazachstania servazzii</i> , <i>Hanseniaspora osmophila</i>

* Information from Robinson *et al.* (2016). NCYC 4144 and NCYC 4145 were isolated from sessile oaks (*Quercus petraea*) and NCYC 4146 was isolated from English oak (*Quercus robur*).

¹ Assuming average UK woodland boundary conditions for sessile and English oaks, then these trunk girth estimate approximate to 220 years old (FRI10), 200 years old (FRI11) and 130 years old (FRI5) according to the guidelines at <http://www.wdvt.org.uk/pdf/Estimating-the-age-of-trees.pdf>.

² 25 trees had uncoppiced trunk girth estimates. These were mostly smaller than those with *C. albicans*; Wilcoxon test, *P* = 0.04.


Table 2: *C. albicans* from oak show higher heterozygosity than clinical strains.

Strain	MTL	MLST Clade (FP ^a)	Heterozy- gosity ^b	LOH length (Mbp) ^c	Filtered length (Mbp) ^d	Filtered heterozy- gosity ^e	Heterozy- gosity in 950 kb ^f
NCYC 4145	<i>a/α</i>	?	0.0077	0.7	11.4	0.0078	0.0075
NCYC 4146	<i>a/α</i>	4 (SA)	0.0062	1.1	11.1	0.0066	0.0068
NCYC 4144	<i>a/a</i>	?	0.0061	2.3	9.7	0.0068	0.0074
3 oak strains		Mean:	0.0066	1.4		0.0070	0.0072
P34048	<i>a/α</i>	3 (III)	0.0060	1.0	10.3	0.0064	0.0070
P75016	<i>a/α</i>	4 (SA)	0.0059	0.9	10.5	0.0064	0.0066
P78042	<i>α/α</i>	3 (III)	0.0057	1.3	10.1	0.0061	0.0065
GC75	<i>α/α</i>	4 (SA)	0.0057	1.6	9.4	0.0067	0.0067
P78048	<i>α/α</i>	1 (I)	0.0054	2.1	9.5	0.0061	0.0054
P57055	<i>a/α</i>	3 (III)	0.0052	3.0	8.9	0.0065	0.0068
P37037	<i>a/α</i>	1 (I)	0.0048	3.3	8.3	0.0061	0.0058
NCYC597	<i>a/α</i>	?	0.0048	2.4	9.3	0.0054	0.0061
P37005	<i>a/a</i>	1 (I)	0.0047	3.3	8.4	0.0059	0.0057
P57072	<i>α/α</i>	2 (II)	0.0047	2.7	8.4	0.0057	0.0058
P75010	<i>α/α</i>	11 (E)	0.0046	4.7	6.7	0.0067	0.0068
SC5314	<i>a/α</i>	1 (I)	0.0046	2.8	10.0	0.0055	0.0053
P76067	<i>a/α</i>	2 (II)	0.0046	3.9	8.6	0.0061	0.0055
P37039	<i>a/α</i>	1 (I)	0.0045	3.9	8.1	0.0060	0.0057
P75063	<i>a/α</i>	4 (SA)	0.0045	3.6	8.1	0.0059	0.0067
L26	<i>a/a</i>	1 (I)	0.0044	3.7	9.2	0.0058	0.0056
19F	<i>α/α</i>	1 (I)	0.0042	4.3	8.1	0.0059	0.0057
P76055	<i>a/α</i>	2 (II)	0.0042	3.5	8.3	0.0052	0.0052
P60002	<i>a/a</i>	8 (SA)	0.0041	4.4	7.7	0.0056	0.0070
12C	<i>a/a</i>	1 (I)	0.0041	4.7	7.7	0.0061	0.0057
P87	<i>a/a</i>	4 (SA)	0.0038	5.7	6.8	0.0062	0.0060
P94015	<i>a/a</i>	6 (I)	0.0035	6.5	6.8	0.0062	0.0068
1AA	<i>a/α</i>	1 (I)	0.0029	7.1	5.6	0.0056	0.0039
22 clinical strains^g		Mean:	0.0047	3.3		0.0060	0.0061

