

1 Connecting the dots between mechanosensitive channel abundance, 2 osmotic shock, and survival at single-cell resolution

3 Griffin Chure^{a,†}, Heun Jin Lee^{b,†}, and Rob Phillips^{a, b, *}

4 ^a Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA,
5 USA

6 ^b Department of Physics, California Institute of Technology, Pasadena, California, USA

7 [†] contributed equally

8 **Running title:** MscL copy number and cell survival after osmotic shock

9 * Send correspondence to phillips@pboc.caltech.edu

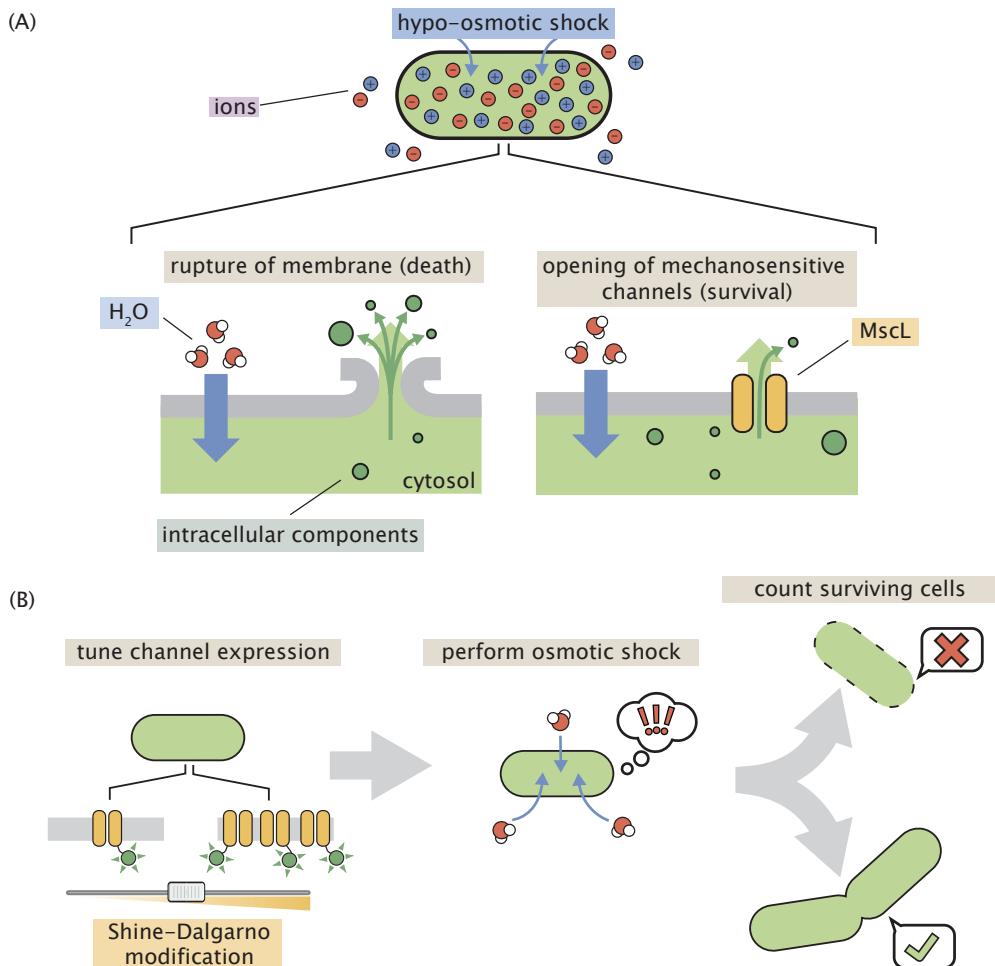
10 Abstract

11 Rapid changes in extracellular osmolarity are one of many insults microbial cells face on a daily basis. To
12 protect against such shocks, *Escherichia coli* and other microbes express several types of transmembrane
13 channels which open and close in response to changes in membrane tension. In *E. coli*, one of the most
14 abundant channels is the mechanosensitive channel of large conductance (MscL). While this channel has
15 been heavily characterized through structural methods, electrophysiology, and theoretical modeling,
16 our understanding of its physiological role in preventing cell death by alleviating high membrane
17 tension remains tenuous. In this work, we examine the contribution of MscL alone to cell survival after
18 osmotic shock at single cell resolution using quantitative fluorescence microscopy. We conduct these
19 experiments in an *E. coli* strain which is lacking all mechanosensitive channel genes save for MscL whose
20 expression is tuned across three orders of magnitude through modifications of the Shine-Dalgarno
21 sequence. While theoretical models suggest that only a few MscL channels would be needed to alleviate
22 even large changes in osmotic pressure, we find that between 500 and 700 channels per cell are needed
23 to convey upwards of 80% survival. This number agrees with the average MscL copy number measured
24 in wild-type *E. coli* cells through proteomic studies and quantitative Western blotting. Furthermore, we
25 observe zero survival events in cells with less than 100 channels per cell. This work opens new questions
26 concerning the contribution of other mechanosensitive channels to survival as well as regulation of their
27 activity.

28 **Importance**

29 Mechanosensitive (MS) channels are transmembrane protein complexes which open and close in
30 response to changes in membrane tension as a result of osmotic shock. Despite extensive biophysical
31 characterization, the contribution of these channels to cell survival remains largely unknown. In this
32 work, we use quantitative video microscopy to measure the abundance of a single species of MS channel
33 in single cells followed by their survival after a large osmotic shock. We observe total death of the
34 population with less than 100 channels per cell and determine that approximately 500 - 700 channels are
35 needed for 80% survival. The number of channels we find to confer nearly full survival is consistent
36 with the counts of the number of channels in wild type cells in several earlier studies. These results
37 prompt further studies to dissect the contribution of other channel species to survival.

38 **Introduction**


39 Changes in the extracellular osmolarity can be a fatal event for the bacterial cell. Upon a hypo-osmotic
40 shock, water rushes into the cell across the membrane, leaving the cell with no choice but to equalize
41 the pressure. This equalization occurs either through damage to the cell membrane (resulting in death)
42 or through the regulated flux of water molecules through transmembrane protein channels (Fig 1A).
43 Such proteinaceous pressure release valves have been found across all domains of life, with the first
44 bacterial channel being described in 1987 (1). Over the past thirty years, several more channels have been
45 discovered, described, and (in many cases) biophysically characterized. *E. coli*, for example, has seven of
46 these channels (one MscL and six MscS homologs) which have varied conductance, gating mechanisms,
47 and expression levels. While they have been the subject of much experimental and theoretical dissection,
48 much remains a mystery with regard to the roles their abundance and interaction with other cellular
49 processes play in the greater context of physiology (2–8).

50 Of the seven channels in *E. coli*, the mechanosensitive channel of large conductance (MscL) is one
51 of the most abundant and the best characterized. This channel has a large conductance (3 nS) and
52 mediates the flux of water molecules across the membrane via a ~3 nm wide pore in the open state
53 (9, 10). Molecular dynamics simulations indicate that a single open MscL channel permits the flux of
54 4×10^9 water molecules per second, which is an order of magnitude larger than a single aquaporin
55 channel (BNID 100479) (11, 12). This suggests that having only a few channels per cell could be sufficient
56 to relieve even large changes in membrane tension. Electrophysiological experiments have suggested a
57 small number of channels per cell (13, 14), however, more recent approaches using quantitative western
58 blotting, fluorescence microscopy, and proteomics have measured several hundred MscL per cell (3, 15,
59 16). To further complicate matters, the expression profile of MscL appears to depend on growth phase,

60 available carbon source, and other environmental challenges (3, 16, 17). While there are likely more than
61 just a few channels per cell, why cells seem to need so many and the biological rationale behind their
62 condition-dependent expression both remain a mystery.

