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Abstract

We propose a Bayesian method for the classification of 16S rRNA metagenomic profiles of
bacterial abundance, by introducing a Poisson-Dirichlet-Multinomial hierarchical model
for the sequencing data, constructing a prior distribution from sample data, calculating
the posterior distribution in closed form; and deriving an Optimal Bayesian Classifier
(OBC). The proposed algorithm is compared to state-of-the-art classification methods
for 16S rRNA metagenomic data, including Random Forests and the phylogeny-based
Metaphyl algorithm, for varying sample size, classification difficulty, and dimensionality
(number of OTUs), using both synthetic and real metagenomic data sets. The results
demonstrate that the proposed OBC method, with either noninformative or constructed
priors, is competitive or superior to the other methods. In particular, in the case where
the ratio of sample size to dimensionality is small, it was observed that the proposed
method can vastly outperform the others.

Author summary

Recent studies have highlighted the interplay between host genetics, gut microbes, and
colorectal tumor initiation/progression. The characterization of microbial communities
using metagenomic profiling has therefore received renewed interest. In this paper,
we propose a method for classification, i.e., prediction of different outcomes, based on
16S rRNA metagenomic data. The proposed method employs a Bayesian approach,
which is suitable for data sets with small ration of number of available instances to
the dimensionality. Results using both synthetic and real metagenomic data show that
the proposed method can outperform other state-of-the-art metagenomic classification
algorithms.

Introduction

Many recent studies using both preclinical models and human subjects have high-
lighted the interplay between host genetics, gut microbes, and colorectal tumor initia-
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tion/progression. For instance, the findings in [1] provided novel insights into the complex
effects of inflammation on microbial composition/activity and the host’s intestinal mu-
cosa ability to protect itself from microorganisms with genotoxic capabilities. Also, from
a mechanistic perspective, the study in [2] demonstrated that Frizzled proteins (receptors
that regulate Wnt signaling, required for colonic stem cell maintenance, self-renewal,
and repair of the epithelial lining) can be activated by toxin B produced by pathogenic
bacteria (Clostridium difficile). These findings demonstrate that colonic stem cells are
the target of some microbial toxins. Moreover, the results in [3] demonstrated that
dietary fiber and fat content have a remarkable effect on the colonic microbiota and its
metabolic activity in high-risk vs. low-risk cancer populations.

There is ample evidence that the microbiome (eg, patchy bacterial biofilms) in the gut
can modulate host immune cell function, promoting low-grade chronic inflammation. This,
combined with intestinal barrier deterioration induced by (1) colorectal cancer—initiating
genetic lesions, and (2) crosstalk between microbiota and diets low in fiber, results in the
invasion of secreted microbial products (eg, oncotoxins), which can drive tumor growth.
Intriguingly, the protective effects of dietary fiber on cancer development may be based
on dramatic shifts in microbial community function—particularly short-chain fatty acid
production—which stimulate gut mucosal metabolism and increase epithelial barrier
function.

The characterization of microbial communities by 16S rRNA gene amplicon sequencing
has received renewed interest in the last decade, in part due to the emergence of high-
throughput sequencing technology [4]. Microbial metagenomics provides a means to
determine what organisms are present without the need for isolation and culturing. Next
generation sequencing, applied to microbial metagenomics, has transformed the study
of microbial diversity [5]. For amplicons reads it is possible to classify sequence reads
against known taxa, and determine a list of those organisms that are present and the
read frequency associated with them [6]. In this case an unsupervised strategy can be
used to identify proxies to traditional taxonomic units by clustering sequences, so called
Operational Taxonomic Units (OTUs).

State-of-the-art classification methods for 16S rRNA metagenomic data include
Random Forests (RF) [7,8] and the phylogeny-based Metaphyl algorithm [9]. RF is a
popular classification algorithm, the basic principle of which is to generate a number of
random classification trees, and then classify a test point by majority voting among the
trees. The most important procedure for generating the ensemble of trees is to search for
the best split at each node of the tree over a random selection of from a large number
of features, which is the method proposed in [7], but other procedures are possible [8].
Random forests have proved to be very successful in Bioinformatics [19]. In metagenomics,
in particular, they have become the industry standard [10,11]. The Metaphyl algorithm
of [9], on the other hand, seeks to introduce prior biological information in the form of
microbial species phylogenetic trees, under the assumption that the natural hierarchical
grouping of features contained in the phylogeny can help the classification procedure.
The Metaphyl classifier is obtained by a regularized maximum-likelihood procedure
where the penalty term is guided by the phylogeny tree. Many other approaches for
the classification of metagenomic data can be found in the literature; see [9] for a good
review of those.

