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Abstract

Artificial Intelligence is exponentially increasing its impact on healthcare. As deep
learning is mastering computer vision tasks, its application to digital pathology is
natural, with the promise of aiding in routine reporting and standardizing results across
trials. Deep learning features inferred from digital pathology scans can improve validity
and robustness of current clinico-pathological features, up to identifying novel
histological patterns, e.g. from tumor infiltrating lymphocytes. In this study, we
examine the issue of evaluating accuracy of predictive models from deep learning
features in digital pathology, as an hallmark of reproducibility. We introduce the
DAPPER framework for validation based on a rigorous Data Analysis Plan derived
from the FDA’s MAQC project, designed to analyse causes of variability in predictive
biomarkers. We apply the framework on models that identify tissue of origin on 787
Whole Slide Images from the Genotype-Tissue Expression (GTEx) project. We test 3
different deep learning architectures (VGG, ResNet, Inception) as feature extractors
and three classifiers (a fully connected multilayer, Support Vector Machine and Random
Forests) and work with 4 datasets (5, 10, 20 or 30 classes), for a total 53000 tiles at
512 x 512 resolution. We analyze accuracy and feature stability of the machine learning
classifiers, also demonstrating the need for random features and random labels
diagnostic tests to identify selection bias and risks for reproducibility. Further, we use
the deep features from the VGG model from GTEx on the KIMIA24 dataset for
identification of slide of origin (24 classes) to train a classifier on 1060 annotated tiles
and validated on 265 unseen ones. The DAPPER software, including its deep learning
backbone pipeline and the HINT (Histological Imaging - Newsy Tiles) benchmark
dataset derived from GTEX, is released as a basis for standardization and validation
initiatives in AI for Digital Pathology.

Author summary

In this study, we examine the issue of evaluating accuracy of predictive models from
deep learning features in digital pathology, as an hallmark of reproducibility. It is
indeed a top priority that reproducibility-by-design gets adopted as standard practice in
building and validating AT methods in the healthcare domain. Here we introduce
DAPPER, a first framework to evaluate deep features and classifiers in digital
pathology, based on a rigorous data analysis plan originally developed in the FDA’s
MAQC initiative for predictive biomarkers from massive omics data. We apply
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DAPPER on models trained to identify tissue of origin from the HINT benchmark
dataset of 53000 tiles from 787 Whole Slide Images in the Genotype-Tissue Expression
(GTEx) project. We analyze accuracy and feature stability of different deep learning
architectures (VGG, ResNet and Inception) as feature extractors and classifiers (a fully
connected multilayer, SVMs and Random Forests) on up to 20 classes. Further, we use
the deep features from the VGG model (trained on HINT) on the 1300 annotated tiles
of the KIMIA24 dataset for identification of slide of origin (24 classes). The DAPPER
software is available together with the HINT benchmark dataset.

Introduction

The rise of artificial intelligence (AI) methods for health data has soon crossed paths
with disease complexity: patient cohorts are most frequently an heterogeneous group of
subtypes diverse for disease trajectories, with highly variable phenotypes characteristics
in terms of phenotypes (e.g. bioimages by radiology or pathology), response to therapy,
clinical course, thus a challenge for machine-learning based prognoses. Nevertheless, the
increased availability of massive annotated medical data from health systems and a
rapid progress of machine learning frameworks has led to high expectations about the
impact of Al on challenging biomedical problems [1].

In particular, Deep Learning has overcome ad-hoc pattern recognition methods in
the analysis of Medical Images (MI), getting close to expert accuracy in the diagnosis of
skin lesions [2,3] or classification of colon polyps [4,5], and expanding diagnostic options
in radiomics [6] and in many other areas. Deep learning refers to a class of machine
learning methods that model high-level abstractions in data through the use of modular
architectures, typically composed by multiple nonlinear transformations estimated by
training procedures. Notably, deep learning architectures based on Convolutional
Neural Networks (CNNs) hold state-of-the-art accuracy in numerous image classification
tasks without prior feature selection. Further, intermediate steps in the pipeline of
transformations implemented by CNNs or other deep learning architectures can provide
a mapping (embedding) from the original feature space into a deep feature space. Of
interest for medical diagnosis, deep features can be used for interpretation of the model
and can be directly employed as inputs to other machine learning models.

