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Abstract

Artificial Intelligence is exponentially increasing its impact on healthcare. As deep
learning is mastering computer vision tasks, its application to digital pathology is
natural, with the promise of aiding in routine reporting and standardizing results across
trials. Deep learning features inferred from digital pathology scans can improve validity
and robustness of current clinico-pathological features, up to identifying novel
histological patterns, e.g. from tumor infiltrating lymphocytes. In this study, we
examine the issue of evaluating accuracy of predictive models from deep learning
features in digital pathology, as an hallmark of reproducibility. We introduce the
DAPPER framework for validation based on a rigorous Data Analysis Plan derived
from the FDA’s MAQC project, designed to analyse causes of variability in predictive
biomarkers. We apply the framework on models that identify tissue of origin on 787
Whole Slide Images from the Genotype-Tissue Expression (GTEx) project. We test 3
different deep learning architectures (VGG, ResNet, Inception) as feature extractors
and three classifiers (a fully connected multilayer, Support Vector Machine and Random
Forests) and work with 4 datasets (5, 10, 20 or 30 classes), for a total 53000 tiles at
512 × 512 resolution. We analyze accuracy and feature stability of the machine learning
classifiers, also demonstrating the need for random features and random labels
diagnostic tests to identify selection bias and risks for reproducibility. Further, we use
the deep features from the VGG model from GTEx on the KIMIA24 dataset for
identification of slide of origin (24 classes) to train a classifier on 1060 annotated tiles
and validated on 265 unseen ones. The DAPPER software, including its deep learning
backbone pipeline and the HINT (Histological Imaging - Newsy Tiles) benchmark
dataset derived from GTEx, is released as a basis for standardization and validation
initiatives in AI for Digital Pathology.

Author summary

In this study, we examine the issue of evaluating accuracy of predictive models from 1

deep learning features in digital pathology, as an hallmark of reproducibility. It is 2

indeed a top priority that reproducibility-by-design gets adopted as standard practice in 3

building and validating AI methods in the healthcare domain. Here we introduce 4

DAPPER, a first framework to evaluate deep features and classifiers in digital 5

pathology, based on a rigorous data analysis plan originally developed in the FDA’s 6

MAQC initiative for predictive biomarkers from massive omics data. We apply 7
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DAPPER on models trained to identify tissue of origin from the HINT benchmark 8

dataset of 53000 tiles from 787 Whole Slide Images in the Genotype-Tissue Expression 9

(GTEx) project. We analyze accuracy and feature stability of different deep learning 10

architectures (VGG, ResNet and Inception) as feature extractors and classifiers (a fully 11

connected multilayer, SVMs and Random Forests) on up to 20 classes. Further, we use 12

the deep features from the VGG model (trained on HINT) on the 1300 annotated tiles 13

of the KIMIA24 dataset for identification of slide of origin (24 classes). The DAPPER 14

software is available together with the HINT benchmark dataset. 15

Introduction 16

The rise of artificial intelligence (AI) methods for health data has soon crossed paths 17

with disease complexity: patient cohorts are most frequently an heterogeneous group of 18

subtypes diverse for disease trajectories, with highly variable phenotypes characteristics 19

in terms of phenotypes (e.g. bioimages by radiology or pathology), response to therapy, 20

clinical course, thus a challenge for machine-learning based prognoses. Nevertheless, the 21

increased availability of massive annotated medical data from health systems and a 22

rapid progress of machine learning frameworks has led to high expectations about the 23

impact of AI on challenging biomedical problems [1]. 24

In particular, Deep Learning has overcome ad-hoc pattern recognition methods in 25

the analysis of Medical Images (MI), getting close to expert accuracy in the diagnosis of 26

skin lesions [2,3] or classification of colon polyps [4,5], and expanding diagnostic options 27

in radiomics [6] and in many other areas. Deep learning refers to a class of machine 28

learning methods that model high-level abstractions in data through the use of modular 29

architectures, typically composed by multiple nonlinear transformations estimated by 30

training procedures. Notably, deep learning architectures based on Convolutional 31

