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Abstract

Understanding how the visual system encodes natural scenes is a fundamental
goal of sensory neuroscience. We show here that a three-layer network model
predicts the retinal response to natural scenes with an accuracy nearing the
fundamental limits of predictability. The model’s internal structure is interpretable,
in that model units are highly correlated with interneurons recorded separately
and not used to fit the model. We further show the ethological relevance to natural
visual processing of a diverse set of phenomena of complex motion encoding,
adaptation and predictive coding. Our analysis uncovers a fast timescale of visual
processing that is inaccessible directly from experimental data, showing
unexpectedly that ganglion cells signal in distinct modes by rapidly (< 0.1 s)
switching their selectivity for direction of motion, orientation, location and the
sign of intensity. A new approach that decomposes ganglion cell responses into
the contribution of interneurons reveals how the latent effects of parallel retinal
circuits generate the response to any possible stimulus. These results reveal
extremely flexible and rapid dynamics of the retinal code for natural visual stimuli,
explaining the need for a large set of interneuron pathways to generate the
dynamic neural code for natural scenes.

Nearly all of our understanding of retinal computations and circuit mechanisms comes
from artificial stimuli such as flashing spots, drifting gratings and white noise ', which
have unknown relevance to natural visual processing. Although numerous retinal
computations have been identified by such methods including selectivity for specific
types of motion, adaptation to various statistics and prediction of visual features®, the
number of interneurons (>40) is even greater, suggesting an undiscovered complexity in
retinal processing. To characterize the neural code for natural scenes, given that the
vertebrate retina has three layers of cell bodies, we tested whether three layer
convolutional neural network (CNN) models (Figure 1) could predict the responses of
populations of salamander retinal ganglion cells responding to a 50-minute sequence of
either natural images or spatiotemporal white noise. Natural scene images changed
every second, and were jittered with the statistics of fixational eye movements*®,
creating a spatiotemporal stimulus. The model had eight different model cell types in
each of the first and second layers that tiled the visual field, with each cell type having a
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distinct receptive field, and a final layer that represented the responses of individual
ganglion cells. We found that CNN models could predict the responses of ganglion cells
to either natural scenes or white noise nearly up to a fundamental limit of precision set
by intrinsic neural variability, and were substantially more accurate than linear-nonlinear
(LN) models® or generalized linear models (GLMs) ' (Figure 1B, C). Based on results
varying the number of cell types in the first two layers, eight cell types were chosen as
the minimum number that achieved the maximal model performance (Fig. 1D).

CNNs internal units are highly correlated with interneuron responses

To examine whether the internal computations of CNN models were similar to those
expected in the retina, we computed receptive fields for first and second layer model cell
types in CNNs trained on responses to natural scenes. We found that the receptive
fields of CNN model cells had the well-known structure of retinal interneurons’®, with a
spatially localized center-surround structure (Fig. 2A-B), a mix of On and Off responses,
and both monophasic and biphasic temporal filters.

In inferotemporal cortex, units of CNNs have been shown to be correlated with a linear
combination of the activity of individual neurons® making it difficult to draw conclusions
about individual neurons by an examination of CNN units. We compared the activity of
CNN units to interneuron recordings performed on separate retinae that the model was
never fit to (Fig. 3A). The stimulus presented to the retina and separately to the model
was a spatiotemporal white noise checkerboard, a stimulus that has no spatiotemporal
correlations except for the 50 ym size and 10 ms duration of square stimulus regions.
We compared each interneuron recording with 8 units of the first layer and 8 units of the
second layer at each location to find the most correlated unit in the model at the location
of the cell. We found that each recorded interneuron was highly correlated with a
particular unit type, and only at a single location (Figure 3B-E). Spatiotemporal receptive
fields were highly similar between recorded interneurons, and their most correlated
model cell type (Fig. 3B). The magnitude of this correlation approached the variability of
the interneurons themselves, as assessed by using an LN model fit to the interneuron to
predict another segment of the interneuron’s own response (Figure 3 C,D). This
correlation was specific for individual unit types, as could be observed by ranking the
model cell types from most to least correlated, and finding that the second and lower
most correlated model cell types were substantially less correlated with the interneuron
than the most correlated cell type (Fig. 3 D,E). This high correlation did not arise by
chance as a “null” CNN model fit by shuffling spikes relative to the stimulus did not
produce internal units correlated with interneuron responses (Fig. 3D, E). Therefore,
fitting a CNN model to the natural scene responses of retinal ganglion cells alone
models an entire population of interneurons, many of which have high correlation with
measured interneuron responses created with a different stimulus and a different retina.