Deep learning methods have been applied to analysis of histological images for
diagnosis and prognosis. Mobadersany and colleagues [7] combine in the SCNN
architecture a deep learning CNN with traditional survival models to learn
survival-related patterns from histology images, predicting overall survival of patients
diagnosed with gliomas. Predictive accuracy of SCNN is comparable with manual
histologic grading by neuropathologists. Further, by incorporation of genomic variables
for gliomas in the model, the extended model significantly outperforms the WHO
paradigm based on genomic subtype and histologic grading. Similarly, deep learning
models have been successfully applied to histology for colorectal cancer [8], gastric
cancer [9] and breast cancer [10].

As human assessments of histology are subjective and hard to repeat, computational
analysis of histology imaging within the information environment generated from a
digital slide (digital pathology) and advances in scanning microscopes have already
allowed pathologists to gain a much more effective diagnosis capability and dramatically
reduce time for data sharing. Starting from the principle that underlying differences in
the molecular expressions of the disease may manifest as tissue architecture and nuclear
morphologic alterations [11], it is clear that automatic detection of disease
aggressiveness and patient subtyping has a key role aiding therapy in cancer and other
diseases. Digital pathology is in particular a key tool for the immunotherapy approach,
which stands on the characterization of Tumor Infiltrating Lymphocytes (TILs) [12].
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Indeed, quantitative analysis of the immune microenvironment by histology is crucial for
personalized treatment of cancer [13,14], with high clinical utility of TILs assessment for
risk prediction models, adjuvant, and neoadjuvant chemotherapy decisions, and for
developing the potential of immunotherapy [15,16]. Digital pathology is thus a natural
application for machine learning, with the promise of aiding in routine reporting and
standardizing results across trials. Notably, deep learning features learned from digital
pathology scans can improve validity and robustness of current clinico-pathological
features, up to identifying novel histological patterns, e.g. from TILs.

On the technical side, usually deep learning models for digital pathology are built
upon architectures originally aimed at tasks in other domains and trained on
non-medical datasets. This is a foundational approach in machine learning, known as
transfer learning. Given domain data and a network pre-trained to classify on huge
generic databases (e.g. ImageNet, with over 14 million items and 20 thousand
categories), there are three basic options for transfer learning, i.e. to adapt the classifier
to the new domain: a) train a new machine learning model on the features preprocessed
by the pre-trained network from the domain data; b) retrain only the deeper final layers
(the domain layers) of the pre-trained network; c¢) re-train the whole network starting
from the pre-trained state. A consensus about the best strategy to use for medical
images is still missing [17, 18].

In this study we aim to address the issue of reproducibility and validation of
machine learning models for digital pathology. Reproducibility is a burning concern in
biomarker research [19], and in science in general [20], with scientific communities,
institutions, industry, and publishers struggling to foster adoption of best practices,
with initiatives ranging from enhancing reproducibility of high-throughput
technologies [21] to improving the overall reuse of scholarly data and analytics solutions
(e.g. the FAIR Data Principles [22]). As an example, the MAQC initiative [23,24], is led
by the US FDA to investigate best practices and causes of variability in the
development of biomarkers and predictive classifiers from massive omics data (e.g.
microarrays, RNA-Seq or DNA-seq data) for precision medicine. The MAQC projects
adopt a Data Analysis Plan (DAP) that force bioinformatics teams to submit
classification models, top features ranked for importance and estimate of performance
all built on training data only, before testing on unseen validation data. This approach
helps mitigating the risk of selection bias in complex learning pipelines, where the bias
can be born in one of many preprocessing steps as well as in the downstream machine
learning model. Further, it clarifies that increasing task difficulty is often linked to a
decrease in accuracy measures and also of stability of the biomarker lists [25].

Although openness in sharing algorithms and benchmark data is a solid attitude of
the machine learning community, the reliable estimation on a given training dataset of
predictive accuracy and stability of deep learning models (or of deep features used by
external models) is still a gray area. The underlying risk is that of overfitting the
training data, or worse to overfit the validation data if the labels are visible, which is
typical when datasets are fully released at the end of a MI data science challenge. As
the number of deep learning based studies in digital pathology is exponentially growing,
we suggest that the progress of this field needs environments (e.g. DAPs) to prevent
such pitfalls, especially if features distilled by the network are used as radiomics
biomarkers to inform medical decision. Further, given an appropriate DAP, alternative
model choices should be benchmarked on publicly available datasets, as usual in the
general computer vision domain (e.g. ImageNet [26] or COCO [27]).

