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7 Abstract

8 Neural field theory is used to quantitatively analyze the two-dimensional spatiotemporal corre-
9 lation properties of gamma-band (30 — 70 Hz) oscillations evoked by stimuli arriving at the primary
10 visual cortex (V1), and modulated by patchy connectivities that depend on orientation preference
11 (OP). Correlation functions are derived analytically under different stimulus and measurement con-
12 ditions. The predictions reproduce a range of published experimental results, including the existence
13 of two-point oscillatory temporal cross-correlations with zero time-lag between neurons with similar
14 OP, the influence of spatial separation of neurons on the strength of the correlations, and the effects
15 of differing stimulus orientations.

16  Keywords— gamma oscillation; spatiotemporal correlation; neural fields; patchy propagation

» 1 Introduction

18 The primary visual cortex (V1) is the first cortical area to process visual inputs that arrive from the retina via
19 the lateral geniculate nucleus of the thalamus (LGN) and passes the processed signals forward to higher visual
20 areas, and back to the LGN. The feed-forward visual pathway from the eyes to V1 is such that the neighboring
21 cells in V1 respond to neighboring regions of the retina (Schiller and Tehovnik, 2015). V1 can be approximated
2 as a two-dimensional layered sheet (Tovée, 1996). Neurons that span vertically through multiple layers of V1
23 form a functional cortical column, and these neurons respond most strongly to a preferred stimulus orientation,
24 right or left eye, direction of motion, and other feature preferences. Thus, various features of the visual inputs
25 are mapped to V1 in different ways. These maps are overlaid such that a single neural cell responds to several
26 features and all preferences within a given visual field are mapped to a small region of V1. Such an area of V1
27 is sometimes termed a hypercolumn, which corresponds to a particular visual field in the overall field of vision
28 (Hubel and Wiesel, 1962, 1974; Miikkulainen et al., 2005).

20 A prominent feature of V1 is the presence of ocular dominance (OD) stripes, which reflect the fact that left-
30 and right-eye inputs are mapped to alternating stripes ~ 1 mm wide, with each hypercolumn including left- and
31 right-eye OD regions. Orientation preference (OP) of neurons for particular edge orientations in a visual field
32 is mapped to each hypercolumn such that neurons with particular OP are located adjacent to one another and

33 OP spans the range from 0° to 180°. Typically, OP varies with azimuth relative to a center, or singularity, in an
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arrangement called a pinwheel. The OP angle in each pinwheel rotates either clockwise (negative pinwheel) or
counterclockwise (positive pinwheel), and neighboring pinwheels have opposite signs (Blasdel, 1992; Braitenberg
and Braitenberg, 1979; Gotz, 1987, 1988; Swindale, 1996). Hence, a hypercolumn must have left and right OD
stripes with positive and negative pinwheels in each, as suggested by Bressloff and Cowan (2002) and Veltz et al.
(2015). In Figs 1(a) and (b) we illustrate a negative pinwheel and a positive pinwheel, respectively, while Figs 1(c)
and (d) show a hypercolumn and an array of hypercolumns, respectively; in the latter case the hypercolumn is
the unit cell of the lattice and the schematic resembles maps reconstructed from in-vivo experiments (Blasdel,

1992; Bonhoeffer and Grinvald, 1991, 1993; Obermayer and Blasdel, 1993).
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Figure 1: Schematics of visual feature preference maps in V1 with color bars indicating OP in degrees.
(a) Negative pinwheel. (b) Positive pinwheel. (c) Lattice unit cell (hypercolumn). The vertical line
divides the unit cell into left and right OD columns of equal width, while the horizontal and vertical
lines split the unit cell into four squares, each containing one OP pinwheel. The short bars highlight
the OP at various locations. (d) Periodic spatial structure of OP and OD columns across a small piece
of V1 comprising 25 unit cells. Dashed lines bound left (L) and right (R) OD columns. One pinwheel
is outlined in white and one unit cell is outlined in black. Frames (a) and (b) are adapted from Kukjin
et al. (2003).

An additional feature of V1 is that regions of similar OP are preferentially linked within and between unit

cells by lateral connections, forming a patchy network (Gilbert and Wiesel, 1983; Rockland and Lund, 1982).
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Furthermore, these patchy connections are concentrated toward an axis that corresponds to the OP of the
neurons involved, so the projections from a given unit cell depend strongly on the OP at the source neurons
within that cell and are thus strongly anisotropic (Bosking et al., 1997).

When one considers activity on the network, numerous experiments and studies (Eckhorn et al., 1988; Konig
et al., 1995; Singer and Gray, 1995; Engel et al., 1990; Hata et al., 1991; Gray et al., 1989) have shown that
neurons with similar feature preference in V1 exhibit synchronized gamma band (30 — 70 Hz) oscillations when
the stimulus is optimal, by measuring the multi-unit activities (MUA) and local field potentials (LFP) in area
17 of cats using multi-electrodes. They also showed that the corresponding two-point correlation functions of
MUA or LFP commonly have peaks at zero time-lag. Moreover, these synchronized gamma oscillation in V1
arise from the spatial structure of V1, modulated by the specific feature preferences involved. It also has been
argued that such synchronized oscillation in gamma band may be involved in visual perception, the binding of
related features into unified percepts, and the occurrence of visual hallucinations (Gray et al., 1990; Engel et al.,
2001; Bressloff et al., 2002; Siegel et al., 2011; Henke et al., 2014).