A wide range of retinal phenomena are engaged by natural stimuli

Numerous nonlinear computations have been identified by presenting artificial stimuli to
the retina, including flashing spots, moving bars and white noise. However we neither
understand to what degree natural vision engages these diverse retinal computations
elicited by artificial stimuli, nor understand the relationship between these computations
under natural scenes and underlying retinal circuitry. We tested models fit either only to
natural scenes or white noise by exposing them to a battery of structured stimuli
previously used in the literature to identify and describe retinal phenomena. We focused
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on effects shorter than 400 ms, which was the longest timescale our model could
reproduce as limited by the first layer spatiotemporal filter. Remarkably, the CNN model
exhibited fast contrast '°'? adaptation (Fig. 4A), latency encoding * (Fig.

4B), synchronized responses to motion reversal "(Fig. 4C), motion anticipation ™ (Fig.
4D), the omitted stimulus response '° (Fig. 4E), frequency doubling in response to
reversing gratings ° (Fig. 4F) and polarity reversal '’ (Fig. 4G). All of these response
properties arose in a single CNN model simply as a by-product of optimizing the models
to capture ganglion cell responses to natural scenes. CNN models trained on white
noise did not exhibit all of these phenomena, in particular failing to capture fast contrast
adaptation, latency encoding and the omitted stimulus response, indicating that natural
scene statistics trigger nonlinear computations that white noise does not. Even though
these natural scenes consisted only of a sequence of images jittered with the statistics of
fixational eye movements (the stimulus contained no explicit object motion or periodic
patterns), the CNNs still exhibited motion anticipation and reversal, and the omitted
stimulus response.

The only retinal phenomenon tested that was not captured by the model was the object
motion sensitive (OMS) response®, a computation thought to discriminate object motion
from retinal motion due to eye movements. We hypothesized that the absence of an
OMS response in the model was due to the lack of differential motion in the training
stimulus, and trained additional models on the retinal response to movies of swimming
fish that include differential motion. We found that these models did indeed exhibit an
OMS response (Fig. 4H). Thus the model reveals whether retinal computations triggered
by one stimulus occur in another, in particular during natural scenes.

Interneuron contributions to a dynamic visual code

Receptive fields in sensory neuroscience are typically thought of as representing a static
sensory feature, although it is known that this feature can change slowly due to
adaptation to the statistics of the stimulus '®%°. A particularly advantageous property of
CNN models is that rapid dynamics of visual sensitivity can be examined by computing
the instantaneous receptive field (IRF), which can be easily calculated as the gradient of
the model output with respect to the current stimulus (Fig. 5A). This can be done at each
moment of time, allowing us to examine for the first time the full dynamics of the
receptive field and assign those dynamics to the action of interneurons.

IRFs changed with extremely rapid dynamics on the scale of tens of ms, as judged by
comparing the correlation coefficient between IRFs at different time delays. The
dynamics of the IRF were limited by stimulus correlations, in that for an uncorrelated
stimulus (white noise), the IRF changed from its previous value with a time constant of ~
30 ms (Fig 5B). To examine these rapid changes in feature selectivity, we clustered the
IRFs computed at each time point, revealing that during natural stimuli the retina
signaled in different modes that changed rapidly depending on the stimulus frame (Fig.
5, C - E). By computing the average stimulus for each IRF cluster, we unexpectedly
found new phenomena triggered by different ethologically relevant stimuli. The presence
of an edge changed the IRF to be maximally sensitive to motion of that edge, and the
direction of motion and orientation preference changed with the intensity gradient of the
edge (Fig 5 C, E). IRFs also showed much stronger direction and orientation selectivity
than could be observed in the mean receptive field (MRF) (Fig 5E). The location of the
IRF showed also substantial variation compared to the MRF (Fig. 5E). Furthermore,
changes in local stimulus intensity reversed the polarity of the IRF (Fig. 5E), indicating a
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local effect distinct from previously reported polarity reversal triggered by peripheral
stimuli".