This study provides three main practical contributions to controlling for algorithmic
bias and improving reproducibility of machine learning algorithms for digital pathology:

1. A Data Analysis Plan (DAP) specialized for digital pathology, tuned on the
predictive evaluation of deep features, extracted by a network and used by
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alternative classification heads;

2. A benchmark dataset (HINT) of 53 727 tiles of histological images from 30 tissue
types, derived from GTEx [28] for the recognition of tissue of origin of up to 30
classes;

3. An end-to-end machine learning framework (DAPPER) as a baseline environment
for predictive models in digital pathology.

We first apply DAPPER to a set of classification experiments on 787 Whole Slide
Images (WSIs) from GTEx. The framework (see Fig 1) is composed by (A) a
preprocessing section to derive datasets from WSIs; (B) a 3-step machine learning
pipeline with a data augmentation preprocessor, a backbone deep learning model, and
an adapter extracting the deep features; (C) a downstream machine learning head, i.e.
the task specific predictor. In our experiments, we analyze accuracy and feature
stability in a multi-class setting of three different deep learning architectures (VGG,
ResNet and Inception) as feature extractors and of three classifiers (a fully connected

multilayer network, SVMs and Random Forests) as downstream machine learning head.

This section is endowed with the DAP, i.e. a 10 x 5 CV (5-fold Cross Validation iterated
10 times). The 50 internal test sets are used to estimate a vector of metrics (with
confidence intervals) that are used for model selection. In the fourth section (D) we
finally provide an unsupervised data analysis based on the UMAP projection method
and methods for feature exploration. The DAPPER software is available together with
the HINT benchmark dataset.

Fig 1. The DAPPER environment. Components: A) The WSI preprocessing
pipeline; B) the deep learning backbone, to extract deep features; C) the Data Analysis
Plan (DAP) for the machine learning models; and D) the UMAP module and other
modules for unsupervised analysis.

Notably, the DAP estimates are provided in this paper only for the downstream
machine learning head in section (C); whenever computational resources are available,
the DAP can be expanded also to section (B). Here we kept as a separate problem the
model selection exercise on the upstream deep learning backbone in order to clarify the
change of perspective with respect to optimization of machine learning models in the
usual training-validation setting.

As a second experiment, in order to study the DAPPER framework in a transfer
learning condition, we use the deep features from the VGG model trained on HINT on
the 1300 annotated tiles of the KIMIA24 dataset [29] to identify in this case the slide of
origin (24 classes).

Previous work on classifying WSIs by means of neural networks was introduced
by [29,30], also with the purpose of distributing the two original datasets Kimia
Path960 and Kimia Path24. Kimia Path24 consists of 24 WSIs chosen on purely visual
distinctions. Babaie et al. [29] manually selected a total of 1325 binary patches with
40% overlap. On this dataset, amongst other two models based on Local Binary
Patterns (LBP) and Bag-of-Words (BoVW), they applied two shallow convolutional
neural networks (CNN), achieving at most 41.8% accuracy. Kimia Path960 contains 960
histopathological images belonging to 20 different WSIs that, again on visual clues, were
used to represent different texture/pattern/staining types. Kumar et al. [30] replicated
the same experiments as on Kimia Path24, i.e. LBP, BoVW and CNN. They applied
AlexNet or VGG16, both pretrained on ImageNet, to extract deep features; instead of a
classifier, accuracy was established by computing similarity distances between the 4096
features extracted. Also, Kiefer et al [31] explored the use of deep features from several
pre-trained structures on Kimia24, controlling for the impact of transfer learning and
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finding an advantage of pre-trained networks against training from scratch. Alhindi and
colleagues [32] instead analyze Kimia960 for slide of origin (20 slides preselected by
visual ispection), and similarly to our study compare alternative classifiers as well as
feature extraction models in a 3-fold CV setup. Our framework differs for the DAP
structure and is originally applied to the larger HINT set without any visual
pre-selection.