Previous theoretical studies (Robinson, 2005, 2006, 2007) used neural field theory (NFT) with patchy prop-
agators to show that patchy connectivity could support gamma oscillations with correlation properties whose
features resembled those of some of the experiments noted above. However, the effect of OP in the patchy
propagators was not incorporated and the correlations were only explored as functions of one spatial dimension.

In this paper, we generalize and explore the spatiotemporal correlation functions of Robinson (2006, 2007)
to two spatial dimensions, and account for the effect of OP on the patchy propagators. We then compare
the resulting spatiotemporal correlations with several MUA experiments. In Sec. 2, we briefly describe the
relevant aspects of NFT including patchy propagators. Section 3 describes a shape function, which modulates
the connection strength between cortical locations that have similar feature preference. In Sec. 4, we derive a
general two-point correlation function, and apply this result in Sec. 5 to derive the 2D correlation function in V1
via the linear NF'T transfer function of V1. The properties of these correlation functions are explored in Sec. 6,
including their predictions for oscillation frequency, time decay, effects of the spatial separation between the
measurement points, and the modulation by the OP in V1. The predictions compared with specific experimental

outcomes in Sec. 7, and the results are summarized and discussed in Sec. 8.

2 Theory

In Sec.2.1 we first review the neural field equations of interest; and, then in Sec. 2.2 we describe the corticothala-
mic model (Robinson et al., 1997; Robinson, 2005, 2006, 2007), from which we derive a reduced corticothalamic

model used in the remainder of this work.

2.1 Neural Field Theory

NFT averages neural properties and activity over a linear scale of a few tenths of a millimeter to treat the
dynamics on scales larger than this, which is appropriate for the present applications (Deco et al., 2008; Robinson

et al., 2005). Each type of neuron is denoted by a subscript a. The continuum soma potential V, is approximated
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by adding up V,; resulting from activities of all possible types of synapse on neurons in the spatially extended

population a from those of type b. Thus,

Va(r,t) = Vap(r, 1), (1)
b

where r is the actual spatial location on the cortex, approximated as a two-dimensional sheet, and ¢ denotes the

time. In the Fourier domain, Eq. (1) can be written as

Valk,w) = Va(k,w). (2)
b

Due to the dependence of V,; on the synaptic dynamics, signal dispersion in the dendrites, and soma charging,

the soma potential corresponding to a delta function input can be approximated by
Vab(k,w) = Lap(w) Pup(k, w) (3)

where Py, is the Fourier representation of the weighted average arrival rate of incoming spikes at each location

r and time ¢, and L, is the function of the synapse-to-soma response in frequency domain,

where agp, and [, are the decay and mean rise rate of the soma response.
Action potentials of cells with voltage-gated ion channels are produced when the soma potential exceeds a
threshold 6,. Thus, the mean population firing rate (), can be related to the mean soma potential V, by a

nonlinear sigmoid function

— Qmax
1+ exp[—(V, — 0,)/c")’

Qa = S(Va) (5)

where Quay is the maximum possible firing rate, o/7/+/3 is the standard deviation relative to the mean firing
threshold 6,. We can linearize Eq. (5) by replacing the the sigmoid function S, by its slope p, at steady state

value of V,, with

Qa(k7 w) = paVa(ka w) , (6)

The values of P, in Eq. (3) depends on the firing rate @ at various source locations and at earlier times
(Robinson, 2007). It is governed by the spatiotemporal propagation of pulses traveling within the axons of

population b to population a. By adopting a propagator I'y;, P, can be expressed as

Pk, w) = vk, w)dan(k, w) , (7)

Pap(k, w) = €T T g (k, w) Qp (K, w) , (8)
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©

s where the forward and inverse Fourier transforms are defined by

fk,w) = / d’r / dtf(r,t)et-kr (9)

929

2 W ) )
f(r,t) = ((217:;2 / % (k,w)ekr—iwt (10)

100 In Eq. (8), 74 is the time delay between spatially discrete neuron populations (i.e., not between different r on

1

o

1 the cortex) and vy, represents the coupling between population b and population a, with
I/ab(k,(/J) = Nab(k,W)Sab(k,(U), (11)

102 where Ny is the mean number of synaptic connections to each neuron of type a from neurons of type b and sg,
103 is the mean strength of these connections.
104 Axonal propagation can be approximately described by a damped wave equation (Jirsa and Haken, 1996;
105 Robinson et al., 1997; Schiff et al., 2007)

102 20

e e t) = t 12
’ng 8t2 + Yab ot + Tab ¢ab(ra ) Qb(r7 ) p ( )

106 where 7y, is the temporal damping coefficient and equals vep/Tap, vep is the wave velocity, and rq, is the

7 characteristic range of axons that project from population b to a.