63 While their biochemical and biophysical characteristics have received much attention, their connection
64 to cell survival is understudied. Drawing such a direct connection between channel copy number and
65 survival requires quantitative *in vivo* experiments. To our knowledge, the work presented in van den
66 Berg et al. 2016 (8) is the first attempt to simultaneously measure channel abundance and survivability
67 for a single species of mechanosensitive channel. While the measurement of channel copy number
68 was performed at the level of single cells using super-resolution microscopy, survivability after a hypo-
69 osmotic shock was assessed in bulk plating assays which rely on serial dilutions of a shocked culture
70 followed by counting the number of resulting colonies after incubation. Such bulk assays have long
71 been the standard for querying cell viability after an osmotic challenge. While they have been highly
72 informative, they reflect only the mean survival rate of the population, obfuscating the variability in
73 survival of the population. The stochastic nature of gene expression results in a noisy distribution of
74 MscL channels rather than a single value, meaning those found in the long tails of the distribution have
75 quite different survival rates than the mean but are lost in the final calculation of survival probability.

76 In this work, we present an experimental system to quantitatively probe the interplay between
77 MscL copy number and survival at single-cell resolution, as is seen in Fig. 1B. We generated an *E. coli*
78 strain in which all seven mechanosensitive channels had been deleted from the chromosome followed
79 by a chromosomal integration of a single gene encoding an MscL-super-folder GFP (sfGFP) fusion
80 protein. To explore copy number regimes beyond those of the wild-type expression level, we modified
81 the Shine-Dalgarno sequence of this integrated construct allowing us to cover nearly three decades of
82 MscL copy number. To probe survivability, we exposed cells to a large hypo-osmotic shock at controlled
83 rates in a flow cell under a microscope, allowing the observation of the single-cell channel copy number
84 and the resulting survivability of single cells. With this large set of single cell measurements, we
85 approach the calculation of survival probability in a manner that is free of binning bias which allows
86 the reasonable extrapolation of survival probability to copy numbers outside of the observed range.
87 In addition, we show that several hundred channels are needed to convey high rates of survival and
88 observe a minimum number of channels needed to permit any degree of survival.

FIG 1 Role of mechanosensitive channels during hypo-osmotic shock. (A) A hypo-osmotic shock results in a large difference in the osmotic strength between the intracellular and extracellular spaces. As a result, water rushes into the cell to equalize this gradient increasing the turgor pressure and tension in the cell membrane. If no mechanosensitive channels are present (left panel) and membrane tension is high, the membrane ruptures releasing intracellular content into the environment resulting in cell death. If mechanosensitive channels are present (right panel) and membrane tension is beyond the gating tension, the mechanosensitive channel MscL opens, releasing water and small intracellular molecules into the environment thus relieving pressure and membrane tension. (B) The experimental approach undertaken in this work. The number of mechanosensitive channels tagged with a fluorescent reporter is tuned through modification of the Shine-Dalgarno sequence of the *mscL* gene. The cells are then subjected to a hypo-osmotic shock and the number of surviving cells are counted, allowing the calculation of a survival probability.

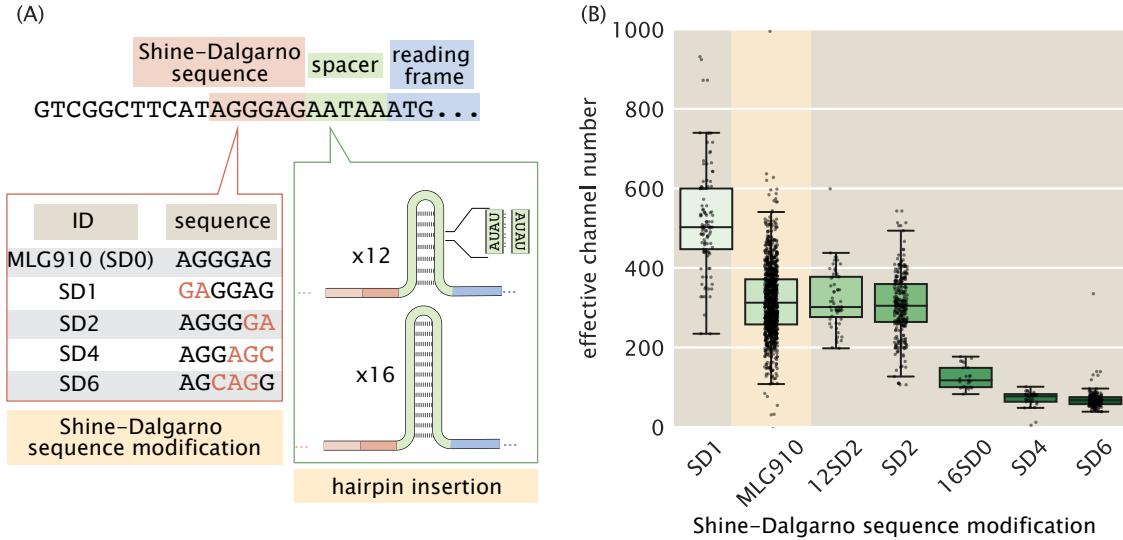
89 **Results**

90 *Quantifying the single-cell MscL copy number*

91 The principal goal of this work is to examine the contribution of a single mechanosensitive channel
92 species to cell survival under a hypo-osmotic shock. While this procedure could be performed for any
93 species of channel, we chose MscL as it is the most well characterized and one of the most abundant
94 species in *E. coli*. To probe the contribution of MscL alone, we generated an *E. coli* strain in which
95 all seven known mechanosensitive channel genes were deleted from the chromosome followed by
96 the integration of an *mscL* gene encoding an MscL super-folder GFP (sfGFP) fusion. Chromosomal
97 integration imposes strict control on the gene copy number compared to plasmid borne expression
98 systems, which is important to minimize variation in channel expression across the population and
99 provide conditions more representative of native cell physiology. Fluorescent protein fusions have
100 frequently been used to study MscL and have been shown through electrophysiology to function
101 identically to the native MscL protein, allowing us to confidently draw conclusions about the role this
102 channel plays in wild-type cells from our measurements. (3, 18).

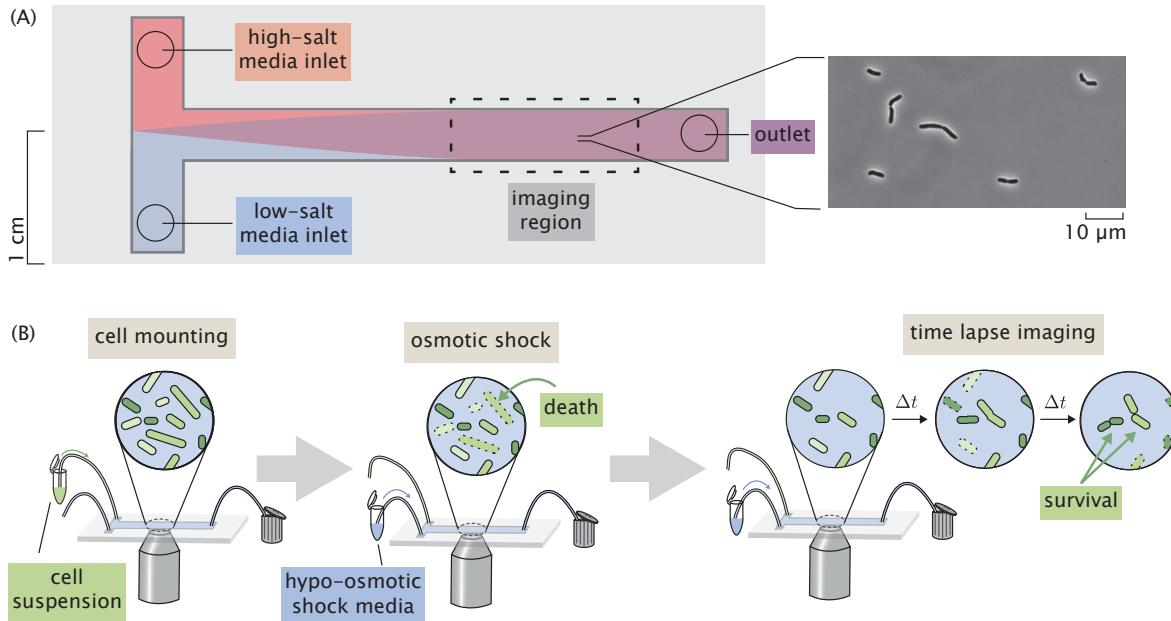
103 To modulate the number of MscL channels per cell, we developed a series of mutants which were
104 designed to decrease the expression relative to wild-type. These changes involved direct alterations of
105 the Shine-Dalgarno sequence as well as the inclusion of AT hairpins of varying length directly upstream
106 of the start codon which influences the translation rate and hence the number of MscL proteins produced
107 (Fig. 2A). The six Shine-Dalgarno sequences used in this work were chosen using the RBS binding
108 site strength calculator from the Salis Laboratory at the Pennsylvania State University (19, 20). While
109 the designed Shine-Dalgarno sequence mutations decreased the expression relative to wild-type as
110 intended, the distribution of expression is remarkably wide spanning an order of magnitude.