In this paper, we consider a Bayesian paradigm for including prior knowledge, which
consists of 1) a hierarchical model for the 16S rRNA metagenomic data, where each
microbial sample is represented as a set of operational taxonomic unit (OTU) frequencies;
2) prior distribution construction; 3) posterior distribution calculation from the sample
data in closed form; 4) derivation of an Optimal Bayesian Classifier (OBC) [12]. The
prior distribution on the parameters expresses the biological information available about
the problem; in the absence of external knowledge, one may use a “noninformative’
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prior, or construct the prior from a small portion of the available data (we consider both
approaches in our numerical experiments). The hierarchical model proposed here allows
computation of the posterior probability distribution in closed form, without a need for
computationally-expensive, approximate Monte-Carlo Markov-Chain computations. The
posterior distributions are used to derive the OBC, which minimizes the expected error
over the space of all classifiers under the assumed likelihood model. Ordinary “Bayes”
classifiers minimize the misclassification probability when the underlying distributions are
known. However, Optimal Bayesian classification trains a classifier from data assuming
the underlying distributions are not known exactly, but are rather part of an uncertainty
class of distributions, each having a weight based on the prior and the observed data.

The advantages of the proposed OBC classification algorithm include being applicable:
1) in the absence of phylogenetic information (required by the the Metaphyl algorithm),
2) presence of multiple classes, 3) with small ratios of sample size to dimensionality. The
performance of the proposed approach is compared to both the Random Forest and
Metaphyl algorithms, as well as a state-of-the-art nonlinear radial-basis function (RBF)
Support Vector Machine (SVM) algorithm, using both synthetic and real-world 16S
rRNA metagenomic data sets, for varying sample size, dimensionality, and classification
difficulty. The results show that the OBC classifier with both noninformative and
constructed prior consistently outperform the others on the synthetic data. On the real
data sets, the proposed OBC with constructed prior is competitive with the Random
Forest algorithm and outperforms the Metaphyl and SVM algorithms on three of the
four data sets using pre-defined training-testing splits; the fourth data set is resampled
to simulate small ratios of sample size to dimensionality (i.e., number of OTUs), in which
case the proposed OBC method, with either noninformative or constructed priors, vastly
outperformed all other methods. We remark that a summary of this work, without the
real data results or the prior construction method, appeared in [13].

1 Materials and Methods

1.1 Model for 16S rRNA Metagenomic Data

We propose a Poisson-Dirichlet-Multinomial (PDM) hierarchical Bayesian model for 16S
rRNA metagenomic microbial abundance data. Multinomial sampling has been used
previously in the study of microbial communities [14,15]; the novelty of our approach
resides in adding Dirichlet and Poisson distributions to allow for OTU sparsity and a
varying number of total reads in the sequencing experiment.

Let M be the number of OTUs, and let x = (x1,...,x) be the microbial abundance
vector, where x; is the number of sequencing reads corresponding to the j-th OTU, for

j=1,...,M. Let N = Z]M:1 x; be the total number of sequencing reads. Since N is
bound to change across different experiments, we model this parameter as a Poisson
random variable with parameter A\. The hierarchical model for x assumes a multinomial
distribution with probability vector parameter p = (p1,--- ,par) and N:

J

o p;
p(x|p,N) = Multinomial(p, N) = N!Hévilxij!

(1)

The parameters of the model are p and A. The prior distribution for p is assumed to
be a Dirichlet distribution with hyperparameter 8 = (01,...,0,), while the prior for
A is a Gamma distribution with hyperparameters «, 8. We point out that there is in
general separate set of parameters and priors, one for each class label (some may be
shared between classes), but for simplicity we have not denoted this in this section. See
Fig. 1 for a graphical representation of the proposed hierarchical model.
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Fig 1. Poisson-Dirichlet-Multinomial hierarchical Bayesian model for 16S rRNA
metagenomic microbial abundance data.