^a Clade assignments are as summarized from past MLST and fingerprinting (FP) studies in Hirakawa *et al.* (2015). ^b Heterozygosity was estimated as the proportion of high quality sites (with phred-scaled quality over 40) where 20-80% of reads differed from the reference sequence. For all strains, this was estimated from approximately 14 Mbp of high quality sequence. ^c Length of sequence showing loss of heterozygosity (LOH). LOH was assumed where the proportion of heterozygous sites in a 100 kb window was lower than 0.001. ^d The length of genome sequence after excluding LOH regions, known repeats, putatively repetitive regions (positions with over double the mean genome-wide read depth) and centromeres. ^e The proportion of heterozygous sites after excluding LOH regions, repeats and centromeres. ^f the proportion of heterozygous sites in at 948,860 nucleotide sites with high quality, unrepeatitive, non-LOH sequence for all 25 oak and clinical strains. ^g Means for clinical strains exclude data for strain 1AA because this strain was derived from SC5314.

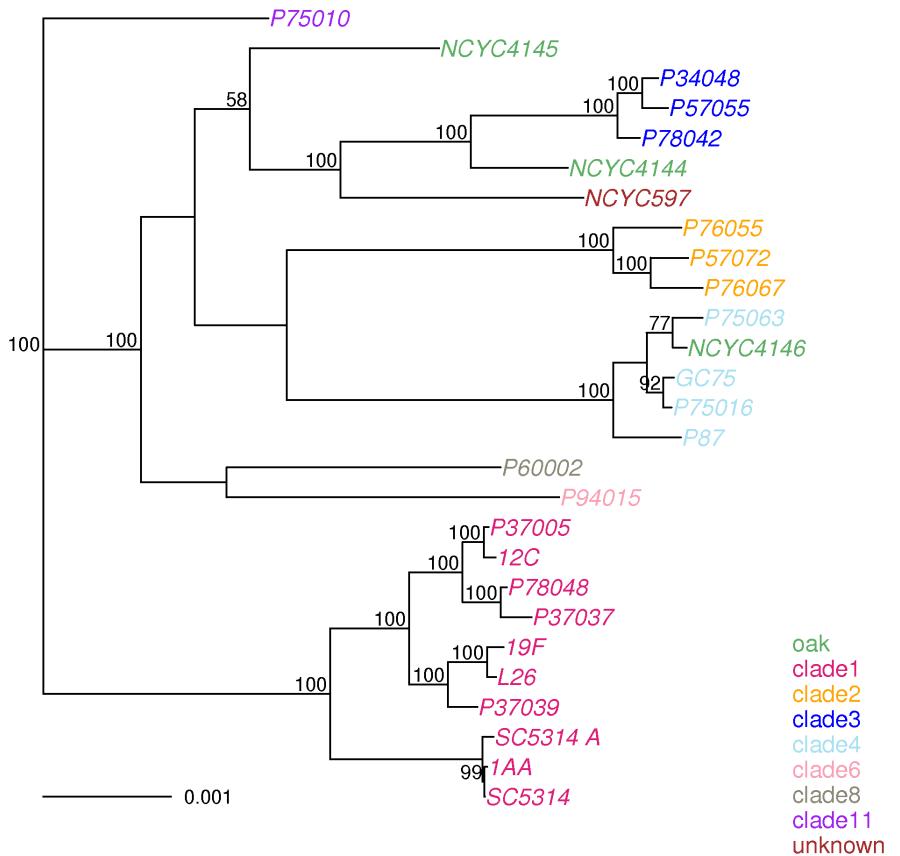


Figure 1: *C. albicans* from oak are mostly diploid, whereas the *C. albicans* type strain is mostly triploid.
The proportion of base calls differing from the reference strain (allele ratios) are mostly 1.0 or 0.5 for oak strains (NCYC 4144-6) suggesting for diploidy, whereas allele ratios are mostly 0.33, 0.66 and 1.0 for the type strain (NCYC 597) suggesting triploidy. As expected, SC5314 differs from the SC5314_A22 reference at heterozygous sites, and the laboratory mutant (1AA) is homozygous on chromosome 1. Regions that recently homozygosed are shaded light blue. The points that occur in these loss of heterozygosity (LOH) regions often correspond to the locations of known repeats where short reads are probably misaligned and repeat regions were mostly filtered from final estimates of heterozygosity in Table 2. The oak strain with *a/a* at its mating locus (NCYC 4144) arrived at this state by loss of heterozygosity for the whole of chromosome 5.