111 To measure the number of MscL channels per cell, we determined a fluorescence calibration factor to
112 translate arbitrary fluorescence units per cell to protein copy number. While there have been numerous
113 techniques developed over the past decade to directly measure this calibration factor, such as quantifying
114 single-molecule photobleaching constants or measuring the binomial partitioning of fluorescent proteins
115 upon cell division (3, 21), we used *a priori* knowledge of the mean MscL-sfGFP expression level of a
116 particular *E. coli* strain to estimate the average fluorescence of a single channel. In Bialecka-Fornal et al.
117 2012 (3), the authors used single-molecule photobleaching and quantitative Western blotting to probe
118 the expression of MscL-sfGFP under a wide range of growth conditions. To compute a calibration factor,
119 we used the strain MLG910 (*E. coli* K12 MG1655 $\phi(mscL\text{-sfGFP})$) as a “standard candle”, highlighted in
120 yellow in Fig. 2B. This standard candle strain was grown and imaged in identical conditions in which
121 the MscL count was determined. The calibration factor was computed by dividing the mean total cell


122 fluorescence by the known MscL copy number, resulting in a measure of arbitrary fluorescence units
123 per MscL channel. Details regarding this calculation and appropriate propagation of error can be found
124 in the Materials & Methods as well as the supplemental information (*Standard Candle Calibration*).

125 While it is seemingly trivial to use this calibration to determine the total number of channels per cell for
126 wild-type or highly expressing strains, the calculation for the lowest expressing strains is complicated by
127 distorted cell morphology. We observed that as the channel copy number decreases, cellular morphology
128 becomes increasingly aberrant with filamentous, bulging, and branched cells becoming more abundant
129 (Fig. S3A). This morphological defect has been observed when altering the abundance of several species
130 of mechanosensitive channels, suggesting that they play an important role in general architectural
131 stability (3, 4). As these aberrant morphologies can vary widely in size and shape, calculating the
132 number of channels per cell becomes a more nuanced endeavor. For example, taking the total MscL
133 copy number for these cells could skew the final calculation of survival probability as a large but
134 severely distorted cell would be interpreted as having more channels than a smaller, wild-type shaped
135 cell (Fig. S3B). To correct for this pathology, we computed the average expression level per unit area
136 for each cell and multiplied this by the average cellular area of our standard candle strain which is
137 morphologically indistinguishable from wild-type *E. coli*, allowing for the calculation of an effective
138 channel copy number. The effect of this correction can be seen in Fig. S3C and D, which illustrate that
139 there is no other correlation between cell area and channel expression.

140 Our calculation of the effective channel copy number for our suite of Shine-Dalgarno mutants is
141 shown in Fig. 2B. The expression of these strains cover nearly three orders of magnitude with the
142 extremes ranging from approximately four channels per cell to nearly one thousand. While the means
143 of each strain are somewhat distinct, the distributions show a large degree of overlap, making one strain
144 nearly indistinguishable from another. This variance is a quantity that is lost in the context of bulk scale
145 experiments but can be accounted for via single-cell methods.


146 *Performing a single-cell hypo-osmotic challenge assay*

147 To measure the channel copy number of a single cell and query its survival after a hypo-osmotic
148 shock, we used a custom-made flow cell in which osmotic shock and growth can be monitored in
149 real time using video microscopy (Fig. 3A). The design and characterization of this device has been
150 described in depth previously and is briefly described in the Materials & Methods (4). Using this device,
151 cells were exposed to a large hypo-osmotic shock by switching between LB Miller medium containing
152 500mM NaCl and LB media containing no NaCl. All six Shine-Dalgarno modifications shown in Fig. 2B
153 (excluding MLG910) were subjected to a hypo-osmotic shock at controlled rates while under observation.
154 After the application of the osmotic shock, the cells were imaged every sixty seconds for four to six

FIG 2 Control of MscL expression and calculation of channel copy number. (A) Schematic view of the expression modifications performed in this work. The beginning portion of the native *mscL* sequence is shown with the Shine-Dalgarno sequence, spacer region, and start codon shaded in red, green, and blue, respectively. The Shine-Dalgarno sequence was modified through the Salis lab Ribosomal Binding Strength calculator (19, 20). The wild-type sequence (MLG910) is shown in black with mutations for the other four Shine-Dalgarno mutants highlighted in red. Expression was further modified by the insertion of repetitive AT bases into the spacer region, generating hairpins of varying length which acted as a thermodynamic barrier for translation initiation. (B) Variability in effective channel copy number is computed using the standard candle. The boxes represent the interquartile region of the distribution, the center line displays the median, and the whiskers represent 1.5 times the maximum and minimum of the interquartile region. Individual measurements are denoted as black points. The strain used for calibration of channel copy number (MLG910) is highlighted in yellow.

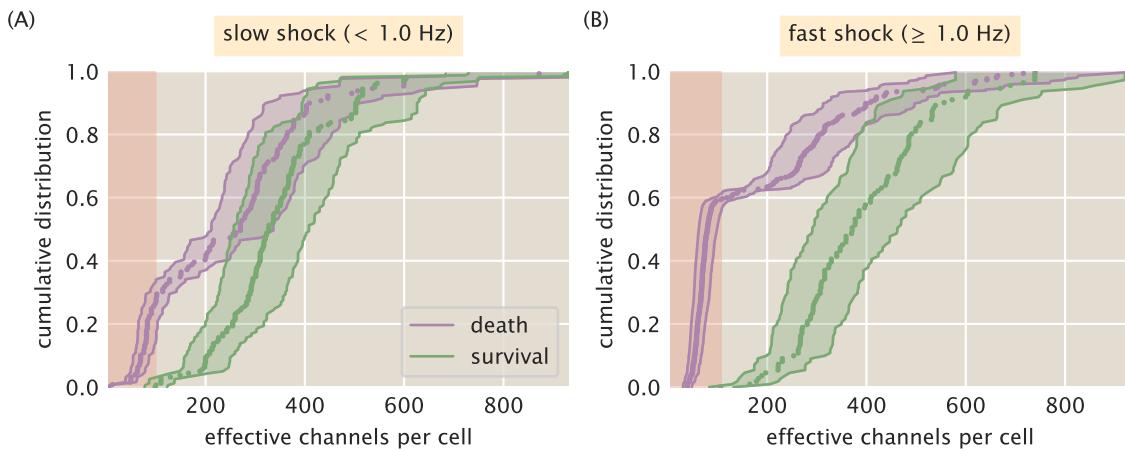

155 hours. Survivors were defined as cells which underwent at least two divisions post-shock. The brief
156 experimental protocol can be seen in Fig. 3B.

FIG 3 Experimental approach to measuring survival probability. (A) Layout of a home-made flow cell for subjecting cells to osmotic shock. Cells are attached to a polyethylamine functionalized surface of a glass coverslip within the flow chamber by loading a dilute cell suspension through one of the inlets. (B) The typical experimental procedure. Cells are loaded into a flow chamber as shown in (A) and mounted to the glass coverslip surface. Cells are subjected to a hypo-osmotic shock by flowing hypotonic medium into the flow cell. After shock, the cells are monitored for several hours and surviving cells are identified.

157 Due to the extensive overlap in expression between the different Shine-Dalgarno mutants (see
158 Fig. 2B), computing the survival probability by treating each mutant as an individual bin obfuscates the
159 relationship between channel abundance and survival. To more thoroughly examine this relationship,
160 all measurements were pooled together with each cell being treated as an individual experiment. The
161 hypo-osmotic shock applied in these experiments was varied across a range of 0.02 Hz (complete
162 exchange in 50 s) to 2.2 Hz (complete exchange in 0.45 s). Rather than pooling this wide range of shock
163 rates into a single data set, we chose to separate the data into “slow shock” (< 1.0 Hz) and “fast shock”
164 (≥ 1.0 Hz) classes. Other groupings of shock rate were explored and are discussed in the supplemental
165 information (*Shock Classification*). The cumulative distributions of channel copy number separated by
166 survival are shown in Fig. 4. In these experiments, survival was never observed for a cell containing less
167 than approximately 100 channels per cell, indicated by the red stripe in Fig. 4. This suggests that there
168 is a minimum number of channels needed for survival on the order of 100 per cell. We also observe a
169 slight shift in the surviving fraction of the cells towards higher effective copy number, which matches

170 our intuition that including more mechanosensitive channels increases the survival probability.