Because the IRF is a mathematical sum of the features conveyed by different
interneuron pathways in the model, we investigated the source of these dynamic
receptive fields by performing an exact decomposition of a ganglion cell’s response into
the Interneuron Contributions (INCs) of each of the 8 model cell types in the first layer at
each time point (Fig. 6), using the method of Integrated Gradients 2"*

(see methods). Intuitively, the INC is the product of the sensitivity of the model
interneuron to the stimulus and the sensitivity of the model output to the model
interneuron, and is an application of the multivariable chain rule. Thus to determine the
effect of an interneuron on the circuit’'s output, this analysis takes account of both a cell’s
input (its receptive field) and its output (projective field) %. To assess the model
interneuron’s contribution over a range of stimuli rather than a single point in stimulus
space, the INC is integrated over a straight path of increasing contrast from the zero
stimulus, a grey screen, to the particular stimulus frame. This new type of analysis is
different than simply examining the representation of a stimulus in a neural population,
and reveals how an interneuron population uses that stimulus representation to change
the model circuit’s output.

We identified the patterns of INCs that generate the code for natural stimuli, white noise
and artificially structured stimuli. We found surprisingly that the interneuron patterns
generating responses to some artificial stimuli live within the space of those elicited by
natural stimuli but not within the space of white noise (Fig. 6 B, C), showing that these
artificially structured stimuli are indeed ethologically relevant to understanding the retinal
code under natural scenes. This further explains why models fit to natural scenes but not
white noise recapitulated the previously described phenomena triggered by these
structured stimuli — white noise is insufficient to explore the stimulus space that triggers
these phenomena, but natural scenes are. Thus, natural scenes drive the set of
interneuron contributions into a set of states that encompasses previously explored
artificial stimuli, showing the relevance of stimuli of unknown functional relevance such
as the omitted stimulus response™®.

These results capture the dynamic retinal code of natural scenes, and connect that code
to much of the retinal phenomenology previously described. This approach reveals the
extensive rapid changes of the neural code on a previously inaccessible timescale, and
enables a direct determination of the contribution of cell types to any arbitrary stimulus.
Because model cell types have high correlation with retinal interneurons, this approach
will serve as the foundation to define how interneuron patterns generate the dynamic
neural code for natural scenes.

Methods

Visual Stimuli. A video monitor projected the visual stimuli at 30 Hz controlled by
Matlab (Mathworks), using Psychophysics Toolbox . Stimuli had a constant mean

intensity of 12:;W. Images were presented in a 50 x 50 grid with a square size of 25 ym
at a frame rate of 100 Hz. Static natural jittered scenes consisted of images drawn from
a natural image database ?° and drifted in two dimensions with the approximate statistics
of fixational eye movements®. The image also changed to a different location every one

second, representing a saccade-like transition. Natural movies consisted of fish
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swimming in an aquarium, and contained both drift and saccade-like transitions that
matched static jittered natural scenes. For analysis of model responses to artificial
stimuli (Fig. 3), unless otherwise stated stimuli were chosen to match published values
for each phenomenon.

Electrophysiology. Retinal ganglion cells of larval tiger salamanders of either sex were
recorded using an array of 60 electrodes (Multichannel Systems) as previously
described . Intracellular recordings were performed using sharp as previously
described.