Neural Networks (CNNs) hold state-of-the-art accuracy in numerous image classification 32

tasks without prior feature selection. Further, intermediate steps in the pipeline of 33

transformations implemented by CNNs or other deep learning architectures can provide 34

a mapping (embedding) from the original feature space into a deep feature space. Of 35

interest for medical diagnosis, deep features can be used for interpretation of the model 36

and can be directly employed as inputs to other machine learning models. 37

Deep learning methods have been applied to analysis of histological images for 38

diagnosis and prognosis. Mobadersany and colleagues [7] combine in the SCNN 39

architecture a deep learning CNN with traditional survival models to learn 40

survival-related patterns from histology images, predicting overall survival of patients 41

diagnosed with gliomas. Predictive accuracy of SCNN is comparable with manual 42

histologic grading by neuropathologists. Further, by incorporation of genomic variables 43

for gliomas in the model, the extended model significantly outperforms the WHO 44

paradigm based on genomic subtype and histologic grading. Similarly, deep learning 45

models have been successfully applied to histology for colorectal cancer [8], gastric 46

cancer [9] and breast cancer [10]. 47

As human assessments of histology are subjective and hard to repeat, computational 48

analysis of histology imaging within the information environment generated from a 49

digital slide (digital pathology) and advances in scanning microscopes have already 50

allowed pathologists to gain a much more effective diagnosis capability and dramatically 51

reduce time for data sharing. Starting from the principle that underlying differences in 52

the molecular expressions of the disease may manifest as tissue architecture and nuclear 53

morphologic alterations [11], it is clear that automatic detection of disease 54

aggressiveness and patient subtyping has a key role aiding therapy in cancer and other 55

diseases. Digital pathology is in particular a key tool for the immunotherapy approach, 56

which stands on the characterization of Tumor Infiltrating Lymphocytes (TILs) [12]. 57
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Indeed, quantitative analysis of the immune microenvironment by histology is crucial for 58

personalized treatment of cancer [13,14], with high clinical utility of TILs assessment for 59

risk prediction models, adjuvant, and neoadjuvant chemotherapy decisions, and for 60

developing the potential of immunotherapy [15,16]. Digital pathology is thus a natural 61

application for machine learning, with the promise of aiding in routine reporting and 62

standardizing results across trials. Notably, deep learning features learned from digital 63

pathology scans can improve validity and robustness of current clinico-pathological 64

features, up to identifying novel histological patterns, e.g. from TILs. 65

On the technical side, usually deep learning models for digital pathology are built 66

upon architectures originally aimed at tasks in other domains and trained on 67

non-medical datasets. This is a foundational approach in machine learning, known as 68

transfer learning. Given domain data and a network pre-trained to classify on huge 69

generic databases (e.g. ImageNet, with over 14 million items and 20 thousand 70

categories), there are three basic options for transfer learning, i.e. to adapt the classifier 71

to the new domain: a) train a new machine learning model on the features preprocessed 72

by the pre-trained network from the domain data; b) retrain only the deeper final layers 73

(the domain layers) of the pre-trained network; c) re-train the whole network starting 74

from the pre-trained state. A consensus about the best strategy to use for medical 75

images is still missing [17,18]. 76

In this study we aim to address the issue of reproducibility and validation of 77

machine learning models for digital pathology. Reproducibility is a burning concern in 78

biomarker research [19], and in science in general [20], with scientific communities, 79

institutions, industry, and publishers struggling to foster adoption of best practices, 80

with initiatives ranging from enhancing reproducibility of high-throughput 81

technologies [21] to improving the overall reuse of scholarly data and analytics solutions 82

(e.g. the FAIR Data Principles [22]). As an example, the MAQC initiative [23,24], is led 83

by the US FDA to investigate best practices and causes of variability in the 84

development of biomarkers and predictive classifiers from massive omics data (e.g. 85

microarrays, RNA-Seq or DNA-seq data) for precision medicine. The MAQC projects 86

adopt a Data Analysis Plan (DAP) that force bioinformatics teams to submit 87

classification models, top features ranked for importance and estimate of performance 88

all built on training data only, before testing on unseen validation data. This approach 89

helps mitigating the risk of selection bias in complex learning pipelines, where the bias 90

can be born in one of many preprocessing steps as well as in the downstream machine 91

learning model. Further, it clarifies that increasing task difficulty is often linked to a 92

decrease in accuracy measures and also of stability of the biomarker lists [25]. 93

Although openness in sharing algorithms and benchmark data is a solid attitude of 94

the machine learning community, the reliable estimation on a given training dataset of 95

predictive accuracy and stability of deep learning models (or of deep features used by 96

external models) is still a gray area. The underlying risk is that of overfitting the 97

training data, or worse to overfit the validation data if the labels are visible, which is 98

typical when datasets are fully released at the end of a MI data science challenge. As 99

the number of deep learning based studies in digital pathology is exponentially growing, 100

we suggest that the progress of this field needs environments (e.g. DAPs) to prevent 101

such pitfalls, especially if features distilled by the network are used as radiomics 102

biomarkers to inform medical decision. Further, given an appropriate DAP, alternative 103

model choices should be benchmarked on publicly available datasets, as usual in the 104

general computer vision domain (e.g. ImageNet [26] or COCO [27]). 105

This study provides three main practical contributions to controlling for algorithmic 106

bias and improving reproducibility of machine learning algorithms for digital pathology: 107