FIG 4 Distributions of survival and death as a function of effective channel number. (A) Empirical cumulative distributions of channel copy number separated by survival (green) or death (purple) after a slow (< 1.0 Hz) osmotic shock. (B) The empirical cumulative distribution for a fast (≥ 1.0 Hz) osmotic shock. Shaded green and purple regions represent the 95% credible region of the effective channel number calculation for each cell. Shaded red stripe signifies the range of channels in which no survival was observed.

171 *Prediction of survival probability as a function of channel copy number*

172 There are several ways by which the survival probability can be calculated. The most obvious
173 approach would be to group each individual Shine-Dalgarno mutant as a single bin and compute the
174 average MsCL copy number and the survival probability. Binning by strain is the most frequently used
175 approach for such measurements and has provided valuable insight into the qualitative relationship of
176 survival on other physiological factors (4, 8). However the copy number distribution for each Shine-
177 Dalgarno mutant (Fig. 2B) is remarkably wide and overlaps with the other strains. We argue that this
178 coarse-grained binning negates the benefits of performing single-cell measurements as two strains with
179 different means but overlapping quartiles would be treated as distinctly different distributions.

180 Another approach would be to pool all data together, irrespective of the Shine-Dalgarno mutation,
181 and bin by a defined range of channels. Depending on the width of the bin, this could allow for
182 finer resolution of the quantitative trend, but the choice of the bin width is arbitrary with the *a priori*
183 knowledge that is available. Drawing a narrow bin width can easily restrict the number of observed
184 events to small numbers where the statistical precision of the survival probability is lost. On the other
185 hand, drawing wide bins increases the precision of the estimate, but becomes further removed from

186 a true single-cell measurement and represents a population mean, even though it may be a smaller
187 population than binning by the Shine-Dalgarno sequence alone. In both of these approaches, it is
188 difficult to extrapolate the quantitative trend outside of the experimentally observed region of channel
189 copy number. Here, we present a method to estimate the probability of survival for any channel copy
190 number, even those that lie outside of the experimentally queried range.

191 To quantify the survival probability while maintaining single-cell resolution, we chose to use a
192 logistic regression model which does not require grouping data into arbitrary bins and treats each cell
193 measurement as an independent experiment. Logistic regression is an inferential method to model the
194 probability of a boolean or categorical event (such as survival or death) given one or several predictor
195 variables and is commonly used in medical statistics to compute survival rates and dose response
196 curves (22, 23). The primary assumption of logistic regression is that the log-odds probability of survival
197 p_s is linearly dependent on the predictor variable, in our case the log channels per cell N_c with a
198 dimensionless intercept β_0 and slope β_1 ,

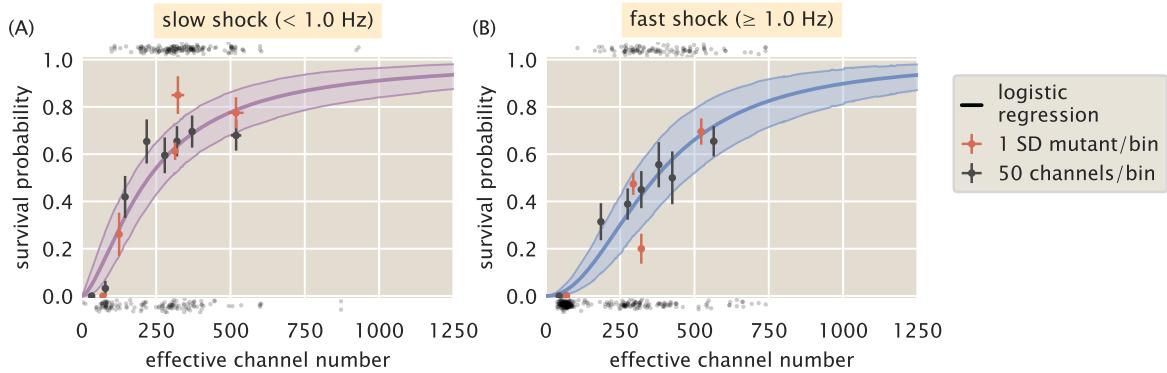
$$\log \frac{p_s}{1 - p_s} = \beta_0 + \beta_1 \log N_c. \quad (1)$$

199 Under this assumption of linearity, β_0 is the log-odds probability of survival with no MscL channels.
200 The slope β_1 represents the change in the log-odds probability of survival conveyed by a single channel.
201 As the calculated number of channels in this work spans nearly three orders of magnitude, it is better
202 to perform this regression on $\log N_c$ as regressing on N_c directly would give undue weight for lower
203 channel copy numbers due to the sparse sampling of high-copy number cells. The functional form shown
204 in Eq. 1 can be derived directly from Bayes' theorem and is shown in the supplemental information
205 (*Logistic Regression*). If one knows the values of β_0 and β_1 , the survival probability can be expressed as

$$p_s = \frac{1}{1 + N_c^{-\beta_1} e^{-\beta_0}}. \quad (2)$$

206 In this analysis, we used Bayesian inferential methods to determine the most likely values of the
207 coefficients and is described in detail in the supplemental information (*Logistic Regression*).

208 The results of the logistic regression are shown in Fig. 5. We see a slight rightward shift the survival
209 probability curve under fast shock relative to the slow shock case, reaffirming the conclusion that
210 survival is also dependent on the rate of osmotic shock (4). This rate dependence has been observed for
211 cells expressing MscL alongside other species of mechanosensitive channels, but not for MscL alone.
212 This suggests that MscL responds differently to different rates of shock, highlighting the need for further
213 study of rate dependence and the coordination between different species of mechanosensitive channels.
214 Fig. 5 also shows that several hundred channels are required to provide appreciable protection from
215 osmotic shock. For a survival probability of 80%, a cell must have approximately 500 to 700 channels
216 per cell for a fast and slow shock, respectively. The results from the logistic regression are showed as


217 continuous colored curves. The individual cell measurements separated by survival and death are
218 shown at the top and bottom of each plot, respectively, and are included to provide a sense of sampling
219 density.

220 Over the explored range of MscL copy number, we observed a maximum of 80% survival for any bin-
221 ning method. The remaining 20% survival may be attained when the other species of mechanosensitive
222 channels are expressed alongside MscL. However, it is possible that the flow cell method performed
223 in this work lowers the maximal survival fraction as the cells are exposed to several, albeit minor,
224 mechanical stresses such as loading into the flow cell and chemical adherence to the glass surface. To
225 ensure that the results from logistic regression accurately describe the data, we can compare the survival
226 probabilities to those using the binning methods described earlier (red and black points, Fig. 5). Nearly
227 all binned data fall within error of the prediction (see Materials & Methods for definition of error bar on
228 probability), suggesting that this approach accurately reflects the survival probability and gives license
229 to extrapolate the estimation of survival probability to regions of outside of our experimentally explored
230 copy number regime.

231 Thus far, we've dictated that for a given rate of osmotic shock (i.e. "fast" or "slow"), the survival
232 probability is dependent only on the number of channels. In Fig. S7, we show the result of including
233 other predictor variables, such as area and shock rate alone. In such cases, including other predictors
234 resulted in pathological curves showing that channel copy number is the most informative out of the
235 available predictor variables.