Model training. We trained convolutional neural network models to predict retinal
ganglion cell responses to either a white noise or natural scenes stimulus,
simultaneously for all cells in the recorded population of a given retina 2’ Model
parameters were optimized to minimize a loss function corresponding to the negative
log-likelihood under Poisson spike generatiog,

X 1 . X
L(yt, 9t) = T ; Ut — y¢ log ye.
where Yt and Yt are the actual and predicted firing rates of the retinal ganglion cells at
time {, respectively with a batch size of T, chosen to be 50 s. To help with model fitting,
we smoothed retinal ganglion responses during training with a 10 ms standard deviation
Gaussian, the size of a single time bin in our model.

The architecture of the convolutional neural network model consisted of three layers,
with 8 cell types (or channels, in the language of neural networks) per layer. Each layer
consisted of a linear spatiotemporal filter, followed by a rectification using a rectified
linear unit (ReLU). For each unit, an additional parameter scaled the activation of the
model unit prior to the rectified nonlinearity. This scaling parameter could vary
independently with location.

Optimization was performed using Adam %, a variant of stochastic gradient descent.
Models were trained using TensorFlow® or PyTorch® on NVIDIA Titan X GPUs.
Training an individual model to convergence required ~8 hours on a single GPU. The
networks were regularized with an L2 weight penalty at each layer and an L1 activity
penalty at the final layer, which helped maintain a baseline firing rate near 0 Hz.

During optimization, the spatial components of linear filters were implemented as a
series of stacked linear convolutions, each consisting of a series of 3 x 3 filters. Thus
seven sequential 3 x 3 filters were applied to generate a 15 x 15 filter. After optimization,
these sequential filters were collapsed into a single linear filter. Therefore, this procedure
did not change the final architecture of the model, but improved the model’s
performance, presumably by reducing the number of parameters.

We split our dataset into training, validation, and test sets, and chose the number of
layers, number of filters per layer, the type of layer (convolutional or fully connected),
size of filters, regularization hyperparameters, and learning rate based on performance
on the validation set. We found that increasing the number of layers beyond three did
not improve performance, and we settled on eight filter types in both the first and second
layers, with filters that were much larger (Layer 1,15 x 15 and Layer 2, 11 x 11)
compared to traditional deep learning networks used for image classification (usually 5 x
5 or smaller). Values quoted are mean * s.e.m. unless otherwise stated.
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Linear-Nonlinear Models. Linear-nonlinear models were fit by the standard method of
reverse correlation to a white noise stimulus °. We found that these were highly
susceptible to overfitting the training dataset, and imposed an additional regularization
procedure of zeroing out the stimulus outside of a 500 yum window centered on the cell’s
receptive field.

Generalized Linear Models. Generalized linear models (GLMs) were fit by minimizing the
same objective as used for the CNN, the Poisson log-likelihood of data under the model.
We performed the same cutout regularization procedure of only keeping the stimulus
within a 500 ym region around the receptive field (this was critical for performance). The
GLMs differed from the linear-nonlinear models in that they have an additional spike
history feedback term used to predict the cell’s response (Pillow et. al. 2008). Instead of
the standard exponential nonlinearity, we found that using soft rectified functions
log(1+exp(x)) gave better performance.

Interneuron contributions
To identify the contribution of each model neuron to the processing of specific visual
stimuli, we used the recently developed method of Integrated Gradients

2122 to decompose a ganglion cell’s firing rate into the Interneuron Contributions (INCs)
of each of the 8 model cell types by performing path integral. I\}/I_e[atherr]\atically, the trained
rit) = JF|slt)

deep learning model represents a nonlinear function , Where (t)is the

. TAR= R-’?U:-::')U:-: 10 . L . . .
output firing rate and 1%/ € is the movie input. Using the line integral
s(t: o) = as(t) where the path takes a straight line & : 0 — 1, and assuming

0= Fls(t: U:']wcla obtain an equality 1
Fls(t: 1)] = / ‘ EsLa) s(t) - / (1(1(
Jo 0

s o s

s(t.a) s(t.a),

Our goal is to quantify the contributions of the first layer model units

NI b _
2ot = " cl®s(t) + br, where “[1]” refers to an index of the layer, “c” refers to

-[1
channel, al u{ " is the linear convolutional filter, and be is the bias parameter.
Therefore we further apply th(la chain rule to define the INC of c-th channel (-4r) as
. ) . OF
=Y ey [datm =Y
. J0 Oze ' ls(t.a) . _
Finally, the spatially averaged INCs Ac:1~8 forms a vector with eight elements, which is

taken as the contribution of that model cell type to the model output at that instant of
time.

