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Abstract7

Neural field theory is used to quantitatively analyze the two-dimensional spatiotemporal corre-8

lation properties of gamma-band (30 – 70 Hz) oscillations evoked by stimuli arriving at the primary9

visual cortex (V1), and modulated by patchy connectivities that depend on orientation preference10

(OP). Correlation functions are derived analytically under different stimulus and measurement con-11

ditions. The predictions reproduce a range of published experimental results, including the existence12

of two-point oscillatory temporal cross-correlations with zero time-lag between neurons with similar13

OP, the influence of spatial separation of neurons on the strength of the correlations, and the effects14

of differing stimulus orientations.15
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1 Introduction17

The primary visual cortex (V1) is the first cortical area to process visual inputs that arrive from the retina via18

the lateral geniculate nucleus of the thalamus (LGN) and passes the processed signals forward to higher visual19

areas, and back to the LGN. The feed-forward visual pathway from the eyes to V1 is such that the neighboring20

cells in V1 respond to neighboring regions of the retina (Schiller and Tehovnik, 2015). V1 can be approximated21

as a two-dimensional layered sheet (Tovée, 1996). Neurons that span vertically through multiple layers of V122

form a functional cortical column, and these neurons respond most strongly to a preferred stimulus orientation,23

right or left eye, direction of motion, and other feature preferences. Thus, various features of the visual inputs24

are mapped to V1 in different ways. These maps are overlaid such that a single neural cell responds to several25

features and all preferences within a given visual field are mapped to a small region of V1. Such an area of V126

is sometimes termed a hypercolumn, which corresponds to a particular visual field in the overall field of vision27

(Hubel and Wiesel, 1962, 1974; Miikkulainen et al., 2005).28

A prominent feature of V1 is the presence of ocular dominance (OD) stripes, which reflect the fact that left-29

and right-eye inputs are mapped to alternating stripes ∼ 1 mm wide, with each hypercolumn including left- and30

right-eye OD regions. Orientation preference (OP) of neurons for particular edge orientations in a visual field31

is mapped to each hypercolumn such that neurons with particular OP are located adjacent to one another and32

OP spans the range from 0◦ to 180◦. Typically, OP varies with azimuth relative to a center, or singularity, in an33
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arrangement called a pinwheel. The OP angle in each pinwheel rotates either clockwise (negative pinwheel) or34

counterclockwise (positive pinwheel), and neighboring pinwheels have opposite signs (Blasdel, 1992; Braitenberg35

and Braitenberg, 1979; Götz, 1987, 1988; Swindale, 1996). Hence, a hypercolumn must have left and right OD36

stripes with positive and negative pinwheels in each, as suggested by Bressloff and Cowan (2002) and Veltz et al.37

(2015). In Figs 1(a) and (b) we illustrate a negative pinwheel and a positive pinwheel, respectively, while Figs 1(c)38

and (d) show a hypercolumn and an array of hypercolumns, respectively; in the latter case the hypercolumn is39

the unit cell of the lattice and the schematic resembles maps reconstructed from in-vivo experiments (Blasdel,40

1992; Bonhoeffer and Grinvald, 1991, 1993; Obermayer and Blasdel, 1993).

Figure 1: Schematics of visual feature preference maps in V1 with color bars indicating OP in degrees.
(a) Negative pinwheel. (b) Positive pinwheel. (c) Lattice unit cell (hypercolumn). The vertical line
divides the unit cell into left and right OD columns of equal width, while the horizontal and vertical
lines split the unit cell into four squares, each containing one OP pinwheel. The short bars highlight
the OP at various locations. (d) Periodic spatial structure of OP and OD columns across a small piece
of V1 comprising 25 unit cells. Dashed lines bound left (L) and right (R) OD columns. One pinwheel
is outlined in white and one unit cell is outlined in black. Frames (a) and (b) are adapted from Kukjin
et al. (2003).

41

An additional feature of V1 is that regions of similar OP are preferentially linked within and between unit42

cells by lateral connections, forming a patchy network (Gilbert and Wiesel, 1983; Rockland and Lund, 1982).43
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Furthermore, these patchy connections are concentrated toward an axis that corresponds to the OP of the44

neurons involved, so the projections from a given unit cell depend strongly on the OP at the source neurons45

within that cell and are thus strongly anisotropic (Bosking et al., 1997).46

When one considers activity on the network, numerous experiments and studies (Eckhorn et al., 1988; König47

et al., 1995; Singer and Gray, 1995; Engel et al., 1990; Hata et al., 1991; Gray et al., 1989) have shown that48

neurons with similar feature preference in V1 exhibit synchronized gamma band (30 – 70 Hz) oscillations when49

the stimulus is optimal, by measuring the multi-unit activities (MUA) and local field potentials (LFP) in area50

17 of cats using multi-electrodes. They also showed that the corresponding two-point correlation functions of51

MUA or LFP commonly have peaks at zero time-lag. Moreover, these synchronized gamma oscillation in V152

arise from the spatial structure of V1, modulated by the specific feature preferences involved. It also has been53

argued that such synchronized oscillation in gamma band may be involved in visual perception, the binding of54

related features into unified percepts, and the occurrence of visual hallucinations (Gray et al., 1990; Engel et al.,55

2001; Bressloff et al., 2002; Siegel et al., 2011; Henke et al., 2014).56

Previous theoretical studies (Robinson, 2005, 2006, 2007) used neural field theory (NFT) with patchy prop-57

agators to show that patchy connectivity could support gamma oscillations with correlation properties whose58

features resembled those of some of the experiments noted above. However, the effect of OP in the patchy59

propagators was not incorporated and the correlations were only explored as functions of one spatial dimension.60