236 Discussion

237 One of the most challenging endeavors in the biological sciences is linking the microscopic details
238 of cellular components to the macro-scale physiology of the organism. This formidable task has been
239 met repeatedly in the recent history of biology, especially in the era of DNA sequencing and single
240 molecule biochemistry. For example, the scientific community has been able to connect sickle-cell
241 anemia to a single amino acid substitution in Hemoglobin which promotes precipitation under a change
242 in O₂ partial pressure (24–26). Others have assembled a physical model that quantitatively describes
243 chemosensation in bacteria (27) in which the arbiter of sensory adaptation is the repeated methylation
244 of chemoreceptors (28–31). In the past ~50 years alone, numerous biological and physical models of the
245 many facets of the central dogma have been assembled that give us a sense of the interplay between the
246 genome and physiology. For example, the combination of biochemical experimentation and biophysical
247 models have given us a picture of how gene dosage affects furrow positioning in *Drosophila* (32), how
248 recombination of V(D)J gene segments generates an extraordinarily diverse antibody repertoire (33–35),
249 and how telomere shortening through DNA replication is intrinsically tied to cell senescence (36, 37), to

FIG 5 Probability of survival as a function of MscL copy number. (A) Estimated survival probability for survival under slow shock as a function of channel copy number. (B) The estimated survival probability of survival under a fast shock as a function of channel copy number. Solid curves correspond to the most probable survival probability from a one-dimensional logistic regression. Shaded regions represent the 95% credible regions. Points at the top and bottom of plots represent individual cell measurements which survived and perished, respectively. The red and black points correspond to the survival probability estimated via binning by Shine-Dalgarno sequence and binning by groups of 50 channels per cell, respectively. Horizontal error bars represent the standard error of the mean from at least 25 measurements. Vertical error bars represent the certainty of the probability estimate given n survival events from N total observations.

250 name just a few of many such examples.

251 By no means are we “finished” with any of these topics. Rather, it’s quite the opposite in the sense
252 that having a handle on the biophysical knobs that tune the behavior opens the door to a litany of
253 new scientific questions. In the case of mechanosenstaion and osmoregulation, we have only recently
254 been able to determine some of the basic facts that allow us to approach this fascinating biological
255 phenomenon biophysically. The dependence of survival on mechanosensitive channel abundance is a
256 key quantity that is missing from our collection of critical facts. To our knowledge, this work represents
257 the first attempt to quantitatively control the abundance of a single species of mechanosensitive channel
258 and examine the physiological consequences in terms of survival probability at single-cell resolution.
259 Our results reveal two notable quantities. First, out of the several hundred single-cell measurements,
260 we never observed a cell which had less than approximately 100 channels per cell and survived an
261 osmotic shock, irrespective of the shock rate. The second is that between 500 and 700 channels per cell
262 are needed to provide $\geq 80\%$ survival, depending on the shock rate.

263 Only recently has the relationship between the MscL copy number and the probability of survival been
264 approached experimentally. In van den Berg et al. (2016), the authors examined the contribution of MscL
265 to survival in a genetic background where all other known mechanosensitive channels had been deleted
266 from the chromosome and plasmid-borne expression of an MscL-mEos3.2 fusion was tuned through an
267 IPTG inducible promoter (8). In this work, they measured the single-cell channel abundance through
268 super-resolution microscopy and queried survival through bulk assays. They report a nearly linear
269 relationship between survival and copy number, with approximately 100 channels per cell conveying
270 100% survival. This number is significantly smaller than our observation of approximately 100 channels
271 as the *minimum* number needed to convey any observable degree of survival.

272 The disagreement between the numbers reported in this work and in van den Berg et al. may partially
273 arise from subtle differences in the experimental approach. The primary practical difference is the
274 rate and magnitude of the osmotic shock. van den Berg et al. applied an approximately 600 mOsm
275 downshock in bulk at an undetermined rate whereas we applied a 1 Osm downshock at controlled
276 rates varying from 0.02 Hz to 2.2 Hz. In their work, survival was measured through plating assays
277 which represent the population average rather than the distribution of survival probability. While this
278 approach provides valuable information regarding the response of a population to an osmotic shock, the
279 high survival rate may stem from a wide distribution of channel copies per cell in the population coupled
280 with bulk-scale measurement of survival. As has been shown in this work, the expression of MscL
281 from a chromosomal integration is noisy with a single strain exhibiting MscL copy numbers spanning
282 an order of magnitude or more. In van den Berg et al., this variance is exacerbated by expression of
283 MscL from an inducible plasmid as fluctuations in the gene copy number from plasmid replication

284 and segregation influence the expression level. Connecting such a wide and complex distribution of
285 copy numbers to single-cell physiology requires the consideration of moments beyond the mean which
286 is a nontrivial task. Rather than trying to make such a connection, we queried survival at single-cell
287 resolution at the expense of a lower experimental throughput.

288 Despite these experimental differences, the results of this work and van den Berg et al., are in
289 agreement that MscL must be present at the level of 100 or more channels per cell in wild-type cells
290 to convey appreciable survival. As both of these works were performed in a strain in which the only
291 mechanosensitive channel was MscL, it remains unknown how the presence of the other channel species
292 would alter the number of MscL needed for complete survival. In our experiments, we observed a
293 maximum survival probability of approximately 80% even with close to 1000 MscL channels per cell.
294 It is possible that the combined effort of the six other mechanosensitive channels would make up for
295 some if not all of the remaining 20%. To explore the contribution of another channel to survival, van
296 den Berg et al. also queried the contribution of MscS, another mechanosensitive channel, to survival in
297 the absence of any other species of mechanosensitive channel. It was found that over the explored range
298 of MscS channel copy numbers, the maximum survival rate was approximately 50%, suggesting that
299 different mechanosensitive channels have an upper limit to how much protection they can confer. Both
300 van den Berg et al. and our work show that there is still much to be learned with respect to the interplay
301 between the various species of mechanosensitive channel as well as their regulation.

302 Recent work has shown that both magnitude and the rate of osmotic down shock are important
303 factors in determining cell survival (4). In this work, we show that this finding holds true for a single
304 species of mechanosensitive channel, even at high levels of expression. One might naïvely expect that
305 this rate-dependent effect would disappear once a certain threshold of channels had been met. Our
306 experiments, however, show that even at nearly 1000 channels per cell the predicted survival curves for
307 a slow (< 1.0 Hz) and fast (≥ 1.0 Hz) are shifted relative to each other with the fast shock predicting
308 lower rates of survival. This suggests either we have not reached this threshold in our experiments or
309 there is more to understand about the relationship between abundance, channel species, and the shock
310 rate.

311 Some experimental and theoretical treatments suggest that only a few copies of MscL or MscS should
312 be necessary for 100% protection given our knowledge of the conductance and the maximal water flux
313 through the channel in its open state (11, 38). However, recent proteomic studies have revealed average
314 MscL copy numbers to be in the range of several hundred per cell, depending on the condition, as can
315 be seen in Table 1 (15, 16, 39). Studies focusing solely on MscL have shown similar counts through
316 quantitative Western blotting and fluorescence microscopy (3). Electrophysiology studies have told
317 another story with copy number estimates ranging between 4 and 100 channels per cell (17, 40). These

318 measurements, however, measure the active number of channels. The factors regulating channel activity
319 in these experiments could be due to perturbations during the sample preparation or reflect some
320 unknown mechanism of regulation, such as the presence or absence of interacting cofactors (41). The
321 work described here, on the other hand, measures the *maximum* number of channels that could be active
322 and may be able to explain why the channel abundance is higher than estimated by theoretical means.
323 There remains much more to be learned about the regulation of activity in these systems. As the *in vivo*
324 measurement of protein copy number becomes accessible through novel single-cell and single-molecule
325 methods, we will continue to collect more facts about this fascinating system and hopefully connect the
326 molecular details of mechanosensation with perhaps the most important physiological response – life or
327 death.

TABLE 1 Measured cellular copy numbers of MscL. Asterisk (*) Indicates inferred MscL channel copy number from the total number of detected MscL peptides.

