
Bayesian Classification of Microbial Communities
Based on 16S rRNA Metagenomic Data

Arghavan Bahadorinejad1, Ivan Ivanov2, Johanna W Lampe4, Meredith AJ Hullar4,
Robert S Chapkin3, Ulisses M Braga-Neto1,*

1 Electrical and Computer Engineering Department Texas A&M University, College
Station, TX, USA
2 Veterinary Physiology & Pharmacology Department,Texas A&M University, College
Station, TX, USA, College Station, TX, USA
3 Nutrition and Food Science Department and the Program in Integrative Nutrition
and Complex Diseases, Texas A&M University, College Station, TX, USA
4 Fred Hutchinson Cancer Center, Seattle, WA, USA

*corresponding author

Abstract

We propose a Bayesian method for the classification of 16S rRNA metagenomic profiles of
bacterial abundance, by introducing a Poisson-Dirichlet-Multinomial hierarchical model
for the sequencing data, constructing a prior distribution from sample data, calculating
the posterior distribution in closed form; and deriving an Optimal Bayesian Classifier
(OBC). The proposed algorithm is compared to state-of-the-art classification methods
for 16S rRNA metagenomic data, including Random Forests and the phylogeny-based
Metaphyl algorithm, for varying sample size, classification difficulty, and dimensionality
(number of OTUs), using both synthetic and real metagenomic data sets. The results
demonstrate that the proposed OBC method, with either noninformative or constructed
priors, is competitive or superior to the other methods. In particular, in the case where
the ratio of sample size to dimensionality is small, it was observed that the proposed
method can vastly outperform the others.

Author summary

Recent studies have highlighted the interplay between host genetics, gut microbes, and
colorectal tumor initiation/progression. The characterization of microbial communities
using metagenomic profiling has therefore received renewed interest. In this paper,
we propose a method for classification, i.e., prediction of different outcomes, based on
16S rRNA metagenomic data. The proposed method employs a Bayesian approach,
which is suitable for data sets with small ration of number of available instances to
the dimensionality. Results using both synthetic and real metagenomic data show that
the proposed method can outperform other state-of-the-art metagenomic classification
algorithms.

Introduction 1

Many recent studies using both preclinical models and human subjects have high- 2

lighted the interplay between host genetics, gut microbes, and colorectal tumor initia- 3
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tion/progression. For instance, the findings in [1] provided novel insights into the complex 4

effects of inflammation on microbial composition/activity and the host’s intestinal mu- 5

cosa ability to protect itself from microorganisms with genotoxic capabilities. Also, from 6

a mechanistic perspective, the study in [2] demonstrated that Frizzled proteins (receptors 7

that regulate Wnt signaling, required for colonic stem cell maintenance, self-renewal, 8

and repair of the epithelial lining) can be activated by toxin B produced by pathogenic 9

bacteria (Clostridium difficile). These findings demonstrate that colonic stem cells are 10

the target of some microbial toxins. Moreover, the results in [3] demonstrated that 11

dietary fiber and fat content have a remarkable effect on the colonic microbiota and its 12

metabolic activity in high-risk vs. low-risk cancer populations. 13

There is ample evidence that the microbiome (eg, patchy bacterial biofilms) in the gut 14

can modulate host immune cell function, promoting low-grade chronic inflammation. This, 15

combined with intestinal barrier deterioration induced by (1) colorectal cancer–initiating 16

genetic lesions, and (2) crosstalk between microbiota and diets low in fiber, results in the 17

invasion of secreted microbial products (eg, oncotoxins), which can drive tumor growth. 18

Intriguingly, the protective effects of dietary fiber on cancer development may be based 19

on dramatic shifts in microbial community function—particularly short-chain fatty acid 20

production—which stimulate gut mucosal metabolism and increase epithelial barrier 21

function. 22

The characterization of microbial communities by 16S rRNA gene amplicon sequencing 23

has received renewed interest in the last decade, in part due to the emergence of high- 24

throughput sequencing technology [4]. Microbial metagenomics provides a means to 25

determine what organisms are present without the need for isolation and culturing. Next 26

generation sequencing, applied to microbial metagenomics, has transformed the study 27

of microbial diversity [5]. For amplicons reads it is possible to classify sequence reads 28

against known taxa, and determine a list of those organisms that are present and the 29

read frequency associated with them [6]. In this case an unsupervised strategy can be 30

used to identify proxies to traditional taxonomic units by clustering sequences, so called 31