In this paper, we generalize and explore the spatiotemporal correlation functions of Robinson (2006, 2007)61

to two spatial dimensions, and account for the effect of OP on the patchy propagators. We then compare62

the resulting spatiotemporal correlations with several MUA experiments. In Sec. 2, we briefly describe the63

relevant aspects of NFT including patchy propagators. Section 3 describes a shape function, which modulates64

the connection strength between cortical locations that have similar feature preference. In Sec. 4, we derive a65

general two-point correlation function, and apply this result in Sec. 5 to derive the 2D correlation function in V166

via the linear NFT transfer function of V1. The properties of these correlation functions are explored in Sec. 6,67

including their predictions for oscillation frequency, time decay, effects of the spatial separation between the68

measurement points, and the modulation by the OP in V1. The predictions compared with specific experimental69

outcomes in Sec. 7, and the results are summarized and discussed in Sec. 8.70

2 Theory71

In Sec.2.1 we first review the neural field equations of interest; and, then in Sec. 2.2 we describe the corticothala-72

mic model (Robinson et al., 1997; Robinson, 2005, 2006, 2007), from which we derive a reduced corticothalamic73

model used in the remainder of this work.74

2.1 Neural Field Theory75

NFT averages neural properties and activity over a linear scale of a few tenths of a millimeter to treat the76

dynamics on scales larger than this, which is appropriate for the present applications (Deco et al., 2008; Robinson77

et al., 2005). Each type of neuron is denoted by a subscript a. The continuum soma potential Va is approximated78
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by adding up Vab resulting from activities of all possible types of synapse on neurons in the spatially extended79

population a from those of type b. Thus,80

Va(r, t) =
�

b

Vab(r, t), (1)

where r is the actual spatial location on the cortex, approximated as a two-dimensional sheet, and t denotes the81

time. In the Fourier domain, Eq. (1) can be written as82

Va(k,ω) =
�

b

Vab(k,ω). (2)

Due to the dependence of Vab on the synaptic dynamics, signal dispersion in the dendrites, and soma charging,83

the soma potential corresponding to a delta function input can be approximated by84

Vab(k,ω) = Lab(ω)Pab(k,ω) , (3)

where Pab is the Fourier representation of the weighted average arrival rate of incoming spikes at each location85

r and time t, and Lab is the function of the synapse-to-soma response in frequency domain,86

Lab(ω) =

�
1− iω

αab

�−1�
1− iω

βab

�−1

, (4)

where αab and βab are the decay and mean rise rate of the soma response.87

Action potentials of cells with voltage-gated ion channels are produced when the soma potential exceeds a88

threshold θa. Thus, the mean population firing rate Qa can be related to the mean soma potential Va by a89

nonlinear sigmoid function90

Qa = S(Va) =
Qmax

1 + exp[−(Va − θa)/σ�]
, (5)

where Qmax is the maximum possible firing rate, σ�π/
√
3 is the standard deviation relative to the mean firing91

threshold θa. We can linearize Eq. (5) by replacing the the sigmoid function Sa by its slope ρa at steady state92

value of Va, with93

Qa(k,ω) = ρaVa(k,ω) , (6)

The values of Pab in Eq. (3) depends on the firing rate Qb at various source locations and at earlier times94

(Robinson, 2007). It is governed by the spatiotemporal propagation of pulses traveling within the axons of95

population b to population a. By adopting a propagator Γab, Pab can be expressed as96

Pab(k,ω) = νab(k,ω)φab(k,ω) , (7)

97

φab(k,ω) = eiωτabΓab(k,ω)Qb(k,ω) , (8)

4
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where the forward and inverse Fourier transforms are defined by98

f(k,ω) =

�
d2r

�
dtf(r, t)eiωt−ik·r , (9)

99

f(r, t) =

�
d2k

(2π)2

�
dω

(2π)
f(k,ω)eik·r−iωt . (10)

In Eq. (8), τab is the time delay between spatially discrete neuron populations (i.e., not between different r on100

the cortex) and νab represents the coupling between population b and population a, with101

νab(k,ω) = Nab(k,ω)sab(k,ω), (11)

where Nab is the mean number of synaptic connections to each neuron of type a from neurons of type b and sab102

is the mean strength of these connections.103

Axonal propagation can be approximately described by a damped wave equation (Jirsa and Haken, 1996;104

Robinson et al., 1997; Schiff et al., 2007)105

�
1

γ2ab

∂2

∂t2
+

2

γab

∂

∂t
+ 1− r2ab�2

�
φab(r, t) = Qb(r, t) , (12)

where γab is the temporal damping coefficient and equals vab/rab, vab is the wave velocity, and rab is the106

characteristic range of axons that project from population b to a.107

A uniform-medium propagator Γ
(0)
ab (k,ω) can be derived by first setting the source firing rate Qb in Eq.108

(12) to a Dirac delta function of the form: δ(r− r�)δ(t − t�) and replacing φab by Γ
(0)
ab (r− r�, t − t�). Here, the109

coordinates (r, t) represent the spatial location within the target population a at time t, and (r�, t�) is the spatial110

location within the source population b at time t�. This gives111

�
1

γ2ab

∂2

∂t2
+

2

γab

∂

∂t
+ 1− r2ab�2

�
Γ
(0)
ab (r− r�, t− t�) = δ(r− r�)δ(t− t�), (13)

whence112

Γ
(0)
ab (k,ω) =

1

(k2 + q20ab)r
2
ab

, (14)

113

q20abr
2
ab = (1− iω/γab)

2. (15)

To incorporate the patchy propagation introduced by the periodic cortical structure of V1, periodic spatial114

modulation is added to the uniform-medium propagator, giving the patchy propagator Γab(k,ω)115