Figure Legends

Figure 1. Convolutional neural networks provide accurate models of the retinal
response to natural scenes. (A) Convolutional neural network model trained to predict
the firing rate of simultaneously recorded retinal ganglion cells from the spatiotemporal
movie of natural scenes. The first layer is a spatiotemporal convolution, the second is a
spatial convolution, and the third is a final dense layer, with rectifying nonlinearities in
between each layer. Each location within the model also has a single parameter that
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scales the amplitude of the response. (B) PSTHs comparing recorded data and Linear-
Nonlinear (LN) or CNN models for the test data set. (C) Comparison of LN, Generalized
Linear Model (GLM) and CNN model predictions for a 25 second segment of a natural
scene movie. Correlation coefficients are for the test data set, as compared to the retinal
reliability of ganglion cell PSTHs correlated between different sets of trials (dotted line is
mean, grey bar is 1 s.e.m.) (D) Correlation coefficient between model and test data set
for different numbers of cell types in the first and second layer. Dashed line indicates 8
cell types, the value chosen for further analysis in this study.

Figure 2. Structure of receptive fields of model cell types. (A) Receptive fields of
model units in Layer 1 computed by presenting a white noise stimulus to the model, and
shown as the spatial and temporal average of the space-time separable approximation
to the receptive field. (B) Same for Layer 2.

Figure 3. Model internal units are correlated with interneuron responses. (A)
Schematic of experiment. Models were fit to natural scenes or white noise stimuli.
Bipolar or amacrine cells from a different retina were recorded intracellularly responding
to a different white noise sequence. (B) Spatiotemporal receptive fields of example
interneurons recorded from a separate retina, and the model unit that was most
correlated with that interneuron. The model was never fit to the interneuron’s response.
(C) Top. Correlation map of a model cell type with the response of an interneuron
recorded from a different retina to a white noise stimulus. Each pixel is the correlation
between the interneuron and a different spatial location within a single model cell type.
Bottom. Responses compared to the most correlated model unit and the interneuron. (D)
The average correlation between different interneuron types (7 bipolar, 26 amacrine)
and model cell types ranked from most correlated model unit (left) to least (right).
Dashed lines indicate the correlation between an interneuron’s response and an LN
model fit to a separate segment of the recording from the same interneuron. Thus, the
correlation between model units and interneurons approaches the variability of the
interneurons themselves. Dotted lines indicates correlation between interneuron
responses and a null model, fit after taking the spikes of a ganglion cell in 5 second
blocks and shifting them randomly relative to the stimulus (E). Average correlation
between interneuron recordings and the most correlated CNN unit from a different retina,
an LN model fit to the same interneuron, and the null model.