Materials and methods

Dataset

The images used to train the models were derived from the Genotype-Tissue Expression
(GTEx) Study [28]. The study collects gene expression profiles and whole-slide images
(WSIs) of 42 human tissues histologies used to investigate the relationship between
genetic variation and tissue-specific gene expression in healthy individuals. To ensure
that the collected tissues meet prescribed standard criteria, a Pathology Resource
Center (PCR) validated each sample origin, content, integrity and target tissue
(https://biospecimens.cancer.gov/resources/sops/). After sectioning and
staining (H&E), tissue samples were scanned using a digital whole slide imaging system
(Aperio) and stored in .svs format [33].

A custom Python script was used to download 787 WSIs through the Biospecimen
Research Database (total size: 192 GB, average 22 WSIs for each tissue). The list of the
downloaded WSIs is available in S1 Supplement Table S1.

A data preprocessing pipeline was developed to prepare the WSIs as training data
(see Figure 2). The WSIs have a resolution of 0.275 um/pixzel (Magnification 40X) and
variable dimension but the region interested by the tissue is only a portion of the WSI,
which varies across the samples. Hence first we identified the region of the tissue in the
image (see Fig 2), then we extracted at most 100 tiles (512 x 512 pixel) from the WSIs,
by randomly sampling the tissue region. We applied the algorithm for the detection of
the tissue region (see Fig 2) on each tile and rejected those where the portion of the
tissue was below 85%. A total number of 53727 tiles was extracted, with a number of
tiles per tissue varying between 59 (for Adipose - Visceral (Omentum)) and 2689 (for
Heart - Left Ventricle).

Fig 2. The tissue detection pipeline. The identification of the tissue bounding box
is performed on the WSI thumbnail in three steps: a) Binarization of the grayscale
image by applying Otsu’s thresholding; b) Binary dilation and filling of the holes; c)
Selection of the biggest connected region as tissue region and computation of the vertex
of the containing rectangle.

Four datasets (HINT5, HINT10, HINT20, HINT30) have been derived with
increasing number of tissues for a total of 52 991 tiles (see S1 Supplement Table S2 for

details). We refer to the four sets as the HINT collection, or the HINT dataset in brief.

We choose the five tissues composing HINT5 starting from exploratory experiments,

while the other datasets were composed including the tissues with higher number of tiles.

The class imbalance is accounted for by weighting the error on predictions. In detail,
the weight w of the class ¢ used in the cross entropy function is computed as:
Wi = Nynaz/Ni, where ny,q, is the number of tiles in the class with more tiles and n; is
the number of tiles in the class i.

Since image orientation should not be relevant for the tissue recognition, the tiles are
randomly flipped (horizontally and vertically) and scaled, following a common practice
in deep learning known as data augmentation [34]. Augmentation increases the
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Table 1. Summary of the HINT datasets. Total: total number of tiles composing
the dataset; Min: number of tiles in the class with less samples; Max: number of tiles in
the class with more samples; Average; average number of tiles for each class.

Name Number of tissues Total Min Max Average
HINT5 5 8218 1009 2424 1643.6
HINT10 10 22885 1890 2689 2288.5
HINT20 20 40516 1574 2689 2025.8
HINT30 30 52991 957 2689 1766.4

generalization capabilities of the network preventing overfitting and is performed each
time the tile is loaded, so that the resulting input image is different at each epoch. Such
randomized transformations were found to increase concordance of prognostic accuracy
of the deep learning SCNN architecture with that of baseline models based on combined
molecular subtype and histologic grade [7]. In addition, the tile is cropped to a fixed
size, which is dependent on the type of backbone network.

Deep learning architectures and training strategies

We tested three backbone architectures commonly used in computer vision tasks (see
Table 2):

1. VGG, version 19 with Batch Normalization (BN) layers [35];
2. ResNet, version 152 [36];

3. Inception, version 3 [37].

Table 2. Backbone networks’ characteristics.

Name Output features Parameters Layers
VGG 25088 20035392 64
ResNet 2048 58 143 808 465
Inception 2048 21 785 568 282

The feature extraction layers of each backbone network is obtained as the output of
an end-to-end pipeline composed of four main blocks (see Fig 1, B):

1. Data augmentation: the input tiles are processed and assembled into batches;

2. Feature extraction: series of convolutional layers (Conv2d: with different number
of channels and kernel size), normalization layers (Batch Norm) and pooling layers
(MaxPool2d: with different kernel size) designed to fit with the backbone
architecture. The number of output features of the Feature Extractor also
depends on the backbone architecture;

3. Adapter: linear layer with 1000 output features, and the features of the backbone
network as input;

4. Machine Learning Head: task specific model taking the 1000 Adapter features as
input and providing predicted tissue labels (or a clinical endpoint) as output.