Γab(k,ω) =
�

K

cKΓ
(0)
ab (k−K,ω), (16)

where cK are the Fourier coefficients of the function that describes the spatial feature preference (i.e., OP ), and116

K ranges over the reciprocal lattice vectors of the periodic structure (Robinson, 2007).117

In order to perform a linear analysis of the system in later sections, we relate Qa(k,ω) and Qb(k,ω) via Eqs118
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(1) –(7), which yields119

Qa(k,ω) =
�

b

Xab(k,ω)Qb(k,ω), (17)

120
Xab(K,ω) = Jab(k,ω)Γab(k,ω), (18)

121

Jab(k,ω) = ρaLab(ω)νab(k,ω)e
iωτab . (19)

2.2 EMIRS corticothalamic model122

The previously developed corticothalamic model (Robinson, 2005) consists of five neural populations, which are123

the long-range excitatory (e), midrange excitatory (m), short-range inhibitory (i), thalamic reticular (r), and124

relay thalamic (s) populations; hence, it is termed the EMIRS model. Figure 2(a) shows the full EMIRS model125

and its connectivities between neural populations. There is only one external input φsn, which is incident on126

the relay nuclei.127

In this work, we are mainly concerned with cortical neural activities in the gamma band (30Hz – 70Hz),128

which are higher than the resonant frequency (∼10Hz) of the corticothalamic loops. This enables us to neglect129

the corticothalamic feedback loops of the full EMIRS model, leading to the reduced model in Fig. 2(b). This130

model only includes the cortical excitatory, mid-range, and short-range inhibitory populations, and the signals131

from the thalamus are treated as the input to the cortex. Thus, rather than having feedback inputs from the132

thalamus, we approximate these inputs as a common external input φan to the cortex. The subscript a denotes133

the three cortical neural populations (e, m, i).134

3 Patchy Propagation135

Patches of neurons with similar feature preference in the visual cortex are preferentially connected (Bauer et al.,136

2014; Bressloff and Cowan, 2003; Gilbert and Wiesel, 1983; Lund et al., 2003; Muir et al., 2011). Moreover,137

these patchy projections are not spread randomly, but are concentrated toward an axis corresponding to the OP138

angle of the neurons (Bosking et al., 1997; Malach et al., 1993; Sincich and Blasdel, 2001). To model this overall139

modulation of the propagation use an elliptic Gaussian shape function whose long axis is oriented at the local140

OP φ at the source point r� of outgoing axons. If r� = (x�, y�) and r = (x, y), we have141

G(r− r�) =
1

2πσxσy
exp

�
−1

2

�
x2g
σ2
x

+
y2g
σ2
y

��
, (20)

where142

xg = (x− x�) cos
�
φ(x�, y�)

�
+ (y − y�) sin

�
φ(x�, y�)

�
, (21)

143

yg = −(x− x�) sin
�
φ(x�, y�)

�
+ (y − y�) cos

�
φ(x�, y�)

�
. (22)

Here σx = 2.6mm and σy = 0.7mm are the spatial ranges along the preferred xg and orthogonal yg directions,144

with values chosen to match the experiment findings in tree shrew by Bosking et al. (1997).145

Figures 3(a) and (b) show contour plots of G(r − r�) for OPs of 0◦ and 45◦, respectively and source points146
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Figure 2: Schematics of the corticothalamic system. (a) The full EMIRS model with the thalamus part
shown in the gray rectangle, each φab quantifies the connection to population a from population b. (b)
The simplified EMIRS model with the thalamic part approximated as a cortical input.

r� within a central unit cell (see Fig. 1(c)), which is outlined by the red square. The gray scale shows the147

strength and direction of spatial modulation of the propagation. We see that the propagation of activity at r�148

is modulated in such a way that it propagates further along the axis of preferred orientation, and it propagates149

less along the axis of orthogonal orientation Bosking et al. (1997).150

Patchy propagation also has modulation with spatial period k = 2π/a in both preferred and orthogonal151

directions, where a ≈ 2 mm is the width of the unit cell. To incorporate this modulation, we multiply the152

oriented elliptic Gaussian function by an isotropic cosine function. The final form of the shape function is then153

G(r− r�) =
1

2πσxσy
exp

�
−1

2

�
x2g
σ2
x

+
y2g
σ2
y

��

×
�
cos[kx(x− x�)] + 1

��
cos[ky(y − y�)] + 1

�
, (23)

where kx = ky = 2π/a.154

Figures 4 (a) and (b) show the resulting contours of Eq. (23), for φ(r�) = 0◦ and 45◦, with σx = 2.6mm and155

σy = 0.7mm. For both cases, when r− r� < 0.5mm the underlying neurons respond to the stimulus, regardless156

of their orientation preference. In the case of φ(r�) = 45◦, we can see regions of contours with weaker connection157

strength, which represent patches of the cortex that have the same OP angle as the source point but are located158

slightly off the main propagation axis.159
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Figure 3: Plots of Eq. (20) with the central unit cell outlined in red; the color bar shows values of
G(r− r�). (a) OP = 0◦. (b) OP = 45◦.

Figure 4: Contour plot of the shape factor G(r, r�) in Eq. (23) with the central unit cell outlined in
red and containing the source point r�. The color bar shows the values of G(r, r�). (a) φ(r�) = 0◦. (b)
φ(r�) = 45◦.