1. A Data Analysis Plan (DAP) specialized for digital pathology, tuned on the 108

predictive evaluation of deep features, extracted by a network and used by 109
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alternative classification heads; 110

2. A benchmark dataset (HINT) of 53 727 tiles of histological images from 30 tissue 111

types, derived from GTEx [28] for the recognition of tissue of origin of up to 30 112

classes; 113

3. An end-to-end machine learning framework (DAPPER) as a baseline environment 114

for predictive models in digital pathology. 115

We first apply DAPPER to a set of classification experiments on 787 Whole Slide 116

Images (WSIs) from GTEx. The framework (see Fig 1) is composed by (A) a 117

preprocessing section to derive datasets from WSIs; (B) a 3-step machine learning 118

pipeline with a data augmentation preprocessor, a backbone deep learning model, and 119

an adapter extracting the deep features; (C) a downstream machine learning head, i.e. 120

the task specific predictor. In our experiments, we analyze accuracy and feature 121

stability in a multi-class setting of three different deep learning architectures (VGG, 122

ResNet and Inception) as feature extractors and of three classifiers (a fully connected 123

multilayer network, SVMs and Random Forests) as downstream machine learning head. 124

This section is endowed with the DAP, i.e. a 10× 5 CV (5-fold Cross Validation iterated 125

10 times). The 50 internal test sets are used to estimate a vector of metrics (with 126

confidence intervals) that are used for model selection. In the fourth section (D) we 127

finally provide an unsupervised data analysis based on the UMAP projection method 128

and methods for feature exploration. The DAPPER software is available together with 129

the HINT benchmark dataset. 130

Fig 1. The DAPPER environment. Components: A) The WSI preprocessing
pipeline; B) the deep learning backbone, to extract deep features; C) the Data Analysis
Plan (DAP) for the machine learning models; and D) the UMAP module and other
modules for unsupervised analysis.

Notably, the DAP estimates are provided in this paper only for the downstream 131

machine learning head in section (C); whenever computational resources are available, 132

the DAP can be expanded also to section (B). Here we kept as a separate problem the 133

model selection exercise on the upstream deep learning backbone in order to clarify the 134

change of perspective with respect to optimization of machine learning models in the 135

usual training-validation setting. 136

As a second experiment, in order to study the DAPPER framework in a transfer 137

learning condition, we use the deep features from the VGG model trained on HINT on 138

the 1300 annotated tiles of the KIMIA24 dataset [29] to identify in this case the slide of 139

origin (24 classes). 140

Previous work on classifying WSIs by means of neural networks was introduced 141

by [29,30], also with the purpose of distributing the two original datasets Kimia 142

Path960 and Kimia Path24. Kimia Path24 consists of 24 WSIs chosen on purely visual 143

distinctions. Babaie et al. [29] manually selected a total of 1325 binary patches with 144

40% overlap. On this dataset, amongst other two models based on Local Binary 145

Patterns (LBP) and Bag-of-Words (BoVW), they applied two shallow convolutional 146

neural networks (CNN), achieving at most 41.8% accuracy. Kimia Path960 contains 960 147

histopathological images belonging to 20 different WSIs that, again on visual clues, were 148

used to represent different texture/pattern/staining types. Kumar et al. [30] replicated 149

the same experiments as on Kimia Path24, i.e. LBP, BoVW and CNN. They applied 150

AlexNet or VGG16, both pretrained on ImageNet, to extract deep features; instead of a 151

classifier, accuracy was established by computing similarity distances between the 4096 152

features extracted. Also, Kiefer et al [31] explored the use of deep features from several 153

pre-trained structures on Kimia24, controlling for the impact of transfer learning and 154
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finding an advantage of pre-trained networks against training from scratch. Alhindi and 155

colleagues [32] instead analyze Kimia960 for slide of origin (20 slides preselected by 156

visual ispection), and similarly to our study compare alternative classifiers as well as 157

feature extraction models in a 3-fold CV setup. Our framework differs for the DAP 158

structure and is originally applied to the larger HINT set without any visual 159

pre-selection. 160

Materials and methods 161

Dataset 162

The images used to train the models were derived from the Genotype-Tissue Expression 163

(GTEx) Study [28]. The study collects gene expression profiles and whole-slide images 164