1.2 Prior Construction

Prior construction concerns setting the values of the hyperparameters to reflect external
knowledge about the model. If no external knowledge is available, the hyperparameters
may be set to make the priors noninformative [16]. In this paper, we assume a noninfor-
mative prior for A\ by setting « = 8 = 1, but for p, we consider both noninformative
and informative priors. In the former case, we set § = (1,...,1), in which case the
Dirichlet becomes a uniform distribution. In the informative case, we estimate the
hyperparameters though a maximum-likelihood procedure using a subset of the available
data. This procedure is similar to the one in [17], except that we do not impose any
prior knowledge constraints, i.e., the process is entirely data-driven. We describe this
procedure next.

We divide the data S, into two subsamples, one for constructing the prior, and
another for deriving the posterior and obtaining the classifier (which is discussed in the
next two sections). In all that follows, we consider the binary classification problem, but
the approach can be easily adapted to multiple classes (which is the case for some of
the data sets considered in Section 2. The class-specific sample sizes nf, and nf used for
prior construction are set to a fixed proportion of the original sample sizes ng and n,
respectively, where the indices indicate the class label (in this paper, the ratio is 0.3). In
the sequel we omit the class label to simplify the notation, but the Dirichlet parameters
are fitted separately for each class.

Let SV = {x?,...,x",} be the sample for constructing the prior, and let N* =
M 2P be the total number of sequencing reads in the [-th profile, for [ = 1,...,nP.
j=1"1j

Consider the mean log-likelihood

rior 1 i
06 S5") = — > logp(x] | p, N]). (2)

P =

Our objective is to maximize the expected mean-likelihood with respect to the parameter
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to obtain the constructed prior:

Peonstr(0) = argmax Eg[((8; STM)] (3)
p(0)€ll

where II is the set of all Dirichlet priors. Using (1), we have

Tp zfj
rior 1 D
(O Sp) = — > log | NI, ~5 (4)
np ;!
np M
==721MWHXFN%W1%$H ()
P =1 j=1
It can be shown that
. 1 M
Eplt(8: S5™)] = = | Egllog(Ni)] + D _[a1;(8) = (4L, k) — log(afy] | . (6)
P=1 j=1
where () = “logI'(d) is a digamma function. The optimization in (3) involves

transforming the problem to maximization over the hyperparameter space and then
applying a numerical procedure, such as conjugate gradient descent, to find the desired
hyperparameter values. More details can be found in [17].

1.3 Posterior Distribution Calculation

The structure of the model proposed in Section 1.1 allows the exact calculation of the
posterior probabilities, avoiding the approximations and computational cost of MCMC
methods. Let S¥ain = {xJ,... ,xgé,x%, . ,x}li} be the training data. The posterior
distributions for the parameters (8”,\) for classes y = 0,1 (parameter )\ is shared
between the classes) are determined as follows:

(6%, A SH) o p(0y»A) (S5 8y, A)
oc p(p[6*)p(A e, B p(x b}, -, 03y, NYID(NY [ N),

M (Zz 1Ny+o‘) Y
:FQLlJ)W+n) ‘N%WMZ N*“Hﬂﬂf y=01, (7)

ILLE) TS N +a) ’
where N/ = ijl a7 is the number of reads for each profile, i = 1,---,ny, y = 0,1,
and@y—ﬁy—i-zzlxm,] - M, y=0,1.

1.4 Optimal Bayesian Classifier

Let ¢ : R* — 0,1 be a classifier designed on training data S = Sﬁﬁai“, which takes
metagenomic abundance profiles X € R? into one of the two labels 0 or 1. The error of
the classifier is the probability of a mistake given the sample data:

e[l = P(Y(X) #Y [ 9), (8)

where Y € {0,1} denotes the true label corresponding to X.
Now, in the Bayesian setting presently adopted, the joint distribution of X,Y)
depends on a random parameter vector Y. For example, in our case, T = (8°,6%, \).
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In addition, the joint distribution depends on the prevalence c = P(Y = 1| Y). The
expected value of the classification error over the posterior distribution of Y becomes
the quantity of interest:

Eyislev[¥]] = Exs[P(¥(X) #Y | T,9)], 9)

The OBC [12] is the classifier that minimizes the quantity in Eq 9. It was shown in [12]
that the OBC is given by

" (x) = 0, ifEyglp(x|Y =0)> (- Eygld)px|Y =1),
oBC 1, otherwise,
where
px|Y =) = [ o | XY = (T |V = S0y =01 (10

are the effective class-conditional densities and p(T | Y = y,S) are the parameter
posterior probabilities, for y = 0, 1.