4 General Correlation Function160

This section summarizes the derivation of the general two-point correlation function between the cortical firing161

rates measured at two different locations, generalizing the analysis of Robinson (2007) and improving its notation.162

We first assume the visual cortex receives two uncorrelated and spatially localized inputs (stimuli) at locations163

s1 s2. Further, cortical activity is measured at locations m1, m2. Figure 5 shows a schematic of typical spatial164

locations and OPs involved in required to deriving the correlation function. The two ellipses in solid green and165

red lines, centered at s1 and s2 represent the shape factor G(r− r�) for OPs φ(s1) = 45◦ and φ(s2) = 0◦. The166

arrows indicate propagation of neural activity from sources sj to measurement points mk.167

We first derive equations for the neural activities at m1 and m2 due to inputs at s1 and s2. The activity Φ1168

at m1 can be written as169

Φ1(m1, t) = Φ11(m1, t) + Φ12(m1, t), (24)

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 5, 2018. ; https://doi.org/10.1101/339184doi: bioRxiv preprint 

https://doi.org/10.1101/339184
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: Schematic for deriving the correlation functions, where s1 and s2 denote the stimulus/source
points and m1 and m2 are the measurement points. The ellipses in solid green (red) lines indicate
the overall shape of the orientation-modulated propagation from s1 (s2), as given by Eq. (23). The
ellipsoids outlined in dotted green (red) lines indicate the patchiness of the propagation along the OP
of s1 (s2), with period k = 2π/a. The solid and dash-dotted arrows denote propagation from s1 and s2,
respectively, to m1 and m2.

where Φ11(m1, t) denotes the activity propagated to m1 from s1 and Φ12(m1, t) denotes the activity propagated170

to m1 from s2. Similarly, activity at m2 is171

Φ2(m2, t
�) = Φ21(m2, t

�) + Φ22(m2, t
�). (25)

We can write Φ11 as172

Φ11(m1, t) =

�
d2s1

�
dt1Ten(m1, s1, t− t1)Ξ(s1, t1), (26)

where Ten(m1, s1, t− t1) is the transfer function that relates the activities at m1 to the stimulus Ξ at s1.173

From Robinson (2007), Ξ(s1,ω) can be approximated in the spatial and Fourier domains as174

Ξ(s1,ω) = A1(ω)δ(r− s1)e
iψ(r,ω), (27)

175

Ξ(k,ω) = A1(ω)e
−ik·s1eiψ(s1,ω), (28)

where the real quantities A1(ω) and ψ(s1, t1) are the amplitude and the phase of the input at s1. We Fourier176

transform Eq. (26) and use Eq. (28) to get177

Φ11(k,ω) = Ten(k,ω)A1(ω)e
−ik·s1eiψ(s1,ω) , (29)

9
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Likewise,178

Φ12(k,ω) = Ten(k,ω)A2(ω)e
−ik·s2eiψ(s2,ω) , (30)

179

Φ21(k
�,ω) = Ten(k

�,ω)A1(ω)e
−ik�·s1eiψ(s1,ω) , (31)

180

Φ22(k
�,ω) = Ten(k

�,ω)A2(ω)e
−ik�·s2eiψ(s2,ω) . (32)

Combining Eqs (29) – (32), we have181

Φ1(k,ω) = Ten(k,ω)
�
A1(ω)e

−ik·s1eiψ(s1,ω) +A2(ω)e
−ik·s2eiψ(s2,ω)

�
, (33)

182

Φ2(k
�,ω) = Ten(k

�,ω)
�
A1(ω)e

−ik�·s1eiψ(s1,ω) +A2(ω)e
−ik�·s2eiψ(s2,ω)

�
. (34)

The general two-point correlation function at measurement locations m1 and m2 is (Robinson, 2007)183

C(m1,m2, τ) =
�
Φ1(m1, t

� + τ)Φ2(m2, t
�)
�
, (35)

where τ = t − t�, and the angle brackets refer to the averages over t� and over the phase of the inputs. We use184

continuous Fourier transforms and integration over t� to achieve the averaging, which yields,185

C(m1,m2, τ) =

�
dt�

�
dω

2π

�
dω�

2π

�
d2k

(2π)2

�
d2k�

(2π)2

× e−iω(t�+τ)+iω�t�+ik·m1−ik�·m2

×
�
Φ1(k,ω)Φ

∗
2(k

�,ω�)
�
, (36)

Evaluating the integrals with respect to t� and ω� yields186

C(m1,m2, τ) =

�
dω

2π

�
d2k

(2π)2

�
d2k�

(2π)2

× e−iωτ+ik·m1−ik�·m2

×
�
Φ1(k,ω)Φ

∗
2(k

�,ω)
�
. (37)

Substituting Eqs (33) and (34) into Eq. (37), and taking the inverse Fourier transform then gives187

C(m1,m2, τ) =

��
dω

2π
e−iωτ

×
�
Ten(m1 − s1,ω)A1(ω)e

iψ(s1,ω) + Ten(m1 − s2,ω)A2(ω)e
iψ(s2,ω)

�

×
�
T ∗
en(m2 − s1,ω)A1(ω)e

−iψ(s1,ω) + T ∗
en(m2 − s2,ω)A2(ω)e

−iψ(s2,ω)
��

, (38)

where the angle brackets now denote the average over the phases at s1 and s2. If the phases of the inputs are188

random and uncorrelated, we have189

�
eiψ(s1,ω)eiψ(s2,ω)

�
= δ2(s1 − s2) . (39)

10
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Then the cross terms between s1 and s2 in Eq. (38) are zero and one finds190

C(m1,m2, τ) =

�
dω

2π
e−iωτ

×
�
Ten(m1 − s1,ω)T

∗
en(m2 − s1,ω)|A1(ω)|2

+ Ten(m1 − s2,ω)T
∗
en(m2 − s2,ω)|A2(ω)|2

�
. (40)

5 Gamma oscillations and correlations in the EMIRS Model191

In this section we first analyze the frequency responses of the reduced EMIRS model (Sec. 5.1), and then derive192

the transfer function Ten which allow us to obtain a specific form of the 2D two-point correlation function193