108 A uniform-medium propagator Fg;)(k,w) can be derived by first setting the source firing rate Q; in Eq.

1

o

100 (12) to a Dirac delta function of the form: §(r — r')é(¢ — ¢') and replacing ¢4, by F(%)(r —r1',t —t'). Here, the

a

1o coordinates (r,t) represent the spatial location within the target population a at time ¢, and (r’,¢’) is the spatial

i

1

[

1 location within the source population b at time ¢'. This gives

1 52 2 0 0
2 2 T O ) =S — 1)t — 1), 13
T gt T T ) = 6l xi - 1) (13)
112 whence
1
Ik w) = 55—, (14)
“ (k2 + 45,072
113 9 9 9
doab”ab = (1 - iw/’yab) . (15)
114 To incorporate the patchy propagation introduced by the periodic cortical structure of V1, periodic spatial
us  modulation is added to the uniform-medium propagator, giving the patchy propagator Ty (k, w)
0
Tap(k,w) = > ekl (k — K,w), (16)

K

ue  where ck are the Fourier coefficients of the function that describes the spatial feature preference (i.e., OP ), and
ur K ranges over the reciprocal lattice vectors of the periodic structure (Robinson, 2007).

118 In order to perform a linear analysis of the system in later sections, we relate Q,(k,w) and Qp(k,w) via Eqs
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(1) —=(7), which yields

Qu(k,w) = > Xap(k,w)Qp(k, w), (17)
b

Xab(Ka W) = Jab(k7 w)Fab(ka w)a (18)

Jap(K, w) = paLap(w)vep(k, w)e“Te, (19)

2.2 EMIRS corticothalamic model

The previously developed corticothalamic model (Robinson, 2005) consists of five neural populations, which are
the long-range excitatory (e), midrange excitatory (m), short-range inhibitory (i), thalamic reticular (r), and
relay thalamic (s) populations; hence, it is termed the EMIRS model. Figure 2(a) shows the full EMIRS model
and its connectivities between neural populations. There is only one external input ¢s,, which is incident on
the relay nuclei.

In this work, we are mainly concerned with cortical neural activities in the gamma band (30Hz — 70 Hz),
which are higher than the resonant frequency (~10Hz) of the corticothalamic loops. This enables us to neglect
the corticothalamic feedback loops of the full EMIRS model, leading to the reduced model in Fig. 2(b). This
model only includes the cortical excitatory, mid-range, and short-range inhibitory populations, and the signals
from the thalamus are treated as the input to the cortex. Thus, rather than having feedback inputs from the
thalamus, we approximate these inputs as a common external input ¢4, to the cortex. The subscript a denotes

the three cortical neural populations (e, m, ).

3 Patchy Propagation

Patches of neurons with similar feature preference in the visual cortex are preferentially connected (Bauer et al.,
2014; Bressloff and Cowan, 2003; Gilbert and Wiesel, 1983; Lund et al., 2003; Muir et al., 2011). Moreover,
these patchy projections are not spread randomly, but are concentrated toward an axis corresponding to the OP
angle of the neurons (Bosking et al., 1997; Malach et al., 1993; Sincich and Blasdel, 2001). To model this overall
modulation of the propagation use an elliptic Gaussian shape function whose long axis is oriented at the local

OP ¢ at the source point r’ of outgoing axons. If r' = (2/,¢') and r = (z,y), we have

/ 1 122 42
G(r—r') = GE—— exp [—2 (0% + 0%)] , (20)
where
xg = (x —a')cos [p(', )] + (y — ¢/) sin [p(2',¢/)] , (21)
yg = —(z —2")sin [¢(z’, )] + (y — y/') cos [o(z", y/)] - (22)

Here 0, = 2.6 mm and o, = 0.7mm are the spatial ranges along the preferred x4 and orthogonal y, directions,
with values chosen to match the experiment findings in tree shrew by Bosking et al. (1997).

Figures 3(a) and (b) show contour plots of G(r — r’) for OPs of 0° and 45°, respectively and source points
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Figure 2: Schematics of the corticothalamic system. (a) The full EMIRS model with the thalamus part
shown in the gray rectangle, each ¢, quantifies the connection to population a from population b. (b)
The simplified EMIRS model with the thalamic part approximated as a cortical input.

r’ within a central unit cell (see Fig. 1(c)), which is outlined by the red square. The gray scale shows the
strength and direction of spatial modulation of the propagation. We see that the propagation of activity at r’
is modulated in such a way that it propagates further along the axis of preferred orientation, and it propagates
less along the axis of orthogonal orientation Bosking et al. (1997).

Patchy propagation also has modulation with spatial period k¥ = 27 /a in both preferred and orthogonal
directions, where a ~ 2 mm is the width of the unit cell. To incorporate this modulation, we multiply the

oriented elliptic Gaussian function by an isotropic cosine function. The final form of the shape function is then

1 1 (22 o2
A g g
Glr—1) = 2mo L0y exp [2 <02 * 02>1

{coslky(x — 2")] + 1} {cos[ky(y — y)] + 1}, (23)

X

where k, =k, = 27/a.

Figures 4 (a) and (b) show the resulting contours of Eq. (23), for ¢(r') = 0° and 45°, with o, = 2.6 mm and
oy = 0.7mm. For both cases, when r —r/ < 0.5 mm the underlying neurons respond to the stimulus, regardless
of their orientation preference. In the case of ¢(r’) = 45°, we can see regions of contours with weaker connection
strength, which represent patches of the cortex that have the same OP angle as the source point but are located

slightly off the main propagation axis.
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Figure 3: Plots of Eq. (20) with the central unit cell outlined in red; the color bar shows values of
G(r—r'). (a) OP =0°. (b) OP = 45°.
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Figure 4: Contour plot of the shape factor G(r,r’) in Eq. (23) with the central unit cell outlined in
red and containing the source point r’. The color bar shows the values of G(r,r’). (a) ¢(r') = 0°. (b)

(') = 45°.
4 General Correlation Function

This section summarizes the derivation of the general two-point correlation function between the cortical firing
rates measured at two different locations, generalizing the analysis of Robinson (2007) and improving its notation.