Figure 4. CNN models reveal that many nonlinear retinal computations are
engaged in natural scenes. After fitting a model to natural scenes, a number of
artificially structured stimuli were presented to the model. (A) Contrast adaptation. Left.
LN model of a ganglion cell responding to a uniform field stimulus with low or high
contrast, showing adaptive changes in temporal filtering and gain. Middle, Median
temporal frequency taken from the Fourier transform of the temporal filter, averaged over
a population of ganglion cells as a function of contrast. Results shown for models fit to
natural scenes and white noise. Right, Averaged gain measured as the slope of the
nonlinearity as a function of contrast, showing that CNN models decrease their decrease
their gain with contrast when fit to natural scenes, but not when fit to white noise. (B)
Latency encoding. Left: Flash response with intensities ranging from weak to strong.
Right: Latency of the peak response vs. stimulus intensity for models trained on natural
scenes or white noise. (C) Motion reversal. Stimulus consists of a moving bar that
abruptly reverses direction at different positions. Left. Published results of a population
of ganglion cells showing a synchronous response (arrow) to the reversal. Also shown is
the population response of CNN model cells. (D) Motion anticipation. Population
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ganglion cell responses to a flashed bar (red) vs motion to the right (blue) or left (green),
from published results® (left) or the CNN model (right). (E) Omitted stimulus response
(OSR). Left. Published results'® showing the response to a missing stimulus following a
train of flashes. Right. CNN model response to a sequence of three flashes. The OSR
(arrow) appears for models trained on natural scenes but not white noise. (F) Frequency
doubling in response to reversing gratings of different width, computed as the ratio of the
response at twice the stimulus frequency (F2) and the response at the stimulus
frequency (F1). (G) Polarity reversal. Example reversal of polarity during a natural image
sequence. Each panel shows the current image (top) and corresponding instantaneous
receptive field (bottom) for an example cell at a fixed delay (~100 ms) relative to the
stimulus at different times during the sequence, showing fast kernel reversal from an
OFF- feature (blue) to ON- (red) and back. Rapid receptive field changes are further
analyzed in Fig. 5. (H). Object Motion Sensitivity. CNN models were fit to either jittered
static images or natural movies consisting of swimming fish in the presence of image
jitter and saccade-like transitions. Stimuli were then shown to the model consisting of a
jittering central grating surrounded by a jittering background grating. Gratings moved
either synchronously (Global motion) representing eye movements, or asynchronously
(Differential Motion) representing object motion. Shown is the ratio of firing rates in
Global Motion to Differential Motion. A ratio much less than one indicates Object Motion
Sensitivity. Results for (A-F) are from a population of 26 ganglion cells. Figures
reproduced with permission from authors.

Figure 5. Dynamic mode switching of retinal receptive fields. (A) Diagram of the
instantaneous receptive field (IRF) as the sensitivity of the ganglion cell to the stimulus
at each moment. (B) Average correlation coefficient between IRFs at different times
separated by a time interval At for white noise and natural scenes. Also shown for
comparison are average correlations between stimulus frames. (C) Four IRF clusters for
a single cell. Top Row: Average spatiotemporal stimulus that drove an IRF cluster,
shown as a sequence of stimulus frames from 200 ms to 100 ms preceding a spike.
Bottom Row: The mean spatiotemporal IRF in each cluster. Left, Two different IRF
clusters showing motion sensitivity (Top: motion up, Bottom: motion down), which were
driven by an edge. Right. IRF clusters driven by intensity changes showing a biphasic
OFF receptive field when the background intensity changed, and a biphasic On
receptive field when the stimulus center brightened. (D) t-sne analysis of IRFs, colored
by cluster identity from k-means clustering of IRFs performed separately. (E) Top left.
For 26 neurons with 12 IRFs clusters each, radial axis shows Direction Selectivity Index
for IRFs and mean receptive field (MRF), plotted against the preferred angle of motion.
Top right. Same for Orientation Selectivity Index. Bottom left. Normalized value of the
first peak (either positive or negative) of the temporal filter, plotted against the time of the
peak for IRFs and MRF. Bottom right. The position of the center of mass of IRFs relative
to the center of mass of the MRF (black point at zero). 50 ym corresponds to ~ one
visual degree.

Figure 6. Interneuron contributions to natural and artificial scenes. (A) Diagram of
concept of Interneuron Contributions (INCs), which represent how much each model unit
(cell) contributes to the model’s output for each particular stimulus (see methods). We
focused on the contribution of Layer 1 model units, and averaged over all units of a
given type (B) INCs for the 8 cell types for the model’s first layer for a natural stimulus
sequence. Each colored row shows the contribution of a cell type in layer 1 of the model.
(C) t-SNE plot including natural scenes, white noise, and several artificially structured
stimuli that can be summarized by a single 400 ms stimulus sequence. Each point in the
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plot represents the vector of interneurons in layer 1 contributing to the response at a
single time point.
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