(Sec. 5.2). Lastly, we study the general properties of the correlation function for several configurations of source194

and measurement points (Sec. 6).195

5.1 Resonances of the EMIRS Model196

In this subsection, we briefly outline the derivation of the linear transfer function of the EMIRS model and its197

resonances Robinson (2006, 2007).198

When only the cortical populations of the model are considered, the linear transfer function Ten(k,ω) can199

be written as200

Ten(k,ω) =
Qe(k,ω)

Qn(k,ω)
=

Xen

1−Xee −Xem −Xei
, (41)

where Xab is defined in Eqs (4), (18), and (19).201

The resonances of the system arise from the poles of the transfer function, which are given by setting the202

denominator of Eq. (41) to zero. For k � 1/ree, |Xee| � |Xei| so Xee can be neglected and the resonance203

condition becomes204

1−Xem −Xei = 0. (42)

Substituting Eqs (4), (14), (18), and (19) into Eq. (42) gives205

�

K

Ĝ(k,ω)

(k−K)2r2em + (1− iω/γem)2
=

�
1− iω

αem

��
1− iω

βem

�
− Gei

k2r2ei + 1
, (43)

where206

Ĝ(k,ω) = cKρeν̂em(k,ω) . (44)

When k ≈ K, the denominator on the left hand side of Eq. (43) is small, and the corresponding term dominates207

the sum over the lattice vectors K. Assuming Ĝ(k,ω) is purely spatial, Ĝ(k,ω) can be written as Ĝ(K) and208

Eq. (43) becomes209

Ĝ(K)

(k−K)2r2em + (1− iω/γem)2
=

�
1− iω

αem

��
1− iω

βem

�
− Gei

K2r2ei + 1
, (45)
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210

Ĝ(K) =

��
1− iω

αem

��
1− iω

βem

�
− Gei

K2r2ei + 1

�

×
�
(k−K)2r2em +

�
1− iω

γ2em

��
.

(46)

Expanding Eq. (46) by multiplying each term out, letting p2 = (k−K)2r2em, and omitting subscripts em we211

find212

Re Ĝ =

��
1− Ĝei

�
− ω2

αβ

� ��
p2 + 1

�
− ω2

γ2

�
− 2ω2 (α+ β)

αβγ
, (47)

213

Im Ĝ = ω

��
ω2

αβ
−

�
1− Ĝei

�� 2

γ
+

�
ω2

γ2
−

�
p2 + 1

�� α+ β

αβ

�
. (48)

Real Ĝ are considered here for a simpler case of direct response from the stimuli, and for ignoring the phases214

shift. If Ĝ is positive, the resonance occurs only at ω = 0 and it is irrelevant to gamma band oscillation. So we215

choose negative Ĝ, and the exact resonance occurs at Ω given by216

Ω2 =
γ
�
2αβ

�
1− Ĝei

�
+ γ

�
p2 + 1

�
(α+ β)

�

2γ + α+ β
. (49)

5.2 Derivation of the corticothalamic transfer function in closed form217

Robinson (2007) approximated the transfer function using only the lowest reciprocal lattice vector K as218

Ten(k,ω) =
T0(k,ω)

(k−K)2r2em + q2r2em
, (50)

where219

T0(k,ω) =
JenĴemcK
(1− Jei)2

, (51)

220

q2r2em = (1− iω/γem)2 + ĴemcK/(1− Jei) , (52)

where Ĵem is defined in Eq. (19).221

We now include higher order lattice vectors to incorporate the finer spatial structure of the OP map into222

our analysis. From the analysis in Sec. 5.1, we know that sharp resonances of the system can only occur at its223

frequency pole pairs at (±Kj ,±Ωj), where Kj = ±K1,±K2,±K3, · · · , are the reciprocal lattice vectors and224

Ωj = ±Ω1,±Ω2,±Ω3, · · · , are the resonance frequencies corresponding to each Kj . Let k ≈ Kj and ω ≈ Ωj for225

T0, Eq. (50) can be approximated as the sum of the transfer functions of each frequency pole pair:226

Ten(k,ω) ≈
�

Kj ,Ωj

T0(Kj ,Ωj)

(k−Kj)2r2em + q2r2em
. (53)

Spatially Fourier transforming Eq. (53) gives227

Ten(r,ω) ≈
�

Kj ,Ωj

�
(2πr2em)−1eiKj ·rT0(Kj ,Ωj)K0(q |r|)

�
, (54)

where T0 and q are given in Eqs (51) and (52), and K0 is a modified Bessel function of the second kind (Olver228

et al., 2010). Substituting Eq. (54) into Eq. (40) and letting |A1(ω)| = |A2(ω)| = 1 for simplicity, gives us the229
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final equation for the EMIRS spatiotemporal correlation function230

C(m1,m2, τ) = (2πr2em)−1

�
dω

2π
e−iωτ

×
�

Kj ,Ωj

��
eiKj ·(m1−s1)T0(Kj ,Ωj)K0(q |m1 − s1|)

�

×
�
eiKj ·(m2−s1)T0(Kj ,Ωj)K0(q |m2 − s1|)

�∗�

+
��

eiKj ·(m1−s2)T0(Kj ,Ωj)K0(q |m1 − s2|)
�

×
�
eiKj ·(m2−s2)T0(Kj ,Ωj)K0(q |m2 − s2|)

�∗�
. (55)

Some general aspects of Eq. (55) are that the correlations fall off on a characteristic spatial scale of (Req)−1
231

because K0(z) ∼ exp(−z) at large z in the right half plane. For the same reason, there is an oscillation232

with spatial frequency of Imq. As we see below, resonances in T0 select dominant temporal frequencies in the233

correlations.234

6 Spatiotemporal properties of the correlation function235

Here, we first explore the temporal properties of the correlation function predicted using Eq. (55). Then we236

explore its spatial properties with a single input. Lastly, we examine the spatial correlation in the case of two237

input sources.238

In all the cases described below, the correlation is calculated by numerically evaluating Eq. (55) and locating239

m1, m2, s1, and s2 under different conditions. These conditions include using different optimal OPs for the240

measurement points and source points, and varying the distances between the measurement points. The results241

are presented in Fig. 6. All correlations are normalized such that C(m1,m2, τ) = 1 when s1 = s2, and m1 = m2242

are placed very close to the sources. Table 1 summarizes the parameters we use for the calculations.