We first assume the visual cortex receives two uncorrelated and spatially localized inputs (stimuli) at locations
s1 sg. Further, cortical activity is measured at locations mi, my. Figure 5 shows a schematic of typical spatial
locations and OPs involved in required to deriving the correlation function. The two ellipses in solid green and
red lines, centered at s1 and sy represent the shape factor G(r — r’) for OPs ¢(s1) = 45° and ¢(s2) = 0°. The
arrows indicate propagation of neural activity from sources s; to measurement points my,.

We first derive equations for the neural activities at m; and my due to inputs at s; and so. The activity @
at mp can be written as

Q1 (my,t) = ®1(my, t) + Pr2(my, 1), (24)
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4 T T T T T

Figure 5: Schematic for deriving the correlation functions, where s; and s, denote the stimulus/source
points and m; and m, are the measurement points. The ellipses in solid green (red) lines indicate
the overall shape of the orientation-modulated propagation from s; (s3), as given by Eq. (23). The
ellipsoids outlined in dotted green (red) lines indicate the patchiness of the propagation along the OP
of sy (s2), with period k& = 27/a. The solid and dash-dotted arrows denote propagation from s; and s,,
respectively, to m; and ms.

where ®11(my, t) denotes the activity propagated to m; from s; and ®12(my,t) denotes the activity propagated

to mj from sg. Similarly, activity at my is
(I)Q(mQ, t/) = ®y; (mz, t/) + Poy (mg, t/). (25)

We can write ®1; as

@1 (my,t) = /dQSl/dtchn(mlaslat_t1)5(517t1)> (26)

where Tep, (my,s1,t — t1) is the transfer function that relates the activities at m; to the stimulus E at s;.

From Robinson (2007), E(s1,w) can be approximated in the spatial and Fourier domains as
E(s1,w) = A1 (W)3(r — s1)e¥ ) (27)

S(k,w) = Aj (w)e ks eit(siw), (28)

where the real quantities A;(w) and t(s1,t1) are the amplitude and the phase of the input at s;. We Fourier

transform Eq. (26) and use Eq. (28) to get

®11(k,w) = Ton(k,w) Ay (w)e st s10) (29)
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178 Likewise,

B1o(K, w) = Ton(k, w)Ag(w)e K2 (520) (30)

179
(I)Ql(k/, w) _ Ten<k/, w)A1 (w)eiik/.sl 6i¢(s1,W) , (31)

180
Doy (K, w) = Top (K, w) Ag(w)e K 5267 (52:0) (32)

181 Combining Eqs (29) — (32), we have

&1 (k,w) = Ton(k,w) [Al(w)e_ik'slew(sl’“) + Ag(w)e_ik'SQeiw(s2’“)} , (33)
182
Oy (K, w) = Tep (K, w) [Al(w)e_ik/'slew(sl’“) + Ag(w)e_ik/'SQem(sz’w)} . (34)
183 The general two-point correlation function at measurement locations m; and my is (Robinson, 2007)
C(my,my,7) = (@1(my, ' 4 7)P2(my, ")) , (35)

18a where 7 = ¢t — t/, and the angle brackets refer to the averages over ¢’ and over the phase of the inputs. We use

185 continuous Fourier transforms and integration over ¢’ to achieve the averaging, which yields,

Jor [ [ Lo |

—uu (' +7)+iw't' +ik-my —ik’-mo

C(mla msy, T)

X
X (@1 (k,w) B3 (K, W), (36)
186 Evaluating the integrals with respect to ¢’ and «’ yields

o = [ %[

—sz—Hk mi— zk/ -ms

X

X

(@1 (k, w)®5 (K, w)) (37)

187 Substituting Eqgs (33) and (34) into Eq. (37), and taking the inverse Fourier transform then gives

d
C(mth,T) = </2:: —iwT

X {Ten(m1*81, )Al( )zw s1w)+Ten( m; — Sg,w )AQ( )zw SQu})i|

X [Tou(ms = s1,w) As(@)e™ &) 4 T5 (mj — 55,0) A (w)e 2] > )

188 where the angle brackets now denote the average over the phases at s; and sy. If the phases of the inputs are

10 random and uncorrelated, we have

<ew(sl,w)ez‘w(sz,w)> = 5%(s — s3). (39)

10
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Then the cross terms between s; and se in Eq. (38) are zero and one finds

d .
C(mlam277) = /% T
X {Ten(ml — 81, w)T:n<m2 — 81, w)|A1 (w)|2
+ Ten(ml — Sg,w)T;n(mQ — Sg,w)‘Ag(w)F} . (40)

5 Gamma oscillations and correlations in the EMIRS Model

In this section we first analyze the frequency responses of the reduced EMIRS model (Sec. 5.1), and then derive
the transfer function T, which allow us to obtain a specific form of the 2D two-point correlation function
(Sec. 5.2). Lastly, we study the general properties of the correlation function for several configurations of source

and measurement points (Sec. 6).