Plugging Eqs 1 and 7 into 10 leads to an integration that can be accomplished
analytically, without a need for MCMC methods, yielding the effective class- conditional
densities

j=17"j
L0 + 1) LTE) (o NY +a) TN+ X205, 6)
(" NY N
% (Zz:l % —J;Oé—‘r ) , y:O,l, (11)
(nlt} + ﬂ + 1)(21:1!1 Nz'yJFO‘JFN)

ryM g (0%, NY+e) TIL T (a; + 0
N M,

In addition, we assume that the parameter c is beta distributed with hyperparameters
(Bo, B1), independently of T (prior to observing the data). It can be shown that the
posterior distribution p(c | S) is also beta with hyperparameters 8y + nf, and 81 +n!, in

ng+Bo

which case Ey|s[d] = 555

in Eq 10.
Fig 2 displays a diagram that summarizes the entire proposed approach to the
classification problem.

. This completes the specification of the OBC classifier

Fig 2. Proposed optimal Bayesian classifier for 16S rRNA metagenomic data.

2 Results

In this section, the performance of the proposed classification approach is compared to
state-of-the-art metagenomic classification algorithms in the literature, using synthetic
and real-world data sets.
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Table 1. Summary of real metagenomic data sets

Data set Training samples Test samples Number of OTUs Number of classes

CBH 415 207 2741 6
FS 68 33 565 3
FSH 68 33 565 6
Twin Gut 257 - 5462 2

2.1 Synthetic Data Results

Synthetic OTU abundance data and phylogeny trees were generated using the strategy
proposed in [9], which considers a common phylogenetic tree T for the OTUs in all
the 16S rRNA metagnomic profiles. To generate sample data for each class, the tree
is traversed systematically, deciding for each internal node v what fraction of species
would come from each of the subtrees rooted at the child nodes of v.

Two parameters are assigned to each node v for each class y: p¥ is the average
proportion of species that correspond to the subtree rooted at the left child node of
v in the class y, and (0¥)? is the variance of this proportion within the class. A new
metagenomic profile is generated by sampling the pro- portions of species at each node
v according to the normal distribution N (p¢, (¢¢)?). The value of p¥ is in turn sampled
from the normal distribution N(i¥, (5,)?), where &, characterizes the variance between
the classes, while ji¥ are base values. The within- and between-class variances can be
controlled by using the parameters ¥ and &,, respectively. The exact values of ¥ and
o, will be sampled at each tree node v according to N (0, Ad(v)) and N (0, Ad(v)), where
d(v) is the distance between v and the tree root. Note that the parameters lambda and
A influence the difficulty of the classification problem, which is proportional to A and
inversely proportional to .

We consider a total of 128 OTUs and three sample sizes for the training data,
n = 30,50, 70, with equal class prevalences, ¢ = 0.5. To generate data sets of different
complexity, we considered values for A and A of 0.5, 1 and 1.5. The sample sizes ny and
ny are fixed at ng = n; = n/2. Classifier accuracy is obtained by testing each designed
classifier on a large synthetic test data set, and averaging the results over 1000 iterations
using different synthetic training data sets.

Fig. 3 compares the performance of our proposed optimal Bayesian classifier, using
both noninformative and constructed priors, against that of the kernel SVM [18], RF [19]
and MetaPhyl [9] classification algorithms, mentioned in Section 1. As expected, the
classification error rate is reduced when the variance within class was decreased and
variance between classes was increased. Also as the sample size increases, classification
performance improves for all classification rules. We observe that the kernel SVM
classifier clearly performs poorly comparing to other classifiers, the RF and Metaphyl
classifier have comparable performance overall, while the proposed OBC classifier exhibits
the best performance over different values for between and within class variances.

2.2 Real Data Results

Here, we consider four different 16S rRNA metagenomic data sets. The sample sizes,
dimensionality, and number of classes of each data set are displayed in Table 1. Each of
these data sets is accompanied by a phylogeny tree, which allows the application of the
Metaphy! classification algorithm.