(WSIs) of 42 human tissues histologies used to investigate the relationship between 165

genetic variation and tissue-specific gene expression in healthy individuals. To ensure 166

that the collected tissues meet prescribed standard criteria, a Pathology Resource 167

Center (PCR) validated each sample origin, content, integrity and target tissue 168

(https://biospecimens.cancer.gov/resources/sops/). After sectioning and 169

staining (H&E), tissue samples were scanned using a digital whole slide imaging system 170

(Aperio) and stored in .svs format [33]. 171

A custom Python script was used to download 787 WSIs through the Biospecimen 172

Research Database (total size: 192 GB, average 22 WSIs for each tissue). The list of the 173

downloaded WSIs is available in S1 Supplement Table S1. 174

A data preprocessing pipeline was developed to prepare the WSIs as training data 175

(see Figure 2). The WSIs have a resolution of 0.275 µm/pixel (Magnification 40X) and 176

variable dimension but the region interested by the tissue is only a portion of the WSI, 177

which varies across the samples. Hence first we identified the region of the tissue in the 178

image (see Fig 2), then we extracted at most 100 tiles (512 × 512 pixel) from the WSIs, 179

by randomly sampling the tissue region. We applied the algorithm for the detection of 180

the tissue region (see Fig 2) on each tile and rejected those where the portion of the 181

tissue was below 85%. A total number of 53727 tiles was extracted, with a number of 182

tiles per tissue varying between 59 (for Adipose - Visceral (Omentum)) and 2689 (for 183

Heart - Left Ventricle). 184

Fig 2. The tissue detection pipeline. The identification of the tissue bounding box
is performed on the WSI thumbnail in three steps: a) Binarization of the grayscale
image by applying Otsu’s thresholding; b) Binary dilation and filling of the holes; c)
Selection of the biggest connected region as tissue region and computation of the vertex
of the containing rectangle.

Four datasets (HINT5, HINT10, HINT20, HINT30) have been derived with 185

increasing number of tissues for a total of 52 991 tiles (see S1 Supplement Table S2 for 186

details). We refer to the four sets as the HINT collection, or the HINT dataset in brief. 187

We choose the five tissues composing HINT5 starting from exploratory experiments, 188

while the other datasets were composed including the tissues with higher number of tiles. 189

The class imbalance is accounted for by weighting the error on predictions. In detail, 190

the weight w of the class i used in the cross entropy function is computed as: 191

wi = nmax/ni, where nmax is the number of tiles in the class with more tiles and ni is 192

the number of tiles in the class i. 193

Since image orientation should not be relevant for the tissue recognition, the tiles are 194

randomly flipped (horizontally and vertically) and scaled, following a common practice 195

in deep learning known as data augmentation [34]. Augmentation increases the 196
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Table 1. Summary of the HINT datasets. Total: total number of tiles composing
the dataset; Min: number of tiles in the class with less samples; Max: number of tiles in
the class with more samples; Average; average number of tiles for each class.

Name Number of tissues Total Min Max Average

HINT5 5 8218 1009 2424 1643.6
HINT10 10 22885 1890 2689 2288.5
HINT20 20 40516 1574 2689 2025.8
HINT30 30 52991 957 2689 1766.4

generalization capabilities of the network preventing overfitting and is performed each 197

time the tile is loaded, so that the resulting input image is different at each epoch. Such 198

randomized transformations were found to increase concordance of prognostic accuracy 199

of the deep learning SCNN architecture with that of baseline models based on combined 200

molecular subtype and histologic grade [7]. In addition, the tile is cropped to a fixed 201

size, which is dependent on the type of backbone network. 202

Deep learning architectures and training strategies 203

We tested three backbone architectures commonly used in computer vision tasks (see 204

Table 2): 205

1. VGG, version 19 with Batch Normalization (BN) layers [35]; 206

2. ResNet, version 152 [36]; 207

3. Inception, version 3 [37]. 208

Table 2. Backbone networks’ characteristics.