5.1 Resonances of the EMIRS Model

In this subsection, we briefly outline the derivation of the linear transfer function of the EMIRS model and its
resonances Robinson (2006, 2007).
When only the cortical populations of the model are considered, the linear transfer function Te,(k,w) can

be written as

_ Qe(k7 w) - Xen
Qn(k,W) 1—Xee — Xem — X ’

Ten(ka w) (41)

where X, is defined in Eqgs (4), (18), and (19).
The resonances of the system arise from the poles of the transfer function, which are given by setting the
denominator of Eq. (41) to zero. For k > 1/ree, | Xee| < | Xeil 80 Xee can be neglected and the resonance

condition becomes

1= Xem — Xei = 0. (42)

Substituting Eqs (4), (14), (18), and (19) into Eq. (42) gives

é(k,w) B Tw iw Gei
D S ey (1-am) () s ()

where

Gk,w) = ckpelem(k,w). (44)

When k =~ K, the denominator on the left hand side of Eq. (43) is small, and the corresponding term dominates
the sum over the lattice vectors K. Assuming G(k,w) is purely spatial, G(k,w) can be written as G(K) and

Eq. (43) becomes

G(K) _ iw iw Gei
(k — K)zrgm +(1— Z"‘)/'Yem)2 B <1 - aem) <1 a Bem) B K2T§i +1’ (45)

11


https://doi.org/10.1101/339184
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/339184; this version posted June 5, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

~ w W Gei
w0 [(1-35) (-50) -

210

. (46)
w
X [(k —-K)*r2 + (1 - 2)} .
Yem
211 Expanding Eq. (46) by multiplying each term out, letting p? = (k — K)?r2,, and omitting subscripts em we
212 ﬁnd
. ; w? 9 w? 2w? (o + B)
= 1-— ei | T T 5 ) —5|——F— ) 4
red = [(1-62) = 5] [0 0 -] - 255 &
213 9 9 B
N w A 2 w a+
Im G = 7—(1—0-) i (4 . 18
m w{[aﬁ ez:|’y+|:72 (p"") of ( )
214 Real G are considered here for a simpler case of direct response from the stimuli, and for ignoring the phases

2

iy

s shift. If G is positive, the resonance occurs only at w = 0 and it is irrelevant to gamma band oscillation. So we

216 choose negative G, and the exact resonance occurs at {2 given by

¥ [2aﬂ (1 - éei) +yv(@P*+1) (a+ ﬁ)}

0% = 49
2+ a+ (49)
2z 5.2  Derivation of the corticothalamic transfer function in closed form
218 Robinson (2007) approximated the transfer function using only the lowest reciprocal lattice vector K as
T (ka (.U)
Ten k7 - 5 50
( w) (k - K)Qrgm + q2rg,m ( )
210 where
JenjemCK
Thkw) = —5, 51
o) = =y oy
220 N
q27"§m =(1- Z"JJ/’Yem)z + Jemex /(1 = Jei) , (52)
221 where Jo, is defined in Eq. (19).
222 We now include higher order lattice vectors to incorporate the finer spatial structure of the OP map into

223 our analysis. From the analysis in Sec. 5.1, we know that sharp resonances of the system can only occur at its

2

N

+ frequency pole pairs at (£K;, £Q;), where K; = +K;,+K», £K3, - -, are the reciprocal lattice vectors and
225 () = +0q, 0o, 03, -, are the resonance frequencies corresponding to each K;. Let k ~ K; and w ~ ; for

2

N
o

To, Eq. (50) can be approximated as the sum of the transfer functions of each frequency pole pair:

TO(K B Q )
Ton(k, w) ~ 12%% . (53)
h P S
227 Spatially Fourier transforming Eq. (53) gives
Ton(r,w) = > [(27r2,) '™ TH(K;, Q) Ko(g |r])] (54)

Kj,Qj

228 where Tj and ¢ are given in Eqgs (51) and (52), and K is a modified Bessel function of the second kind (Olver

o et al.,, 2010). Substituting Eq. (54) into Eq. (40) and letting |A;(w)| = |A2(w)| = 1 for simplicity, gives us the

2

N

12
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final equation for the EMIRS spatiotemporal correlation function

d )
C(mth’T) = (27T’f'gm)_1 / %e—zwr

> {[er tm Ty (5, 95) Ko g fmy - 1))
K;,Q;

K mas) Ty (K, 95) Ko(g ms — s1))]

X

[
£ [t (K, 9) Kolg ) — sa))|
[

K- (m2— s2)To(Kj7 Q;)Ko(q|msz — SZD} } - w

Some general aspects of Eq. (55) are that the correlations fall off on a characteristic spatial scale of (Req) ™!

because Ky(z) ~ exp(—=z) at large z in the right half plane. For the same reason, there is an oscillation
with spatial frequency of Imq. As we see below, resonances in Ty select dominant temporal frequencies in the

correlations.

6 Spatiotemporal properties of the correlation function

Here, we first explore the temporal properties of the correlation function predicted using Eq. (55). Then we
explore its spatial properties with a single input. Lastly, we examine the spatial correlation in the case of two
input sources.

In all the cases described below, the correlation is calculated by numerically evaluating Eq. (55) and locating
m;, my, si, and sy under different conditions. These conditions include using different optimal OPs for the
measurement points and source points, and varying the distances between the measurement points. The results
are presented in Fig. 6. All correlations are normalized such that C(mj, mg,7) = 1 when s; = s9, and m; = my

are placed very close to the sources. Table 1 summarizes the parameters we use for the calculations.