Table 1: EMIRS model parameters
Synaptodendritic rates αem, αes, αei 80 s−1

βem, βes, βei 800 s−1

Projection Range rem 2 mm
rei 0.2 mm
res 0.3 mm

Damping rates γem 500 s−1

γei 1500 s−1

Gains Ges 1.7
Gem 6.9
Gei −15.0

dQe/dVe ρe 4200 V−1s−1

243

6.1 Temporal Correlation Properties244

In Fig. 6(a), we illustrate the temporal correlations evoked by binocular stimulation when s1 and s2 have the245

same OP φ(s) = 90◦ and s1 and s2 are located in the same unit cell, but in different OD columns. The strength246

of propagation of neural signals from two sources is indicated by contour lines of Eq. (23); the propagation is247
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predominantly parallel in this case.248

The points m1 and m2 are located in a different unit cell to the source points; are approximately 2mm away249

from each other; and are located at approximately 2mm from their respective collinear source points, the OPs250

at m1 and m2 are also 90◦. We have also placed additional measurement points m�
1 and m�

2, with the same OP251

as m1 and m2, but are approximately 4mm from the sources.252

Figure 6(b) shows the temporal correlation functions C(m1,m2, τ) and C(m�
1,m

�
2, τ). Both oscillate at253

around 64Hz, in the gamma range. Furthermore, each has a peak centered at τ = 0, so the neural activities254

at m1 and m2, m�
1 and m�

2, are synchronized. The time for their envelopes to decrease to 1/e (∼ 30%) of the255

peak value is ≈ 18ms. However, when the measurement points are placed further away from the sources, the256

correlation at τ = 0 becomes weaker, as seen by comparing the two curves.257

Figure 6(c) shows a case for which the OP of all sources and measurement points is equal (at 45◦). Figure 6(d)258

shows that the resulting correlation also has a central peak at zero time-lag, oscillates in the gamma band at259

∼55Hz, and its envelope decreases by 1/e at τ ≈ 21ms.260

In order to explore the correlation properties between OD columns, we place all the source points and261

measurement points co-linearly with OP = 0◦ in Figure 6(e). Synchronized activities at m1 and m2 are shown262

by the center peak at τ = 0 in Fig. 6(f). This correlation also exhibits gamma band oscillation at ≈ 50Hz,263

and the decrease by 1/e from the peak happens at ≈ 21ms. One thing worth to be mentioned here is that264

the correlation strength due to inter-columnar connection shown in Fig. 6(f), is stronger than the intra-column265

connection in Fig. 6(b).266

To further investigate the correlation properties, Fig. 6(g) shows a case in which the two measurement sites267

have orthogonal OPs, and so does the sources: the OP at s1 and m1 is 90◦, while at s2 and m2 it is 0◦. The268

distance between the two measurement points is around 5.5mm. In this case, s1 tends to evoke strong response269

at m1, but not at m2. This introduces an anticorrelation between m1 and m2. Similarly, adding another source270

s2 only stimulates m2 and it again makes the activities at two measurement sites anticorrelated. This negative271

correlation is exactly shown by our predicted result in Fig. 6(g). It displays a negative peak at τ = 0.272
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Figure 6: Properties of temporal correlations. (a) Locations of measurement points m1 and m2, and
source points s1, and s2 within 9 unit cells in V1. All points have OP of 90◦. The color bar shows the OP
and the gray contours show the strength of propagators given by Eq. (23) with solid and dashed curves
for propagation from s1 and s2, respectively. (b) Temporal correlations. Blue curve shows C(m1,m2, τ),
while the orange curve shows C(m�

1,m
�
2, τ). (c) As for (a) but with all points have OP of 45◦. (d)

Temporal correlation for (c). (e) As for (a) but with all points have OP of 0◦. (f) Temporal correlation
for (e). (g) As for (a) but with OP of the sources are orthogonal. Furthermore, OP at s1 is optimal for
m1 whereas OP at s2 is optimal to m2. (h) Temporal correlation for (g).
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6.2 Two dimensional correlations due to a single source273

To demonstrate how the correlation strength is influenced by the location of the measurement sites and their274

OP, we fix the location of a source s1 and a measurement point m1, as in Fig. 6(a). We then map the correlation275

with the second measurement point m2 at τ = 0 as a function of the latter’s position on V1. The resulting map276

is shown in Fig. 7, normalized to the maximum value of C(m1,m2, 0).

Figure 7: Normalized contour plot of C(m1,m2, 0) on V1, from Eq. (55) with a single input at s1. The
locations of s1, and measurement point m1 are fixed and the location of measurement point m2(x, y) is
given by the axes. The location and OP of s1 and m1 are the same as shown in Figure 6(a). The color
bar indicates the strength of the correlation. Dashed lines bound unit cells.