Figure 2: Levels of heterozygosity in 100 kb regions are either high or low for oak and clinical strains.
The proportion of heterozygous sites was estimated in 100 kb non-overlapping windows across the genome of each strain. Results are shown here for oak strains (NCYC 4144, NCYC 4145, and NCYC 4146), the type strain (NCYC 597), the wild type version of the laboratory strain used to generate the reference genome for *C. albicans* (SC5314) and a mutant that was made homozygous for chromosome 1 in the laboratory (1AA, Legrand *et al.*, 2008). Results for 20 more clinical strains are shown in Figure S3. For all strains we see two modes; heterozygosity is either low (below the red line at 0.1%), or high (with a mean above 0.4%). Regions with fewer than 0.1% heterozygous sites in a 100 kb window were classed as LOH regions and are shown in blue in Figure 1.

a. Genome-wide phylogeny

b. Painted chromosomes of oak strains

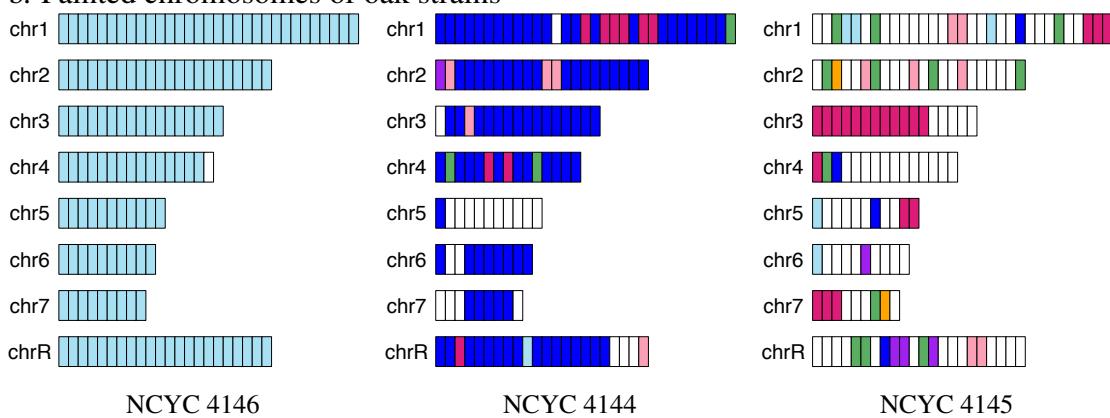


Figure 3: *C. albicans* from oak are more similar to clinical strains than to each other. Phylogenetic and pairwise sequence comparisons show that the oak strain NCYC 4146 is similar to clade 4 clinical strains (grey), NCYC 4144 is similar to clade 3 clinical strains, and NCYC 4145 is diverged from most sampled strains. a. Maximum likelihood phylogenetic analysis of whole genomes in a concatenated alignment shows that oak strains (green) are more closely related to clinical strains than they are to each other. b. Most parts of the genomes of oak strains are more similar to clinical strains than to other oak strains (green). The genome of each oak was coloured according to the clade assignment of the most similar strain for each 100 kb window in the genome. Regions are coloured white if a strain sequence is diverged from all the other oak or clinical strains that we sampled (the proportion of sites differing is over 0.066%).