Reported channels per cell	Method	Reference
480 ± 103	Western blotting	(3)
560*	Ribosomal profiling	(39)
331*	Mass spectrometry	(15)
583*	Mass spectrometry	(16)
4 - 5	Electrophysiology	(17)
10 - 100	Electrophysiology	(13)
10 - 15	Electrophysiology	(40)

328 **Materials & Methods**

329 *Bacterial strains and growth conditions*

330 The bacterial strains are described in Table S1. The parent strain for the mutants used in this study
331 was MJF641 (5), a strain which had all seven mechanosensitive channels deleted. The MscL-sfGFP
332 coding region from MLG910 (3) was integrated into MJF641 by P1 transduction, creating the strain
333 D6LG-Tn10. Selection pressure for MscL integration was created by incorporating an osmotic shock
334 into the transduction protocol, which favored the survival of MscL-expressing stains relative to MJF641
335 by ~100-fold. Screening for integration candidates was based on fluorescence expression of plated
336 colonies. Successful integration was verified by sequencing. Attempts to transduce RBS-modified
337 MscL-sfGFP coding regions became increasingly inefficient as the targeted expression level of MscL
338 was reduced. This was due to the decreasing fluorescence levels and survival rates of the integration

339 candidates. Consequently, Shine-Dalgarno sequence modifications were made by inserting DNA oligos
340 with lambda Red-mediated homologous recombination, i.e., recombineering (42). The oligos had a
341 designed mutation (Fig. 2) flanked by ~25 base pairs that matched the targeted MscL region (Table S2).
342 A two-step recombineering process of selection followed by counter selection using a *tetA-sacB* gene
343 cassette (43) was chosen because of its capabilities to integrate with efficiencies comparable to
344 P1 transduction and not leave antibiotic resistance markers or scar sequences in the final strain. To
345 prepare the strain D6LG-Tn10 for this scheme, the Tn10 transposon containing the *tetA* gene needed
346 to be removed to avoid interference with the *tetA-sacB* cassette. Tn10 was removed from the middle
347 of the *ycjM* gene with the primer Tn10delR (Table S2) by recombineering, creating the strain D6LG
348 (SD0). Counter selection against the *tetA* gene was promoted by using agar media with fusaric acid
349 (43, 44). The *tetA-sacB* cassette was PCR amplified out of the strain XTL298 using primers MscLSPSac
350 and MscLSPSacR (Table S2). The cassette was integrated in place of the spacer region in front of
351 the MscL start codon of D6LG (SD0) by recombineering, creating the intermediate strain D6LTetSac.
352 Positive selection for cassette integration was provided by agar media with tetracycline. Finally, the
353 RBS modifying oligos were integrated into place by replacing the *tetA-sacB* cassette by recombineering.
354 Counter selection against both *tetA* and *sacB* was ensured by using agar media with fusaric acid and
355 sucrose (43), creating the Shine-Dalgarno mutant strains used in this work.

356 Strain cultures were grown in 5 mL of LB-Lennox media with antibiotic (apramycin) overnight at 37°C.
357 The next day, 50 µL of overnight culture was inoculated into 5 mL of LB-Lenox with antibiotic and the
358 culture was grown to OD_{600nm} ~0.25. Subsequently, 500 µL of that culture was inoculated into 5 mL of
359 LB-Lennox supplemented with 500mM of NaCl and the culture was regrown to OD_{600nm} ~0.25. A 1
360 mL aliquot was taken and used to load the flow cell.

361 *Flow cell*

362 All experiments were conducted in a home-made flow cell as is shown in Fig. 3A. This flow cell has
363 two inlets which allow media of different osmolarity to be exchanged over the course of the experiment.
364 The imaging region is approximately 10 mm wide and 100 µm in depth. All imaging took place within
365 1 – 2 cm of the outlet to avoid imaging cells within a non-uniform gradient of osmolarity. The interior
366 of the flow cell was functionalized with a 1:400 dilution of polyethylamine prior to addition of cells
367 with the excess washed away with water. A dilute cell suspension in LB Lennox with 500 mM NaCl
368 was loaded into one inlet while the other was connected to a vial of LB medium with no NaCl. This
369 hypotonic medium was clamped during the loading of the cells.

370 Once the cells had adhered to the polyethylamine coated surface, the excess cells were washed away
371 with the 500 mM NaCl growth medium followed by a small (~20 µL) air bubble. This air bubble forced

372 the cells to lay flat against the imaging surface, improving the time-lapse imaging. Over the observation
373 period, cells not exposed to an osmotic shock were able to grow for 4 – 6 divisions, showing that the
374 flow cell does not directly impede cell growth.

375 *Imaging conditions*

376 All imaging was performed in a flow cell held at 30°C on a Nikon Ti-Eclipse microscope outfitted
377 with a Perfect Focus system enclosed in a Haison environmental chamber (approximately 1°C regulation
378 efficiency). The microscope was equipped with a 488 nm laser excitation source (CrystaLaser) and
379 a 520/35 laser optimized filter set (Semrock). The images were collected on an Andor Xion +897
380 EMCCD camera and all microscope and acquisition operations were controlled via the open source
381 μ Manager microscope control software (27). Once cells were securely mounted onto the surface of the
382 glass coverslip, between 15 and 20 positions containing 5 to 10 cells were marked and the coordinates
383 recorded. At each position, a phase contrast and GFP fluorescence image was acquired for segmentation
384 and subsequent measurement of channel copy number. To perform the osmotic shock, LB media
385 containing no NaCl was pulled into the flow cell through a syringe pump. To monitor the media
386 exchange, both the high salt and no salt LB media were supplemented with a low-affinity version of
387 the calcium-sensitive dye Rhod-2 (250 nM; TEF Labs) which fluoresces when bound to Ca^{2+} . The no
388 salt medium was also supplemented with 1 μ M CaCl_2 to make the media mildly fluorescent and the
389 exchange rate was calculated by measuring the fluorescence increase across an illuminated section
390 of one of the positions. These images were collected in real time for the duration of the shock. The
391 difference in measured fluorescence between the pre-shock images and those at the end of the shock set
392 the scale of a 500 mM NaCl down shock. The rate was calculated by fitting a line to the middle region of
393 this trace. Further details regarding this procedure can be found in Bialecka-Fornal, Lee, and Phillips,
394 2015 (4).

395 *Image Processing*

396 Images were processed using a combination of automated and manual methods. First, expression
397 of MscL was measured via segmenting individual cells or small clusters of cells in phase contrast and
398 computing the mean pixel value of the fluorescence image for each segmented object. The fluorescence
399 images were passed through several filtering operations which reduced high-frequency noise as well as
400 corrected for uneven illumination of the excitation wavelength.

401 Survival or death classification was performed manually using the CellProfiler plugin for ImageJ
402 software (NIH). A survivor was defined as a cell which was able to undergo two division events after

403 the osmotic down shock. Cells which detached from the surface during the post-shock growth phase or
404 those which became indistinguishable from other cells due to clustering were not counted as survival
405 or death and were removed from the dataset completely. A region of the cell was manually marked
406 with 1.0 (survival) or 0.0 (death) by clicking on the image. The xy coordinates of the click as well as the
407 assigned value were saved as an .xml file for that position.

408 The connection between the segmented cells and their corresponding manual markers was
409 automated. As the manual markings were made on the first phase contrast image after the osmotic
410 shock, small shifts in the positions of the cell made one-to-one mapping with the segmentation mask
411 non-trivial. The linkages between segmented cell and manual marker were made by computing all
412 pairwise distances between the manual marker and the segmented cell centroid, taking the shortest
413 distance as the true pairing. The linkages were then inspected manually and incorrect mappings were
414 corrected as necessary.

415 All relevant statistics about the segmented objects as well as the sample identity, date of acquisition,
416 osmotic shock rate, and camera exposure time were saved as .csv files for each individual experiment.
417 A more in-depth description of the segmentation procedure as well as the relevant code can be accessed
418 as a Jupyter Notebook at (http://rpgroup.caltech.edu/mscl_survival).

419 *Calculation of effective channel copy number*

420 To compute the MscL channel copy number, we relied on measuring the fluorescence level of a
421 bacterial strain in which the mean MscL channel copy number was known via fluorescence microscopy
422 (3). *E. coli* strain MLG910, which expresses the MscL-sfGFP fusion protein from the wild-type SD
423 sequence, was grown under identical conditions to those described in Bialecka-Fornal et al. 2015 in M9
424 minimal medium supplemented with 0.5% glucose to an OD_{600nm} of ~0.3. The cells were then diluted
425 ten fold and immobilized on a rigid 2% agarose substrate and placed onto a glass bottom petri dish and
426 imaged in the same conditions as described previously.