Table 1: EMIRS model parameters
Synaptodendritic rates i, Qes, Qi S0

S
567%7 ﬁesv ﬁei 800 S_1

Projection Range Tem 2 mm

Tei 0.2 mm

Tes 0.3 mim
Damping rates Yem 500 s1

Vei 1500 st
Gains Ges 1.7

Gem 6.9

Gei —15.0
dQ./dV, Pe 4200 V-istt

6.1 Temporal Correlation Properties

In Fig. 6(a), we illustrate the temporal correlations evoked by binocular stimulation when s; and se have the
same OP ¢(s) = 90° and s; and sy are located in the same unit cell, but in different OD columns. The strength

of propagation of neural signals from two sources is indicated by contour lines of Eq. (23); the propagation is

13
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predominantly parallel in this case.

The points m; and my are located in a different unit cell to the source points; are approximately 2 mm away
from each other; and are located at approximately 2 mm from their respective collinear source points, the OPs
at m; and my are also 90°. We have also placed additional measurement points m) and m}, with the same OP
as mp and mgy, but are approximately 4 mm from the sources.

Figure 6(b) shows the temporal correlation functions C(mj, mg,7) and C(m), m), 7). Both oscillate at
around 64 Hz, in the gamma range. Furthermore, each has a peak centered at 7 = 0, so the neural activities
at my and mg, m} and m), are synchronized. The time for their envelopes to decrease to 1/e (~ 30%) of the
peak value is =~ 18 ms. However, when the measurement points are placed further away from the sources, the
correlation at 7 = 0 becomes weaker, as seen by comparing the two curves.

Figure 6(c) shows a case for which the OP of all sources and measurement points is equal (at 45°). Figure 6(d)
shows that the resulting correlation also has a central peak at zero time-lag, oscillates in the gamma band at
~55Hz, and its envelope decreases by 1/e at 7 ~ 21 ms.

In order to explore the correlation properties between OD columns, we place all the source points and
measurement points co-linearly with OP = 0° in Figure 6(e). Synchronized activities at m; and mg are shown
by the center peak at 7 = 0 in Fig. 6(f). This correlation also exhibits gamma band oscillation at ~ 50 Hz,
and the decrease by 1/e from the peak happens at ~ 21 ms. One thing worth to be mentioned here is that
the correlation strength due to inter-columnar connection shown in Fig. 6(f), is stronger than the intra-column
connection in Fig. 6(b).

To further investigate the correlation properties, Fig. 6(g) shows a case in which the two measurement sites
have orthogonal OPs; and so does the sources: the OP at s; and m; is 90°, while at so and my it is 0°. The
distance between the two measurement points is around 5.5 mm. In this case, s; tends to evoke strong response
at mi, but not at my. This introduces an anticorrelation between m; and my. Similarly, adding another source
so only stimulates mo and it again makes the activities at two measurement sites anticorrelated. This negative

correlation is exactly shown by our predicted result in Fig. 6(g). It displays a negative peak at 7 = 0.

14
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Figure 6: Properties of temporal correlations. (a) Locations of measurement points m; and ms, and
source points sy, and s, within 9 unit cells in V1. All points have OP of 90°. The color bar shows the OP
and the gray contours show the strength of propagators given by Eq. (23) with solid and dashed curves
for propagation from s; and sq, respectively. (b) Temporal correlations. Blue curve shows C'(my, my, 7),
while the orange curve shows C(mj, mj, 7). (c) As for (a) but with all points have OP of 45°. (d)
Temporal correlation for (c). (e) As for (a) but with all points have OP of 0°. (f) Temporal correlation
for (e). (g) As for (a) but with OP of the sources are orthogonal. Furthermore, OP at s; is optimal for
m; whereas OP at s, is optimal to ms. (h) Temporal correlation for (g).
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6.2 Two dimensional correlations due to a single source

To demonstrate how the correlation strength is influenced by the location of the measurement sites and their
OP, we fix the location of a source s; and a measurement point ms, as in Fig. 6(a). We then map the correlation
with the second measurement point my at 7 = 0 as a function of the latter’s position on V1. The resulting map

is shown in Fig. 7, normalized to the maximum value of C'(my, mg,0).

9 e — : ! 1
8t | | | | |
1 | | | 0.8
7= e S —- i
P L0 N9 U T
R e | [
E 4 - = & | ]
> 1 1 |
o I I | 702
= J) e ]
o~ F = - i
X @@ we  ®
. M1 g o
1y ‘g . > 4 A 4-0.2
of 1 1 1 I
i | | | -0.4
=1 | | i | L | i | I
-2 0 2 4 6
MZX[mm]

Figure 7: Normalized contour plot of C(mj, my,0) on V1, from Eq. (55) with a single input at s;. The
locations of s;, and measurement point m; are fixed and the location of measurement point my(z,y) is
given by the axes. The location and OP of s; and m; are the same as shown in Figure 6(a). The color
bar indicates the strength of the correlation. Dashed lines bound unit cells.