As predictive models, we used a linear Support Vector Machine (SVM) with
regularization parameter C set to 1, a Random Forest (RF) classifier with 500 trees
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(both implemented in scikit-learn, v0.19.1) and a fully connected head (FCH), i.e. a
series of fully connected layers. Inspired by [7], our FCH consists of four dense layers
with 1000, 1000, 256 and # tissue classes nodes, respectively. The feature extraction
block was initialized with the weights already trained on the ImageNet dataset [26],
provided by PyTorch (v0.4.0) and freezed. Training also the weights of the feature
extraction block improves accuracy (see S1 Supplement Table S3). However, these
results were not validated rigorously within the DAP and therefore they not are not
claimed as generalized in this study.

For the optimization of the other weights (Adapter and FCH) we used the Adam
algorithm [38] with the learning rate set to 10~> and fixed for the whole training. We
used the cross entropy as loss function, which is appropriate for multi-class models.

The strategy to optimize the learning rate was selected based on results of a
preparatory study with the VGG network and HINTS5. The strategy approach with
fixed learning rate achieved the best results (see S1 Supplement Table S4) and was
therefore adopted in the rest of the study.

Data Analysis Plan

Following the rigorous model validation techniques proposed by the MAQC

projects [23,24], we adopted a DAP to assess the validity of the features extracted by
the networks, namely a 10x5-fold cross-validation (CV) schema. The input dataset is
first partitioned with 80% of samples used as training set for model development and
20% as held-out test set for model evaluation. The training set further undergoes a
5-fold CV iterated 10 times resulting in a ranked feature list and a set of metrics,
including accuracy (ACC) and the Matthews Correlation Coefficient (MCC) in its
multiclass generalization [39,40]. At each CV iteration, features are ranked by ANOVA

F-score and the classifier is trained on an increasing number of ranked features (namely:

10%, 25%, 50%, 100% of the total number of features). A list of top-ranked features is
obtained by Borda aggregation of the ranked lists, for which we also compute the
Canberra stability with a computational framework designed for sets of ranked
biomarker lists [25]. The overall performance of the predictive model is evaluated
across all iterations in terms of average MCC and ACC with 95% Studentized bootstrap
confidence intervals (CI), and on the test set in terms of MCC.

As a sanity check to avoid unwanted selection bias effects, the DAP is repeated
stochastically scrambling the training set labels (random labels mode: in absence of
selection bias, the no-information error rate is expected) or by randomly ranking
features before building models (random ranking mode: in presence of pools of highly
correlated variables, top features can be interchanged with others, possibly of higher
biological interest).

Experiments on HINT

We designed a set of experiments to provide indications about the optimal backbone
architecture, while keeping fixed the other hyper-parameters. In particular we set batch
size (32) and number of epochs (50), high enough to let the network converge: we
explored increasing numbers of epochs (10, 30, 50, 100) and as we observed that the loss
stabilizes after about 35 epochs, we set the number of epochs to 50. First, we compared
the three backbone architectures on the smallest dataset HINT5S, with fixed learning
rate. Both VGG and ResNet architectures achieved good results, far outperforming
Inception. In further analyses we thus restricted to use VGG and ResNet as feature
extractors and validated performance and features with the DAP. The same process was
adopted on HINT10 and HINT20. An experiment with 30 tissues has also been
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performed. Results are listed in S1 Supplement Table S5. A summary of the
experiments on backbone models is reported in Table 3.

Table 3. Summary of experiments with the backbone models.

Experiment  # tissues Feature extractor VGG Version

VGG-5 5 VGG 19+BN
ResNet-5 5 ResNet 152
Inception-5 5 Inception 3
VGG-10 10 VGG 19+BN
ResNet-10 10 ResNet 152
VGG-20 20 VGG 19+BN
ResNet-20 20 ResNet 152

UMAP Analysis

The UMAP multidimensional analysis method [41] was applied to project the features
extracted onto a bi-dimensional space, using the Python umap module.

Implementation

All the code used for image processing and network training is written in Python (v3.6)
and is available as a collection of Jupyter notebooks at
https://gitlab.fbk.eu/histology DL/Tissue_classification.