277

Figure 7 shows that: (i) The strongest positive correlations are located along a vertical axis passing through278

the source point s1 whose OP is 90◦; (ii) Patterns of the correlated regions are almost symmetric around the279

vertical axis in (i); (iii) The correlation strength falls off with distance between the two measurement points, as280

expected from Eq. (23); In addition, the correlation nearly vanishes when the measurement sites are greater than281

7mm apart, and this agrees with the experimental results, which suggested that oscillatory cross-correlations282

are not observed when the spatial separation of neurons exceeds 7mm. (iv) The central peak shows that when283

the distance between m2 and s1 is less than 0.5mm, the correlations are strong and do not depend on the OPs at284

these locations, in accord with experiments (Bosking et al., 1997; Engel et al., 1990; Gray et al., 1989; Swindale,285

1996). (v) The positive correlations correspond to regions of OP approximately equal to s1’s OP. while negative286

correlation regions correspond to OPs approximately perpendicular to the source OP angle. This shows that287

only neurons with similar OP to the source respond to the input stimulus.288

6.3 Two dimensional correlations due to two sources289

Here we explore the dependence of the correlation function C(m1,m2, 0) on the position of measurement point290

m2 with two inputs s1 and s2. The location of the measurement points and source points are set up exactly as291

in the previous case and the additional source s2 has the same OP as s1 (i.e. 90◦).292
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Figure 8: Normalized contour plot of C(m1,m2, 0) on V1, from Eq.(55) with two inputs s1 and s2. The
locations of the sources and measurement points m1 are fixed and the location of measurement point
m2(x, y) is given by the axes. The location and OP of s1, s2, and m1 are the same as shown in Figure
6(a). The color bar indicates the strength of the correlation function. Dashed lines bound unit cells.

The resulting map is shown in Fig. 8 and has similar properties to the previous case with one input, namely,293

the strongest correlations between the measurements points are along a vertical axis, which matches the OP of294

the sources. The positive correlation regions along this axis have a spatial period of 1mm, corresponding to the295

minimum distance between regions having the same OP angle as the sources. However, the negative correlation296

regions now tend to align horizontally, which represents the direction orthogonal to the OP. The input source297

s2 is not surrounded by positive correlation regions as s1 is; rather, the negative correlations right above s2298

correspond to a region where the OP of m2 is ∼ 0◦. This is consistent with Sec. 6.1, where we showed that299

measurement points with orthogonal OPs tend to be anticorrelated at τ = 0. In that case, we have predicted300

that when the OP of two measurement points are 0◦ and 90◦ respectively, the source that is optimal to one of301

the measurement site introduces negative correlation between the two.302

7 Comparison Between Theory and Experiment303

In this section, we compare the predicted correlation functions with experimental correlations obtained from304

Engel et al. (1990), who published temporal correlation functions of MUA and LFP data under various conditions.305

7.1 Description of the Experiments306

In these experiments, the MUA and LFP measurements were recorded from an array of electrodes that were307

inserted in 5 to 7 spatially separated sites in area 17 of anesthetized adult cats, with neighboring recording sites308

spaced 400 – 500 µm apart. Oriented light bars were used as binocular stimulation. Each trial lasted for 10309

seconds and one trial set was composed of 10 trials with identical stimuli. During each trial, the light bars were310
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Figure 9: Schematic of the two experimental conditions, showing measurement points m1 to m5 and
source points on V1. The first experimental condition corresponds to a stimulus at 157◦ with corre-
sponding sources denoted s1 and s2, with solid gray contours showing the propagation. The second
experimental condition corresponds to the a 90◦ stimulus. Here, s3 and s4 are the sources and dotted
gray contours show the propagation strength according to the grayscale at right. Dotted vertical and
horizontal lines bound unit cells and the color bar shows OP in degrees.

projected onto a screen that was placed 1.10m in front of the eye-plane of the cat. The autocorrelation function311

(ACF) and cross-correlation function (CCF) of the MUA data were computed. CCFs were calculated on each312

individual trials first, then averaged to get the final single CCF corresponding to a specific input stimulus Engel313

et al. (1990).314

7.2 Mapping experimental conditions to a regular lattice315

The experimental stimulation was binocular, so a single moving light bar at a specific point in time, maps to316

two source points on V1 (s1 and s2), both with OP equal to the bar orientation, one located in left OD column317

and one in the right OD column.318

In Engel et al.’s experiments, there are five fixed measurement points labeled as m1 to m5. Cells at measure-319

ment points m1, m3, and m5 have similar orientation preference and are nearly orthogonal to the OP preference320

of cells at measurement points m2, m4. We map these points onto the regular grid used in our model, which321

results in slight distortion (< 0.5 mm) of the original cortical surface in order to preserve the measurement-point322

OPs. The OPs of m1 to m5, computed after mapping onto our regular lattice match to the OPs given by the323

experiments within 1◦.324

Here, we calculate the temporal correlation functions for two sets of experimental conditions, where the325

only difference between the two is the OP of the stimulus. One stimulus is oriented at 157◦ and another one326

oriented at 90◦. Figure 9 shows both the stimulation and measurements sites on the idealized OP map. The327

sources s1 and s2 indicate the 157◦ stimulus, while s3 and s4 represent the the 90◦ stimulus. The locations of328

the measurement sites m1 to m5 are the same for the two sets of experimental conditions.329
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7.3 Comparison of Predicted and Experimental Correlation Functions330

According to the experimental findings in Engel et al. (1990), when the input light bar is oriented at 157.5◦,331

measurement sites m1, m3, and m5 have synchronized oscillatory responses; and, when the input light bar is332

oriented at 90◦, m2 and m4 are stimulated simultaneously. Figure 10 shows the CCFs and ACFs calculated333

from the experimental data. In Figure 10(a), the synchronized activities at m1, m3, and m5 are evoked by a334

157.5◦ oriented stimulus. All the cross correlograms are peaked at zero time-lag and have an average oscillation335

frequency of ∼54Hz. The envelope of the correlograms decreases to 1/e of its center peak value at around 45ms.336

The ACFs and CCF of m2 and m4 from a vertical light bar stimulus are shown in Figure 10(b). The CCF337

between m2 and m4 oscillates at around 55Hz, and it takes more than 50ms for the correlation strength to338

decrease to 1/e of its maximum.