Operational Taxonomic Units (OTUs). 32

State-of-the-art classification methods for 16S rRNA metagenomic data include 33

Random Forests (RF) [7,8] and the phylogeny-based Metaphyl algorithm [9]. RF is a 34

popular classification algorithm, the basic principle of which is to generate a number of 35

random classification trees, and then classify a test point by majority voting among the 36

trees. The most important procedure for generating the ensemble of trees is to search for 37

the best split at each node of the tree over a random selection of from a large number 38

of features, which is the method proposed in [7], but other procedures are possible [8]. 39

Random forests have proved to be very successful in Bioinformatics [19]. In metagenomics, 40

in particular, they have become the industry standard [10, 11]. The Metaphyl algorithm 41

of [9], on the other hand, seeks to introduce prior biological information in the form of 42

microbial species phylogenetic trees, under the assumption that the natural hierarchical 43

grouping of features contained in the phylogeny can help the classification procedure. 44

The Metaphyl classifier is obtained by a regularized maximum-likelihood procedure 45

where the penalty term is guided by the phylogeny tree. Many other approaches for 46

the classification of metagenomic data can be found in the literature; see [9] for a good 47

review of those. 48

In this paper, we consider a Bayesian paradigm for including prior knowledge, which 49

consists of 1) a hierarchical model for the 16S rRNA metagenomic data, where each 50

microbial sample is represented as a set of operational taxonomic unit (OTU) frequencies; 51

2) prior distribution construction; 3) posterior distribution calculation from the sample 52

data in closed form; 4) derivation of an Optimal Bayesian Classifier (OBC) [12]. The 53

prior distribution on the parameters expresses the biological information available about 54

the problem; in the absence of external knowledge, one may use a “noninformative” 55
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prior, or construct the prior from a small portion of the available data (we consider both 56

approaches in our numerical experiments). The hierarchical model proposed here allows 57

computation of the posterior probability distribution in closed form, without a need for 58

computationally-expensive, approximate Monte-Carlo Markov-Chain computations. The 59

posterior distributions are used to derive the OBC, which minimizes the expected error 60

over the space of all classifiers under the assumed likelihood model. Ordinary “Bayes” 61

classifiers minimize the misclassification probability when the underlying distributions are 62

known. However, Optimal Bayesian classification trains a classifier from data assuming 63

the underlying distributions are not known exactly, but are rather part of an uncertainty 64

class of distributions, each having a weight based on the prior and the observed data. 65

The advantages of the proposed OBC classification algorithm include being applicable: 66

1) in the absence of phylogenetic information (required by the the Metaphyl algorithm), 67

2) presence of multiple classes, 3) with small ratios of sample size to dimensionality. The 68

performance of the proposed approach is compared to both the Random Forest and 69

Metaphyl algorithms, as well as a state-of-the-art nonlinear radial-basis function (RBF) 70

Support Vector Machine (SVM) algorithm, using both synthetic and real-world 16S 71

rRNA metagenomic data sets, for varying sample size, dimensionality, and classification 72

difficulty. The results show that the OBC classifier with both noninformative and 73

constructed prior consistently outperform the others on the synthetic data. On the real 74

data sets, the proposed OBC with constructed prior is competitive with the Random 75

Forest algorithm and outperforms the Metaphyl and SVM algorithms on three of the 76

four data sets using pre-defined training-testing splits; the fourth data set is resampled 77

to simulate small ratios of sample size to dimensionality (i.e., number of OTUs), in which 78

case the proposed OBC method, with either noninformative or constructed priors, vastly 79

outperformed all other methods. We remark that a summary of this work, without the 80

real data results or the prior construction method, appeared in [13]. 81

1 Materials and Methods 82

1.1 Model for 16S rRNA Metagenomic Data 83

We propose a Poisson-Dirichlet-Multinomial (PDM) hierarchical Bayesian model for 16S 84

rRNA metagenomic microbial abundance data. Multinomial sampling has been used 85

previously in the study of microbial communities [14,15]; the novelty of our approach 86