In addition to the general scientific libraries for Python, the scripts for the creation
and training of the networks are based on PyTorch; the backbone networks are
implemented in torchvision. The library for processing histological images (available at
https://gitlab.fbk.eu/histology DL/histo_lib) is based on OpenSlide and
scikit-image.

The computations were performed on Microsoft Azure Virtual Machines with 4
NVIDIA K80 GPUs, 24 Intel Xeon E5-2690 cores and 256 GB RAM.

Results

Results of two digital pathology tasks in the DAPPER framework are listed in Table 4
for Matthews Correlation Coefficient (MCC) and Table 5 for Accuracy (ACC),
respectively. See also Fig 3 (a-b-c) for a comparison of MCC in internal cross-validation
with external validation.

All backbone-head pairs on HINT have MCC>0.7 with narrow Cls, with estimates
from internal validation close to performance on held-out test (Fig 3). Agreement of
internal estimates with values on test set is a good indicator of generalization and
potential for reproducibility. All models reached their top MCC accuracy with 1000
features. On HINT5 and HINT10, the FCH neural network performs better than SVMs
and RF. As expected, MCC ranged close to 0 for random labels; random ranking for
increasing feature set sizes reached top MCC ounly for all features (tested for SVMs,
results not shown).

Fig 3. Comparison of DAPPER cross-validation (MCC) vs external
validation (MCC Test) performance for each classifier. (a) FCH; (b) SVM; (c)
RF.
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Table 4. DAPPER results for each deep learning backbone and classifier head pair on HINT datasets and
KIMIA24: average cross-validation MCC with 95% Confidence Intervals (CI) and MCC on test set.

FCH SVM RF
Experiment MCC (CI) MCC Test MCC (CI) MCC Test MCC (CI) MCC Test
VGG-5 0.841 (0.838, 0.843) 0.820 0.786 (0.783, 0.789) 0.777 0.750 (0.748, 0.753) 0.747
ResNet-5 0.879 (0.877, 0.881) 0.883 0.852 (0.850, 0.854) 0.840 0.829 (0.827, 0.832) 0.849
VGG-10 0.896 (0.894, 0.897) 0.894 0.861 (0.859, 0.862) 0.866 0.889 (0.888, 0.891) 0.886
ResNet-10 0.857 (0.856, 0.859) 0.860 0.825 (0.824, 0.827) 0.832 0.845 (0.843, 0.847) 0.850
VGG-20 0.771 (0.770, 0.772)  0.774 0.729 (0.727, 0.730)  0.731 0.761 (0.760, 0.762)  0.766
ResNet-20 0.756 (0.754, 0.757) 0.757 0.788 (0.787, 0.789) 0.792 0.738 (0.737, 0.739) 0.738
VGG-KIMIA24 0.317 (0.306, 0.327) 0.207 0.446 (0.439, 0.454) 0.409 0.457 (0.449, 0.465) 0.409

Table 5. DAPPER results for each deep learning backbone and classifier head pair on HINT datasets and
KIMIA24: average cross-validation accuracy with 95% Confidence Intervals (CI) and accuracy on test set.

FCH SVM RF
Experiment ACC (CI) ACC Test ACC (CI) ACC Test ACC (CI) ACC Test
VGG-5 87.2 (87.0, 87.5) 85.6 82.9 (82.7, 83.1) 82.1 79.9 (79.7, 80.1) 79.7
ResNet-5 90.3 (90.1, 90.5) 90.7 88.1 (88.0, 88.3) 87.2 86.3 (86.1, 86.5) 87.9
VGG-10 90.6 (90.5, 90.7) 90.5 87.5 (87.3, 87.6) 88.0 90.0 (89.9, 90.2) 89.7
ResNet-10 87.2 (87.0, 87.3) 87.4 84.3 (84.1, 84.4) 84.9 86.1 (85.9, 86.2) 86.5
VGG-20 78.2 (78.1, 78.4) 78.5 74.1 (74.0, 74.2) 74.4 77.3 (77.2, 77.4) 7.7
ResNet-20 76.7 (76.6, 76.9) 76.9 79.9 (79.8, 80.0) 80.3 75.1 (75.0, 75.2) 75.2
VGG-KIMIA24 34.4 (33.2, 35.2) 23.8 47.1 (46.4, 47.8) 43.4 48.0 (47.3, 48.8) 43.4
The most accurate models both for training estimates and in validation were the 300