Figure 10: Cross correlograms from experiments recordings calculated by Engel et al. (1990). In each case
a baseline level of activity shifts the oscillatory part of the correlation upward and must be subtracted
for comparison with the theoretical results. (a) Cross correlograms between measurement sites m3 and
m5, m1 and m5, and m1 and m3 corresponding to an input light bar oriented at 157.5◦. (b) Auto
correlograms of m2 and m4 in the top two row, and cross correlograms on the bottom row between m2

and m4, corresponding to the vertical light bar.
339

Moreover, in the experiments it was also found that the correlation strength between m1 − m5 is weaker340

than that between m1 − m3 and between m3 − m5 (i.e., the bar that indicates the number of spikes, on the341

right of the plot in the second row of Figure 10(a), has smaller number than other two plots). This is due to342

the fact that the spatial distance between m1 and m5 is the largest, and the correlation strength falls off with343

distance.344

We next explore the properties of our predicted correlation functions using Eq. (55) with the experimental345

conditions. Figure 11(a) shows the plots of our predicted temporal correlation functions between m3 and m5,346

m1 and m5, and m1 and m3. Similarly to the experimental CCFs, all the theoretical CCFs: (i) are oscillatory347

and peak at zero time lag; (ii) have an oscillation frequency around 57Hz; and, (iii) have their characteristic time348

for the correlation envelope to decrease by 1/e of the maximum value at approximately 40ms. These theoretical349

results agree with the experimental results, once a nonzero mean baseline is subtracted from the latter.350

Our prediction also captures the spatial dependence of the maximum correlation strength. The plot in the351

middle row of Figure 11(a) corresponds to the correlation between m1 − m5 and has the smallest amplitude352
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among the three CCFs.353

Figure 11: Normalized temporal cross correlation with zero mean for experimental conditions with
stimuli at 157.5◦ and 90◦. (a) Normalized temporal correlation between measurement sites m3 and m5,
m1 and m5, and m1 and m3 for a stimulus at 157.5◦. Such condition is illustrated in Figure 9. (b)
Normalized temporal cross correlation between m2 and m4, and the autocorrelation function at m2 and
m4, for a stimulus at 90◦.

Figure 11(b) shows the predicted temporal correlation function generated by the vertical input light bar. In354

order to be consistent with the experimental results shown in Figure 10(b), the autocorrelation functions of m2355

and m4 are also included in the top two rows of Figure 11(b). Both ACFs show oscillations in the gamma band.356

The CCF between m2 and m4 shows a center peak at τ = 0 and oscillates at 55Hz. The time for the envelope357

decay to 1/e of the center peak value is 25ms. These properties are also in line with the experimental findings.358

8 Summary and Conclusion359

We have generalized the spatiotemporal correlation functions in two dimensions that incorporates the spatial360

structure of the OP map and OD columns of V1. Our results show that the neural activities are synchronized361

in gamma band when neurons have similar feature preference. The main results are:362

i) The derivation of a shape function that modulates the spatial patchy propagation of the neural signals.363

The shape function models the propagation such that the orientation of the propagation direction is aligned364

with the OP of source, and the connected neurons are patchy and periodically located. The parameters of the365

shape function are tuned to match the propagation ranges observed in experiments (Bosking et al., 1997).366

ii) The systematic characterization of the 2D two-point temporal correlation function. The generalized367

correlation function is evaluated numerically for various combinations of stimulation and measurement sites.368

The results demonstrate a synchronized gamma oscillation exists between two groups of neurons that have369

similar OP to the sources. The correlation strength is larger for inter-columnar connections than for intra-370

columnar connections. As the measurement points are further away from the sources, the correlation strength371

decreases, and is negligible when the spatial separation of the measurement points exceeds 7mm.372

(iii) The construction of a 2D correlation maps. These maps show the changes expected in the peak cor-373

relation strength with respect to the variation of the OP of one of the measurement sites, and its distance to374

a second measurement site. The positive correlations appear as patches on an axis oriented at the OP of the375

source; and, negative correlations occur where the OPs of the measurement sites are orthogonal to the OP of376
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the source.377

iii) The comparison of the predicted temporal correlations using experimental conditions. Our theoretical378

results are compared with the experimental findings and shows there is a close match between both in terms of379

the oscillation frequency and the characteristic decay time of the correlation function envelope. In addition, our380

CCFs also capture the spatial dependence of correlation strength, which decreases with distance between the381

measurement sites.382

Overall, our generalized spatiotemporal correlation function reproduces the gamma band oscillations observed383

in V1 and relates the spatially distributed neural responses to the periodic spatial structure of OP and OD in384

V1. This study lays the foundation to further investigate other visual perception phenomena such as the binding385

problem.386

Future work will focus on using a more realistic lattice of pinwheels and introduce asymmetries between the387

left/right OD columns to account for strabismus.388
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Highlights 
 

 Incorporate orientation preference map into patchy connectivities of neurons in V1. 
 Generalize spatiotemporal correlation function of neural activity to 2D spatially.  
 Reproduce experimental results: synchronization of neural activities in gamma band. 
 Temporal correlation between 2 measurements decreases with increasing separation. 
 Predict 2D spatial map of temporal correlation strength between 2 measurement sites. 

*Highlights (for review)
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