resides in adding Dirichlet and Poisson distributions to allow for OTU sparsity and a 87

varying number of total reads in the sequencing experiment. 88

Let M be the number of OTUs, and let x = (x1, . . . , xM ) be the microbial abundance 89

vector, where xj is the number of sequencing reads corresponding to the j-th OTU, for 90

j = 1, . . . ,M . Let N =
∑M
j=1 xj be the total number of sequencing reads. Since N is 91

bound to change across different experiments, we model this parameter as a Poisson 92

random variable with parameter λ. The hierarchical model for x assumes a multinomial 93

distribution with probability vector parameter p = (p1, · · · , pM ) and N : 94

p(x |p,N) = Multinomial(p, N) = N ! ΠM
j=1

p
xj

j

xj !
. (1)

The parameters of the model are p and λ. The prior distribution for p is assumed to 95

be a Dirichlet distribution with hyperparameter θθθ = (θ1, . . . , θM ), while the prior for 96

λ is a Gamma distribution with hyperparameters α, β. We point out that there is in 97

general separate set of parameters and priors, one for each class label (some may be 98

shared between classes), but for simplicity we have not denoted this in this section. See 99

Fig. 1 for a graphical representation of the proposed hierarchical model. 100
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Fig 1. Poisson-Dirichlet-Multinomial hierarchical Bayesian model for 16S rRNA
metagenomic microbial abundance data.

1.2 Prior Construction 101

Prior construction concerns setting the values of the hyperparameters to reflect external 102

knowledge about the model. If no external knowledge is available, the hyperparameters 103

may be set to make the priors noninformative [16]. In this paper, we assume a noninfor- 104

mative prior for λ by setting α = β = 1, but for p, we consider both noninformative 105

and informative priors. In the former case, we set θθθ = (1, . . . , 1), in which case the 106

Dirichlet becomes a uniform distribution. In the informative case, we estimate the 107

hyperparameters though a maximum-likelihood procedure using a subset of the available 108

data. This procedure is similar to the one in [17], except that we do not impose any 109

prior knowledge constraints, i.e., the process is entirely data-driven. We describe this 110

procedure next. 111

We divide the data Sn into two subsamples, one for constructing the prior, and 112

another for deriving the posterior and obtaining the classifier (which is discussed in the 113

next two sections). In all that follows, we consider the binary classification problem, but 114

the approach can be easily adapted to multiple classes (which is the case for some of 115

the data sets considered in Section 2. The class-specific sample sizes np0 and np1 used for 116

prior construction are set to a fixed proportion of the original sample sizes n0 and n1, 117

respectively, where the indices indicate the class label (in this paper, the ratio is 0.3). In 118

the sequel we omit the class label to simplify the notation, but the Dirichlet parameters 119

are fitted separately for each class. 120

Let Sprior
np = {xp1, . . . ,x

p
np} be the sample for constructing the prior, and let Np

l = 121∑M
j=1 x

p
lj be the total number of sequencing reads in the l-th profile, for l = 1, . . . , np. 122

Consider the mean log-likelihood 123

`(θθθ;Sprior
np ) =

1

np

np∑
l=1

log p(xpl | p, N
p
l ) . (2)

Our objective is to maximize the expected mean-likelihood with respect to the parameter 124
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to obtain the constructed prior: 125

pconstr(θ) = argmax
p(θθθ)∈Π

Eθθθ[`(θθθ;S
prior
np )] , (3)

where Π is the set of all Dirichlet priors. Using (1), we have 126

`(θθθ;Sprior
np ) =

1

np

np∑
l=1

log

Nl! ΠM
j=1

p
xp
lj

j

xplj !

 (4)

=
1

np

np∑
l=1

log(Nl!) +
M∑
j=1

[xplj log(pj)− log(xplj !)]

 . (5)

It can be shown that 127

Eθθθ[`(θθθ;S
prior
np )] =

1

np

np∑
l=1

Eθθθ[log(Nl!)] +
M∑
j=1

[xljψ(θj)− ψ(
∑M
k=1 θk)− log(xplj !)]