(ResNet,FCH) pair with MCC=0.883 on HINTS5, the (VGG,FCH) pair on HINT10, the sn
(Resnet,SVM) on HINT20. Results on HINT30 are detailed in S1 Supplement Table S5; 30
on test, VGG-HINT30 reaches accuracy ACC= 61.8% and MCC=0.61. Performance 303

decreases for more complex multiclass problems. Notably the difficulty of the task is 304
also complicated by tissue classes that are likely to have similar histological patterns, 305
such as misclassification of Esophagus-Muscularis (ACC: 72.1%) with Esophagus- 306

Mucosa (ACC: 53.2%), or the two Heart tissue subtypes or the 58 Ovary(ACC: 68.3%) 3o
tiles predicted as Uterus (ACC: 72.8%). The complete confusion matrix for Resnet with s
SVMs on HINT20 is reported in Fig 4. 309

Fig 4. Confusion matrix for SVM on ResNet for HINT20. Entries are counts
of predicted vs true label for the 20 tissues. Heart AA: Heart-Atrial Appendage; Heart
LV: Heart-Left Ventricle; Esophagus Mu: Esophagus-Mucosa; Esophagus M:
Esophagus-Muscularis; Brain Co: Brain-Cortex; Brain Ce: Brain-Cerebellum; Skin NSE:
Skin-Not Sun Exposed (Suprapubic); Muscle S: Muscle-Skeletal; Kidney C:
Kidney-Cortex.

In the second experiment, we used the VGG with deep features from the VGG from 310
GTEx on the Kimia Path24 (KIMIA24) dataset [29], where the task is identifying slide su
of origin (24 classes). In the DAPPER framework, classifiers were trained on 1060 s12
annotated tiles and validated on 265 unseen ones. Regardless of difference in image 313
types, VGG-KIMIA24 with both RF and SVM heads with ACC=43.4% (see Table 5), s
improving on published results (ACC=41.8% ; [29]). The FCH had lower accuracy, but s
it should be taken into account that deep features and classifiers were trained on 1060 s
images only, compared to the 40513 used by Babaie and colleagues. a17
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It is worth noting that transfer learning from ImageNet to HINT restricts training to
the Adapter and Fully Connected Head blocks. In one-shot experiments, MCC further
improves when the whole feature extraction block is retrained (see S1 Supplement Table
S3). However, the result still needs to be consolidated by extending the DAP also to the
training or retraining of the deep learning backbone to check for actual generalization.
The Canberra stability indicator was also computed for all the experiments, with
minimal median stability for ResNet-HINT20 (Fig 5).

Fig 5. Canberra stability indicator. For each architecture, a set of deep feature
lists is generated, one list for each internal run of training in the nested cross-validation
schema, each ranked with KBest. Canberra stability is computed as in [25]: lower
stability is better.

The HINT Benchmark Dataset

As a second contribution of this study, we are making available the HINT dataset,
generated by the first section of tools in the DAPPER framework, as a benchmark
dataset for validating machine learning models in digital pathology. The HINT dataset
is currently composed of 53727 tiles at 512 x 512 resolution, based on histology from
GTEx. HINT can be easily expanded to over 78000 tiles, as for this study we used a
fraction of the GTEx images and at most 100 tiles from each WSI were extracted.
Digital pathology still misses a universally adopted dataset to compare deep learning
models as already established in vision (e.g. ImageNet for image classification, COCO
for image and instance segmentation). Several initiatives for a “BiolmageNet” will
eventually improve this scenario. Histology data are available in the generalist
repository Image Data Resource (IDR) [42,43]. Further, the International
Immuno-Oncology Biomarker Working Group in Breast Cancer and the MAQC Society
have launched a collaborative project to develop data resources and quality control
schemes on machine Learning algorithms to assess TILs in Breast Cancer.

HINT is conceptually similar to KIMIA24. However, HINT inherits from GTEx
more variability in terms of sample characteristics, validation of donors and additional
access to molecular data. Further, we used a random sampling approach to process tiles
excluding background and minimize human intervention in the choice and preparation
of the images.