Figure 7 shows that: (i) The strongest positive correlations are located along a vertical axis passing through
the source point s1 whose OP is 90°; (ii) Patterns of the correlated regions are almost symmetric around the
vertical axis in (i); (iii) The correlation strength falls off with distance between the two measurement points, as
expected from Eq. (23); In addition, the correlation nearly vanishes when the measurement sites are greater than
7mm apart, and this agrees with the experimental results, which suggested that oscillatory cross-correlations
are not observed when the spatial separation of neurons exceeds 7mm. (iv) The central peak shows that when
the distance between my and s; is less than 0.5 mm, the correlations are strong and do not depend on the OPs at
these locations, in accord with experiments (Bosking et al., 1997; Engel et al., 1990; Gray et al., 1989; Swindale,
1996). (v) The positive correlations correspond to regions of OP approximately equal to s1’s OP. while negative
correlation regions correspond to OPs approximately perpendicular to the source OP angle. This shows that

only neurons with similar OP to the source respond to the input stimulus.

6.3 Two dimensional correlations due to two sources

Here we explore the dependence of the correlation function C(mj, my,0) on the position of measurement point
my with two inputs s; and ss. The location of the measurement points and source points are set up exactly as

in the previous case and the additional source sy has the same OP as s; (i.e. 90°).
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Figure 8: Normalized contour plot of C(mj, my,0) on V1, from Eq.(55) with two inputs s; and s;. The
locations of the sources and measurement points m; are fixed and the location of measurement point
my(z,y) is given by the axes. The location and OP of s;, s9, and m; are the same as shown in Figure
6(a). The color bar indicates the strength of the correlation function. Dashed lines bound unit cells.

The resulting map is shown in Fig. 8 and has similar properties to the previous case with one input, namely,
the strongest correlations between the measurements points are along a vertical axis, which matches the OP of
the sources. The positive correlation regions along this axis have a spatial period of 1 mm, corresponding to the
minimum distance between regions having the same OP angle as the sources. However, the negative correlation
regions now tend to align horizontally, which represents the direction orthogonal to the OP. The input source
So is not surrounded by positive correlation regions as sj is; rather, the negative correlations right above so
correspond to a region where the OP of my is ~ 0°. This is consistent with Sec. 6.1, where we showed that
measurement points with orthogonal OPs tend to be anticorrelated at 7 = 0. In that case, we have predicted
that when the OP of two measurement points are 0° and 90° respectively, the source that is optimal to one of

the measurement site introduces negative correlation between the two.

7 Comparison Between Theory and Experiment

In this section, we compare the predicted correlation functions with experimental correlations obtained from

Engel et al. (1990), who published temporal correlation functions of MUA and LFP data under various conditions.

7.1 Description of the Experiments

In these experiments, the MUA and LFP measurements were recorded from an array of electrodes that were
inserted in 5 to 7 spatially separated sites in area 17 of anesthetized adult cats, with neighboring recording sites
spaced 400 — 500 pum apart. Oriented light bars were used as binocular stimulation. Each trial lasted for 10

seconds and one trial set was composed of 10 trials with identical stimuli. During each trial, the light bars were
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Figure 9: Schematic of the two experimental conditions, showing measurement points m; to ms and
source points on V1. The first experimental condition corresponds to a stimulus at 157° with corre-
sponding sources denoted s; and sy, with solid gray contours showing the propagation. The second
experimental condition corresponds to the a 90° stimulus. Here, s3 and s, are the sources and dotted
gray contours show the propagation strength according to the grayscale at right. Dotted vertical and
horizontal lines bound unit cells and the color bar shows OP in degrees.

projected onto a screen that was placed 1.10m in front of the eye-plane of the cat. The autocorrelation function
(ACF) and cross-correlation function (CCF) of the MUA data were computed. CCFs were calculated on each
individual trials first, then averaged to get the final single CCF corresponding to a specific input stimulus Engel

et al. (1990).

7.2 Mapping experimental conditions to a regular lattice

The experimental stimulation was binocular, so a single moving light bar at a specific point in time, maps to
two source points on V1 (s1 and sg), both with OP equal to the bar orientation, one located in left OD column
and one in the right OD column.

In Engel et al.’s experiments, there are five fixed measurement points labeled as m; to mjs. Cells at measure-
ment points mi, mg, and ms have similar orientation preference and are nearly orthogonal to the OP preference
of cells at measurement points mo, my. We map these points onto the regular grid used in our model, which
results in slight distortion (< 0.5 mm) of the original cortical surface in order to preserve the measurement-point
OPs. The OPs of m; to ms, computed after mapping onto our regular lattice match to the OPs given by the
experiments within 1°.

Here, we calculate the temporal correlation functions for two sets of experimental conditions, where the
only difference between the two is the OP of the stimulus. One stimulus is oriented at 157° and another one
oriented at 90°. Figure 9 shows both the stimulation and measurements sites on the idealized OP map. The
sources s1 and so indicate the 157° stimulus, while s3 and s4 represent the the 90° stimulus. The locations of

the measurement sites m; to my are the same for the two sets of experimental conditions.
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7.3 Comparison of Predicted and Experimental Correlation Functions

According to the experimental findings in Engel et al. (1990), when the input light bar is oriented at 157.5°,
measurement sites my, mg, and my have synchronized oscillatory responses; and, when the input light bar is
oriented at 90°, my and my are stimulated simultaneously. Figure 10 shows the CCFs and ACFs calculated
from the experimental data. In Figure 10(a), the synchronized activities at mj, mgs, and mjs are evoked by a
157.5° oriented stimulus. All the cross correlograms are peaked at zero time-lag and have an average oscillation
frequency of ~54 Hz. The envelope of the correlograms decreases to 1/e of its center peak value at around 45 ms.
The ACFs and CCF of my and my from a vertical light bar stimulus are shown in Figure 10(b). The CCF
between my and my oscillates at around 55 Hz, and it takes more than 50 ms for the correlation strength to

decrease to 1/e of its maximum.