 , (6)

where ψ(θ) = d
dθ log Γ(θ) is a digamma function. The optimization in (3) involves 128

transforming the problem to maximization over the hyperparameter space and then 129

applying a numerical procedure, such as conjugate gradient descent, to find the desired 130

hyperparameter values. More details can be found in [17]. 131

1.3 Posterior Distribution Calculation 132

The structure of the model proposed in Section 1.1 allows the exact calculation of the
posterior probabilities, avoiding the approximations and computational cost of MCMC
methods. Let Strain

nt = {x0
1, . . . ,x

0
nt
0
,x1

1, . . . ,x
1
nt
1
} be the training data. The posterior

distributions for the parameters (θθθy, λ) for classes y = 0, 1 (parameter λ is shared
between the classes) are determined as follows:

p(θθθy, λ |Strain
nt ) ∝ p(θθθy, λ) p(Strain

nt |θθθy, λ)

∝ p(py |θθθy)p(λ |α, β)Π
nt
y

i=1p(x
y
i |p

y
1, · · · , p

y
M , N

y
i )p(Ny

i |λ),

=
Γ(
∑M
j=1 θ̄

y
j )

ΠM
j=1Γ(θ̄yj )

(β + nty)(
∑nt

y
i=1N

y
i +α)

Γ(
∑nt

y

i=1N
y
i + α)

e−λ(nt
y+β)λ

∑nt
y

i=1N
y
i +α−1ΠM

j=1p
θ̄yj−1

j , y = 0, 1, (7)

where Ny
i =

∑M
j=1 x

y
ij is the number of reads for each profile, i = 1, · · · , nty, y = 0, 1, 133

and θ̄yj = θyj +
∑ny

i=1 x
y
ij , j = 1, · · · ,M , y = 0, 1. 134

1.4 Optimal Bayesian Classifier 135

Let ψ : Rd → 0, 1 be a classifier designed on training data S = Strain
nt , which takes

metagenomic abundance profiles XXX ∈ Rd into one of the two labels 0 or 1. The error of
the classifier is the probability of a mistake given the sample data:

ε[ψ] = P (ψ(X) 6= Y | S), (8)

where Y ∈ {0, 1} denotes the true label corresponding to XXX. 136

Now, in the Bayesian setting presently adopted, the joint distribution of X, Y )
depends on a random parameter vector Υ. For example, in our case, Υ = (θθθ0, θθθ1, λ).
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In addition, the joint distribution depends on the prevalence c = P (Y = 1 | Υ). The
expected value of the classification error over the posterior distribution of Υ becomes
the quantity of interest:

EΥ|S [εΥ[ψ]] = EΥ|S [P (ψ(X) 6= Y | Υ, S)], (9)

The OBC [12] is the classifier that minimizes the quantity in Eq 9. It was shown in [12] 137

that the OBC is given by 138

ψOBC(x) =

{
0, ifEΥ|S [c]p(x | Y = 0) ≥ (1− EΥ|S [c])p(x | Y = 1),
1, otherwise,

where

p(x | Y = y) =

∫
Υ

p(x | Υ, Y = y)p(Υ | Y = y, S)dΥ , y = 0, 1, (10)

are the effective class-conditional densities and p(Υ | Y = y, S) are the parameter 139

posterior probabilities, for y = 0, 1. 140

Plugging Eqs 1 and 7 into 10 leads to an integration that can be accomplished
analytically, without a need for MCMC methods, yielding the effective class- conditional
densities

p(x | Y = y) =
1

ΠM
j=1Γ(xj + 1)

Γ(
∑M
j=1 θ̄

y
j )

ΠM
j=1Γ(θ̄yj )

× (β + ny)(
∑nt

y
i=1N

y
i +α)

Γ(
∑nt

y

i=1N
y
i + α)

ΠM
j=1Γ(xj + θ̄yj )

Γ(N +
∑M
j=1 θ̄

y
j )

× Γ(
∑nt

y

i=1N
y
i + α+N)

(nty + β + 1)(
∑nt

y
i=1N

y
i +α+N)

, y = 0, 1, (11)

In addition, we assume that the parameter c is beta distributed with hyperparameters 141

(β0, β1), independently of Υ (prior to observing the data). It can be shown that the 142

posterior distribution p(c | S) is also beta with hyperparameters β0 + nt0 and β1 + nt1, in 143

which case EΥ|S [c] =
nt
0+β0

nt+β0+β1
. This completes the specification of the OBC classifier 144

in Eq 10. 145

Fig 2 displays a diagram that summarizes the entire proposed approach to the 146

classification problem. 147

Fig 2. Proposed optimal Bayesian classifier for 16S rRNA metagenomic data.