Name Output features Parameters Layers

VGG 25088 20 035 392 64
ResNet 2048 58 143 808 465
Inception 2048 21 785 568 282

The feature extraction layers of each backbone network is obtained as the output of 209

an end-to-end pipeline composed of four main blocks (see Fig 1, B): 210

1. Data augmentation: the input tiles are processed and assembled into batches; 211

2. Feature extraction: series of convolutional layers (Conv2d: with different number 212

of channels and kernel size), normalization layers (Batch Norm) and pooling layers 213

(MaxPool2d: with different kernel size) designed to fit with the backbone 214

architecture. The number of output features of the Feature Extractor also 215

depends on the backbone architecture; 216

3. Adapter: linear layer with 1000 output features, and the features of the backbone 217

network as input; 218

4. Machine Learning Head: task specific model taking the 1000 Adapter features as 219

input and providing predicted tissue labels (or a clinical endpoint) as output. 220

As predictive models, we used a linear Support Vector Machine (SVM) with 221

regularization parameter C set to 1, a Random Forest (RF) classifier with 500 trees 222
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(both implemented in scikit-learn, v0.19.1) and a fully connected head (FCH), i.e. a 223

series of fully connected layers. Inspired by [7], our FCH consists of four dense layers 224

with 1000, 1000, 256 and # tissue classes nodes, respectively. The feature extraction 225

block was initialized with the weights already trained on the ImageNet dataset [26], 226

provided by PyTorch (v0.4.0) and freezed. Training also the weights of the feature 227

extraction block improves accuracy (see S1 Supplement Table S3). However, these 228

results were not validated rigorously within the DAP and therefore they not are not 229

claimed as generalized in this study. 230

For the optimization of the other weights (Adapter and FCH) we used the Adam 231

algorithm [38] with the learning rate set to 10−5 and fixed for the whole training. We 232

used the cross entropy as loss function, which is appropriate for multi-class models. 233

The strategy to optimize the learning rate was selected based on results of a 234

preparatory study with the VGG network and HINT5. The strategy approach with 235

fixed learning rate achieved the best results (see S1 Supplement Table S4) and was 236

therefore adopted in the rest of the study. 237

Data Analysis Plan 238

Following the rigorous model validation techniques proposed by the MAQC 239

projects [23,24], we adopted a DAP to assess the validity of the features extracted by 240

the networks, namely a 10x5-fold cross-validation (CV) schema. The input dataset is 241

first partitioned with 80% of samples used as training set for model development and 242

20% as held-out test set for model evaluation. The training set further undergoes a 243

5-fold CV iterated 10 times resulting in a ranked feature list and a set of metrics, 244

including accuracy (ACC) and the Matthews Correlation Coefficient (MCC) in its 245

multiclass generalization [39,40]. At each CV iteration, features are ranked by ANOVA 246

F-score and the classifier is trained on an increasing number of ranked features (namely: 247

10%, 25%, 50%, 100% of the total number of features). A list of top-ranked features is 248

obtained by Borda aggregation of the ranked lists, for which we also compute the 249

Canberra stability with a computational framework designed for sets of ranked 250

biomarker lists [25]. The overall performance of the predictive model is evaluated 251

across all iterations in terms of average MCC and ACC with 95% Studentized bootstrap 252

confidence intervals (CI), and on the test set in terms of MCC. 253

As a sanity check to avoid unwanted selection bias effects, the DAP is repeated 254

stochastically scrambling the training set labels (random labels mode: in absence of 255

selection bias, the no-information error rate is expected) or by randomly ranking 256

features before building models (random ranking mode: in presence of pools of highly 257

correlated variables, top features can be interchanged with others, possibly of higher 258

biological interest). 259

Experiments on HINT 260

We designed a set of experiments to provide indications about the optimal backbone 261

architecture, while keeping fixed the other hyper-parameters. In particular we set batch 262

size (32) and number of epochs (50), high enough to let the network converge: we 263

explored increasing numbers of epochs (10, 30, 50, 100) and as we observed that the loss 264

stabilizes after about 35 epochs, we set the number of epochs to 50. First, we compared 265

the three backbone architectures on the smallest dataset HINT5, with fixed learning 266

rate. Both VGG and ResNet architectures achieved good results, far outperforming 267

Inception. In further analyses we thus restricted to use VGG and ResNet as feature 268

extractors and validated performance and features with the DAP. The same process was 269

adopted on HINT10 and HINT20. An experiment with 30 tissues has also been 270
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performed. Results are listed in S1 Supplement Table S5. A summary of the 271

experiments on backbone models is reported in Table 3. 272

Table 3. Summary of experiments with the backbone models.