Q-

. bage
. s
bl tiuincn

TIME (m=)

Figure 10: Cross correlograms from experiments recordings calculated by Engel et al. (1990). In each case
a baseline level of activity shifts the oscillatory part of the correlation upward and must be subtracted
for comparison with the theoretical results. (a) Cross correlograms between measurement sites ms and
m;, m; and mj, and m; and my corresponding to an input light bar oriented at 157.5°. (b) Auto
correlograms of my and my in the top two row, and cross correlograms on the bottom row between my
and my, corresponding to the vertical light bar.

Moreover, in the experiments it was also found that the correlation strength between m; — mjs is weaker
than that between m; — m3 and between mz — mj5 (i.e., the bar that indicates the number of spikes, on the
right of the plot in the second row of Figure 10(a), has smaller number than other two plots). This is due to
the fact that the spatial distance between m; and mj is the largest, and the correlation strength falls off with
distance.

We next explore the properties of our predicted correlation functions using Eq. (55) with the experimental
conditions. Figure 11(a) shows the plots of our predicted temporal correlation functions between mg and ms,
m; and mj, and m; and m3. Similarly to the experimental CCFs, all the theoretical CCFs: (i) are oscillatory
and peak at zero time lag; (ii) have an oscillation frequency around 57 Hz; and, (iii) have their characteristic time
for the correlation envelope to decrease by 1/e of the maximum value at approximately 40 ms. These theoretical
results agree with the experimental results, once a nonzero mean baseline is subtracted from the latter.

Our prediction also captures the spatial dependence of the maximum correlation strength. The plot in the

middle row of Figure 11(a) corresponds to the correlation between m; — mjs and has the smallest amplitude
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among the three CCFs.
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Figure 11: Normalized temporal cross correlation with zero mean for experimental conditions with
stimuli at 157.5° and 90°. (a) Normalized temporal correlation between measurement sites ms and msy,
m; and mj, and m; and mj3 for a stimulus at 157.5°. Such condition is illustrated in Figure 9. (b)
Normalized temporal cross correlation between ms and my, and the autocorrelation function at m, and
my, for a stimulus at 90°.

Figure 11(b) shows the predicted temporal correlation function generated by the vertical input light bar. In
order to be consistent with the experimental results shown in Figure 10(b), the autocorrelation functions of mg
and my are also included in the top two rows of Figure 11(b). Both ACFs show oscillations in the gamma band.
The CCF between my and my shows a center peak at 7 = 0 and oscillates at 55 Hz. The time for the envelope

decay to 1/e of the center peak value is 25 ms. These properties are also in line with the experimental findings.

8 Summary and Conclusion

We have generalized the spatiotemporal correlation functions in two dimensions that incorporates the spatial
structure of the OP map and OD columns of V1. Our results show that the neural activities are synchronized
in gamma band when neurons have similar feature preference. The main results are:

i) The derivation of a shape function that modulates the spatial patchy propagation of the neural signals.
The shape function models the propagation such that the orientation of the propagation direction is aligned
with the OP of source, and the connected neurons are patchy and periodically located. The parameters of the
shape function are tuned to match the propagation ranges observed in experiments (Bosking et al., 1997).

ii) The systematic characterization of the 2D two-point temporal correlation function. The generalized
correlation function is evaluated numerically for various combinations of stimulation and measurement sites.
The results demonstrate a synchronized gamma oscillation exists between two groups of neurons that have
similar OP to the sources. The correlation strength is larger for inter-columnar connections than for intra-
columnar connections. As the measurement points are further away from the sources, the correlation strength
decreases, and is negligible when the spatial separation of the measurement points exceeds 7 mm.

(iii) The construction of a 2D correlation maps. These maps show the changes expected in the peak cor-
relation strength with respect to the variation of the OP of one of the measurement sites, and its distance to
a second measurement site. The positive correlations appear as patches on an axis oriented at the OP of the

source; and, negative correlations occur where the OPs of the measurement sites are orthogonal to the OP of
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a7z the source.

378 iii) The comparison of the predicted temporal correlations using experimental conditions. Our theoretical
379 results are compared with the experimental findings and shows there is a close match between both in terms of
ss0 the oscillation frequency and the characteristic decay time of the correlation function envelope. In addition, our
st CCFs also capture the spatial dependence of correlation strength, which decreases with distance between the
;2 Imeasurement sites.

383 Overall, our generalized spatiotemporal correlation function reproduces the gamma band oscillations observed
ssa in V1 and relates the spatially distributed neural responses to the periodic spatial structure of OP and OD in
sss V1. This study lays the foundation to further investigate other visual perception phenomena such as the binding
386 problem.

387 Future work will focus on using a more realistic lattice of pinwheels and introduce asymmetries between the

ses  left/right OD columns to account for strabismus.
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*Highlights (for review)

Highlights

Incorporate orientation preference map into patchy connectivities of neurons in V1.
Generalize spatiotemporal correlation function of neural activity to 2D spatially.
Reproduce experimental results: synchronization of neural activities in gamma band.
Temporal correlation between 2 measurements decreases with increasing separation.
Predict 2D spatial map of temporal correlation strength between 2 measurement sites.
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