2 Results 148

In this section, the performance of the proposed classification approach is compared to 149

state-of-the-art metagenomic classification algorithms in the literature, using synthetic 150

and real-world data sets. 151
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Table 1. Summary of real metagenomic data sets

Data set Training samples Test samples Number of OTUs Number of classes
CBH 415 207 2741 6
FS 68 33 565 3
FSH 68 33 565 6
Twin Gut 257 – 5462 2

2.1 Synthetic Data Results 152

Synthetic OTU abundance data and phylogeny trees were generated using the strategy 153

proposed in [9], which considers a common phylogenetic tree T for the OTUs in all 154

the 16S rRNA metagnomic profiles. To generate sample data for each class, the tree 155

is traversed systematically, deciding for each internal node v what fraction of species 156

would come from each of the subtrees rooted at the child nodes of v. 157

Two parameters are assigned to each node v for each class y: µyv is the average 158

proportion of species that correspond to the subtree rooted at the left child node of 159

v in the class y, and (σyv)2 is the variance of this proportion within the class. A new 160

metagenomic profile is generated by sampling the pro- portions of species at each node 161

v according to the normal distribution N(µyv, (σ
y
v )2). The value of µyv is in turn sampled 162

from the normal distribution N(µ̃yv, (σ̃v)2), where σ̃v characterizes the variance between 163

the classes, while µ̃kv are base values. The within- and between-class variances can be 164

controlled by using the parameters σyv and σ̃v, respectively. The exact values of σ̃yv and 165

σv will be sampled at each tree node v according to N(0, λ̃d(v)) and N(0, λd(v)), where 166

d(v) is the distance between v and the tree root. Note that the parameters ˜lambda and 167

λ influence the difficulty of the classification problem, which is proportional to λ and 168

inversely proportional to λ̃. 169

We consider a total of 128 OTUs and three sample sizes for the training data, 170

n = 30, 50, 70, with equal class prevalences, c = 0.5. To generate data sets of different 171

complexity, we considered values for λ̃ and λ of 0.5, 1 and 1.5. The sample sizes n0 and 172

n1 are fixed at n0 = n1 = n/2. Classifier accuracy is obtained by testing each designed 173

classifier on a large synthetic test data set, and averaging the results over 1000 iterations 174

using different synthetic training data sets. 175

Fig. 3 compares the performance of our proposed optimal Bayesian classifier, using 176

both noninformative and constructed priors, against that of the kernel SVM [18], RF [19] 177

and MetaPhyl [9] classification algorithms, mentioned in Section 1. As expected, the 178

classification error rate is reduced when the variance within class was decreased and 179

variance between classes was increased. Also as the sample size increases, classification 180

performance improves for all classification rules. We observe that the kernel SVM 181

classifier clearly performs poorly comparing to other classifiers, the RF and Metaphyl 182

classifier have comparable performance overall, while the proposed OBC classifier exhibits 183

the best performance over different values for between and within class variances. 184

2.2 Real Data Results 185

Here, we consider four different 16S rRNA metagenomic data sets. The sample sizes, 186

dimensionality, and number of classes of each data set are displayed in Table 1. Each of 187

these data sets is accompanied by a phylogeny tree, which allows the application of the 188

Metaphyl classification algorithm. 189

Costello et al. Body Habitats (CBH) [20]: The biogeography of bacterial communi- 190

ties on the human body is critical for establishing healthy baselines and it helps to detect 191

differences associated with diseases. These data included sample communities from six 192
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Fig 3. Comparison of Kernel SVM, RF, MetaPhyl and Optimal Bayesian classifier
with uniform and constructed priors on simulated data sets for varying sample size and
within- and between-class variances, reflecting an increasing difficulty of classification.
Each sample abundance profile contains 128 OTUs.