Experiment # tissues Feature extractor VGG Version

VGG-5 5 VGG 19+BN
ResNet-5 5 ResNet 152
Inception-5 5 Inception 3
VGG-10 10 VGG 19+BN
ResNet-10 10 ResNet 152
VGG-20 20 VGG 19+BN
ResNet-20 20 ResNet 152

UMAP Analysis 273

The UMAP multidimensional analysis method [41] was applied to project the features 274

extracted onto a bi-dimensional space, using the Python umap module. 275

Implementation 276

All the code used for image processing and network training is written in Python (v3.6) 277

and is available as a collection of Jupyter notebooks at 278

https://gitlab.fbk.eu/histology DL/Tissue classification. 279

In addition to the general scientific libraries for Python, the scripts for the creation 280

and training of the networks are based on PyTorch; the backbone networks are 281

implemented in torchvision. The library for processing histological images (available at 282

https://gitlab.fbk.eu/histology DL/histo lib) is based on OpenSlide and 283

scikit-image. 284

The computations were performed on Microsoft Azure Virtual Machines with 4 285

NVIDIA K80 GPUs, 24 Intel Xeon E5-2690 cores and 256 GB RAM. 286

Results 287

Results of two digital pathology tasks in the DAPPER framework are listed in Table 4 288

for Matthews Correlation Coefficient (MCC) and Table 5 for Accuracy (ACC), 289

respectively. See also Fig 3 (a-b-c) for a comparison of MCC in internal cross-validation 290

with external validation. 291

All backbone-head pairs on HINT have MCC>0.7 with narrow CIs, with estimates 292

from internal validation close to performance on held-out test (Fig 3). Agreement of 293

internal estimates with values on test set is a good indicator of generalization and 294

potential for reproducibility. All models reached their top MCC accuracy with 1000 295

features. On HINT5 and HINT10, the FCH neural network performs better than SVMs 296

and RF. As expected, MCC ranged close to 0 for random labels; random ranking for 297

increasing feature set sizes reached top MCC only for all features (tested for SVMs, 298

results not shown). 299

Fig 3. Comparison of DAPPER cross-validation (MCC) vs external
validation (MCC Test) performance for each classifier. (a) FCH; (b) SVM; (c)
RF.
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Table 4. DAPPER results for each deep learning backbone and classifier head pair on HINT datasets and
KIMIA24: average cross-validation MCC with 95% Confidence Intervals (CI) and MCC on test set.

FCH SVM RF
Experiment MCC (CI) MCC Test MCC (CI) MCC Test MCC (CI) MCC Test

VGG-5 0.841 (0.838, 0.843) 0.820 0.786 (0.783, 0.789) 0.777 0.750 (0.748, 0.753) 0.747
ResNet-5 0.879 (0.877, 0.881) 0.883 0.852 (0.850, 0.854) 0.840 0.829 (0.827, 0.832) 0.849
VGG-10 0.896 (0.894, 0.897) 0.894 0.861 (0.859, 0.862) 0.866 0.889 (0.888, 0.891) 0.886
ResNet-10 0.857 (0.856, 0.859) 0.860 0.825 (0.824, 0.827) 0.832 0.845 (0.843, 0.847) 0.850
VGG-20 0.771 (0.770, 0.772) 0.774 0.729 (0.727, 0.730) 0.731 0.761 (0.760, 0.762) 0.766
ResNet-20 0.756 (0.754, 0.757) 0.757 0.788 (0.787, 0.789) 0.792 0.738 (0.737, 0.739) 0.738
VGG-KIMIA24 0.317 (0.306, 0.327) 0.207 0.446 (0.439, 0.454) 0.409 0.457 (0.449, 0.465) 0.409

Table 5. DAPPER results for each deep learning backbone and classifier head pair on HINT datasets and
KIMIA24: average cross-validation accuracy with 95% Confidence Intervals (CI) and accuracy on test set.

FCH SVM RF
Experiment ACC (CI) ACC Test ACC (CI) ACC Test ACC (CI) ACC Test

VGG-5 87.2 (87.0, 87.5) 85.6 82.9 (82.7, 83.1) 82.1 79.9 (79.7, 80.1) 79.7
ResNet-5 90.3 (90.1, 90.5) 90.7 88.1 (88.0, 88.3) 87.2 86.3 (86.1, 86.5) 87.9
VGG-10 90.6 (90.5, 90.7) 90.5 87.5 (87.3, 87.6) 88.0 90.0 (89.9, 90.2) 89.7
ResNet-10 87.2 (87.0, 87.3) 87.4 84.3 (84.1, 84.4) 84.9 86.1 (85.9, 86.2) 86.5
VGG-20 78.2 (78.1, 78.4) 78.5 74.1 (74.0, 74.2) 74.4 77.3 (77.2, 77.4) 77.7
ResNet-20 76.7 (76.6, 76.9) 76.9 79.9 (79.8, 80.0) 80.3 75.1 (75.0, 75.2) 75.2
VGG-KIMIA24 34.4 (33.2, 35.2) 23.8 47.1 (46.4, 47.8) 43.4 48.0 (47.3, 48.8) 43.4