Deep features

We applied an unsupervised projection on all the features extracted by VGG and
ResNet networks on all tissues tasks. In the following, we discuss an example for
features extracted by VGG on the HINT20 task, displayed as UMAP projection in
Fig 6; points are coloured for 20 tissue labels. The UMAP displays for the other tasks
are available in S1 Supplement Fig S1-S4.

Fig 6. UMAP projection of validation set for VGG-20 task.

The UMAP display is in agreement with the count distributions in the confusion
matrix (Fig 4). The deep learning embedding separates well a set of histology types,
including: Muscle - Skeletal (ACC: 93.4%), Spleen (ACC: 94.6%), Pancreas (ACC:
87.9%), Brain - Cortex (ACC: 94.3%) and Brain - Cerebellum (ACC: 93.4%), Heart -
Left Ventricle (ACC: 90.1%) and Heart - Atrial Appendage (ACC: 84.7%) group into
distinct clusters.
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The distributions of the activations for the top-3 deep features of the VGG-HINT10
backbone are displayed in S1 Supplement Fig S5. The top ranked deep feature (#668)
is clearly selective for Spleen.

The projection also shows an overlapping for tissues such as Ovary and Uterus, or
Vagina and Esophagus - Mucosa, or the two Esophagus histotypes, consistently with the
confusion matrix (Fig 4).

Examples of five tiles from two well separated clusters, Muscle-Skeletal (ACC:
93.4%) and Spleen (ACC: 94.6%), are displayed in Fig 7. Tiles from five clusters
partially overlapping in the neural embedding and mislabeled in both the VGG-20 and
ResNet-20 embeddings with SVMs (Uterus ACC=172.8%, Ovary ACC=68.3%,
Esophagus- Mucosa ACC=53.2%, Esophagus-Muscularis ACC=72.1%, Vagina
ACC=59.0%) are similarly visualized in Fig 8.

Fig 7. Representative tiles from two well-separated clusters observed on
the UMAP embedding of VGG-20.

Fig 8. Samples of mislabeled tiles from five tissues partially overlapping in
the VGG-20 UMAP embedding.

While the aim of this paper is to introduce a framework for honest comparison of
models that will be used for clinical purposes rather than fine-tuning accuracy in this
experiment, it is evident that these tiles have morphologies that are hard to classify.
This challenge requires more complex models (e.g. ensembles) and a structured output
labeling, already applied in dermatology [2].

Further, we are exploring the combination of DAPPER with image analysis
packages, such as HistomicsTK
(https://digitalslidearchive.github.io/HistomicsTK/ or CellProfiler [44], to
extract features useful for interpretation and feedback from pathologists.

Conclusions

Digital pathology would greatly benefit from the adoption of machine learning, shifting
human assessment of histology to higher quality, non-repetitive tasks. Unfortunately,
there is no fast, easy route to improve reproducibility of automated analysis. The
adoption of the DAP clearly sets in a computational aggravation not usually considered
for image processing exercises. However, this is an established practice with massive
omics data [21], and reproducibility by design can handle secondary results useful for
diagnostics and for interpretation.

We designed the DAPPER framework as a tool for evaluating accuracy and stability
of deep learning models, currently only backbone elements in a sequence of processing
steps, and possibly in the future end-to-end solutions. We choose as test domain H&E
stained WSIs for prediction of tissue of origin, which is not a primary task for trained
pathologists, but a reasonable benchmark for machine learning methods. Also, we are
aware that tissue classification is only a step in real digital pathology applications.
Mobadersany and colleagues [7] used a deep learning classifier to score and visualize risk
on the WSIs. Similarly, deep learning tile classification may be applied to quantify
histological differences in association to a genomic pattern, e.g. a specific mutation or a
high-dimensional protein expression signature. In this vision, the attention to model
selection supported by our framework is a prerequisite for developing novel Al
algorithms for digital pathology, e.g. for analytics over TILs.
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Although we are building on deep learning architectures known for applications on
generic images, they adapted well to WSIs in combination with established machine
learning models (SVMs, RF); we expect that large scale bioimaging resources will give
the chance of improving the characterization of deep features, as already emerged with
the HINT dataset that we are providing as public resource. In this direction, we plan to
release the network weights of the backbone DAPPER models that are optimized for
histopathology as alternative pretrained weights for digital pathology, similarly to those
for the ImageNet dataset and available in torchvision.

Supporting information

S1 Supplement. Supporting tables and figures.
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