major categories of habitat: External Auditory Canal (EAC), Gut, Hair, Nostril, Oral 193

cavity, and Skin. This data set is an example of a relatively easy classification task due to 194

the generally pronounced differences between the communities. These microbiota, varies 195

systematically across body habitats and time; such trends may reveal how microbiome 196

changes cause or prevent disease [20]. 197

Fierer et al. Subject (FS) [21]. In this work they show that skin-associated bacteria 198

can be readily recovered from surfaces and the structure of communities can be used to 199

differentiate objects handled by different individuals. This data set contains all samples 200
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from the ”keyboard” data set, for which at least 397 raw sequences were recovered [14]. 201

The class labels are the anonymized identities of the three experimental subjects. This 202

classification task is the easiest of all four data sets because of the clear distinctions 203

between the individuals, the fact that all of the samples come from approximately the 204

same time point, and the large number of training samples available for each class. 205

Fierer et al. Subject Hand (FSH) [22]: The influence of sex and washing on the 206

diversity of hand surface bacteria is studied in this work. Data set contains the palmar 207

surfaces of the dominant and non-dominant hands of 51 healthy young adult volunteers 208

to characterize bacterial diversity on hands and to assess its variability within and 209

between individuals. This data set is a more challenging version of the previous ones. 210

The class labels are the concatenation of the experimental subject identities and the 211

label of which hand (left vs. right) the sample came from on that individual. There were 212

three subjects, and so there are six classes in this data set. 213

Turnbaugh et al. Twin Gut [23]: This data set contains the faecal microbial 214

communities of adult female monozygotic and dizygotic twin pairs concordant for 215

leanness or obesity, and their mothers, to address how host genotype, environmental 216

exposure and host adiposity influence the gut microbiome. This data set is a challenging 217

classification task because the classes correspond to microbial communities from the 218

same body habitat and thus are very similar. 219

We compare our classifier with RF, kernel SVM and MetaPhyl classifiers, described 220

in Section 1. For comparing different methods, we used the training and test data 221

splits provided in the CBH, FSH, FS studies. For the Twin Gut data set, we iteratively 222

sampled subsets of data of small sample sizes from the data set for training, applied the 223

classification rules, and tested the resulting classifiers on the remaining large collection 224

of points not selected. This was done to simulate the effects of sample sizes on classifier 225

training. This process is repeated 500 times and the results are averaged. In all cases, for 226

the OBC with prior construction, the “training” data includes both the subsample for 227

prior construction and for the subsample for training proper (i.e., posterior inference). 228

The classification error rates for the CBH, FSH, and FS data sets are displayed in 229

Table 2. We can observe that the proposed OBC with constructed priors outperforms 230

all others on the CBH and FSH data sets, while being slightly outperformed by the 231

state-of-the-art Random Forest classifier on the FS data set; in fact, the error rates for 232

all classifiers is small on this latter data set, revealing an easy classification problem. 233

Notice that the results for the OBC with constructed priors are always better than the 234

OBC with noninformative priors, as expected. 235

Table 2. Classification error rates for the CBH, FS, and FSH data sets

Method CBH FS FSH
RF 0.099 0 0.026
SVM 0.133 0.081 0.041
OBC 0.116 0.034 0.031
OBC(constructed priors) 0.075 0.015 0.021
MetaPhyl 0.104 0.022 0.036

The results for the Twin Gut data sets, for varying sizes of the training data set are 236

displayed in Figure 4. Here the small-sample effects become clear. In particular, it is 237

evident that Random Forests cannot handle very small training sample sizes well. The 238

performance of the proposed method is vastly superior to the others fon this data set. 239

We believe that the reason is that the ration between sample size and dimensionality 240

(i.e., the number of OTUs) is much smaller in this data set than the others. In addition, 241

the classes are unbalanced in this data set. 242
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Fig 4. Average error rates for the various classification algorithms on the Twin Gut
data set for varying training sample sizes.

3 Conclusion 243

In this paper, we presented a model-based Bayesian framework for the classification of 244

metagenomic microbial abundance data. This approach was contrasted to state-of-the 245

art metagenomic classification algorithms, including Random Forests and the phylogeny- 246

based Metaphyl algorithm. The advantages of the proposed OBC classification algorithm 247

include being applicable in the absence of phylogenetic information and in the presence 248

of multiple classes and small ratios of sample size to dimensionality. The proposed 249

classification method showed promising results in a comprehensive set of numerical 250

experiments, particularly when the ratio of sample size to dimensionality is small. 251
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