The most accurate models both for training estimates and in validation were the 300

(ResNet,FCH) pair with MCC=0.883 on HINT5, the (VGG,FCH) pair on HINT10, the 301

(Resnet,SVM) on HINT20. Results on HINT30 are detailed in S1 Supplement Table S5; 302

on test, VGG-HINT30 reaches accuracy ACC= 61.8% and MCC=0.61. Performance 303

decreases for more complex multiclass problems. Notably the difficulty of the task is 304

also complicated by tissue classes that are likely to have similar histological patterns, 305

such as misclassification of Esophagus-Muscularis (ACC: 72.1%) with Esophagus- 306

Mucosa (ACC: 53.2%), or the two Heart tissue subtypes or the 58 Ovary(ACC: 68.3%) 307

tiles predicted as Uterus (ACC: 72.8%). The complete confusion matrix for Resnet with 308

SVMs on HINT20 is reported in Fig 4. 309

Fig 4. Confusion matrix for SVM on ResNet for HINT20. Entries are counts
of predicted vs true label for the 20 tissues. Heart AA: Heart-Atrial Appendage; Heart
LV: Heart-Left Ventricle; Esophagus Mu: Esophagus-Mucosa; Esophagus M:
Esophagus-Muscularis; Brain Co: Brain-Cortex; Brain Ce: Brain-Cerebellum; Skin NSE:
Skin-Not Sun Exposed (Suprapubic); Muscle S: Muscle-Skeletal; Kidney C:
Kidney-Cortex.

In the second experiment, we used the VGG with deep features from the VGG from 310

GTEx on the Kimia Path24 (KIMIA24) dataset [29], where the task is identifying slide 311

of origin (24 classes). In the DAPPER framework, classifiers were trained on 1060 312

annotated tiles and validated on 265 unseen ones. Regardless of difference in image 313

types, VGG-KIMIA24 with both RF and SVM heads with ACC=43.4% (see Table 5), 314

improving on published results (ACC=41.8% ; [29]). The FCH had lower accuracy, but 315

it should be taken into account that deep features and classifiers were trained on 1060 316

images only, compared to the 40513 used by Babaie and colleagues. 317
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It is worth noting that transfer learning from ImageNet to HINT restricts training to 318

the Adapter and Fully Connected Head blocks. In one-shot experiments, MCC further 319

improves when the whole feature extraction block is retrained (see S1 Supplement Table 320

S3). However, the result still needs to be consolidated by extending the DAP also to the 321

training or retraining of the deep learning backbone to check for actual generalization. 322

The Canberra stability indicator was also computed for all the experiments, with 323

minimal median stability for ResNet-HINT20 (Fig 5). 324

Fig 5. Canberra stability indicator. For each architecture, a set of deep feature
lists is generated, one list for each internal run of training in the nested cross-validation
schema, each ranked with KBest. Canberra stability is computed as in [25]: lower
stability is better.

The HINT Benchmark Dataset 325

As a second contribution of this study, we are making available the HINT dataset, 326

generated by the first section of tools in the DAPPER framework, as a benchmark 327

dataset for validating machine learning models in digital pathology. The HINT dataset 328

is currently composed of 53727 tiles at 512 × 512 resolution, based on histology from 329

GTEx. HINT can be easily expanded to over 78000 tiles, as for this study we used a 330

fraction of the GTEx images and at most 100 tiles from each WSI were extracted. 331

Digital pathology still misses a universally adopted dataset to compare deep learning 332

models as already established in vision (e.g. ImageNet for image classification, COCO 333

for image and instance segmentation). Several initiatives for a “BioImageNet” will 334

eventually improve this scenario. Histology data are available in the generalist 335

repository Image Data Resource (IDR) [42,43]. Further, the International 336

Immuno-Oncology Biomarker Working Group in Breast Cancer and the MAQC Society 337

have launched a collaborative project to develop data resources and quality control 338

schemes on machine Learning algorithms to assess TILs in Breast Cancer. 339

HINT is conceptually similar to KIMIA24. However, HINT inherits from GTEx 340

more variability in terms of sample characteristics, validation of donors and additional 341

access to molecular data. Further, we used a random sampling approach to process tiles 342

excluding background and minimize human intervention in the choice and preparation 343

of the images. 344

Deep features 345

We applied an unsupervised projection on all the features extracted by VGG and 346

ResNet networks on all tissues tasks. In the following, we discuss an example for 347

features extracted by VGG on the HINT20 task, displayed as UMAP projection in 348

Fig 6; points are coloured for 20 tissue labels. The UMAP displays for the other tasks 349

are available in S1 Supplement Fig S1-S4. 350

Fig 6. UMAP projection of validation set for VGG-20 task.