Costello et al. Body Habitats (CBH) [20]: The biogeography of bacterial communi-
ties on the human body is critical for establishing healthy baselines and it helps to detect
differences associated with diseases. These data included sample communities from six
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Fig 3. Comparison of Kernel SVM, RF, MetaPhyl and Optimal Bayesian classifier
with uniform and constructed priors on simulated data sets for varying sample size and
within- and between-class variances, reflecting an increasing difficulty of classification.
Each sample abundance profile contains 128 OTUs.

major categories of habitat: External Auditory Canal (EAC), Gut, Hair, Nostril, Oral
cavity, and Skin. This data set is an example of a relatively easy classification task due to
the generally pronounced differences between the communities. These microbiota, varies
systematically across body habitats and time; such trends may reveal how microbiome
changes cause or prevent disease [20].

Fierer et al. Subject (FS) [21]. In this work they show that skin-associated bacteria
can be readily recovered from surfaces and the structure of communities can be used to
differentiate objects handled by different individuals. This data set contains all samples
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from the "keyboard” data set, for which at least 397 raw sequences were recovered [14].
The class labels are the anonymized identities of the three experimental subjects. This
classification task is the easiest of all four data sets because of the clear distinctions
between the individuals, the fact that all of the samples come from approximately the
same time point, and the large number of training samples available for each class.

Fierer et al. Subject Hand (FSH) [22]: The influence of sex and washing on the
diversity of hand surface bacteria is studied in this work. Data set contains the palmar
surfaces of the dominant and non-dominant hands of 51 healthy young adult volunteers
to characterize bacterial diversity on hands and to assess its variability within and
between individuals. This data set is a more challenging version of the previous ones.
The class labels are the concatenation of the experimental subject identities and the
label of which hand (left vs. right) the sample came from on that individual. There were
three subjects, and so there are six classes in this data set.

Turnbaugh et al. Twin Gut [23]: This data set contains the faecal microbial
communities of adult female monozygotic and dizygotic twin pairs concordant for
leanness or obesity, and their mothers, to address how host genotype, environmental
exposure and host adiposity influence the gut microbiome. This data set is a challenging
classification task because the classes correspond to microbial communities from the
same body habitat and thus are very similar.

We compare our classifier with RF, kernel SVM and MetaPhyl classifiers, described
in Section 1. For comparing different methods, we used the training and test data
splits provided in the CBH, FSH, FS studies. For the Twin Gut data set, we iteratively
sampled subsets of data of small sample sizes from the data set for training, applied the
classification rules, and tested the resulting classifiers on the remaining large collection
of points not selected. This was done to simulate the effects of sample sizes on classifier
training. This process is repeated 500 times and the results are averaged. In all cases, for
the OBC with prior construction, the “training” data includes both the subsample for
prior construction and for the subsample for training proper (i.e., posterior inference).

The classification error rates for the CBH, FSH, and FS data sets are displayed in
Table 2. We can observe that the proposed OBC with constructed priors outperforms
all others on the CBH and FSH data sets, while being slightly outperformed by the
state-of-the-art Random Forest classifier on the FS data set; in fact, the error rates for
all classifiers is small on this latter data set, revealing an easy classification problem.
Notice that the results for the OBC with constructed priors are always better than the
OBC with noninformative priors, as expected.

Table 2. Classification error rates for the CBH, FS, and FSH data sets

Method CBH FS FSH
RF 0.099 0 0.026
SVM 0.133 0.081 0.041
OBC 0.116 0.034 0.031
OBC(constructed priors) 0.075 0.015 0.021
MetaPhyl 0.104 0.022 0.036

The results for the Twin Gut data sets, for varying sizes of the training data set are
displayed in Figure 4. Here the small-sample effects become clear. In particular, it is
evident that Random Forests cannot handle very small training sample sizes well. The
performance of the proposed method is vastly superior to the others fon this data set.
We believe that the reason is that the ration between sample size and dimensionality
(i.e., the number of OTUs) is much smaller in this data set than the others. In addition,
the classes are unbalanced in this data set.
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Fig 4. Average error rates for the various classification algorithms on the Twin Gut
data set for varying training sample sizes.

3 Conclusion

In this paper, we presented a model-based Bayesian framework for the classification of
metagenomic microbial abundance data. This approach was contrasted to state-of-the
art metagenomic classification algorithms, including Random Forests and the phylogeny-
based Metaphyl algorithm. The advantages of the proposed OBC classification algorithm
include being applicable in the absence of phylogenetic information and in the presence
of multiple classes and small ratios of sample size to dimensionality. The proposed
classification method showed promising results in a comprehensive set of numerical
experiments, particularly when the ratio of sample size to dimensionality is small.
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