427 Images were taken of six biological replicates of MLG910 and were processed identically to those
428 in the osmotic shock experiments. A calibration factor between the average cell fluorescence level
429 and mean MscL copy number was then computed. We assumed that all measured fluorescence (after
430 filtering and background subtraction) was derived from the MscL-sfGFP fusion,

$$\langle I_{\text{tot}} \rangle = \alpha \langle N \rangle, \quad (3)$$

431 in which α is the calibration factor and $\langle N \rangle$ is the mean cellular MscL-sfGFP copy number as reported
432 in Bialecka-Fornal et al. 2012 (3). To correct for errors in segmentation, the intensity was computed as an
433 areal density $\langle I_A \rangle$ and was multiplied by the average cell area $\langle A \rangle$ of the population. The calibration

434 factor was therefore computed as

$$\alpha = \frac{\langle I_A \rangle \langle A \rangle}{\langle N \rangle}. \quad (4)$$

435 We used Bayesian inferential methods to compute this calibration factor taking measurement error and
 436 replicate-to-replicate variation into account. The resulting average cell area and calibration factor was
 437 used to convert the measured cell intensities from the osmotic shock experiments to cell copy number.
 438 The details of this inference are described in depth in the supplemental information (*Standard Candle*
 439 *Calibration*).

440 *Logistic regression*

441 We used Bayesian inferential methods to find the most probable values of the coefficients β_0 and β_1
 442 and the appropriate credible regions and is described in detail in the supplemental information (*Logistic*
 443 *Regression*). Briefly, we used Markov chain Monte Carlo (MCMC) to sample from the log posterior
 444 distribution and took the most probable value as the mean of the samples for each parameter. The
 445 MCMC was performed using the Stan probabilistic programming language (45) and all models can be
 446 found on the GitHub repository (http://github.com/rpgroup-pboc/mscl_survival).

447 *Calculation of survival probability error*

448 The vertical error bars for the points shown in Fig. 5 represent our uncertainty in the survival
 449 probability given our measurement of n survivors out of a total N single-cell measurements. The
 450 probability distribution of the survival probability p_s given these measurements can be written using
 451 Bayes' theorem as

$$g(p_s | n, N) = \frac{f(n | p_s, N)g(p_s)}{f(n | N)}, \quad (5)$$

452 where g and f represent probability density functions over parameters and data, respectively. The
 453 likelihood $f(n | p_s, N)$ represents the probability of measuring n survival events, given a total of N
 454 measurements each with a probability of survival p_s . This matches the story for the Binomial distribution
 455 and can be written as

$$f(n | p_s, N) = \frac{N!}{n!(N-n)!} p_s^n (1-p_s)^{N-n}. \quad (6)$$

456 To maintain maximal ignorance we can assume that any value for p_s is valid, such that is in the range [0,
 457 1]. This prior knowledge, represented by $g(p_s)$, can be written as

$$g(p_s) = \begin{cases} 1 & 0 \leq p_s \leq 1 \\ 0 & \text{otherwise} \end{cases}. \quad (7)$$

458 We can also assume maximal ignorance for the total number of survival events we could measure given
 459 N observations, $f(n | N)$. Assuming all observations are equally likely, this can be written as

$$f(n | N) = \frac{1}{N+1} \quad (8)$$

460 where the addition of one comes from the possibility of observing zero survival events. Combining
 461 Eqns. 6, 7, 8, the posterior distribution $g(p_s | n, N)$ is

$$g(p_s | n, N) = \frac{(N+1)!}{n!(N-n)!} p_s^n (1-p_s)^{N-n}. \quad (9)$$

462 The most probable value of p_s , where the posterior probability distribution given by Eq. 9 is
 463 maximized, can be found by computing the point at which derivative of the log posterior with respect
 464 to p_s goes to zero,

$$\frac{d \log g(p_s | n, N)}{dp_s} = \frac{n}{p_s} - \frac{N-n}{1-p_s} = 0. \quad (10)$$

465 Solving Eq. 10 for p_s gives the most likely value for the probability,

$$p_s^* = \frac{n}{N}. \quad (11)$$

466 So long as $N \gg np_s^*$, Eq. 9 can be approximated as a Gaussian distribution with a mean p_s^* and a
 467 variance $\sigma_{p_s}^2$. By definition, the variance of a Gaussian distribution is computed as the negative reciprocal
 468 of the second derivative of the log posterior evaluated at $p_s = p_s^*$,

$$\sigma_{p_s}^2 = - \left(\frac{d^2 \log g(p_s | n, N)}{dp_s^2} \bigg|_{p_s=p_s^*} \right)^{-1}. \quad (12)$$

469 Evaluating Eq. 12 yields

$$\sigma_{p_s}^2 = \frac{n(N-n)}{N^3}. \quad (13)$$

470 Given Eq. 11 and Eq. 13, the most-likely survival probability and estimate of the uncertainty can be
 471 expressed as

$$p_s = p_s^* \pm \sigma_{p_s}. \quad (14)$$

472 *Data and software availability*

473 All raw image data is freely available and is stored on the CaltechDATA Research Data Repository
 474 (46). The raw Markov chain Monte Carlo samples are stored as .csv files on CaltechDATA (47). All
 475 processed experimental data, Python, and Stan code used in this work are freely available through our
 476 GitHub repository (http://github.com/rpgroup-pboc/mscl_survival) (48) accessible through
 477 DOI: 10.5281/zenodo.1252524. The scientific community is invited to fork our repository and open
 478 constructive issues.

479 Acknowledgements

480 We thank Nathan Belliveau, Maja Bialecka-Fornal, Justin Bois, Soichi Hirokawa, Jaspar Landman,
481 Manuel Razo-Mejia, Muir Morrison, and Shyam Saladi for useful advice and discussion. We thank
482 Don Court for strain XTL298 and Samantha Miller for strain MJF641. This work was supported by the
483 National Institutes of Health DP1 OD000217 (Director's Pioneer Award), R01 GM085286, GM084211-A1
484 , GM118043-01, and La Fondation Pierre Gilles de Gennes.

485 References

- 486 1. Martinac B, Buechner M, Delcour AH, Adler J, Kung C. 1987. Pressure-sensitive ion channel in
487 *Escherichia coli*. Proc Natl Acad Sci U S A 84:2297–301.
- 488 2. Bavi N, Cortes DM, Cox CD, Rohde PR, Liu W, Deitmer JW, Bavi O, Strop P, Hill AP, Rees D, Corry
489 B, Perozo E, Martinac B. 2016. The role of MscL amphipathic N terminus indicates a blueprint for
490 bilayer-mediated gating of mechanosensitive channels. Nature Communications 7:11984.
- 491 3. Bialecka-Fornal M, Lee HJ, DeBerg HA, Gandhi CS, Phillips R. 2012. Single-Cell Census of
492 Mechanosensitive Channels in Living Bacteria. PLoS ONE 7:e33077.
- 493 4. Bialecka-Fornal M, Lee HJ, Phillips R. 2015. The Rate of Osmotic Downshock Determines the Survival
494 Probability of Bacterial Mechanosensitive Channel Mutants. Journal of Bacteriology 197:231–237.
- 495 5. Edwards MD, Black S, Rasmussen T, Rasmussen A, Stokes NR, Stephen TL, Miller S, Booth IR.
496 Jul-Aug 20122012. Characterization of three novel mechanosensitive channel activities in *Escherichia coli*.
497 Channels (Austin) 6:272–81.
- 498 6. Naismith JH, Booth IR. 2012. Bacterial mechanosensitive channels–MscS: Evolution's solution to
499 creating sensitivity in function. Annu Rev Biophys 41:157–77.
- 500 7. Ursell T, Phillips R, Kondev J, Reeves D, Wiggins PA. 2008. The role of lipid bilayer mechanics in
501 mechanosensation, pp. 37–70. In Kamkin, A, Kiseleva, I (eds.), Mechanosensitivity in cells and tissues 1:
502 Mechanosensitive ion channels. Springer-Verlag.
- 503 8. van den Berg J, Galbiati H, Rasmussen A, Miller S, Poolman B. 2016. On the mobility, membrane
504 location and functionality of mechanosensitive channels in *Escherichia coli*. Scientific Reports 6.
- 505 9. Cruickshank CC, Minchin RF, Le Dain AC, Martinac B. 1997. Estimation of the pore size of the
506 large-conductance mechanosensitive ion channel of *Escherichia coli*. Biophysical Journal 73:1925–1931.
- 507 10. Haswell ES, Phillips R, Rees DC. 2011. Mechanosensitive Channels: What Can They Do and How

508 11. Louhivuori M, Risselada HJ, van der Giessen E, Marrink SJ. 2010. Release of content through
509 mechano-sensitive gates in pressurized liposomes. *Proc Natl Acad Sci U S A* 107:19856–60.