The UMAP display is in agreement with the count distributions in the confusion 351

matrix (Fig 4). The deep learning embedding separates well a set of histology types, 352

including: Muscle - Skeletal (ACC: 93.4%), Spleen (ACC: 94.6%), Pancreas (ACC: 353

87.9%), Brain - Cortex (ACC: 94.3%) and Brain - Cerebellum (ACC: 93.4%), Heart - 354

Left Ventricle (ACC: 90.1%) and Heart - Atrial Appendage (ACC: 84.7%) group into 355

distinct clusters. 356
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The distributions of the activations for the top-3 deep features of the VGG-HINT10 357

backbone are displayed in S1 Supplement Fig S5. The top ranked deep feature (#668) 358

is clearly selective for Spleen. 359

The projection also shows an overlapping for tissues such as Ovary and Uterus, or 360

Vagina and Esophagus - Mucosa, or the two Esophagus histotypes, consistently with the 361

confusion matrix (Fig 4). 362

Examples of five tiles from two well separated clusters, Muscle-Skeletal (ACC: 363

93.4%) and Spleen (ACC: 94.6%), are displayed in Fig 7. Tiles from five clusters 364

partially overlapping in the neural embedding and mislabeled in both the VGG-20 and 365

ResNet-20 embeddings with SVMs (Uterus ACC=72.8%, Ovary ACC=68.3%, 366

Esophagus- Mucosa ACC=53.2%, Esophagus-Muscularis ACC=72.1%, Vagina 367

ACC=59.0%) are similarly visualized in Fig 8. 368

Fig 7. Representative tiles from two well-separated clusters observed on
the UMAP embedding of VGG-20.

Fig 8. Samples of mislabeled tiles from five tissues partially overlapping in
the VGG-20 UMAP embedding.

While the aim of this paper is to introduce a framework for honest comparison of 369

models that will be used for clinical purposes rather than fine-tuning accuracy in this 370

experiment, it is evident that these tiles have morphologies that are hard to classify. 371

This challenge requires more complex models (e.g. ensembles) and a structured output 372

labeling, already applied in dermatology [2]. 373

Further, we are exploring the combination of DAPPER with image analysis 374

packages, such as HistomicsTK 375

(https://digitalslidearchive.github.io/HistomicsTK/ or CellProfiler [44], to 376

extract features useful for interpretation and feedback from pathologists. 377

Conclusions 378

Digital pathology would greatly benefit from the adoption of machine learning, shifting 379

human assessment of histology to higher quality, non-repetitive tasks. Unfortunately, 380

there is no fast, easy route to improve reproducibility of automated analysis. The 381

adoption of the DAP clearly sets in a computational aggravation not usually considered 382

for image processing exercises. However, this is an established practice with massive 383

omics data [21], and reproducibility by design can handle secondary results useful for 384

diagnostics and for interpretation. 385

We designed the DAPPER framework as a tool for evaluating accuracy and stability 386

of deep learning models, currently only backbone elements in a sequence of processing 387

steps, and possibly in the future end-to-end solutions. We choose as test domain H&E 388

stained WSIs for prediction of tissue of origin, which is not a primary task for trained 389

pathologists, but a reasonable benchmark for machine learning methods. Also, we are 390

aware that tissue classification is only a step in real digital pathology applications. 391

Mobadersany and colleagues [7] used a deep learning classifier to score and visualize risk 392

on the WSIs. Similarly, deep learning tile classification may be applied to quantify 393

histological differences in association to a genomic pattern, e.g. a specific mutation or a 394

high-dimensional protein expression signature. In this vision, the attention to model 395

selection supported by our framework is a prerequisite for developing novel AI 396

algorithms for digital pathology, e.g. for analytics over TILs. 397
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Although we are building on deep learning architectures known for applications on 398

generic images, they adapted well to WSIs in combination with established machine 399

learning models (SVMs, RF); we expect that large scale bioimaging resources will give 400

the chance of improving the characterization of deep features, as already emerged with 401

the HINT dataset that we are providing as public resource. In this direction, we plan to 402

release the network weights of the backbone DAPPER models that are optimized for 403

histopathology as alternative pretrained weights for digital pathology, similarly to those 404

for the ImageNet dataset and available in torchvision. 405

Supporting information 406

S1 Supplement. Supporting tables and figures. 407
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