Supplemental Files

1. Bensasson_etalTableS1.tsv : a table in text format with tab separated values summarizing heterozygosity analyses for every strain. This includes exact counts of high quality heterozygous base calls (highQualityHetCount); the total length of high quality sequence (highQualityLength; bases with a phred-scaled quality score over 40); the proportion of high quality heterozygous sites; the length of regions that have undergone Loss of Heterozygosity (LOHlength) assessed in 100 kb windows; heterozygosity analysis after excluding LOH regions, centromeres and annotated repeats (annotationLohFilteredHetCount, annotationLohFilteredLength, annotationLohFilteredHeterozygosity); heterozygosity analysis after excluding LOH regions, centromeres and annotated repeats, and regions with more than double the expected read depth (depthFilteredHetCount, depthFilteredLength, depthFilteredHeterozygosity); heterozygosity analysis at 948,860 nucleotide sites that are common to all strains (sitesIn950kbHetCount, sitesIn950kbLength, sitesIn950kbHeterozygosity).
2. Bensasson_etalSupp.pdf : a pdf file with Supplemental Results and Figures S1 to S8. Supplemental Results describe a MLST analysis that shows oak strains are as similar to clinical strains as they are to *C. albicans* from animals.

Summary of Supplemental Figures in Bensasson_etalSupp.pdf :

1. Figure S1 showing the base calling plots used to estimate ploidy and to visualize LOH regions. Ploidy was estimated based on the proportion of base calls differing from the reference at every site in the genome where there is a nucleotide substitution for each clinical strain. This analysis confirms 6 cases of aneuploidy identified by Hirakawa et al (2015): 12C chr4, 19F chr7, L26 chr7, P60002 chr4 and chr6, P78042 chr4.
2. Figure S2 showing read depth across the genome of each strain estimated in 1 kb non-overlapping sliding windows. Read depth was continuously uneven within and between chromosomes for the type strain (NCYC 597) and oak strains (NCYC 4144, NCY 4145, NCYC 4146). This is a problem if a ploidy estimation approach assumes discrete jumps in read depth between chromosomes. In contrast, the assumption of discrete jumps in read depth between chromosomes holds much better for the analysis of the data generated by Hirakawa *et al.* (2015), and our estimates confirm all their aneuploidy calls.

3. Figure S3 showing the distribution of levels of heterozygosity estimated in 100 kb non-overlapping windows across the genome of each strain.
4. Figure S4 showing a. phylogenetic relationships between clinical strains and oak strains using only data from MLST loci. b. phylogenetic relationships between clinical strains, oak strains and animal strains. Oak strains (purple) are more similar to clinical strains than animal strains, which are prefixed with “ST”. Sequence types and clade assignments for domestic and wild animals were determined by Wrobel *et al.* (2008) and sequences were downloaded from <http://pubmlst.org/calbicans/>.
5. Figure S5 showing chromosome-by-chromosome maximum likelihood trees for clinical strains and oak strains.
6. Figure S6 showing that one oak strain (NCYC 4144) shows phylogenetic incongruence in different parts of the genome.
7. Figure S7 showing the genomes of each clinical strain, split into 100 kb windows and colored according to the clade assignment of the most similar clinical strain. In cases where the level of similarity is above that expected for 90% of within-clade comparisons, the 100 kb window is coloured white. a. clade 1 strains; b. clade 2 strains; c. clade 3 strains; d. clade 4 strains; e. clade 6, 8 and 11 strains.
8. Figure S8 showing histograms used to visualize within-clade divergences in 100 kb windows (blue), and to compare these to between-clade divergences (purple). Most within-clade divergences (90%) are below 0.066% (green line) while most between clade divergences are above it. In cases where sequence divergence between sequences is above a threshold of 0.066% chromosomes were painted white in Figures 3b and S7 to show that they were too diverged from other sequences for clade assignment.