510 12. Milo R, Jorgensen P, Moran U, Weber G, Springer M. 2010. BioNumbersthe database of key numbers
511 in molecular and cell biology. *Nucleic Acids Research* 38:D750–D753.

512 13. Booth IR, Edwards MD, Murray E, Miller S. 2005. The role of bacterial ion channels in cell physiology,
513 pp. 291–312. In Kubalsi, A, Martinac, B (eds.), *Bacterial Ion Channels and Their Eukaryotic Homologs*.
514 American Society for Microbiology, Washington DC.

515 14. Hase CC, Minchin RF, Kloda A, Martinac B. 1997. Cross-linking studies and membrane localization
516 and assembly of radiolabelled large mechanosensitive ion channel (MscL) of *Escherichia coli*. *Biochem
517 Biophys Res Commun* 232:777–82.

518 15. Schmidt A, Kochanowski K, Vedelaar S, Ahrné E, Volkmer B, Callipo L, Knoops K, Bauer M,
519 Aebersold R, Heinemann M. 2016. The quantitative and condition-dependent *Escherichia coli* proteome.
520 *Nature Biotechnology* 34:104–110.

521 16. Soufi B, Krug K, Harst A, Macek B. 2015. Characterization of the *E. coli* proteome and its modifica-
522 tions during growth and ethanol stress. *Frontiers in Microbiology* 6.

523 17. Stokes NR, Murray HD, Subramaniam C, Gourse RL, Louis P, Bartlett W, Miller S, Booth IR. 2003. A
524 role for mechanosensitive channels in survival of stationary phase: Regulation of channel expression by
525 RpoS. *Proceedings of the National Academy of Sciences* 100:15959–15964.

526 18. Norman C, Liu ZW, Rigby P, Raso A, Petrov Y, Martinac B. 2005. Visualisation of the mechanosensi-
527 tive channel of large conductance in bacteria using confocal microscopy. *Eur Biophys J* 34:396–402.

528 19. Espah Borujeni A, Channarasappa AS, Salis HM. 2014. Translation rate is controlled by coupled
529 trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites.
530 *Nucleic Acids Research* 42:2646–2659.

531 20. Salis HM, Mirsky EA, Voigt CA. 2009. Automated design of synthetic ribosome binding sites to
532 control protein expression. *Nature Biotechnology* 27:946–950.

533 21. Elowitz MB, Levine AJ, Siggia ED, Swain PS. 2002. Stochastic gene expression in a single cell. *Science*
534 297:1183–6.

535 22. Anderson RP, Jin R, Grunkemeier GL. 2003. Understanding logistic regression analysis in clinical
536 reports: An introduction. *The Annals of Thoracic Surgery* 75:753–757.

537 23. Mishra V, Skotak M, Schuetz H, Heller A, Haorah J, Chandra N. 2016. Primary blast causes mild,

539 moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model.
540 Scientific Reports 6:26992.

541 24. Feeling-Taylor AR, Yau S-T, Petsev DN, Nagel RL, Hirsch RE, Vekilov PG. 2004. Crystallization
542 Mechanisms of Hemoglobin C in the R State. Biophysical Journal 87:2621–2629.

543 25. Finch JT, Perutz MF, Bertles JF, Dobler J. 1973. Structure of Sickled Erythrocytes and of Sickle-Cell
544 Hemoglobin Fibers. Proceedings of the National Academy of Sciences 70:718–722.

545 26. Perutz MF, Mitchison JM. 1950. State of Hæmoglobin in Sickle-Cell Anæmia. Nature 166:677–679.

546 27. Berg H, Purcell E. 1977. Physics of chemoreception. Biophysical Journal 20:193–219.

547 28. Colin R, Sourjik V. 2017. Emergent properties of bacterial chemotaxis pathway. Current Opinion in
548 Microbiology 39:24–33.

549 29. Krembel A, Colin R, Sourjik V. 2015. Importance of Multiple Methylation Sites in *Escherichia coli*
550 Chemotaxis. PLoS ONE 10.

551 30. Krembel AK, Neumann S, Sourjik V. 2015. Universal Response-Adaptation Relation in Bacterial
552 Chemotaxis. Journal of Bacteriology 197:307–313.

553 31. Sourjik V, Berg HC. 2002. Receptor sensitivity in bacterial chemotaxis. Proceedings of the National
554 Academy of Sciences 99:123–127.

555 32. Liu F, Morrison AH, Gregor T. 2013. Dynamic interpretation of maternal inputs by the Drosophila
556 segmentation gene network. Proceedings of the National Academy of Sciences of the United States of
557 America 110:6724–6729.

558 33. Lovely GA, Brewster RC, Schatz DG, Baltimore D, Phillips R. 2015. Single-molecule analysis of RAG-
559 mediated V(D)J DNA cleavage. Proceedings of the National Academy of Sciences 112:E1715–E1723.

560 34. Schatz DG, Baltimore D. 2004. Uncovering the V(D)J recombinase. Cell 116:S103–S108.

561 35. Schatz DG, Ji Y. 2011. Recombination centres and the orchestration of V(D)J recombination. Nature
562 Reviews Immunology 11:251–263.

563 36. Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM. 2004. Telomere Shortening Triggers Senescence
564 of Human Cells through a Pathway Involving ATM, p53, and p21CIP1, but Not p16INK4a. Molecular
565 Cell 14:501–513.

566 37. Victorelli S, Passos JF. 2017. Telomeres and Cell Senescence - Size Matters Not. EBioMedicine
567 21:14–20.

568 38. Booth IR. 2014. Bacterial mechanosensitive channels: Progress towards an understanding of their

569 roles in cell physiology. *Current Opinion in Microbiology* 18:16–22.

570 39. Li G-W, Burkhardt D, Gross C, Weissman JS. 2014. Quantifying Absolute Protein Synthesis Rates
571 Reveals Principles Underlying Allocation of Cellular Resources. *Cell* 157:624–635.

572 40. Blount P, Sukharev SI, Moe PC, Martinac B, Kung C. 1999. Mechanosensitive channels of bacteria.
573 *Methods in Enzymology* 294:458–482.

574 41. Schumann U, Edwards MD, Rasmussen T, Bartlett W, van West P, Booth IR. 2010. YbdG in *Escherichia*
575 *coli* is a threshold-setting mechanosensitive channel with MscM activity. *Proc Natl Acad Sci U S A*
576 107:12664–9.

577 42. Sharan SK, Thomason LC, Kuznetsov SG, Court DL. 2009. Recombineering: A homologous
578 recombination-based method of genetic engineering. *Nat Protoc* 4:206–23.

579 43. Li X-t, Thomason LC, Sawitzke JA, Costantino N, Court DL. 2013. Positive and negative selection
580 using the tetA-sacB cassette: Recombineering and P1 transduction in *Escherichia coli*. *Nucleic acids*
581 *research* 41:e204–e204.

582 44. Bochner BR, Huang H-C, Schieven GL, Ames BN. 1980. Positive selection for loss of tetracycline
583 resistance. *Journal of bacteriology* 143:926–933.

584 45. Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J, Li P,
585 Riddell A. 2017. Stan : A Probabilistic Programming Language. *Journal of Statistical Software* 76.

586 46. Chure G, Lee HJ, Phillips R. 2018. Image data for “Connecting the dots between mechanosensitive
587 channel abundance, osmotic shock, and survival at single-cell resolution” accessible through DOI:
588 10.22002/D1.941.

589 47. Chure G, Lee HJ, Phillips R. 2018. MCMC chains generated in “Connecting the dots between
590 mechanosensitive channel abundance, osmotic shock, and survival at single-cell resolution” accessible
591 through DOI 10.22002/D1.942.

592 48. Chure G, Lee HJ, Phillips R. 2018. Github repository for “Connecting the dots between mechanosen-
593 sitive channel abundance, osmotic shock, and survival at single-cell resolution” accessible through DOI:
594 10.5281/zenodo.1252524.